1
|
Chung C, Doan D. Targeting the Immune Microenvironment in Chronic Lymphocytic Leukemia: An Evolving Therapeutic Strategy. Eur J Haematol 2025; 114:953-972. [PMID: 40066747 DOI: 10.1111/ejh.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 05/07/2025]
Abstract
Although small molecule inhibitors that target the aberrant signaling pathways and molecular defects of chronic lymphocytic leukemia (CLL) result in improved survival benefits vs. traditional chemoimmunotherapy or chemotherapy, treatment resistance may result later, reflecting the intrinsic tumor heterogeneity, persistence of the leukemic clone, and presence of the tumor microenvironment, which supports the survival of the disease clone. Patients with CLL have immune-related abnormalities in T lymphocyte subset composition, immune synapse formation, and other immune dysregulations. Cellular interactions between the disease clone and its microenvironment provide therapeutic opportunities to target these tumor pathogenesis pathways, potentially improving the patient's immune functions and clinical outcomes of targeted therapies. At present, despite the lack of response of immune checkpoint inhibitors in CLL, they showed promising efficacy in patients with Richter transformation. Together with CD19-targeted chimeric antigen receptor-modified T cell (CAR-T) therapy, novel bispecific antibodies and other immunotherapies are being investigated to improve survival outcomes for patients with relapsed or refractory (R/R) CLL, as exemplified by epcoritamab, a bispecific antibody that recently demonstrated initial efficacy in R/R CLL and in patients in high-risk CLL subgroups, including those with TP53 aberrations and unmutated genes that encode immunoglobulin variable heavy chain region (IGHV). Furthermore, to address the immune escape of cancer cells and issues that impact the durability of single-targeted T cell-redirected therapies, novel strategies such as trispecific antibodies and combination therapies are being investigated to increase tumor specificity or immune cell activation. In summary, there is emerging evidence that immunotherapies may counteract the immunosuppressive microenvironment of CLL, improve clinical responses, decrease the risk of infection, and overcome treatment resistance.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/drug effects
- Molecular Targeted Therapy
- Immunotherapy/methods
- Immune Checkpoint Inhibitors/therapeutic use
- Immunomodulation/drug effects
Collapse
|
2
|
Ito Y, Kasuya H, Kataoka M, Nakamura N, Yoshikawa T, Nakashima T, Zhang H, Li Y, Matsukawa T, Inoue S, Oneyama C, Ohta S, Kagoya Y. Plasma membrane-coated nanoparticles and membrane vesicles to orchestrate multimodal antitumor immunity. J Immunother Cancer 2025; 13:e010005. [PMID: 39864848 PMCID: PMC11784344 DOI: 10.1136/jitc-2024-010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit. Currently available BsAbs provide only anti-CD3 antibody-mediated T-cell stimulation, but not the costimulation or cytokine signaling essential for full T-cell activation. Here, we hypothesized that the simultaneous input of more comprehensive signals would elicit more robust and durable effector T-cell functions. METHODS We genetically engineered the leukemia cell line K562 to express BsAbs, costimulatory ligands, cytokines, and blocking antibodies against immune checkpoint molecules on the cell surface, from which we obtained plasma membrane fractions by mechanical homogenization and subsequent isolation steps. Plasma membranes were reconstituted on the poly (lactic-co-glycolic acid) surface to generate membrane-coated nanoparticles (NPs). Alternatively, nano-sized membrane vesicles (MVs) were generated by ultrasonic dispersion of the isolated membranes. The antitumor function of NPs and MVs loaded with various immunomodulatory factors was evaluated in vitro and in vivo. RESULTS Both membrane-coated NPs and MVs induced BsAb-mediated antigen-specific cytotoxic activity in non-specific T cells, with MVs inducing a slightly better response in vivo. Importantly, T-cell activation was elicited only in the presence of target tumor cells, providing a safety advantage for clinical use. NPs and MVs expressing costimulatory molecules (CD80/4-1BBL) and cytokines (interleukin (IL)-7/IL-15) further enhanced effector T-cell function and induced therapeutic efficacy in vivo. In addition, MVs expressing immune checkpoint antibodies and inflammatory cytokines IL-12 and IL-18 induced objective antitumor responses in solid tumor models partly by converting immunosuppressive macrophages to proinflammatory phenotypes and inducing cytotoxic T-cell infiltration into the tumor. Finally, we showed that MVs were also engineered to activate natural killer (NK) cells by loading multiple ligands. MVs loaded with BsAbs, 4-1BBL, IL-15, and IL-21 induced NK-cell cytotoxic activity in an antigen-specific manner. CONCLUSIONS We developed antitumor NPs and MVs that efficiently induced antitumor immune responses in vivo by simultaneously delivering multiple immunostimulatory signals to endogenous T cells. This platform enables the delivery of desired combinations of antitumor immune signals into T cells and NK cells.
Collapse
Affiliation(s)
- Yusuke Ito
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hitomi Kasuya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Mirei Kataoka
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Noriko Nakamura
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Yoshikawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Takahiro Nakashima
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Haosong Zhang
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yang Li
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cellular Oncology, Department of Cancer Diagnostics and Therapeutics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Matsukawa
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Inoue
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo, Tokyo, Japan
| | - Yuki Kagoya
- Division of Tumor Immunology, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Division of Immune Response, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|
3
|
Nikkhoi SK, Li G, Hatefi A. Natural killer cell engagers for cancer immunotherapy. Front Oncol 2025; 14:1483884. [PMID: 39911822 PMCID: PMC11794116 DOI: 10.3389/fonc.2024.1483884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
This review article explores the rapidly evolving field of bi-, tri-, and multi-specific NK cell engagers (NKCEs), highlighting their potential as a cutting-edge approach in cancer immunotherapy. NKCEs offer a significant advancement over conventional monoclonal antibodies (mAbs) by enhancing Antibody-Dependent Cellular Cytotoxicity (ADCC). They achieve this by stably and selectively binding to both NK cell activating receptors and tumor-associated antigens (TAAs). Unlike traditional mAbs, which depend on the relatively transient interaction between their Fc region and CD16a, NKCEs establish more robust connections with a range of activating receptors (e.g., CD16a, NKG2D, NKp30, NKp46, NKG2C) and inhibitory receptors (e.g., Siglec-7) on NK cells, thereby increasing cancer cell killing efficacy and specificity. This review article critically examines the strategies for engineering bi-, tri-, and multi-specific NKCEs for cancer immunotherapy, providing an in-depth analysis of the latest advancements in NKCE platform technologies currently under development by pharmaceutical and biotech companies and discussing the preclinical and clinical progress of these products. While NKCEs show great promise, the review underscores the need for continued research to optimize their therapeutic efficacy and to overcome obstacles related to NK cell functionality in cancer patients. Ultimately, this article presents an overview of the current landscape and future prospects of NKCE-based cancer immunotherapy, emphasizing its potential to revolutionize cancer treatment.
