1
|
Mazzetto R, Miceli P, Tartaglia J, Ciolfi C, Sernicola A, Alaibac M. Role of IL-4 and IL-13 in Cutaneous T Cell Lymphoma. Life (Basel) 2024; 14:245. [PMID: 38398754 PMCID: PMC10889933 DOI: 10.3390/life14020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The interleukins IL-4 and IL-13 are increasingly recognized contributors to the pathogenesis of cutaneous T cell lymphomas (CTCLs), and their role in disease-associated pruritus is accepted. The prevailing Th2 profile in advanced CTCL underscores the significance of understanding IL-4/IL-13 expression dynamics from the early stages of disease, as a shift from Th1 to Th2 may explain CTCL progression. Targeted agents blocking key cytokines of type 2 immunity are established therapeutics in atopic disorders and have a promising therapeutic potential in CTCL, given their involvement in cutaneous symptoms and their contribution to the pathogenesis of disease. IL-4, IL-13, and IL-31 are implicated in pruritus, offering therapeutic targets with dupilumab, tralokinumab, lebrikizumab, and nemolizumab. This review analyzes current knowledge on the IL-4/IL-13 axis in mycosis fungoides and Sezary syndrome, the most common types of CTCL, examining existing literature on the pathogenetic implications with a focus on investigational treatments. Clinical trials and case reports are required to shed light on novel uses of medications in various diseases, and ongoing research into the role of IL-4/IL-13 axis blockers in CTCL therapy might not only improve the management of disease-related pruritus but also provide in-depth insights on the pathophysiologic mechanisms of CTCL.
Collapse
Affiliation(s)
| | | | | | | | - Alvise Sernicola
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padova, Italy; (R.M.); (P.M.); (J.T.); (C.C.); (M.A.)
| | | |
Collapse
|
2
|
HLA-G and Other Immune Checkpoint Molecules as Targets for Novel Combined Immunotherapies. Int J Mol Sci 2022; 23:ijms23062925. [PMID: 35328349 PMCID: PMC8948858 DOI: 10.3390/ijms23062925] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
HLA-G is an HLA-class Ib molecule that is involved in the establishment of tolerance at the maternal/fetal interface during pregnancy. The expression of HLA-G is highly restricted in adults, but the de novo expression of this molecule may be observed in different hematological and solid tumors and is related to cancer progression. Indeed, tumor cells expressing high levels of HLA-G are able to suppress anti-tumor responses, thus escaping from the control of the immune system. HLA-G has been proposed as an immune checkpoint (IC) molecule due to its crucial role in tumor progression, immune escape, and metastatic spread. We here review data available in the literature in which the interaction between HLA-G and other IC molecules is reported, in particular PD-1, CTLA-4, and TIM-3, but also IDO and TIGIT. Clinical trials using monoclonal antibodies against HLA-G and other IC are currently ongoing with cancer patients where antibodies and inhibitors of PD-1 and CTLA-4 showed encouraging results. With this background, we may envisage that combined therapies using antibodies targeting HLA-G and another IC may be successful for clinical purposes. Indeed, such immunotherapeutic protocols may achieve a better rescue of effective anti-tumor immune response, thus improving the clinical outcome of patients.
Collapse
|
3
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
4
|
Manzo G. Specific and Aspecific Molecular Checkpoints as Potential Targets for Dismantling Tumor Hierarchy and Preventing Relapse and Metastasis Through Shielded Cytolytic Treatments. Front Cell Dev Biol 2021; 9:665321. [PMID: 34295890 PMCID: PMC8291084 DOI: 10.3389/fcell.2021.665321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/17/2021] [Indexed: 11/15/2022] Open
Abstract
I have recently theorized that several similarities exist between the tumor process and embryo development. Starting from an initial cancer stem cell (CSC0), similar to an embryonic stem cell (ESC), after implantation in a niche, primary self-renewing CSCs (CSC1s) would arise, which then generate secondary proliferating CSCs (CSC2s). From these epithelial CSCs, tertiary mesenchymal CSCs (CSC3s) would arise, which, under favorable stereotrophic conditions, by asymmetric proliferation, would generate cancer progenitor cells (CPCs) and then cancer differentiated cells (CDCs), thus giving a defined cell heterogeneity and hierarchy. CSC1s-CSC2s-CSC3s-CPCs-CDCs would constitute a defined "tumor growth module," able to generate new tumor modules, forming a spherical avascular mass, similar to a tumor sphere. Further growth in situ of this initial tumor would require implantation in the host and vascularization through the overexpression of some aspecific checkpoint molecules, such as CD44, ID, LIF, HSP70, and HLA-G. To expand and spread in the host tissues, this vascularized tumor would then carry on a real growth strategy based on other specific checkpoint factors, such as those contained in the extracellular vesicles (EVs), namely, microRNAs, messenger RNAs, long non-coding RNAs, and integrins. These EV components would be crucial in tumor progression because they can mediate intercellular communications in the surrounding microenvironment and systemically, dictating to recipient cells a new tumor-enslaved phenotype, thus determining pre-metastatic conditions. Moreover, by their induction properties, the EV contents could also frustrate in time the effects of cytolytic tumor therapies, where EVs released by killed CSCs might enter other cancer and non-cancer cells, thus giving chemoresistance, non-CSC/CSC transition (recurrence), and metastasis. Thus, antitumor cytotoxic treatments, "shielded" from the EV-specific checkpoints by suitable adjuvant agents, simultaneously targeting the aforesaid aspecific checkpoints should be necessary for dismantling the hierarchic tumor structure, avoiding recurrence and preventing metastasis.
Collapse
|
5
|
Lin A, Yan WH. HLA-G/ILTs Targeted Solid Cancer Immunotherapy: Opportunities and Challenges. Front Immunol 2021; 12:698677. [PMID: 34276691 PMCID: PMC8278316 DOI: 10.3389/fimmu.2021.698677] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/04/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become a promising immunotherapy for cancers. Human leukocyte antigen-G (HLA-G), a neoantigen, its biological functions and clinical relevance have been extensively investigated in malignancies, and early clinical trials with “anti-HLA-G strategy” are being launched for advance solid cancer immunotherapy. The mechanism of HLA-G as a new ICI is that HLA-G can bind immune cell bearing inhibitory receptors, the immunoglobulin-like transcript (ILT)-2 and ILT-4. HLA-G/ILT-2/-4 (HLA-G/ILTs) signaling can drive comprehensive immune suppression, promote tumor growth and disease progression. Though clinical benefits could be expected with application of HLA-G antibodies to blockade the HLA-G/ILTs signaling in solid cancer immunotherapy, major challenges with the diversity of HLA-G isoforms, HLA-G/ILTs binding specificity, intra- and inter-tumor heterogeneity of HLA-G, lack of isoform-specific antibodies and validated assay protocols, which could dramatically affect the clinical efficacy. Clinical benefits of HLA-G-targeted solid cancer immunotherapy may be fluctuated or even premature unless major challenges are addressed.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Wei-Hua Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China.,Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
6
|
Westin AT, Gardinassi LG, Soares EG, Da Silva JS, Donadi EA, Da Silva Souza C. HLA-G, cytokines, and cytokine receptors in the non-aggressive basal cell carcinoma microenvironment. Arch Dermatol Res 2021; 314:247-256. [PMID: 33811555 DOI: 10.1007/s00403-021-02218-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023]
Abstract
Non-aggressive basal cell carcinoma (BCC) growth is slow and might be mediated by the immune system. This study analysed the human leukocyte antigen (HLA)-G expression and cytokine profile in non-aggressive BCC subtypes from distinct locations. HLA-G was evaluated via immunohistochemistry and cytokine expression was analysed by a quantitative real-time polymerase chain reaction in 26 primary BCC samples, including nodular BCC (nBCC, n = 16) and superficial BCC (n = 10) from cephalic (ceBCC, n = 12) and non-cephalic (n = 14) locations, and by bioinformatics analysis of public GEO databases. Inflammatory infiltrate was concentrated around the tumour nests. HLA-G-positive inflammatory cells (53.85%) were more abundant than HLA-G-positive tumour cells (21.54%, p < 0.001). HLA-G immunoreactivity was predominantly cytoplasmic in BCC cells and was primarily associated with lymphocytes and macrophages surrounding the tumour. nBCC showed a higher percentage of HLA-G-positive tumour cells (p = 0.04), and ceBCC showed stronger intensity (p = 0.04). IFN-gamma and IL-10 expression were 1.95 and 1.22-fold higher, respectively, relative to that in normal skin, with a positive correlation between them (r = 0.61; p = 0.002). IL-23 expression was higher in nBCC (p = 0.04) and positively correlated (r = 0.47; p = 0.05) with slight intensity of HLA-G-positive tumour cells. The up-regulation of IL23A and IL10RB and down-regulation of IFNGR1 and IL4R gene expression in BCC compared to levels in adjacent tissues were demonstrated in the GSE125285 dataset. The exhibited cytokine profile was consistent with the induction of HLA-G expression in non-aggressive BCC subtypes. HLA-G expression in tumour cells and inflammatory cells surrounding BCCs supports the generation of inhibitory signals on various immune cells that exert anti-tumour responses.