Collapse
Affiliation(s)
| | - Geng Li
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ, United States
- Cancer Pharmacology Program, Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
4
|
Flego M, Andreotti M, Mauro FR, Arasi MB, Zamboni S, Michelini Z, Pepe S, Galluzzo CM, Amici R, Moricoli D, Mazzei C, Ascione A, Mallano A. A New Antibody-Cytokine Construct Targeting Natural Killer Cells: An Immunotherapeutic Approach to Chronic Lymphocytic Leukemia. Biomolecules 2025; 15:117. [PMID: 39858511 PMCID: PMC11764099 DOI: 10.3390/biom15010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15. scFvB1IL15 was tested in vitro on peripheral blood mononuclear cells (PBMCs) obtained from both different healthy donors (HDs) and CLL patients in order to evaluate its ability to target NK cells and enhance their activation and NK-mediated directed cytotoxicity. scFvB1IL15 specifically induced strong degranulation and cytokine and chemokine production in NK cells in both HD- and CLL patient-derived PBMC samples. Furthermore, compared to IL15 alone, it was able to induce higher levels of NKG2D- and NKp30-activating receptors and restore NK-mediated direct killing in the CLL patient-derived samples. The preliminary data presented in this work suggest that IL15's targeting of NK cells via scFvB1 potentiates the effects of IL15 and that scFvB1IL15 can be a useful agent for overcoming NK functional gaps and contribute to NK-cell-based immunotherapies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Interleukin-15/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/pharmacology
- Immunotherapy/methods
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/drug effects
- CD56 Antigen/immunology
- Cytokines
- Natural Cytotoxicity Triggering Receptor 3/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
Collapse
Affiliation(s)
- Michela Flego
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Mauro Andreotti
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, ‘Sapienza’ University, 00161 Rome, Italy; (F.R.M.); (S.P.)
| | - Maria Beatrice Arasi
- Department of Oncology and Molecular Medicine, Italian Institute of Health, 00161 Rome, Italy;
| | - Silvia Zamboni
- Department of Neuroscience, Italian Institute of Health, 00161 Rome, Italy;
| | - Zuleika Michelini
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Sara Pepe
- Hematology, Department of Translational and Precision Medicine, ‘Sapienza’ University, 00161 Rome, Italy; (F.R.M.); (S.P.)
| | - Clementina Maria Galluzzo
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Roberta Amici
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Diego Moricoli
- Diatheva s.r.l., Via Sant’Anna 131/135, 61030 Cartoceto, Italy;
| | - Chiara Mazzei
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Alessandro Ascione
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| | - Alessandra Mallano
- National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy; (M.F.); (M.A.); (Z.M.); (C.M.G.); (R.A.); (C.M.); (A.A.)
| |
Collapse
|
5
|
Witkowska M, Majchrzak A, Robak P, Wolska-Washer A, Robak T. The role of antibody therapies in treating relapsed chronic lymphocytic leukemia: a review. Expert Opin Biol Ther 2024; 24:1233-1244. [PMID: 39364800 DOI: 10.1080/14712598.2024.2413365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is one of the most common types of leukemia in adult patients. The landscape of CLL therapy has changed in the last decades with the introduction of antibody-based therapies and novel targeted agents resulting in improved outcomes. AREAS COVERED This article describes the use of monoclonal antibodies, bispecific antibodies and antibody-drug conjugates in the treatment of relapsed and refractory CLL. The mechanism of action and clinical applications and safety of antibody-based therapies, both as monotherapy and in combination with other drugs, are discussed. A literature search was performed using PubMed, Web of Science, and Google Scholar for articles published in English. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION Antibody-based therapeutic strategies have drastically changed the treatment of CLL, as they have introduced the concept of boosting immune responses against tumor cells. While immunotherapy is generally effective, some treatment failure can occur due to antigen loss, mutation, or down-regulation, and this remains the main obstacle to cure. The development of novel antibody therapies, including their combinations with targeted drugs and bispecific antibodies, might help to reduce toxicity and improve efficacy.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Immunotherapy
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Animals
- Immunoconjugates/therapeutic use
- Recurrence
Collapse
Affiliation(s)
- Magdalena Witkowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Agata Majchrzak
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| | - Paweł Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hemato-oncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
6
|
List J, Gattringer J, Huszarek S, Marinovic S, Neubauer HA, Kudweis P, Putz EM, Hellinger R, Gotthardt D. Boosting the anti-tumor activity of natural killer cells by caripe 8 - A Carapichea ipecacuanha isolated cyclotide. Biomed Pharmacother 2024; 177:117057. [PMID: 38976957 DOI: 10.1016/j.biopha.2024.117057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Cyclotides are head-to-tail cyclized peptides with a unique cystine-knot motif. Their structure provides exceptional resistance against enzymatic, chemical, or thermal degradation compared to other peptides. Peptide-based therapeutics promise high specificity, selectivity and lower immunogenicity, making them safer alternatives to small molecules or large biologicals. Cyclotides were researched due to their anti-cancer properties by inducing apoptosis in tumor cells in the past, but the impact of cyclotides on cytotoxic immune cells was poorly studied. Natural Killer (NK) cells are cytotoxic innate lymphoid cells and play an important role in the defense against infected, stressed and transformed cells. NK cells do not need prior sensitization and act in an antigen independent manner, holding promising potential in the field of immunotherapy. To investigate the effect of immunomodulatory cyclotides on NK cells, we evaluated several peptide-enriched plant extracts on NK cell mediated cytotoxicity. We observed that the extract samples derived from Carapichea ipecacuanha (Brot.) L. Andersson augments the killing potential of mouse NK cells against different tumor targets in vitro. Subsequent isolation of cyclotides from C. ipecacuanha extracts led to the identification of a primary candidate that enhances cytotoxicity of both mouse and human NK cells. The augmented killing is facilitated by the increased degranulation capacity of NK cells. In addition, we noted a direct toxic effect of caripe 8 on tumor cells, suggesting a dual therapeutic potential in cancer treatment. This study offers novel insights how natural peptides can influence NK cell cytotoxicity. These pre-clinical findings hold significant promise for advancing current immunotherapeutic approaches.
Collapse
Affiliation(s)
- Julia List
- University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jasmin Gattringer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Sonja Marinovic
- Department of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | - Petra Kudweis
- University of Veterinary Medicine Vienna, Vienna, Austria
| | - Eva-M Putz
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
7
|
Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:539-560. [PMID: 38822215 DOI: 10.1038/s41571-024-00905-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany.
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Gernot Stuhler
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Vahidi S, Zabeti Touchaei A, Samadani AA. IL-15 as a key regulator in NK cell-mediated immunotherapy for cancer: From bench to bedside. Int Immunopharmacol 2024; 133:112156. [PMID: 38669950 DOI: 10.1016/j.intimp.2024.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Interleukin 15 (IL-15) has emerged as a crucial factor in the relationship between natural killer (NK) cells and immunotherapy for cancer. This review article aims to provide a comprehensive understanding of the role of IL-15 in NK cell-mediated immunotherapy. First, the key role of IL-15 signaling in NK cell immunity is discussed, highlighting its regulation of NK cell functions and antitumor properties. Furthermore, the use of IL-15 or its analogs in clinical trials as a therapeutic strategy for various cancers, including the genetic modification of NK cells to produce IL-15, has been explored. The potential of IL-15-based therapies, such as chimeric antigen receptor (CAR) T and NK cell infusion along with IL-15 in combination with checkpoint inhibitors and other treatments, has been examined. This review also addresses the challenges and advantages of incorporating IL-15 in cell-based immunotherapy. Additionally, unresolved questions regarding the detection and biological significance of the soluble IL-15/IL-15Rα complex, as well as the potential role of IL-15/IL-15Rα in human cancer and the immunological consequences of prolonged exposure to soluble IL-15 for NK cells, are discussed.
Collapse
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Winidmanokul P, Panya A, Okada S. Tri-specific killer engager: unleashing multi-synergic power against cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:432-448. [PMID: 38745768 PMCID: PMC11090690 DOI: 10.37349/etat.2024.00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/13/2023] [Indexed: 05/16/2024] Open
Abstract
Cancer continues to be a global health concern, necessitating innovative solutions for treatment. Tri-specific killer engagers (TriKEs) have emerged as a promising class of immunotherapeutic agents, offering a multifaceted approach to cancer treatment. TriKEs simultaneously engage and activate natural killer (NK) cells while specifically targeting cancer cells, representing an outstanding advancement in immunotherapy. This review explores the generation and mechanisms of TriKEs, highlighting their advantages over other immunotherapies and discussing their potential impact on clinical trials and cancer treatment. TriKEs are composed of three distinct domains, primarily antibody-derived building blocks, linked together by short amino acid sequences. They incorporate critical elements, anti-cluster of differentiation 16 (CD16) and interleukin-15 (IL-15), which activate and enhance NK cell function, together with specific antibody to target each cancer. TriKEs exhibit remarkable potential in preclinical and early clinical studies across various cancer types, making them a versatile tool in cancer immunotherapy. Comparative analyses with other immunotherapies, such as chimeric antigen receptor-T (CAR-T) cell therapy, immune checkpoint inhibitors (ICIs), cytokine therapies, and monoclonal antibodies (mAbs), reveal the unique advantages of TriKEs. They offer a safer pathway for immunotherapy by targeting cancer cells without hyperactivating T cells, reducing off-target effects and complications. The future of TriKEs involves addressing challenges related to dosing, tumor-associated antigen (TAA) expression, and NK cell suppression. Researchers are exploring innovative dosing strategies, enhancing specificity through tumor-specific antigens (TSAs), and combining TriKEs with other therapies for increased efficacy.