Collapse
Affiliation(s)
- Andrezza Telles Westin
- Dermatology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Biosciences and Technology, Federal University of Goiás, Institute of Tropical Pathology and Public Health, Goiânia, Goiás, Brazil
| | - Edson Garcia Soares
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Santana Da Silva
- Immunology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo Antonio Donadi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cacilda Da Silva Souza
- Dermatology Division, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil. .,Divisão de Dermatologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14048-900, Brasil.
| |
Collapse
|
7
|
Liu L, Wang L, Zhao L, He C, Wang G. The Role of HLA-G in Tumor Escape: Manipulating the Phenotype and Function of Immune Cells. Front Oncol 2020; 10:597468. [PMID: 33425752 PMCID: PMC7786297 DOI: 10.3389/fonc.2020.597468] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex class I (MHC I) molecule, and under physiological conditions, its expression is strictly restricted to the maternal–fetal interface and immune-privileged organs where HLA-G is expected to contribute to establishment and maintenance of immune tolerance. However, the expression of HLA-G has been found in various types of tumors, and the level of its expression frequently correlates with high-grade histology and poor prognosis, raising the possibility that it may play a negative role in tumor immunity. ILT2 and ILT4, present on a broad of immune cells, have been identified as the main receptors engaging HLA-G, and their interactions have been found to allow the conversion of effectors like NK cells and T cells to anergic or unresponsive state, activated DCs to tolerogenic state, and to drive the differentiation of T cells toward suppressive phenotype. Therefore, tumors can employ HLA-G to modulate the phenotype and function of immune cells, allowing them to escape immune attack. In this review, we discuss the mechanism underlying HLA-G expression and function, its role played in each step of the tumor-immunity cycle, as well as the potential to target it for therapeutic benefit.
Collapse
Affiliation(s)
- Lu Liu
- Department of Gastroenterology, Center for Digestive Diseases, People's Hospital of Baoan District, The 8th People's Hospital of Shenzhen, Shenzhen, China.,Department of Critical Care Medicine, People's Hospital of Baoan District, The 8th People's Hospital of Shenzhen, Shenzhen, China
| | - Lijun Wang
- Department of Critical Care Medicine, People's Hospital of Baoan District, The 8th People's Hospital of Shenzhen, Shenzhen, China
| | - Lihong Zhao
- Department of Spine Surgery, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chen He
- Department of Ophthalmology, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ganlu Wang
- Department of Gastroenterology, Center for Digestive Diseases, People's Hospital of Baoan District, The 8th People's Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
8
|
Loustau M, Anna F, Dréan R, Lecomte M, Langlade-Demoyen P, Caumartin J. HLA-G Neo-Expression on Tumors. Front Immunol 2020; 11:1685. [PMID: 32922387 PMCID: PMC7456902 DOI: 10.3389/fimmu.2020.01685] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
HLA-G is known to modulate the immune system activity in tissues where physiological immune-tolerance is necessary (i.e., maternal-fetal interface, thymus, and cornea). However, the frequent neo-expression of HLA-G in many cancer types has been previously and extensively described and is correlated with a bad prognosis. Despite being an MHC class I molecule, HLA-G is highly present in tumor context and shows unique characteristics of tissue restriction of a Tumor Associated Antigen (TAA), and potent immunosuppressive activity of an Immune CheckPoint (ICP). Consequently, HLA-G appears to be an excellent molecular target for immunotherapy. Although the relevance of HLA-G in cancer incidence and development has been proven in numerous tumors, its neo-expression pattern is still difficult to determine. Indeed, the estimation of HLA-G's actual expression in tumor tissue is limited, particularly concerning the presence and percentage of the new non-canonical isoforms, for which detection antibodies are scarce or inexistent. Here, we summarize the current knowledge about HLA-G neo-expression and implication in various tumor types, pointing out the need for the development of new tools to analyze in-depth the HLA-G neo-expression patterns, opening the way for the generation of new monoclonal antibodies and cell-based immunotherapies.
Collapse
Affiliation(s)
| | - François Anna
- Invectys, Paris, France
- Molecular Virology and Vaccinology Unit, Virology Department, Institut Pasteur & CNRS URA 3015, Paris, France
| | - Raphaelle Dréan
- Invectys, Paris, France
- Molecular Retrovirology Unit, Institut Pasteur, CNRS, UMR 3569, Paris, France
| | | | | | | |
Collapse
|
9
|
Abstract
Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Koshika Yadava
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Headington, Oxford OX3 7LE, United Kingdom;
| |
Collapse
|
10
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
11
|
Zhang D, An X, Li Z, Zhang S. Role of gene promoter methylation regulated by TETs and DNMTs in the overexpression of HLA-G in MCF-7 cells. Exp Ther Med 2019; 17:4709-4714. [PMID: 31086605 DOI: 10.3892/etm.2019.7481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/15/2019] [Indexed: 01/01/2023] Open
Abstract
Human leukocyte antigen-G (HLA-G) is highly expressed in numerous solid tumor cell types and has important roles in protecting tumor cells from host immune recognition and destruction. DNA methylation modification, which may regulate gene expression, is aberrant in numerous tumor cell types. However, whether the high expression of HLA-G in tumor cells is induced by aberrant DNA methylation has remained elusive. In the present study, HLA-G, DNA methyltransferase (DNMT) and ten-eleven translocation (TET) expression, as well as the DNA methylation level of HLA-G, were assessed in the HBL-100 breast cell line and the MCF-7 breast cancer cell line. The influence of TET on the expression and DNA methylation levels of HLA-G in MCF-7 was assessed through treatment with the TET inhibitor dimethyloxallyl glycine (DMOG). The results indicated that HLA-G expression was significantly greater in MCF-7 than that in HBL-100 cells; however, the DNA methylation level of HLA-G was lower in MCF-7 than that in HBL-100 cells. Furthermore, in MCF-7 cells, DNMT1 and DNMT3a were expressed at lower levels and TET2 was expressed at higher levels than in HBL-100 cells. Treatment with DMOG significantly decreased HLA-G expression, while increasing the DNA methylation level of HLA-G in MCF-7. In conclusion, the results indicated that overexpression of HLA-G in MCF-7 cells was induced by DNA methylation modification. The lower DNMT1 and DNMT3a and higher TET2 expression levels may be responsible for the abnormal DNA methylation of HLA-G in MCF-7. Treatment with TET inhibitor prevented aberrant HLA-G expression and DNA methylation in MCF-7. The present study may provide potential targets for novel anti-cancer drugs.
Collapse
Affiliation(s)
- Daoyu Zhang
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Xinglan An
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Ziyi Li
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Sheng Zhang
- State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
12
|
Manzo G. Similarities Between Embryo Development and Cancer Process Suggest New Strategies for Research and Therapy of Tumors: A New Point of View. Front Cell Dev Biol 2019; 7:20. [PMID: 30899759 PMCID: PMC6416183 DOI: 10.3389/fcell.2019.00020] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/05/2019] [Indexed: 12/25/2022] Open
Abstract
Here, I propose that cancer stem cells (CSCs) would be equivalent to para-embryonic stem cells (p-ESCs), derived from adult cells de-re-programmed to a ground state. p-ESCs would differ from ESCs by the absence of genomic homeostasis. A p-ESC would constitute the cancer cell of origin (i-CSC or CSC0), capable of generating an initial tumor, corresponding to a pre-implantation blastocyst. In a niche with proper signals, it would engraft as a primary tumor, corresponding to a post-implantation blastocyst. i-CSC progeny would form primary pluripotent and slow self-renewing CSCs (CSC1s), blocked in an undifferentiated state, corresponding to epiblast cells; CSC1s would be tumor-initiating cells (TICs). CSC1s would generate secondary CSCs (CSC2s), corresponding to hypoblast cells; CSC2s would be tumor growth cells (TGCs). CSC1s/CSC2s would generate tertiary CSCs (CSC3s), with a mesenchymal phenotype; CSC3s would be tumor migrating cells (TMCs), corresponding to mesodermal precursors at primitive streak. CSC3s with more favorable conditions (normoxia), by asymmetrical division, would differentiate into cancer progenitor cells (CPCs), and these into cancer differentiated cells (CDCs), thus generating a defined cell hierarchy and tumor progression, mimicking somito-histo-organogenesis. CSC3s with less favorable conditions (hypoxia) would delaminate and migrate as quiescent circulating micro-metastases, mimicking mesenchymal cells in gastrula morphogenetic movements. In metastatic niches, these CSC3s would install and remain dormant in the presence of epithelial/mesenchymal transition (EMT) signals and hypoxia. But, in the presence of mesenchymal/epithelial transition (MET) signals and normoxia, they would revert to self-renewing CSC1s, reproducing the same cell hierarchy of the primary tumor as macro-metastases. Further similarities between ontogenesis and oncogenesis involving crucial factors, such as ID, HSP70, HLA-G, CD44, LIF, and STAT3, are strongly evident at molecular, physiological and immunological levels. Much experimental data about these factors led to considering the cancer process as ectopic rudimentary ontogenesis, where CSCs have privileged immunological conditions. These would consent to CSC development in an adverse environment, just like an embryo, which is tolerated, accepted and favored by the maternal organism in spite of its paternal semi-allogeneicity. From all these considerations, novel research directions, potential innovative tumor therapy and prophylaxis strategies might, theoretically, result.