Collapse
Affiliation(s)
- Peeranut Winidmanokul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Cell Engineering for Cancer Therapy Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
10
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
11
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
12
|
Cao M, Carlson RD, Staudt RE, Snook AE. In vitro assays to evaluate CAR-T cell cytotoxicity. Methods Cell Biol 2023; 183:303-315. [PMID: 38548415 DOI: 10.1016/bs.mcb.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
This chapter introduces four commonly used in vitro chimeric antigen receptor (CAR)-T cell cytotoxicity assays (lactate dehydrogenase release assay, 51Cr release assay, IncuCyte live cell killing assay, and xCELLigence real-time analysis) and provides a detailed protocol for xCELLigence real-time analysis. Focusing on in vitro assays, this chapter starts with explaining the mechanisms and discussing the utilization of each assay to quantify T-cell-induced cytotoxicity. Due to the high-throughput quantification and straightforward workflow of xCELLigence real-time analysis, a protocol entailing reagents and equipment, a 3-day step-by-step procedure, and instructions for data analysis are provided.
Collapse
Affiliation(s)
- Miao Cao
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Robert D Carlson
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ross E Staudt
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Microbiology & Immunology, Thomas Jefferson University, Philadelphia, PA, United States; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
13
|
Zhang M, Lam KP, Xu S. Natural Killer Cell Engagers (NKCEs): a new frontier in cancer immunotherapy. Front Immunol 2023; 14:1207276. [PMID: 37638058 PMCID: PMC10450036 DOI: 10.3389/fimmu.2023.1207276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Natural Killer (NK) cells are a type of innate lymphoid cells that play a crucial role in immunity by killing virally infected or tumor cells and secreting cytokines and chemokines. NK cell-mediated immunotherapy has emerged as a promising approach for cancer treatment due to its safety and effectiveness. NK cell engagers (NKCEs), such as BiKE (bispecific killer cell engager) or TriKE (trispecific killer cell engager), are a novel class of antibody-based therapeutics that exhibit several advantages over other cancer immunotherapies harnessing NK cells. By bridging NK and tumor cells, NKCEs activate NK cells and lead to tumor cell lysis. A growing number of NKCEs are currently undergoing development, with some already in clinical trials. However, there is a need for more comprehensive studies to determine how the molecular design of NKCEs affects their functionality and manufacturability, which are crucial for their development as off-the-shelf drugs for cancer treatment. In this review, we summarize current knowledge on NKCE development and discuss critical factors required for the production of effective NKCEs.
Collapse
Affiliation(s)
- Minchuan Zhang
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Kong-Peng Lam
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, College of Science, Nanyang Technological University, Singapore, Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Merino A, Maakaron J, Bachanova V. Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting. Blood Rev 2023; 60:101073. [PMID: 36959057 PMCID: PMC10979648 DOI: 10.1016/j.blre.2023.101073] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Natural Killer (NK) cells yield promise in therapy of hematologic malignancies. The clinical experience with adoptively transferred allogeneic NK cells over past two decades has revealed safety and minimal risk of CRS or ICANS. Unlike T cells which have to be genetically altered to avoid graft vs host disease (GVHD), HLA mismatched NK cells can be infused without GVHD risk. This makes them ideal for the development of off-the-shelf products. In this review we focus on NK biology relevant to the cancer therapy, the trajectory of NK therapeutics for leukemia, lymphoma, and myeloma; and advantages of the NK cell platform. We will also discuss novel methods to enhance NK cell targeting, persistence, and function in the tumor microenvironment. The future of NK cell therapy depends on novel strategies to realize these qualities.
Collapse
Affiliation(s)
- Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Joseph Maakaron
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America
| | - Veronika Bachanova
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, 420 Delaware St, Minneapolis, MN, United States of America.
| |
Collapse
|
16
|
Wang J, Metheny L. Umbilical cord blood derived cellular therapy: advances in clinical development. Front Oncol 2023; 13:1167266. [PMID: 37274288 PMCID: PMC10232824 DOI: 10.3389/fonc.2023.1167266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
While cord blood (CB) is primarily utilized in allogeneic hematopoietic cell transplantation (HCT), the development of novel cell therapy products from CB is a growing and developing field. Compared to adult blood, CB is characterized by a higher percentage of hematopoietic stem cells (HSCs) and progenitor cells, less mature immune cells that retain a high capacity of proliferation, and stronger immune tolerance that requires less stringent HLA-matching when used in the allogenic setting. Given that CB is an FDA regulated product and along with its unique cellular composition, CB lends itself as a readily available and safe starting material for the development of off-the-shelf cell therapies. Moreover, non-hematologic cells such as mesenchymal stem cell (MSCs) residing in CB or CB tissue also have potential in regenerative medicine and inflammatory and autoimmune conditions. In this review, we will focus on recent clinical development on CB-derived cellular therapies in the field of oncology, including T-cell therapies such as chimeric antigen receptor (CAR) T-cells, regulatory T-cells, and virus-specific T-cells; NK-cell therapies, such as NK cell engagers and CAR NK-cells; CB-HCT and various modifications; as well as applications of MSCs in HCT.
Collapse
|
17
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|
18
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
19
|
Wang ZH, Li W, Dong H, Han F. Current state of NK cell-mediated immunotherapy in chronic lymphocytic leukemia. Front Oncol 2023; 12:1077436. [PMID: 37078002 PMCID: PMC10107371 DOI: 10.3389/fonc.2022.1077436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) has become one of the most common hematological diseases in western countries, with an annual incidence of 42/100,000. Conventional chemotherapy and targeted therapeutic drugs showed limitations in prognosis or in efficiency in high-risk patients. Immunotherapy represented is one of the most effective therapeutic approaches with the potential of better effect and prognosis. Natural killer (NK) cells are good options for immunotherapy as they can effectively mediate anti-tumor activity of immune system by expressing activating and inhibiting receptors and recognizing specific ligands on various tumor cells. NK cells are critical in the immunotherapy of CLL by enhancing self-mediated antibody-dependent cytotoxicity (ADCC), allogeneic NK cell therapy and chimeric antigen receptor-natural killer (CAR-NK) cell therapy. In this article, we reviewed the features, working mechanisms, and receptors of NK cells, and the available evidence of the advantages and disadvantages of NK cell-based immunotherapies, and put forward future study directions in this field.
Collapse
Affiliation(s)
- Zong-Han Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of General Surgery, Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Dong
- Department of Gastrointestinal Nutrition and Surgical Surgery, The Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Hao Dong, ; Fujun Han,
| |
Collapse
|
20
|
Tapia-Galisteo A, Compte M, Álvarez-Vallina L, Sanz L. When three is not a crowd: trispecific antibodies for enhanced cancer immunotherapy. Theranostics 2023; 13:1028-1041. [PMID: 36793863 PMCID: PMC9925307 DOI: 10.7150/thno.81494] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/31/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the clinical success of the first bispecific antibody approved by the FDA against B cell malignancies (blinatumomab), many obstacles remain such as dosing, treatment resistance, and modest efficacy in solid tumors. To overcome these limitations, considerable efforts have been dedicated to the development of multispecific antibodies, opening up new avenues to address both the complex biology of cancer and the onset of anti-tumoral immune responses. Simultaneous targeting of two tumor-associated antigens is presumed to enhance cancer cell selectivity and reduce immune escape. Co-engagement of CD3, along with agonists of co-stimulatory molecules or antagonists of co-inhibitory immune checkpoint receptors in a single molecule, may revert T cell exhaustion. Similarly, targeting of two activating receptors in NK cells may improve their cytotoxic potency. And these are only examples of the potential of antibody-based molecular entities engaging three (or more) relevant targets. From the perspective of health care costs, multispecific antibodies are appealing, since a similar (or superior) therapeutic effect could be obtained with a single therapeutic agent as with a combination of different monoclonal antibodies. Despite challenges in production, multispecific antibodies are endowed with unprecedented properties, which may render them more potent biologics for cancer therapy.
Collapse
Affiliation(s)
- Antonio Tapia-Galisteo
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain.,Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain.,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis S.L., Madrid, Spain
| | - Luis Álvarez-Vallina
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain.,Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain.,H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
21
|
Sindaco P, Pandey H, Isabelle C, Chakravarti N, Brammer JE, Porcu P, Mishra A. The role of interleukin-15 in the development and treatment of hematological malignancies. Front Immunol 2023; 14:1141208. [PMID: 37153603 PMCID: PMC10157481 DOI: 10.3389/fimmu.2023.1141208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 05/09/2023] Open
Abstract
Cytokines are a vital component of the immune system that controls the activation and growth of blood cells. However, chronic overexpression of cytokines can trigger cellular events leading to malignant transformation. The cytokine interleukin-15 (IL-15) is of particular interest, which has been shown to contribute to the development and progression of various hematological malignancies. This review will provide an overview of the impact of the immunopathogenic function of IL-15 by studying its role in cell survival, proliferation, inflammation, and treatment resistance. We will also review therapeutic approaches for inhibiting IL-15 in blood cancers.
Collapse
Affiliation(s)
- Paola Sindaco
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hritisha Pandey
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Colleen Isabelle
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nitin Chakravarti
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Pierluigi Porcu
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Anjali Mishra
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, United States
- *Correspondence: Anjali Mishra,
| |
Collapse
|
22
|
Leveraging Natural Killer Cell Innate Immunity against Hematologic Malignancies: From Stem Cell Transplant to Adoptive Transfer and Beyond. Int J Mol Sci 2022; 24:ijms24010204. [PMID: 36613644 PMCID: PMC9820370 DOI: 10.3390/ijms24010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous recent advancements in T-cell based immunotherapies have revolutionized the treatment of hematologic malignancies. In the race towards the first approved allogeneic cellular therapy product, there is growing interest in utilizing natural killer (NK) cells as a platform for off-the-shelf cellular therapies due to their scalable manufacturing potential, potent anti-tumor efficacy, and superior safety profile. Allogeneic NK cell therapies are now being actively explored in the setting of hematopoietic stem cell transplantation and adoptive transfer. Increasingly sophisticated gene editing techniques have permitted the engineering of chimeric antigen receptors, ectopic cytokine expression, and tumor recognition signals to improve the overall cytotoxicity of NK cell therapies. Furthermore, the enhancement of antibody-dependent cellular cytotoxicity has been achieved through the use of NK cell engagers and combination regimens with monoclonal antibodies that act synergistically with CD16-expressing NK cells. Finally, a greater understanding of NK cell biology and the mechanisms of resistance have allowed the preclinical development of NK checkpoint blockade and methods to modulate the tumor microenvironment, which have been evaluated in early phase trials. This review will discuss the recent clinical advancements in NK cell therapies in hematologic malignancies as well as promising avenues of future research.
Collapse
|
23
|
Yaping W, Zhe W, Zhuling C, Ruolei L, Pengyu F, Lili G, Cheng J, Bo Z, Liuyin L, Guangdong H, Yaoling W, Niuniu H, Rui L. The soldiers needed to be awakened: Tumor-infiltrating immune cells. Front Genet 2022; 13:988703. [PMID: 36246629 PMCID: PMC9558824 DOI: 10.3389/fgene.2022.988703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
In the tumor microenvironment, tumor-infiltrating immune cells (TIICs) are a key component. Different types of TIICs play distinct roles. CD8+ T cells and natural killer (NK) cells could secrete soluble factors to hinder tumor cell growth, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) release inhibitory factors to promote tumor growth and progression. In the meantime, a growing body of evidence illustrates that the balance between pro- and anti-tumor responses of TIICs is associated with the prognosis in the tumor microenvironment. Therefore, in order to boost anti-tumor response and improve the clinical outcome of tumor patients, a variety of anti-tumor strategies for targeting TIICs based on their respective functions have been developed and obtained good treatment benefits, including mainly immune checkpoint blockade (ICB), adoptive cell therapies (ACT), chimeric antigen receptor (CAR) T cells, and various monoclonal antibodies. In recent years, the tumor-specific features of immune cells are further investigated by various methods, such as using single-cell RNA sequencing (scRNA-seq), and the results indicate that these cells have diverse phenotypes in different types of tumors and emerge inconsistent therapeutic responses. Hence, we concluded the recent advances in tumor-infiltrating immune cells, including functions, prognostic values, and various immunotherapy strategies for each immune cell in different tumors.
Collapse
Affiliation(s)
- Wang Yaping
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Zhe
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Chu Zhuling
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
| | - Li Ruolei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Fan Pengyu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Guo Lili
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ji Cheng
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhang Bo
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Liu Liuyin
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hou Guangdong
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wang Yaoling
- Department of Geriatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Niuniu
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Department of General Surgery, Eastern Theater Air Force Hospital of PLA, Nanjing, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| | - Ling Rui
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Hou Niuniu, ; Ling Rui,
| |
Collapse
|
24
|
Kaminski MF, Bendzick L, Hopps R, Kauffman M, Kodal B, Soignier Y, Hinderlie P, Walker JT, Lenvik TR, Geller MA, Miller JS, Felices M. TEM8 Tri-specific Killer Engager binds both tumor and tumor stroma to specifically engage natural killer cell anti-tumor activity. J Immunother Cancer 2022; 10:e004725. [PMID: 36162918 PMCID: PMC9516302 DOI: 10.1136/jitc-2022-004725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The tumor microenvironment contains stromal cells, including endothelial cells and fibroblasts, that aid tumor growth and impair immune cell function. Many solid tumors remain difficult to cure because of tumor-promoting stromal cells, but current therapies targeting tumor stromal cells are constrained by modest efficacy and toxicities. TEM8 is a surface antigen selectively upregulated on tumor and tumor stromal cells, endothelial cells and fibroblasts that may be targeted with specific natural killer (NK) cell engagement. METHODS A Tri-specific Killer Engager (TriKE) against TEM8-'cam1615TEM8'-was generated using a mammalian expression system. Its function on NK cells was assessed by evaluation of degranulation, inflammatory cytokine production, and killing against tumor and stroma cell lines in standard co-culture and spheroid assays. cam1615TEM8-mediated proliferation and STAT5 phosphorylation in NK cells was tested and compared with T cells by flow cytometry. NK cell proliferation, tumor infiltration, and tumor and tumor-endothelium killing by cam1615TEM8 and interleukin-15 (IL-15) were assessed in NOD scid gamma (NSG) mice. RESULTS cam1615TEM8 selectively stimulates NK cell degranulation and inflammatory cytokine production against TEM8-expressing tumor and stromal cell lines. The increased activation translated to superior NK cell killing of TEM8-expressing tumor spheroids. cam1615TEM8 selectively stimulated NK cell but not T cell proliferation in vitro and enhanced NK cell proliferation, survival, and tumor infiltration in vivo. Finally, cam1615TEM8 stimulated NK cell killing of tumor and tumor endothelial cells in vivo. CONCLUSIONS Our findings indicate that the cam1615TEM8 TriKE is a novel anti-tumor, anti-stroma, and anti-angiogenic cancer therapy for patients with solid tumors. This multifunctional molecule works by selectively targeting and activating NK cells by costimulation with IL-15, and then targeting that activity to TEM8+ tumor cells and TEM8+ tumor stroma.