Collapse
Affiliation(s)
- Giovanni Manzo
- General Pathology, “La Sapienza” University of Rome, Retired, Botrugno, Italy
| |
Collapse
|
13
|
Lin A, Yan WH. Heterogeneity of HLA-G Expression in Cancers: Facing the Challenges. Front Immunol 2018; 9:2164. [PMID: 30319626 PMCID: PMC6170620 DOI: 10.3389/fimmu.2018.02164] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/03/2018] [Indexed: 12/24/2022] Open
Abstract
Phenotypic heterogeneity has been observed in most malignancies, which represents a considerable challenge for tumor therapy. In recent decades, the biological function and clinical significance of the human leukocyte antigen (HLA)-G have been intensively explored. It is now widely accepted that HLA-G is a critical marker of immunotolerance in cancer cell immune evasion and is strongly associated with disease progress and prognosis for cancer patients. Moreover, it has recently been emphasized that the signaling pathway linking HLA-G and immunoglobulin-like transcripts (ILTs) is considered an immune checkpoint. In addition, HLA-G itself can generate at least seven distinct isoforms, and intertumor and intratumor heterogeneity of HLA-G expression is common across different tumor types. Furthermore, HLA-G heterogeneity in cancers has been related to disease stage and outcomes, metastatic status and response to different therapies. This review focuses on the heterogeneity of HLA-G expression in malignant lesions, and clinical implications of this heterogeneity that might be relevant to personalized treatments are also discussed.
Collapse
Affiliation(s)
- Aifen Lin
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| |
Collapse
|
14
|
Babay W, Ben Yahia H, Boujelbene N, Zidi N, Laaribi AB, Kacem D, Ben Ghorbel R, Boudabous A, Ouzari HI, Rizzo R, Rebmann V, Mrad K, Zidi I. Clinicopathologic significance of HLA-G and HLA-E molecules in Tunisian patients with ovarian carcinoma. Hum Immunol 2018; 79:463-470. [PMID: 29499226 DOI: 10.1016/j.humimm.2018.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND The human leukocyte antigen (HLA)-G and HLA-E, non classical HLA class I molecules, have been highly implicated in immune tolerance. HLA-G and HLA-E molecules were proposed as putative markers of several advanced cancers. As a step towards a better understanding of ovarian carcinoma, we evaluated the expression of both HLA-G and HLA-E molecules and explored their prognostic implication. METHODS HLA-G and HLA-E expression were studied by immunohistochemistry on ovarian carcinoma tissues. This expression was semi-quantitatively scored into four expression groups and correlated to clinicopathological parameters and patients' survival. RESULTS HLA-G and HLA-E have been found to be highly expressed in ovarian carcinoma tissues (Respectively, 72.4% and 96.8%). They are frequently co-expressed. Univariate and multivariate analysis revealed that a positive HLA-G expression status in tumor tissue is a promising candidate parameter to predict disease recurrence in addition to the disease status in Tunisian patients with ovarian carcinoma. Moreover, the elevated HLA-E expression was associated with serous ovarian carcinoma subtype as well as with advanced stages of ovarian carcinoma. CONCLUSION HLA-G and HLA-E are highly represented in ovarian carcinoma suggesting a potential association with progressive disease mechanism. HLA-G and HLA-E molecules might be new candidates' markers for ovarian carcinoma progression.
Collapse
Affiliation(s)
- Wafa Babay
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hamza Ben Yahia
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nadia Boujelbene
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia; Department of Pathology, Salah Azaïz Institute, Tunis, Tunisia
| | - Nour Zidi
- Department of Radiotherapy, Salah Azaïz Institute, Tunis, Tunisia
| | - Ahmed Baligh Laaribi
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dhikra Kacem
- Department of Pathology, Salah Azaïz Institute, Tunis, Tunisia
| | | | - Abdellatif Boudabous
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Roberta Rizzo
- Department of Experimental and Diagnostic Medicine, Section Microbiology, University of Ferrara, Ferrara, Italy
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Karima Mrad
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia; Department of Pathology, Salah Azaïz Institute, Tunis, Tunisia
| | - Inès Zidi
- Laboratory Microorganisms and Active Biomolecules, Sciences Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
15
|
Deonizio JMD, Guitart J, Yazdan P, Mulinari-Brenner F, Sotto MN, Sanches JA. Immune privilege disruption in folliculotropic mycosis fungoides: investigation of major histocompatibility complex antigen expression. Int J Dermatol 2018; 57:675-680. [PMID: 29603194 DOI: 10.1111/ijd.13967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 01/31/2018] [Accepted: 02/24/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Folliculotropic mycosis fungoides (FMF) is a cutaneous T-cell lymphoma mainly affecting the hair follicle, which seems to represent a place of immune privilege phenomenon. OBJECTIVES To explore a possible role of immune privilege (IP) in FMF analyzing the major histocompatibility complex (MHC) expression. METHODS Immunohistochemistry for HLA-G and MHC-II was performed to formalin-fixed paraffin-embedded cutaneous skin biopsies of FMF patients (n = 43), conventional mycosis fungoides (CMF; n = 13), alopecia areata (AA; n = 13), and normal scalp skin (NS; n = 12). RESULTS HLA-G expression was lower in FMF (34%: 14/41) and CMF (18%: 2/11) groups compared to alopecia areata (92%:11/12) and normal scalp skin group (100%: 12/12). MHC-II expression in hair follicle was greater in the FMF group (18/42: 43%) compared to AA (0%) and NS (0%). HLA-G and MHC-II expression in cellular infiltrate had no difference among FMF and CMF groups and was different compared to the AA group. CONCLUSIONS Our data support the hypothesis of disruption of immune privilege based on the lower expression of HLA-G and higher expression of MHC-II in the follicular epithelium in mycosis fungoides compared to alopecia areata and normal scalp skin. The lack of difference between FMF and CMF groups did not support the role of these molecules as a driver of folliculotropism. The expression of MHC molecules seems to be different between neoplastic and inflammatory infiltrates. The definitive significance of expression of the MHC molecules remains unclear, and more studies are necessary to fully understand the role of these molecules in cutaneous lymphomas.
Collapse
Affiliation(s)
- Janyana M D Deonizio
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| | - Joan Guitart
- Department of Dermatopathology, Northwestern University, Chicago, USA
| | - Pedram Yazdan
- Department of Dermatopathology, Northwestern University, Chicago, USA
| | | | - Mirian N Sotto
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| | - José A Sanches
- Department of Dermatology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
16
|
He Y, Bunn PA, Zhou C, Chan D. KIR 2D (L1, L3, L4, S4) and KIR 3DL1 protein expression in non-small cell lung cancer. Oncotarget 2018; 7:82104-82111. [PMID: 27893413 PMCID: PMC5347678 DOI: 10.18632/oncotarget.13486] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
Background Nature killer (NK) cells are the immune system's first line of defense against both viral infections and tumors. Killer cell immunoglobulin-like receptors (KIRs) are associated with susceptibility to different types of cancers. We investigated KIR 2D (L1, L3, L4, S4) and KIR 3DL1 protein expression and their association with survival in non-small cell lung cancer (NSCLC). Methods The expression of KIR 2D (L1, L3, L4, S4) (BC032422/ ADQ31987/ NP_002246/ NP_036446, ABCAM) and KIR 3DL1 (AA 1-444, ABCAM) protein was assessed by immunohistochemistry (IHC) in 62 NSCLC patients. Results KIR 2D (L1, L3, L4, S4) and KIR 3DL1 were expressed both on NSCLC tumor cells and tumor infiltrating lymphocytes (TILs). Fourteen samples (22.6%) stained positive for KIR 2D (L1, L3, L4, S4) on the tumor cells, and 10 (16.1%) had positive expression on the TILs. Thirty-three samples (53.2%) stained positive for KIR 3DL1 on the tumor cells, and 31 (50.0%) had positive expression on the TILs. Patients with negative KIR 2D (L1, L3, L4, S4) expression on tumor cells or TILs had longer overall survival (OS) than patients who are KIR 2D (L1, L3, L4, S4) positive on tumor cells (40.70 weeks, 95% CI 24.76-56.65 vs. 7.10 weeks, 95% CI 0.00-19.38, P = 0.014) or TILs (40.70 weeks, 95% CI 24.05-57.35 vs. 3.90 weeks, 95% CI 0.00-9.17, P < 0.001). Likewise, longer OS was significantly correlated with negative expression of KIR 3DL1 on tumor cells (62.30 weeks, 95% CI 0.00-177.37 vs. 13.10 weeks, 95% CI 3.42-22.78, P < 0.001) or TILs (62.30 weeks, 95% CI 0.00-152.05 vs. 12.10 weeks, 95% CI 2.61-21.59, P < 0.001). Cox regression analysis showed that KIR 2D (L1, L3, L4, S4) on TILs was correlated with OS (P = 0.032, Odds Ratio 2.628 95%CI 1.089-6.340). Conclusions KIR 2D (L1, L3, L4, S4) and KIR 3DL1 expression was correlated with poor prognosis in NSCLC patients.