Collapse
Affiliation(s)
- Michael F Kaminski
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Laura Bendzick
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Rachel Hopps
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Marissa Kauffman
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Behiye Kodal
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Yvette Soignier
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Peter Hinderlie
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Joshua T Walker
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Todd R Lenvik
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Melissa A Geller
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Martin Felices
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Harnessing natural killer cells for cancer immunotherapy: dispatching the first responders. Nat Rev Drug Discov 2022; 21:559-577. [PMID: 35314852 PMCID: PMC10019065 DOI: 10.1038/s41573-022-00413-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells have crucial roles in the innate immunosurveillance of cancer and viral infections. They are 'first responders' that can spontaneously recognize abnormal cells in the body, rapidly eliminate them through focused cytotoxicity mechanisms and potently produce pro-inflammatory cytokines and chemokines that recruit and activate other immune cells to initiate an adaptive response. From the initial discovery of the diverse cell surface receptors on NK cells to the characterization of regulatory events that control their function, our understanding of the basic biology of NK cells has improved dramatically in the past three decades. This advanced knowledge has revealed increased mechanistic complexity, which has opened the doors to the development of a plethora of exciting new therapeutics that can effectively manipulate and target NK cell functional responses, particularly in cancer patients. Here, we summarize the basic mechanisms that regulate NK cell biology, review a wide variety of drugs, cytokines and antibodies currently being developed and used to stimulate NK cell responses, and outline evolving NK cell adoptive transfer approaches to treat cancer.
Collapse
|
26
|
Natural killer cell awakening: unleash cancer-immunity cycle against glioblastoma. Cell Death Dis 2022; 13:588. [PMID: 35803912 PMCID: PMC9270460 DOI: 10.1038/s41419-022-05041-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/25/2022] [Accepted: 06/27/2022] [Indexed: 01/21/2023]
Abstract
Due to the negligence of the complex tumor immune microenvironment, traditional treatment for glioblastoma has reached its limitation and cannot achieve a satisfying outcome in the past decade. The emergence of immunotherapy based on the theory of cancer-immunity cycle has brought a new dawn to glioblastoma patients. However, the results of most phase II and phase III clinical trials are not optimistic due to the simple focus on T cells activation rather than other immune cells involved in anti-tumor immunity. NK cells play a critical role in both innate and adaptive immunity, having the ability to coordinate immune response in inflammation, autoimmune disease and cancer. They are expected to cooperate with T cells to maximize the anti-tumor immune effect and have great potential in treating glioblastoma. Here, we describe the traditional treatment methods and current immunotherapy strategies for glioblastoma. Then, we list a microenvironment map and discuss the reasons for glioblastoma inhibitory immunity from multiple perspectives. More importantly, we focus on the advantages of NK cells as potential immune regulatory cells and the ways to maximize their anti-tumor immune effect. Finally, our outlook on the directions and potential applications of NK cell-based therapy combining with the advance technologies is presented. This review depicts NK cell awakening as the precondition to unleash the cancer-immunity cycle against glioblastoma and elaborate this idea from biology to clinical treatment.
Collapse
|
27
|
Allegra A, Casciaro M, Lo Presti E, Musolino C, Gangemi S. Harnessing Unconventional T Cells and Innate Lymphoid Cells to Prevent and Treat Hematological Malignancies: Prospects for New Immunotherapy. Biomolecules 2022; 12:biom12060754. [PMID: 35740879 PMCID: PMC9221132 DOI: 10.3390/biom12060754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/18/2022] Open
Abstract
Unconventional T cells and innate lymphoid cells (ILCs) make up a heterogeneous set of cells that characteristically show prompt responses toward specific antigens. Unconventional T cells recognize non-peptide antigens, which are bound and presented by diverse non-polymorphic antigen-presenting molecules and comprise γδ T cells, MR1-restricted mucosal-associated invariant T cells (MAITs), and natural killer T cells (NKTs). On the other hand, ILCs lack antigen-specific receptors and act as the innate counterpart to the T lymphocytes found in the adaptive immune response. The alteration of unconventional T cells and ILCs in frequency and functionality is correlated with the onset of several autoimmune diseases, allergy, inflammation, and tumor. However, depending on the physio-pathological framework, unconventional T cells may exhibit either protective or pathogenic activity in a range of neoplastic diseases. Nonetheless, experimental models and clinical studies have displayed that some unconventional T cells are potential therapeutic targets, as well as prognostic and diagnostic markers. In fact, cell-mediated immune response in tumors has become the focus in immunotherapy against neoplastic disease. This review concentrates on the present knowledge concerning the function of unconventional T cell sets in the antitumor immune response in hematological malignancies, such as acute and chronic leukemia, multiple myeloma, and lymphoproliferative disorders. Moreover, we discuss the possibility that modulating the activity of unconventional T cells could be useful in the treatment of hematological neoplasms, in the prevention of specific conditions (such as graft versus host disease), and in the formulation of an effective anticancer vaccine therapy. The exact knowledge of the role of these cells could represent the prerequisite for the creation of a new form of immunotherapy for hematological neoplasms.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Marco Casciaro
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
- Correspondence: ; Tel.: +39-090-221-2013
| | - Elena Lo Presti
- National Research Council (CNR)—Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy;
| | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, Division of Hematology, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy;
| |
Collapse
|
28
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
29
|
Ligon JA, Wessel KM, Shah NN, Glod J. Adoptive Cell Therapy in Pediatric and Young Adult Solid Tumors: Current Status and Future Directions. Front Immunol 2022; 13:846346. [PMID: 35273619 PMCID: PMC8901720 DOI: 10.3389/fimmu.2022.846346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Advances from novel adoptive cellular therapies have yet to be fully realized for the treatment of children and young adults with solid tumors. This review discusses the strategies and preliminary results, including T-cell, NK-cell and myeloid cell-based therapies. While each of these approaches have shown some early promise, there remain challenges. These include poor trafficking to the tumor as well as a hostile tumor microenvironment with numerous immunosuppressive mechanisms which result in exhaustion of cellular therapies. We then turn our attention to new strategies proposed to address these challenges including novel clinical trials that are ongoing and in development.
Collapse
Affiliation(s)
- John A Ligon
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Department of Pediatrics, Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Kristin M Wessel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - John Glod
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
30
|
Fang F, Xie S, Chen M, Li Y, Yue J, Ma J, Shu X, He Y, Xiao W, Tian Z. Advances in NK cell production. Cell Mol Immunol 2022; 19:460-481. [PMID: 34983953 PMCID: PMC8975878 DOI: 10.1038/s41423-021-00808-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy based on natural killer (NK) cells is a promising approach for treating a variety of cancers. Unlike T cells, NK cells recognize target cells via a major histocompatibility complex (MHC)-independent mechanism and, without being sensitized, kill the cells directly. Several strategies for obtaining large quantities of NK cells with high purity and high cytotoxicity have been developed. These strategies include the use of cytokine-antibody fusions, feeder cells or membrane particles to stimulate the proliferation of NK cells and enhance their cytotoxicity. Various materials, including peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs) and NK cell lines, have been used as sources to generate NK cells for immunotherapy. Moreover, genetic modification technologies to improve the proliferation of NK cells have also been developed to enhance the functions of NK cells. Here, we summarize the recent advances in expansion strategies with or without genetic manipulation of NK cells derived from various cellular sources. We also discuss the closed, automated and GMP-controlled large-scale expansion systems used for NK cells and possible future NK cell-based immunotherapy products.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China
| | - Siqi Xie
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Minhua Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yutong Li
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jingjing Yue
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Jie Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Xun Shu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Yongge He
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China
| | - Weihua Xiao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| | - Zhigang Tian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
- Institute of Immunology, University of Science and Technology of China, Hefei, 230027, China.
- Engineering Technology Research Center of Biotechnology Drugs Anhui, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
31
|
The Future of Natural Killer Cell Immunotherapy for B Cell Non-Hodgkin Lymphoma (B Cell NHL). Curr Treat Options Oncol 2022; 23:381-403. [PMID: 35258793 PMCID: PMC8930876 DOI: 10.1007/s11864-021-00932-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
Natural killer (NK) cells have played a critical—if largely unrecognized or ignored—role in the treatment of B cell non-Hodgkin lymphoma (NHL) since the introduction of CD20-directed immunotherapy with rituximab as a cornerstone of therapy over 25 years ago. Engagement with NK cells leading to lysis of NHL targets through antibody-dependent cellular cytotoxicity (ADCC) is a critical component of rituximab’s mechanism of action. Despite this important role, the only aspect of B cell NHL therapy that has been adopted as standard therapy that even indirectly augments or restores NK cell function is the introduction of obinutuzumab, a CD20 antibody with enhanced ability to engage with NK cells. However, over the last 5 years, adoptive immunotherapy with effector lymphocytes of B cell NHL has experienced tremendous growth, with five different CAR T cell products now licensed by the FDA, four of which target CD19 and have approved indications for some subtype of B cell NHL—axicabtagene ciloleucel, brexucabtagene autoleucel, lisocabtagene maraleucel, and tisagenlecleucel. These T cell-based immunotherapies essentially mimic the recognition, activation pathway, and cytotoxic machinery of a CD19 antibody engaging NK cells and lymphoma targets. Despite their efficacy, these T cell-based immunotherapies have been difficult to implement because they require 4–6 weeks of manufacture, are costly, and have significant toxicities. This renewed interest in the potential of cellular immunity—and the manufacturing, supply chain, and administration logistics that have been addressed with these new agents—have ignited a new wave of enthusiasm for NK cell-directed therapies in NHL. With high safety profiles and proven anti-lymphoma efficacy, one or more new NK cell-directed modalities are certain to be introduced into the standard toolbox of NHL therapy within the next few years, be it function-enhancing cytokine muteins, multi-domain NK cell engagers, or adoptive therapy with expanded or genetically modified NK cells.
Collapse
|
32
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
33
|
Colomar-Carando N, Gauthier L, Merli P, Loiacono F, Canevali P, Falco M, Galaverna F, Rossi B, Bosco F, Caratini M, Mingari MC, Locatelli F, Vivier E, Meazza R, Pende D. Exploiting Natural Killer Cell Engagers to Control Pediatric B-cell Precursor Acute Lymphoblastic Leukemia. Cancer Immunol Res 2022; 10:291-302. [PMID: 35078821 PMCID: PMC9662914 DOI: 10.1158/2326-6066.cir-21-0843] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 01/07/2023]
Abstract
Natural killer (NK) cells represent a promising cell type in antitumor immunotherapy for efficacy and safety, particularly in the treatment of hematologic malignancies. NK cells have been shown to exert antileukemia activity in the context of haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Products have been developed to boost the activation of NK cells only when cross-linked by tumor cells, avoiding any off-target effect. Here, we tested the in vitro effect of different NK-cell engagers (NKCE), which trigger either NKp46 or NKp30 together with CD16A, and target either CD19 or CD20 to induce killing of pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Target cells were NALM-16 and MHH-CALL-4 cell lines and four primary leukemias, while effector cells were resting NK cells derived from healthy donors and pediatric patients with leukemia after αβT/B-depleted haplo-HSCT. The NK cell-resistant MHH-CALL-4 was efficiently killed using all NKCEs. Boosting of NK activity against MHH-CALL-4 was also evident by degranulation and IFNγ production. Because of the lack of CD20 and high expression of CD19 on primary BCP-ALL, we focused on NKCEs targeting CD19. NKp46- and NKp30-based NKCEs displayed similar potency at inducing NK-cell activity, even when challenged with primary BCP-ALL blasts. Their efficacy was shown also using NK cells derived from transplanted patients. NKCE-induced activation against BCP-ALL can override HLA-specific inhibitory interactions, although the strongest response was observed by the alloreactive NK-cell subset. These data support the therapeutic use of NKp46/CD16A/CD19-NKCE to fight refractory/relapsed leukemia in pretransplantation or posttransplantation settings.
Collapse
Affiliation(s)
- Natalia Colomar-Carando
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Experimental Medicine, University of Genoa, Genova, Italy
| | | | - Pietro Merli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Fabrizio Loiacono
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paolo Canevali
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Federica Galaverna
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | | | | | | | - Maria Cristina Mingari
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy.,Department of Gynecology/Obstetrics and Pediatrics, Sapienza University, Roma, Italy
| | - Eric Vivier
- Innate Pharma, Marseille, France.,Aix Marseille University, CNRS, INSERM, CIML, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Raffaella Meazza
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Pende
- Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Corresponding Author: Daniela Pende, Laboratory of Immunology, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova 16132, Italy. Phone: 39-010-555-8220; E-mail:
| |
Collapse
|
34
|
Perutelli F, Jones R, Griggio V, Vitale C, Coscia M. Immunotherapeutic Strategies in Chronic Lymphocytic Leukemia: Advances and Challenges. Front Oncol 2022; 12:837531. [PMID: 35265527 PMCID: PMC8898826 DOI: 10.3389/fonc.2022.837531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Immune-based therapeutic strategies have drastically changed the landscape of hematological disorders, as they have introduced the concept of boosting immune responses against tumor cells. Anti-CD20 monoclonal antibodies have been the first form of immunotherapy successfully applied in the treatment of CLL, in the context of chemoimmunotherapy regimens. Since then, several immunotherapeutic approaches have been studied in CLL settings, with the aim of exploiting or eliciting anti-tumor immune responses against leukemia cells. Unfortunately, despite initial promising data, results from pilot clinical studies have not shown optimal results in terms of disease control - especially when immunotherapy was used individually - largely due to CLL-related immune dysfunctions hampering the achievement of effective anti-tumor responses. The growing understanding of the complex interactions between immune cells and the tumor cells has paved the way for the development of new combined approaches that rely on the synergism between novel agents and immunotherapy. In this review, we provide an overview of the most successful and promising immunotherapeutic modalities in CLL, including both antibody-based therapy (i.e. monoclonal antibodies, bispecific antibodies, bi- or tri- specific killer engagers) and adoptive cellular therapy (i.e. CAR T cells and NK cells). We also provide examples of successful new combination strategies and some insights on future perspectives.
Collapse
Affiliation(s)
- Francesca Perutelli
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Rebecca Jones
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Valentina Griggio
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Candida Vitale
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Marta Coscia
- University Division of Hematology, Azienda Ospedaliera Universitaria (A.O.U.) Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- *Correspondence: Marta Coscia,
| |
Collapse
|
35
|
Thoreau F, Chudasama V. Enabling the next steps in cancer immunotherapy: from antibody-based bispecifics to multispecifics, with an evolving role for bioconjugation chemistry. RSC Chem Biol 2022; 3:140-169. [PMID: 35360884 PMCID: PMC8826860 DOI: 10.1039/d1cb00082a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
In the past two decades, immunotherapy has established itself as one of the leading strategies for cancer treatment, as illustrated by the exponentially growing number of related clinical trials. This trend was, in part, prompted by the clinical success of both immune checkpoint modulation and immune cell engagement, to restore and/or stimulate the patient's immune system's ability to fight the disease. These strategies were sustained by progress in bispecific antibody production. However, despite the decisive progress made in the treatment of cancer, toxicity and resistance are still observed in some cases. In this review, we initially provide an overview of the monoclonal and bispecific antibodies developed with the objective of restoring immune system functions to treat cancer (cancer immunotherapy), through immune checkpoint modulation, immune cell engagement or a combination of both. Their production, design strategy and impact on the clinical trial landscape are also addressed. In the second part, the concept of multispecific antibody formats, notably MuTICEMs (Multispecific Targeted Immune Cell Engagers & Modulators), as a possible answer to current immunotherapy limitations is investigated. We believe it could be the next step to take for cancer immunotherapy research and expose why bioconjugation chemistry might play a key role in these future developments.