Collapse
Affiliation(s)
- Yayi He
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Paul A Bunn
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Dan Chan
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
17
|
Clinical Recommendations for the Use of Islet Cell Autoantibodies to Distinguish Autoimmune and Non-Autoimmune Gestational Diabetes. Clin Rev Allergy Immunol 2016; 50:23-33. [PMID: 25392235 DOI: 10.1007/s12016-014-8461-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is defined as carbohydrate intolerance that begins or is first recognized during pregnancy. The prevalence of GDM is highly variable, depending on the population studied, and reflects the underlying pattern of diabetes in the population. GDM manifests by the second half of pregnancy and disappears following delivery in most cases, but is associated with the risk of subsequent diabetes development. Normal pregnancy induces carbohydrate intolerance to favor the availability of nutrients for the fetus, which is compensated by increased insulin secretion from the maternal pancreas. Pregnancy shares similarities with adiposity in metabolism to save energy, and both conditions favor the development of insulin resistance (IR) and low-grade inflammation. A highly complicated network of modified regulatory mechanisms may primarily affect carbohydrate metabolism by promoting autoimmune reactions to pancreatic β cells and affecting insulin function. As a result, diabetes development during pregnancy is facilitated. Depending on a pregnant woman's genetic susceptibility to diabetes, autoimmune mechanisms or IR are fundamental to the development autoimmune or non-autoimmune GDM, respectively. Pregnancy may facilitate the identification of women at risk of developing diabetes later in life; autoimmune and non-autoimmune GDM may be early markers of the risk of future type 1 and type 2 diabetes, respectively. The most convenient and efficient way to discriminate GDM types is to assess pancreatic β-cell autoantibodies along with diagnosing diabetes in pregnancy.
Collapse
|
18
|
Rescuing lymphocytes from HLA-G immunosuppressive effects mediated by the tumor microenvironment. Oncotarget 2016; 6:37385-97. [PMID: 26460949 PMCID: PMC4741936 DOI: 10.18632/oncotarget.6044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that the antitumor activities of both T and natural killer (NK) effector populations are limited by the immunosuppressive strategies of tumors. In several malignant transformations, the expression of HLA-G by tumor cells rises dramatically, rendering them strongly immunosuppressive. In this study, we postulated that the absence of HLA-G receptors would prevent the immunosuppressive effects of both soluble and membrane-bound HLA-G. Thus, we investigated the therapeutic potential of effector NK cells genetically modified to downregulate the expression of ILT2 (HLA-G receptor) on their cell surfaces. We have shown that the proliferation of modified NK is still dependent on stimulation signals (no malignant transformation). ILT2− NK cells proliferate, migrate, and eliminate HLA-G negative targets cells to the same extent parental NK cells do. However, in the presence of HLA-G positive tumors, ILT2− NK cells exhibit superior proliferation, conjugate formation, degranulation, and killing activities compared to parent NK cells. We tested the effectiveness of ILT2− NK cells in vivo using a xenograft cancer model and found that silencing ILT2 rescued their anti-tumor activity. We believe that combining ILT2− NK cells with existing therapeutic strategies will strengthen the antitumor response in cancer patients.
Collapse
|
19
|
Sun J, Chu H, Ji J, Huo G, Song Q, Zhang X. Long non-coding RNA HOTAIR modulates HLA-G expression by absorbing miR-148a in human cervical cancer. Int J Oncol 2016; 49:943-52. [PMID: 27574106 DOI: 10.3892/ijo.2016.3589] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/21/2016] [Indexed: 11/05/2022] Open
Abstract
The long non-coding RNA HOX transcript antisense RNA (HOTAIR) has been found overexpressed in many human malignancies and involved in tumor progression and metastasis. However, little is known about the potential biological roles of HOTAIR in tumor escape. In the present study, the expression of HOTAIR was detected in 59 paired cervical cancer tissue samples by real-time PCR and then subjected to correlation analysis with clinical features. The effects of HOTAIR on cervical cancer cells as well as the expression of human leukocyte antigen (HLA)-G were studied by overexpression and RNA interference approaches. Insight into the mechanism of HOTAIR acting as competitive endogenous RNAs (ceRNAs) was gained from bioinformatic analysis and luciferase assays. HOTAIR expression was obviously increased in cervical cancer tissue. HOTAIR upregulation was associated with advanced pathological stage, histology, lymph node invasion and lymphatic metastasis, and also correlated with shorter overall survival of cervical cancer patients. Furthermore, HOTAIR overexpression promoted the proliferation, migration and invasion of cervical cancer cells, while HOTAIR knockdown inhibited cell invasion and cell viability, induced apoptosis and inhibited growth in vitro and in vivo. Moreover, HOTAIR modulated human leucocyte antigen-G (HLA-G) expression by competitively binding miR-148a. Our data suggest that HOTAIR plays an important oncogenic role in cervical cancer and might serve as a marker for cervical cancer prognosis and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Jinbao Sun
- Department of Gynecological Ward, People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Haipeng Chu
- Department of Obstetrics-Gynecology, Daqing LongNan Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Jianghai Ji
- Department of Gynecological Ward, People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Gaoxiang Huo
- Department of Gynecological Ward, People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Qinglei Song
- Department of Gynecological Ward, People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Xue Zhang
- Department of Gynecological Ward, People's Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
20
|
HLA-G and MHC Class II Protein Expression in Diffuse Large B-Cell Lymphoma. Arch Immunol Ther Exp (Warsz) 2015; 64:225-40. [PMID: 26667793 DOI: 10.1007/s00005-015-0372-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/14/2015] [Indexed: 02/01/2023]
Abstract
The expression of human leukocyte antigen-G (HLA-G) and HLA class II protein was studied by immunohistochemical staining of lymph nodes from 148 patients with diffuse large B-cell lymphoma (DLBCL) and related to the clinical course of the disease. Negative HLA-G expression was associated with a lower probability of achieving a complete remission (p = 0.04). Patients with negative HLA-G expression tended towards a lower 3-year overall survival (OS) rate compared to those with positive expression of HLA-G (p = 0.08). When restricting the analysis to patients receiving chemotherapy with rituximab, the estimated 3-year OS rate of patients with positive HLA-G expression was 73.3 % compared with 47.5 % (p = 0.03) in those with negative expression. Patients with negative HLA class II expression presented a lower 3-year OS rate compared to subjects with positive expression (p = 0.04). The loss of HLA class II expression (p = 0.05) and belonging to the intermediate high/high IPI risk group (p = 0.001) independently increased the risk of death. HLA class II expression also retained its prognostic value in patients receiving rituximab; the 3-year OS rate was 65.3 % in patients with positive HLA class II expression versus 29.6 % (p = 0.04) in subjects that had loss of HLA class II expression. To our knowledge, for the first time, the expression of HLA-G protein in DLBCL and its association with the clinical course of the disease was demonstrated. Moreover, the link between losing HLA class II protein expression and poor survival of patients treated with immunochemotherapy was confirmed.
Collapse
|
21
|
LeMaoult J, Caumartin J, Daouya M, Switala M, Rebmann V, Arnulf B, Carosella ED. Trogocytic intercellular membrane exchanges among hematological tumors. J Hematol Oncol 2015; 8:24. [PMID: 25887663 PMCID: PMC4371622 DOI: 10.1186/s13045-015-0114-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/17/2015] [Indexed: 01/01/2023] Open
Abstract
Trogocytosis is the transfer of plasma membrane fragments and the molecules they contain between one donor and one acceptor/acquirer cell. Through trogocytosis, acceptor cells temporarily display and use cell-surface molecules they do not express themselves, but borrow from other cells. Here, we investigated whether liquid tumors possessed a trogocytic capability, if immune escape molecules could be acquired by tumor cells, transferred between cells of the same tumor, and if this could benefit the tumor as a whole.For this, we investigated trogocytosis in hematological cell lines and freshly isolated hematological tumor cells. We demonstrate that hematological tumor lines possess a trogocytic capability that allows them to capture membranes that contain the immune-inhibitory molecule HLA-G from allogeneic as well as from autologous sources. We further show that freshly isolated hematological tumor cells also possess these capabilities. This work reports for the first time the trogocytic capabilities of liquid tumor cells and introduces the notion of immune escape strategy sharing among tumor cells through trogocytosis of membrane-bound immune-inhibitory molecules.
Collapse
Affiliation(s)
- Joel LeMaoult
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, UMR E_5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France.
| | - Julien Caumartin
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, UMR E_5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France. .,Biology and Biotechnology Ph.D. Program, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France.
| | - Marina Daouya
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, UMR E_5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France.
| | - Magdalena Switala
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.
| | - Bertrand Arnulf
- Département d'Immuno-Hématologie, Hôpital Saint-Louis, Paris, France.
| | - Edgardo D Carosella
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, UMR E_5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France.
| |
Collapse
|
22
|
|
23
|
Rizzo R, Bortolotti D, Bolzani S, Fainardi E. HLA-G Molecules in Autoimmune Diseases and Infections. Front Immunol 2014; 5:592. [PMID: 25477881 PMCID: PMC4235267 DOI: 10.3389/fimmu.2014.00592] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 01/22/2023] Open
Abstract
Human leukocyte antigen (HLA)-G molecule, a non-classical HLA-Ib molecule, is less polymorphic when compared to classical HLA class I molecules. Human leukocyte antigen-G (HLA-G) was first detected on cytotrophoblast cells at the feto-maternal interface but its expression is prevalent during viral infections and several autoimmune diseases. HLA-G gene is characterized by polymorphisms at the 3' un-translated region and 5' upstream regulatory region that regulate its expression and are associated with autoimmune diseases and viral infection susceptibility, creating an unbalanced and pathologic environment. This review focuses on the role of HLA-G genetic polymorphisms, mRNA, and protein expression in autoimmune conditions and viral infections.
Collapse
Affiliation(s)
- Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Bolzani
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliera-Universitaria Arcispedale S. Anna, Ferrara, Italy
| |
Collapse
|
24
|
Gimenes F, Teixeira JJV, de Abreu ALP, Souza RP, Pereira MW, da Silva VRS, Bôer CG, Maria-Engler SS, Bonini MG, Borelli SD, Consolaro MEL. Human leukocyte antigen (HLA)-G and cervical cancer immunoediting: a candidate molecule for therapeutic intervention and prognostic biomarker? Biochim Biophys Acta Rev Cancer 2014; 1846:576-89. [PMID: 25453366 DOI: 10.1016/j.bbcan.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023]
Abstract
While persistent infection with oncogenic types of human Papillomavirus (HPV) is required for cervical epithelial cell transformation and cervical carcinogenesis, HPV infection alone is not sufficient to induce tumorigenesis. Only a minor fraction of HPV infections produce high-grade lesions and cervical cancer, suggesting complex host-virus interactions. Based on its pronounced immunoinhibitory properties, human leukocyte antigen (HLA)-G has been proposed as a possible prognostic biomarker and therapeutic target relevant in a wide variety of cancers and viral infections, but to date remains underexplored in cervical cancer. Given the possible influence of HLA-G on the clinical course of HPV infection, cervical lesions and cancer progression, a better understanding of HLA-G involvement in cervical carcinogenesis might contribute to two aspects of fundamental importance: 1. Characterization of a novel diagnostic/prognostic biomarker to identify cervical cancer and to monitor disease stage, critical for patient screening; 2. Identification of HLA-G-driven immune mechanisms involved in lesion development and cancer progression, leading to the development of strategies for modulating HLA-G expression for treatment purposes. Thus, this systematic review explores the potential involvement of HLA-G protein expression and polymorphisms in cervical carcinogenesis.
Collapse
Affiliation(s)
- Fabrícia Gimenes
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Jorge Juarez Vieira Teixeira
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - André Luelsdorf Pimenta de Abreu
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Raquel Pantarotto Souza
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Monalisa Wolski Pereira
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Vânia Ramos Sela da Silva
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Cinthia Gandolfi Bôer
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Silvya Stuchi Maria-Engler
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, 05508000 São Paulo, Brazil
| | - Marcelo Gialluisi Bonini
- College of Medicine, Departments of Medicine, Pharmacology and Pathology, University of Illinois at Chicago, 60612 Chicago, IL, USA
| | - Sueli Donizete Borelli
- Laboratory of Immunogenetics, Department of Basic Health Sciences, State University of Maringá, 87020900 Paraná, Brazil
| | - Márcia Edilaine Lopes Consolaro
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil.
| |
Collapse
|
25
|
Castelli EC, Veiga-Castelli LC, Yaghi L, Moreau P, Donadi EA. Transcriptional and posttranscriptional regulations of the HLA-G gene. J Immunol Res 2014; 2014:734068. [PMID: 24741620 PMCID: PMC3987962 DOI: 10.1155/2014/734068] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/16/2014] [Indexed: 01/20/2023] Open
Abstract
HLA-G has a relevant role in immune response regulation. The overall structure of the HLA-G coding region has been maintained during the evolution process, in which most of its variable sites are synonymous mutations or coincide with introns, preserving major functional HLA-G properties. The HLA-G promoter region is different from the classical class I promoters, mainly because (i) it lacks regulatory responsive elements for IFN-γ and NF-κB, (ii) the proximal promoter region (within 200 bases from the first translated ATG) does not mediate transactivation by the principal HLA class I transactivation mechanisms, and (iii) the presence of identified alternative regulatory elements (heat shock, progesterone and hypoxia-responsive elements) and unidentified responsive elements for IL-10, glucocorticoids, and other transcription factors is evident. At least three variable sites in the 3' untranslated region have been studied that may influence HLA-G expression by modifying mRNA stability or microRNA binding sites, including the 14-base pair insertion/deletion, +3142C/G and +3187A/G polymorphisms. Other polymorphic sites have been described, but there are no functional studies on them. The HLA-G coding region polymorphisms might influence isoform production and at least two null alleles with premature stop codons have been described. We reviewed the structure of the HLA-G promoter region and its implication in transcriptional gene control, the structure of the HLA-G 3'UTR and the major actors of the posttranscriptional gene control, and, finally, the presence of regulatory elements in the coding region.
Collapse
Affiliation(s)
- Erick C. Castelli
- Departamento de Patologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), 18618-970 Botucatu, SP, Brazil
| | - Luciana C. Veiga-Castelli
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirao Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| | - Layale Yaghi
- Alternative Energies and Atomic Energy Commission, Institute of Emerging Diseases and Innovative Therapies, Department of Hematology and Immunology Research, Saint-Louis Hospital, 75010 Paris, France
- Paris-Diderot University, Sorbonne Paris-Cité, UMR E5, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Philippe Moreau
- Alternative Energies and Atomic Energy Commission, Institute of Emerging Diseases and Innovative Therapies, Department of Hematology and Immunology Research, Saint-Louis Hospital, 75010 Paris, France
- Paris-Diderot University, Sorbonne Paris-Cité, UMR E5, University Institute of Hematology, Saint-Louis Hospital, 75010 Paris, France
| | - Eduardo A. Donadi
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirao Preto, University of São Paulo (USP), 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
26
|
Attia MA, Nosair NA, Gawally A, Elnagar G, Elshafey EM. HLA-G expression as a prognostic indicator in B-cell chronic lymphocytic leukemia. Acta Haematol 2014; 132:53-8. [PMID: 24557341 DOI: 10.1159/000353757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The expression of human leukocyte antigen (HLA)-G was studied in certain malignancies and its role in escaping from immunosurveillance in cancers was proposed since HLA-G is a non-conventional HLA class I molecule that protects the fetus from immunorecognition during pregnancy. Some particles involved in the regulation of an immune system might represent prognostic value for B-cell chronic lymphocytic leukemia (B-CLL). The identification of novel prognostic factors in B-CLL may help define patient subgroups that may benefit from early therapeutic intervention. OBJECTIVE To evaluate the prognostic significance of HLA-G expression in B-CLL patients and its relationship with other well-established prognostic markers. METHODOLOGY Thirty B-CLL patients diagnosed by clinical, morphological and immunophenotyping criteria were studied for HLA-G expression by flow cytometry. The relationship between HLA-G expression and some known prognostic markers was evaluated. RESULTS HLA-G was expressed in 36.7% of CLL patients at diagnosis, with a mean expression level of 35.31 ± 12.35%. A significant association between HLA-G expression and common prognostic markers of progressive disease was detected. The group of patients with positive HLA-G expression showed significantly higher absolute lymphocyte counts and serum levels of LDH and β2-microglobulin, lower platelet counts, positive CD38 expression and advanced stages of Binet clinical staging. CONCLUSION The present study demonstrated that HLA-G expression correlates with prognostic markers of a poor B-CLL outcome, mainly Binet clinical staging and CD38 expression by B-CLL cells, which indicates that this parameter may play a role as an important prognosticator of disease progression and consequently targeted therapy in B-CLL.