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
36
|
Tapia-Galisteo A, Sánchez Rodríguez Í, Aguilar-Sopeña O, Harwood SL, Narbona J, Ferreras Gutierrez M, Navarro R, Martín-García L, Corbacho C, Compte M, Lacadena J, Blanco FJ, Chames P, Roda-Navarro P, Álvarez-Vallina L, Sanz L. Trispecific T-cell engagers for dual tumor-targeting of colorectal cancer. Oncoimmunology 2022; 11:2034355. [PMID: 35154908 PMCID: PMC8837253 DOI: 10.1080/2162402x.2022.2034355] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Antonio Tapia-Galisteo
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Íñigo Sánchez Rodríguez
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Oscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Spain
- Lymphocyte Immunobiology Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Seandean Lykke Harwood
- Protein Science, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Javier Narbona
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Spain
| | | | - Rocío Navarro
- Department of Antibody Engineering, Leadartis Sl, Madrid, Spain
| | - Laura Martín-García
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Cesáreo Corbacho
- Pathology Department, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Marta Compte
- Department of Antibody Engineering, Leadartis Sl, Madrid, Spain
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Spain
| | - Francisco J. Blanco
- Biomolecular NMR, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Patrick Chames
- Antibody Therapeutics and Immunotargeting Group, Aix Marseille University, CNRS, INSERM, Institute Paoli-Calmettes, CRCM, Marseille, France
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Spain
- Lymphocyte Immunobiology Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Hospital Universitario 12 de Octubre, Madrid, Spain
- Immuno-oncology and Immunotherapy Group, Biomedical Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
37
|
The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol Immunol 2022; 19:192-209. [PMID: 35043005 PMCID: PMC8803834 DOI: 10.1038/s41423-021-00786-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/25/2021] [Indexed: 02/08/2023] Open
Abstract
Cytokines exert powerful immunomodulatory effects that are critical to physiology and pathology in humans. The application of natural cytokines in clinical studies has not been clearly established, and there are often problems associated with toxicity or lack of efficacy. The key reasons can be attributed to the pleiotropy of cytokine receptors and undesired activation of off-target cells. With a deeper understanding of the structural principles and functional signals of cytokine-receptor interactions, artificial modification of cytokine signaling through protein engineering and synthetic immunology has become an increasingly feasible and powerful approach. Engineered cytokines are designed to selectively target cells. Herein, the theoretical and experimental evidence of cytokine engineering is reviewed, and the "supercytokines" resulting from structural enhancement and the "immunocytokines" generated by antibody fusion are described. Finally, the "engager cytokines" formed by the crosslinking of cytokines and bispecific immune engagers and other synthetic cytokines formed by nonnatural analogs are also discussed.
Collapse
|
38
|
Cellular Therapy Advances in Chronic Lymphocytic Leukemia and Richter's Syndrome. Curr Probl Cancer 2021; 46:100827. [PMID: 34991902 DOI: 10.1016/j.currproblcancer.2021.100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022]
Abstract
Over the past 10 years, there have been great treatment advances for chronic lymphocytic leukemia (CLL) with the development of small molecule inhibitors. However, there remains an area of unmet need for patients who progress on novel therapies. The development of cellular therapies in CLL has been hindered by CLL induced immunosuppression. Fortunately, recent progress in various methods in immunomodulation may help overcome this limitation in CLL. These advances have spurred ongoing interest in the development of cellular therapies for CLL, including chimeric antigen receptor (CAR) T cell therapies, bi-specific antibodies, and use of natural killer cells. These novel treatment modalities may hold promise for patients with refractory, and potentially transformed disease. Here, we discuss the development of CAR-T cell therapy in CLL and the impact of combining CAR-T and small molecule inhibitors on treatment outcomes, the evolving role of bi-specific antibodies and natural killer cells, and comment on the use of cellular therapies for Richter's syndrome.
Collapse
|
39
|
Conlon K, Watson DC, Waldmann TA, Valentin A, Bergamaschi C, Felber BK, Peer CJ, Figg WD, Potter EL, Roederer M, McNeel DG, Thompson JA, Gupta S, Leidner R, Wang-Gillam A, Parikh NS, Long D, Kurtulus S, Ho Lee L, Chowdhury NR, Bender F, Pavlakis GN. Phase I study of single agent NIZ985, a recombinant heterodimeric IL-15 agonist, in adult patients with metastatic or unresectable solid tumors. J Immunother Cancer 2021; 9:jitc-2021-003388. [PMID: 34799399 PMCID: PMC8606766 DOI: 10.1136/jitc-2021-003388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Background NIZ985 is a recombinant heterodimer of physiologically active interleukin (IL-)15 and IL-15 receptor alpha. In preclinical models, NIZ985 promotes cytotoxic lymphocyte proliferation, killing function, and organ/tumor infiltration, with resultant anticancer effects. In this first-in-human study, we assessed the safety, pharmacokinetics, and immune effects of NIZ985 in patients with metastatic or unresectable solid tumors. Methods Single agent NIZ985 dose escalation data are reported from a phase I dose escalation/expansion study of NIZ985 as monotherapy. Adult patients (N=14) received 0.25, 0.5, 1, 2 or 4 µg/kg subcutaneous NIZ985 three times weekly (TIW) for the first 2 weeks of each 28-day cycle, in an accelerated 3+3 dose escalation trial design. IL-15 and endogenous cytokines were monitored by ELISA and multiplexed electrochemiluminescent assays. Multiparameter flow cytometry assessed the frequency, phenotype and proliferation of peripheral blood mononuclear cells. Preliminary antitumor activity was assessed by overall response rate (Response Evaluation Criteria in Solid Tumors V.1.1). Results As of March 2, 2020, median treatment duration was 7.5 weeks (range 1.1–77.1). Thirteen patients had discontinued and one (uveal melanoma) remains on treatment with stable disease. Best clinical response was stable disease (3 of 14 patients; 21%). The most frequent adverse events (AEs) were circular erythematous injection site reactions (100%), chills (71%), fatigue (57%), and fever (50%). Treatment-related grade 3/4 AEs occurred in six participants (43%); treatment-related serious AEs (SAEs) in three (21%). The per-protocol maximum tolerated dose was not reached. Pharmacokinetic accumulation of serum IL-15 in the first week was followed by significantly lower levels in week 2, likely due to more rapid cytokine consumption by an expanding lymphocyte pool. NIZ985 treatment was associated with increases in several cytokines, including interferon (IFN)-γ, IL-18, C-X-C motif chemokine ligand 10, and tumor necrosis factor-β, plus significant induction of cytotoxic lymphocyte proliferation (including natural killer and CD8+ T cells), increased CD16+ monocytes, and increased CD163+ macrophages at injection sites. Conclusions Subcutaneous NIZ985 TIW was generally well tolerated in patients with advanced cancer and produced immune activation paralleling preclinical observations, with induction of IFN-γ and proliferation of cytotoxic lymphocytes. Due to delayed SAEs at the two highest dose levels, administration is being changed to once-weekly in a revised protocol, as monotherapy and combined with checkpoint inhibitor spartalizumab. These alterations are expected to maximize the potential of NIZ985 as a novel immunotherapy. Trial registration number NCT02452268.