Collapse
Affiliation(s)
- Mohamed A Attia
- Department of Clinical Pathology, Tanta University, Faculty of Medicine, Tanta, Egypt
| | | | | | | | | |
Collapse
|
27
|
Karagöz B, Haholu A, Özgün A, Bilgi O, Tunçel T, Emirzeoglu L, Çelik S, Demirel D. HLA-G in Testicular Germ Cell Tumors. Oncol Res Treat 2014; 37:245-8. [DOI: 10.1159/000362377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/13/2014] [Indexed: 11/19/2022]
|
28
|
Curigliano G, Criscitiello C, Gelao L, Goldhirsch A. Molecular pathways: human leukocyte antigen G (HLA-G). Clin Cancer Res 2013; 19:5564-71. [PMID: 23897901 DOI: 10.1158/1078-0432.ccr-12-3697] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human leukocyte antigen G (HLA-G) is a nonclassical MHC class I molecule that exerts important tolerogenic functions. Its main physiologic expression occurs in the placenta, where it participates in the maternal tolerance toward the fetus. HLA-G expression was found in embryonic tissues, in adult immune privileged organs, and in cells of the hematopoietic lineage. It is expressed in various types of primary solid (melanoma, head and neck, lung, urogenital, gastrointestinal, and breast cancers) and hematologic malignancies (acute leukemia, lymphomas) and metastases. HLA-G ectopic expression is observed in cancer, suggesting that its expression is one strategy used by tumor cells to escape immune surveillance. In this review, we will focus on HLA-G expression in cancers and its association with the prognosis. We will highlight the underlying molecular mechanisms of impaired HLA-G expression, the immune tolerant function of HLA-G in tumors, and the potential diagnostic use of membrane-bound and soluble HLA-G as a biomarker to identify tumors and to monitor disease stage. As HLA-G is a potent immunoinhibitory molecule, its blockade remains an attractive therapeutic strategy against cancer. Elimination of HLA-G-expressing cancer cells would be important in the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- Authors' Affiliation: Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Milan, Italy
| | | | | | | |
Collapse
|
29
|
LeMaoult J, Daouya M, Wu J, Loustau M, Horuzsko A, Carosella ED. Synthetic HLA-G proteins for therapeutic use in transplantation. FASEB J 2013; 27:3643-51. [PMID: 23752205 DOI: 10.1096/fj.13-228247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human leukocyte antigen (HLA)-G is a tolerogenic molecule, whose expression by allografts is associated with better acceptance. An increasing interest in producing HLA-G as a clinical-grade molecule for therapy use is impaired by its complexity and limited stability. Our purpose was to engineer simpler and more stable HLA-G-derived molecules than the full-length HLA-G trimolecular complex that are also tolerogenic, functional as soluble molecules, and compatible with good manufacturing practice (GMP) production conditions. We present two synthetic molecules: (α3-L)x2 and (α1-α3)x2 polypeptides. We show their capability to bind the HLA-G receptor LILRB2 and their functions in vitro and in vivo. The (α1-α3)x2 polypeptide proved to be a potent tolerogenic molecule in vivo: One treatment of skin allograft recipient mice with (α1-α3)x2 was sufficient to significantly prolong graft survival, and four weekly treatments induced complete tolerance. Furthermore, (α1-α3)x2 was active as a soluble molecule and capable of inhibiting the proliferation of tumor cell lines, as does the full length HLA-G trimolecular complex. Thus, the synthetic (α1-α3)x2 polypeptide is a stable and simpler alternative to the full-length HLA-G molecule. It can be produced under GMP conditions, it functions as a soluble molecule, and it is at least as tolerogenic as HLA-G in vivo.
Collapse
Affiliation(s)
- Joel LeMaoult
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Paris, France.
| | | | | | | | | | | |
Collapse
|
30
|
Chen J, Shen B, Jiang Y, Jun L, Zhu M, Chen B, Liu C. Analysis of immunoglobulin-like transcripts (ILTs) in lymphocytes with sHLA-G and IL10 from SLE patients. Clin Exp Med 2013; 13:135-142. [PMID: 22562117 DOI: 10.1007/s10238-012-0185-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 04/11/2012] [Indexed: 12/18/2022]
Abstract
The aim of this work was to study the expression of human leukocyte antigen G (HLA-G) and interleukin 10 (IL-10) in conjunction with expression of HLA-G killer-cell inhibitory receptor ligand immunoglobulin-like transcript 2 (ILT2) in CD3+, CD19+, CD56+ lymphomas, and ILT4 in CD14+ cells from patients with systemic lupus erythematosus (SLE). Thirty-one SLE patients and 36 healthy controls were studied. ILTs expression was analyzed by flow cytometry in peripheral blood mononuclear cells (PBMCs). The plasma sHLA-G and IL10 were evaluated by enzyme-linked immunosorbent assay (ELISA). We found a significant increased expression of ILT2 by lymphocytes in SLE patients. When the expression of this receptor was assessed in cell subsets, significantly higher ILT2 MRFI levels were detected in CD3+ cells, CD19+ cells, CD56+ cells (P < 0.05), but no change with ILT4 MRFI in CD14+ cells, neither did the percentages of ILT2/4+ lymphocytes change in SLE patients compared with healthy controls (P > 0.05). The upregulation of ILT2 expression was related to IL10 and anti-ds-DNA antibodies (P < 0.05), but not sHLA-G and steroid therapy (P > 0.05). IL-10 and sHLA-G were increased, but did not change remarkably (P > 0.05); however, they were quite related (P < 0.05). ILT2 might be one of the factors accounting for the evasion of immunosurveillance, thus participate in the pathogenesis of SLE, and the upregulation of ILT2 may be associated with its disease activity.
Collapse
Affiliation(s)
- Jiaxi Chen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province, Affiliated Hospital of Wenzhou Medical College, Taizhou, Zhejiang Province, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Loustau M, Wiendl H, Ferrone S, Carosella ED. HLA-G 2012 conference: the 15-year milestone update. ACTA ACUST UNITED AC 2013; 81:127-36. [PMID: 23347068 DOI: 10.1111/tan.12053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The non-classical human leukocyte antigen (HLA) Class I molecule HLA-G is best known for its tolerogenic function at the maternal-fetal interface, where it protects the fetus from destruction by the immune system of its mother. Yet, HLA-G has been the topic of intense investigations and its functions reach much further than originally believed. International conferences on HLA-G have taken place every 3 years since 1998, and the Sixth International Conference on HLA-G, that took place in Paris in July 2012. It counted 180 attendees from 28 countries, 35 speakers in plenary sessions, and 63 presentations of research in symposia and poster sessions, bringing new insight in HLA-G research. Here we summarize the major advances on the function and nature of HLA-G molecule that were reported, with particular interest on the findings in new mechanisms of action through regulatory cells, its relevance in cancer as well as in the molecular structure and functions of HLA-G, which are key for its clinical application.
Collapse
Affiliation(s)
- M Loustau
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France
| | | | | | | |
Collapse
|
32
|
Alkhouly N, Shehata I, Ahmed MB, Shehata H, Hassan S, Ibrahim T. HLA-G expression in acute lymphoblastic leukemia: a significant prognostic tumor biomarker. Med Oncol 2013; 30:460. [PMID: 23335072 DOI: 10.1007/s12032-013-0460-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
Human leukocyte antigen G (HLA-G) is a non-classical major histocompatibility class Ib antigen with multiple immune regulatory functions including the induction of immune tolerance in malignancies. The goal of our study was to investigate the expression of membrane form of HLA-G in acute lymphoblastic leukemia (ALL) before and after therapy in a trial to evaluate its role as a tumor escape mechanism and prognosis. So we measured its expression by reverse transcription (RT)-PCR in peripheral blood mononuclear cells of 25 (ALL) patients and 15 healthy controls and correlated our findings with a variety of clinical and laboratory variables and two important cytokines, IL-10 and INF-γ, and with natural killer (NK) cells. Serum levels of IL-10 and INF-γ were measured by ELISA. NK cells were quantitated by flow cytometry. The best cutoff values for the investigated markers were determined by ROC curve. The current study showed that membrane-bound HLA-G expression levels and positivity rates above the cutoff value 0.37 were significantly higher in ALL patients at diagnosis compared to after therapy and both showed significant higher levels than in normal control group (P < 0.01). Moreover, IL-10 and INF-γ serum levels were significantly elevated in ALL patients at time of diagnosis compared to healthy controls with a significant reduction in their levels in ALL patients after receiving chemotherapy. Membrane HLA-G expression showed a significant positive correlation with lactate dehydrogenase, peripheral and bone marrow blast cells and with IL-10 and INF-γ. The positive correlation of membrane HLA-G expression with both IL-10 and INF-γ serum levels supports the speculation that both cytokines may be involved in the control of HLA-G expression. HLA-G showed a negative correlation with NK cells confirming its importance in tumor escape through down-regulation of NK cells. In conclusion, HLA-G expression could be used as a prognostic tumor marker to monitor disease state and improvement in ALL.
Collapse
Affiliation(s)
- Noura Alkhouly
- Medical Biochemistry, Faculty of Medicine, Ain Shams University, Abbasia, Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
33
|
Lee EK, Jo DH, Kim JH, Yu YS, Kim KW, Kim JH. NK cell-associated antigen expression in retinoblastoma animal model. Cancer Invest 2012; 31:67-73. [PMID: 23157549 DOI: 10.3109/07357907.2012.743554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Natural killer (NK) cells are critical components of our immune system. Herein, we for the first time analyzed the expression and localization of the activating receptor NK cell lectin-like receptor gene 2D (NKG2D) ligands, HLA-G, MICA, MICA/B, and ULBP-2 in orthotopic transplantation models of retinoblastoma. Interestingly, HLA-G and MICA/B were expressed in retinoblastoma cell, whereas MICA and ULBP-2 were not detected. Moreover, HLA-G and MICA/B were primarily detected in proliferative area of the tumor periphery with high Ki-67 immunostaining. Our results suggest that NKG2D ligands are differentially expressed in retinoblastoma, which would play a crucial role in immunomodulation in retinoblastoma.
Collapse
Affiliation(s)
- Eun Kyoung Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
34
|
González A, Rebmann V, LeMaoult J, Horn PA, Carosella ED, Alegre E. The immunosuppressive molecule HLA-G and its clinical implications. Crit Rev Clin Lab Sci 2012; 49:63-84. [PMID: 22537084 DOI: 10.3109/10408363.2012.677947] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Human leukocyte antigen G (HLA-G) is a non-classical major histocompatibility complex (MHC) class I molecule that, through interaction with its receptors, exerts important tolerogenic functions. Its main physiological expression occurs in placenta where it seems to participate in the maternal tolerance toward the fetus. HLA-G has been studied as a marker of pregnancy complications such as abortion or pre-eclapmsia. Although HLA-G is not expressed in most adult tissues, its ectopic expression has been observed in some diseases such as viral infections, autoimmune disorders, and especially cancer. HLA-G neo-expression in cancer is associated with the capability of tumor cells to evade the immune control. In this review, we will summarize HLA-G biology and how it participates in these physiopathological processes. Special attention will be paid to its role as a diagnostic tool and also as a therapeutic target.
Collapse
Affiliation(s)
- Alvaro González
- Department of Biochemistry, University Clinic of Navarra, Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
35
|
Rodríguez JA, Galeano L, Palacios DM, Gómez C, Serrano ML, Bravo MM, Combita AL. Altered HLA class I and HLA-G expression is associated with IL-10 expression in patients with cervical cancer. Pathobiology 2011; 79:72-83. [PMID: 22213066 DOI: 10.1159/000334089] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
Although high-risk human papillomaviruses (HPVs) are an important risk factor in the etiopathogenesis of cervical cancer, increasing evidence suggests that the ability to avoid immune surveillance seems to be linked to the transforming potential of HPV and a rapid progression to cancer. In other cancer models, IL-10 contributes to impair anti-tumor immune response either by downregulating human leukocyte antigen Class I (HLA-I) expression or by increasing HLA-G expression. To comprehend how these alterations could contribute to evasion of immune surveillance in cervical cancer, we analyzed HLA-I, HLA-G and IL-10 expressions by immunohistochemistry in 63 biopsies from patients with cervical intraepithelial neoplasia III (CIN-III) and cervical cancer. Immunohistochemistry showed absent or weak HLA-I expression in 50/59 cases. In these cases, a high percentage had loss of heterozygosis. IL-10 and HLA-G expression were observed in 46.6 and 27.6% of cases, respectively. Concurrent upregulation of IL-10 was found in 87.5% of HLA-G positive cases (p = 0.000). Similarly, a significant association between IL-10 expression and HLA-I downregulation was found (p = 0.028). Finally, we observed higher HLA-G expression in patients with HLA-I downregulation than in those with normal HLA-I expression (p = 0.004). Our results suggest that, in cervical cancer, the IL-10 expression may induce an immunosuppressive environment by upregulating HLA-G expression and downregulating HLA class I expression.
Collapse
Affiliation(s)
- Josefa Antonia Rodríguez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
36
|
Almasood A, Sheshgiri R, Joseph JM, Rao V, Kamali M, Tumiati L, Ross HJ, Delgado DH. Human leukocyte antigen–G is upregulated in heart failure patients: A potential novel biomarker. Hum Immunol 2011; 72:1064-7. [DOI: 10.1016/j.humimm.2011.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 08/21/2011] [Accepted: 08/25/2011] [Indexed: 11/29/2022]
|
37
|
Lesport E, Baudhuin J, Sousa S, LeMaoult J, Zamborlini A, Rouas-Freiss N, Carosella ED, Favier B. Inhibition of human gamma delta [corrected] T-cell antitumoral activity through HLA-G: implications for immunotherapy of cancer. Cell Mol Life Sci 2011; 68:3385-99. [PMID: 21337044 PMCID: PMC11114898 DOI: 10.1007/s00018-011-0632-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 01/17/2011] [Accepted: 01/27/2011] [Indexed: 01/24/2023]
Abstract
Vγ9Vδ2 T cells play a crucial role in the antitumoral immune response through cytokine production and cytotoxicity. Although the expression of the immunomodulatory molecule HLA-G has been found in diverse tumors, its impact on Vγ9Vδ2 T-cell functions remains unknown. Here we showed that soluble HLA-G inhibits Vγ9Vδ2 T-cell proliferation without inducing apoptosis. Moreover, soluble HLA-G inhibited the Vγ9Vδ2 T-cell production of IFN-γ induced by phosphoantigen stimulation. The reduction in Vγ9Vδ2 T-cell IFN-γ production was also induced by membrane-bound or soluble HLA-G expressed by tumor cell lines. Finally, primary tumor cells inhibited Vγ9Vδ2 T-cell proliferation and IFN-γ production through HLA-G. In this context, HLA-G impaired Vγ9Vδ2 T-cell cytotoxicity by interacting with ILT2 inhibitory receptor. These data demonstrate that HLA-G inhibits the anti-tumoral functions of Vγ9Vδ2 T cells and imply that treatments targeting HLA-G could optimize Vγ9Vδ2 T-cell-mediated immunotherapy of cancer.
Collapse
MESH Headings
- Antigens, CD/metabolism
- Apoptosis
- Blotting, Western
- Cell Cycle
- Cell Line, Tumor
- Cell Proliferation
- Cytotoxicity, Immunologic/immunology
- Enzyme-Linked Immunosorbent Assay
- Flow Cytometry
- HLA Antigens/metabolism
- HLA-G Antigens
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunotherapy
- Interferon-gamma/metabolism
- Leukocyte Immunoglobulin-like Receptor B1
- Lymphocyte Activation/immunology
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/therapy
- Membrane Glycoproteins/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Immunologic/metabolism
- Receptors, KIR2DL4/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Emilie Lesport
- CEAEA, I2BM, Service de Recherches en Hemato-Immunologie, 75475 Paris, France
- UMR_E, Université Paris Diderot, Institut Universitaire d’Hématologie, Paris, France
- CEA, I2BM Service de Recherches en Hemato-Immunologie, Institut Universitaire d’Hematologie, Hopital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Jeremy Baudhuin
- CEAEA, I2BM, Service de Recherches en Hemato-Immunologie, 75475 Paris, France
- UMR_E, Université Paris Diderot, Institut Universitaire d’Hématologie, Paris, France
- CEA, I2BM Service de Recherches en Hemato-Immunologie, Institut Universitaire d’Hematologie, Hopital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Sylvie Sousa
- CEAEA, I2BM, Service de Recherches en Hemato-Immunologie, 75475 Paris, France
- UMR_E, Université Paris Diderot, Institut Universitaire d’Hématologie, Paris, France
- CEA, I2BM Service de Recherches en Hemato-Immunologie, Institut Universitaire d’Hematologie, Hopital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Joel LeMaoult
- CEAEA, I2BM, Service de Recherches en Hemato-Immunologie, 75475 Paris, France
- UMR_E, Université Paris Diderot, Institut Universitaire d’Hématologie, Paris, France
- CEA, I2BM Service de Recherches en Hemato-Immunologie, Institut Universitaire d’Hematologie, Hopital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Alessia Zamborlini
- CNRS UMR7212, Inserm U944, Université Paris Diderot, Institut Universitaire d’Hématologie, Paris, France
- CEA, I2BM Service de Recherches en Hemato-Immunologie, Institut Universitaire d’Hematologie, Hopital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Nathalie Rouas-Freiss
- CEAEA, I2BM, Service de Recherches en Hemato-Immunologie, 75475 Paris, France
- UMR_E, Université Paris Diderot, Institut Universitaire d’Hématologie, Paris, France
- CEA, I2BM Service de Recherches en Hemato-Immunologie, Institut Universitaire d’Hematologie, Hopital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Edgardo D. Carosella
- CEAEA, I2BM, Service de Recherches en Hemato-Immunologie, 75475 Paris, France
- UMR_E, Université Paris Diderot, Institut Universitaire d’Hématologie, Paris, France
- CEA, I2BM Service de Recherches en Hemato-Immunologie, Institut Universitaire d’Hematologie, Hopital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Benoit Favier
- CEAEA, I2BM, Service de Recherches en Hemato-Immunologie, 75475 Paris, France
- UMR_E, Université Paris Diderot, Institut Universitaire d’Hématologie, Paris, France
- CEA, I2BM Service de Recherches en Hemato-Immunologie, Institut Universitaire d’Hematologie, Hopital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| |
Collapse
|
38
|
Landrigan A, Yiu G, Agarwal K, Utz PJ. Therapeutic Toll-like receptor agonists directly influence mouse and human T cell lymphoma cell viability and cytokine secretion. Leuk Lymphoma 2011; 53:166-8. [PMID: 21780996 DOI: 10.3109/10428194.2011.606944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
HLA-G as predisposing for metastasis. Med Hypotheses 2011; 77:134-9. [DOI: 10.1016/j.mehy.2011.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/23/2011] [Indexed: 01/14/2023]
|
40
|
Wang Y, Ye Z, Meng XQ, Zheng SS. Expression of HLA-G in patients with hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2011; 10:158-63. [PMID: 21459722 DOI: 10.1016/s1499-3872(11)60025-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Human leukocyte antigen G (HLA-G) is a non-classical major histocompatibility complex class I molecule that has multiple immune regulatory functions including the induction of immune tolerance. The detection of HLA-G expression might serve as a clinical marker in the prediction of clinical outcomes for certain types of carcinoma. Currently, we investigated whether or not HLA-G is also expressed in patients with hepatocellular carcinoma (HCC), and whether the expression has clinical value. METHODS Serum levels of secreted HLA-G (sHLA-G) were measured by ELISA in 36 patients with HCC, 25 patients with liver cirrhosis (LC) and 25 healthy individuals. The expression of HLA-G in liver tissue was further studied using Western blotting in 36 patients with HCC and 25 with LC. The correlations between HLA-G status and various clinicopathological parameters including survival were analyzed. RESULTS The ELISA assay showed that the serum levels of sHLA-G in the HCC, LC and healthy groups were 132.6+/-31.4, 63.5+/-22.1, and 47.0+/-15.5 U/ml, respectively. Analysis of variance was used for inter-group comparison and differences were found between the HCC group and the other two groups (both P<0.01), while no difference was found between the LC group and the healthy group (P=0.112). HLA-G protein expression in liver tissue was found in 66.7% (24/36) of the primary sites of HCC, but not in benign lesions (LC). Further, the HLA-G expression in tumors had no significant correlation with the parameters of age, gender, histological grade and alpha-fetoprotein level. However, patients with HLA-G-positive tumors had a shorter postoperative survival time than those with HLA-G-negative tumors (P=0.014). Also, univariate analysis showed that HLA-G was an independent prognostic factor. CONCLUSION Our results indicated that the expression of HLA-G was a characteristic feature of HCC and patients with positive expression of HLA-G in malignant liver tissue had a poor prognosis.
Collapse
Affiliation(s)
- Yan Wang
- Division of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | | | | | |
Collapse
|
41
|
Kyurkchiev DS, Ivanova-Todorova E, Kyurkchiev SD. Effect of Progesterone on Human Mesenchymal Stem Cells. STEM CELL REGULATORS 2011; 87:217-37. [DOI: 10.1016/b978-0-12-386015-6.00040-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Zhu CB, Wang CX, Zhang X, Zhang J, Li W. Serum sHLA-G levels: A useful indicator in distinguishing colorectal cancer from benign colorectal diseases. Int J Cancer 2010; 128:617-22. [DOI: 10.1002/ijc.25372] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Donadi EA, Castelli EC, Arnaiz-Villena A, Roger M, Rey D, Moreau P. Implications of the polymorphism of HLA-G on its function, regulation, evolution and disease association. Cell Mol Life Sci 2010; 68:369-95. [PMID: 21107637 PMCID: PMC3021195 DOI: 10.1007/s00018-010-0580-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 12/27/2022]
Abstract
The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes.
Collapse
Affiliation(s)
- Eduardo A Donadi
- Division of Clinical Immunology, Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
44
|
Amiot L, Ferrone S, Grosse-Wilde H, Seliger B. Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell Mol Life Sci 2010; 68:417-31. [PMID: 21063893 DOI: 10.1007/s00018-010-0583-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 01/13/2023]
Abstract
Although the expression of the non-classical HLA class I molecule HLA-G was first reported to be restricted to the fetal-maternal interface on the extravillous cytotrophoblasts, the distribution of HLA-G in normal tissues appears broader than originally described. HLA-G expression was found in embryonic tissues, in adult immune privileged organs, and in cells of the hematopoietic lineage. More interestingly, under pathophysiological conditions HLA-G antigens may be expressed on various types of malignant cells suggesting that HLA-G antigen expression is one strategy used by tumor cells to escape immune surveillance. In this article, we will focus on HLA-G expression in cancers of distinct histology and its association with the clinical course of diseases, on the underlying molecular mechanisms of impaired HLA-G expression, on the immune tolerant function of HLA-G in tumors, and on the use of membrane-bound and soluble HLA-G as a diagnostic or prognostic biomarker to identify tumors and to monitor disease stage, as well as on the use of HLA-G as a novel therapeutic target in cancer.
Collapse
Affiliation(s)
- Laurence Amiot
- UPRES EA 4427 SeRAIC, University of Rennes 1, 2 av Prof Léon Bernard, 35043 RENNES Cedex, France
| | | | | | | |
Collapse
|
45
|
HLA-G and immune evasion in cancer cells. J Formos Med Assoc 2010; 109:248-57. [PMID: 20434034 DOI: 10.1016/s0929-6646(10)60050-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 01/03/2023] Open
Abstract
Acquisition of novel gene products or new antigens in cancer cells elicits a host immune response that results in selection pressure for tumor clones to evade immunosurveillance. Similar to maternal-fetal tolerance and allotransplantation acceptance, upregulation of HLA-G expression has been found as one of the mechanisms that are programmed in cancer cells. HLA-G expression is frequently detected in a wide variety of human cancers and its protein levels negatively correlate with poor clinical outcome. The immune inhibitory effect can be achieved by binding of HLA-G molecules to the immunoglobulin-like inhibitory receptors that are expressed on the immunocompetent cells at all stages of the immune response. This review summarizes recent studies of HLA-G expression in human cancer, with a special focus on the molecular mechanisms that underlie how HLA-G molecules facilitate tumor cell evasion of the host immune response, and presents new directions for developing HLA-G-based diagnosis/therapeutics.
Collapse
|
46
|
Kyurkchiev D, Ivanova-Todorova E, Kyurkchiev SD. New target cells of the immunomodulatory effects of progesterone. Reprod Biomed Online 2010; 21:304-11. [PMID: 20638907 DOI: 10.1016/j.rbmo.2010.04.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/01/2010] [Accepted: 04/07/2010] [Indexed: 01/08/2023]
Abstract
It is well known that the reproductive steroid hormones, particularly progesterone, in addition to its widely recognized effects on endometrial epithelial and stromal cells and spiral arteries, affect the activities of T cells and natural killer cells in the deciduas, thus inducing active immune tolerance against the fetal antigens. The immunomodulatory effects of progesterone on T cells, B cells and natural killer cells have been discussed extensively in the literature. The aim of the present review is to sum up and discuss the results from this and other laboratories of investigations on the effects of progesterone on dendritic cells and adult stem cells, which are some of the other cell populations present at the fetal-maternal interface and possibly are related to the immunoregulation during pregnancy. These cells have been shown to have a number of specific functions but their involvement in the entire process of regulation of the immune response in pregnancy is still under discussion. The present review focuses on facts showing that the progesterone is a kind of 'regulator of regulators' in the decidua, thus creating the most favourable conditions for the development of the semi-allogeneic fetus in successful pregnancy.
Collapse
Affiliation(s)
- Dobroslav Kyurkchiev
- Laboratory of Clinical Immunology, University Hospital St. Ivan Rilski, Medical University Sofia, 15 Acad. Ivan Geshov, 1431 Sofia, Bulgaria.
| | | | | |
Collapse
|
47
|
|
48
|
Ivanova-Todorova E, Mourdjeva M, Kyurkchiev D, Bochev I, Stoyanova E, Dimitrov R, Timeva T, Yunakova M, Bukarev D, Shterev A, Tivchev P, Kyurkchiev S. ORIGINAL ARTICLE: HLA-G Expression Is Up-Regulated by Progesterone in Mesenchymal Stem Cells. Am J Reprod Immunol 2009; 62:25-33. [DOI: 10.1111/j.1600-0897.2009.00707.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Heterogeneous expression of HLA-G1, -G2, -G5, -G6, and -G7 in myeloid and plasmacytoid dendritic cells isolated from umbilical cord blood. Hum Immunol 2009; 70:104-9. [DOI: 10.1016/j.humimm.2008.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 11/17/2008] [Accepted: 12/04/2008] [Indexed: 11/21/2022]
|
50
|
Wang F, Wen Z, Li H, Yang Z, Zhao X, Yao X. Human leukocyte antigen-G is expressed by the eutopic and ectopic endometrium of adenomyosis. Fertil Steril 2008; 90:1599-604. [DOI: 10.1016/j.fertnstert.2007.06.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 06/20/2007] [Accepted: 06/20/2007] [Indexed: 10/22/2022]
|