Collapse
Affiliation(s)
- Kevin Conlon
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Dionysios C Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA.,University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Cody J Peer
- Clinical Pharmacology Program, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - William D Figg
- Clinical Pharmacology Program, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - E Lake Potter
- Vaccine Research Center, NIAID, Bethesda, Maryland, USA
| | | | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin Madison, Madison, Wisconsin, USA
| | | | - Sumati Gupta
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Rom Leidner
- Earle A Chiles Research Institute, Providence Cancer Institute, Portland, Oregon, USA
| | - Andrea Wang-Gillam
- Division of Oncology, Department of Medicine, Washington University in Saint Louis, St Louis, Missouri, USA
| | - Nehal S Parikh
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Debby Long
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Sema Kurtulus
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - Lang Ho Lee
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | | | - Florent Bender
- Novartis Institutes for BioMedical Research Inc, Cambridge, Massachusetts, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| |
Collapse
|
40
|
Karmakar S, Pal P, Lal G. Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. Immunotargets Ther 2021; 10:387-407. [PMID: 34754837 PMCID: PMC8570289 DOI: 10.2147/itt.s306109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the most potent arm of the innate immune system and play an important role in immunity, alloimmunity, autoimmunity, and cancer. NK cells recognize “altered-self” cells due to oncogenic transformation or stress due to viral infection and target to kill them. The effector functions of NK cells depend on the interaction of the activating and inhibitory receptors on their surface with their cognate ligand expressed on the target cells. These activating and inhibitory receptors interact with major histocompatibility complex I (MHC I) expressed on the target cells and make decisions to mount an immune response. NK cell immune response includes cytolytic activity and secretion of cytokines to help with the ongoing immune response. The advancement of our knowledge on the expression of inhibitory and activating molecules led us to exploit these molecules in the treatment of cancer. This review discusses the importance of activating and inhibitory receptors on NK cells and their clinical importance in cancer immunotherapy.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Pradipta Pal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| |
Collapse
|
41
|
Gunduz M, Ataca Atilla P, Atilla E. New Orders to an Old Soldier: Optimizing NK Cells for Adoptive Immunotherapy in Hematology. Biomedicines 2021; 9:biomedicines9091201. [PMID: 34572387 PMCID: PMC8466804 DOI: 10.3390/biomedicines9091201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
NK (Natural Killer) cell-mediated adoptive immunotherapy has gained attention in hematology due to the progressing knowledge of NK cell receptor structure, biology and function. Today, challenges related to NK cell expansion and persistence in vivo as well as low cytotoxicity have been mostly overcome by pioneering trials that focused on harnessing NK cell functions. Recent technological advancements in gene delivery, gene editing and chimeric antigen receptors (CARs) have made it possible to generate genetically modified NK cells that enhance the anti-tumor efficacy and represent suitable “off-the-shelf” products with fewer side effects. In this review, we highlight recent advances in NK cell biology along with current approaches for potentiating NK cell proliferation and activity, redirecting NK cells using CARs and optimizing the procedure to manufacture clinical-grade NK and CAR NK cells for adoptive immunotherapy.
Collapse
Affiliation(s)
- Mehmet Gunduz
- Department of Hematology, Biruni University, Istanbul 34010, Turkey;
| | - Pinar Ataca Atilla
- Interdisciplinary Stem Cells and Regenerative Medicine Ph.D Program, Stem Cell Institute, Ankara University, Ankara 06520, Turkey;
| | - Erden Atilla
- Department of Hematology, Mersin State Hospital, Korukent District, 96015 St., Toroslar 33240, Turkey
- Correspondence: ; Tel.: +9-05-058-213-131
| |
Collapse
|
42
|
Bi-specific and Tri-specific NK Cell Engagers: The New Avenue of Targeted NK Cell Immunotherapy. Mol Diagn Ther 2021; 25:577-592. [PMID: 34327614 DOI: 10.1007/s40291-021-00550-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2021] [Indexed: 02/01/2023]
Abstract
Natural killer (NK) cell-mediated cancer immunotherapy has grown significantly over the past two decades. More recently, multi-specific engagers have been developed as cancer therapeutics to effectively arm endogenous NK cells to more potently induce specific cytolytic responses against tumor targets. This review explores the bi- and tri-specific NK/tumor engagers that are emerging as a new generation of immunotherapeutics. These molecules vary in configuration, but they typically have small molecular weights and domains that engage specific tumor antigens and NK cell-activating receptors such as CD16, NKp30, NKp46, and NKG2D. They have demonstrated compelling potential in boosting NK cell cytotoxicity against specific tumor targets. This highly adaptable off-the-shelf platform, which in some formats also integrates cytokines, is poised to revolutionize targeted NK cell immunotherapy, either as a monotherapy or in combination with other effective anti-cancer therapies.
Collapse
|
43
|
Highton AJ, Schuster IS, Degli-Esposti MA, Altfeld M. The role of natural killer cells in liver inflammation. Semin Immunopathol 2021; 43:519-533. [PMID: 34230995 PMCID: PMC8260327 DOI: 10.1007/s00281-021-00877-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
The liver is an important immunological site that can promote immune tolerance or activation. Natural killer (NK) cells are a major immune subset within the liver, and therefore understanding their role in liver homeostasis and inflammation is crucial. Due to their cytotoxic function, NK cells are important in the immune response against hepatotropic viral infections but are also involved in the inflammatory processes of autoimmune liver diseases and fatty liver disease. Whether NK cells primarily promote pro-inflammatory or tolerogenic responses is not known for many liver diseases. Understanding the involvement of NK cells in liver inflammation will be crucial in effective treatment and future immunotherapeutic targeting of NK cells in these disease settings. Here, we explore the role that NK cells play in inflammation of the liver in the context of viral infection, autoimmunity and fatty liver disease.
Collapse
Affiliation(s)
- A J Highton
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - I S Schuster
- Experimental and Viral Immunology, Department of Microbiology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - M A Degli-Esposti
- Experimental and Viral Immunology, Department of Microbiology and Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Experimental Immunology, Lions Eye Institute, Perth, Western Australia, Australia
| | - M Altfeld
- Institute for Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
44
|
Sportoletti P, De Falco F, Del Papa B, Baldoni S, Guarente V, Marra A, Dorillo E, Rompietti C, Adamo FM, Ruggeri L, Di Ianni M, Rosati E. NK Cells in Chronic Lymphocytic Leukemia and Their Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22136665. [PMID: 34206399 PMCID: PMC8268440 DOI: 10.3390/ijms22136665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Key features of chronic lymphocytic leukemia (CLL) are defects in the immune system and the ability of leukemic cells to evade immune defenses and induce immunosuppression, resulting in increased susceptibility to infections and disease progression. Several immune effectors are impaired in CLL, including T and natural killer (NK) cells. The role of T cells in defense against CLL and in CLL progression and immunotherapy has been extensively studied. Less is known about the role of NK cells in this leukemia, and data on NK cell alterations in CLL are contrasting. Besides studies showing that NK cells have intrinsic defects in CLL, there is a large body of evidence indicating that NK cell dysfunctions in CLL mainly depend on the escape mechanisms employed by leukemic cells. In keeping, it has been shown that NK cell functions, including antibody-dependent cellular cytotoxicity (ADCC), can be retained and/or restored after adequate stimulation. Therefore, due to their preserved ADCC function and the reversibility of CLL-related dysfunctions, NK cells are an attractive source for novel immunotherapeutic strategies in this disease, including chimeric antigen receptor (CAR) therapy. Recently, satisfying clinical responses have been obtained in CLL patients using cord blood-derived CAR-NK cells, opening new possibilities for further exploring NK cells in the immunotherapy of CLL. However, notwithstanding the promising results of this clinical trial, more evidence is needed to fully understand whether and in which CLL cases NK cell-based immunotherapy may represent a valid, alternative/additional therapeutic option for this leukemia. In this review, we provide an overview of the current knowledge about phenotypic and functional alterations of NK cells in CLL and the mechanisms by which CLL cells circumvent NK cell-mediated immunosurveillance. Additionally, we discuss the potential relevance of using NK cells in CLL immunotherapy.
Collapse
MESH Headings
- Biomarkers
- Cell Communication
- Disease Management
- Disease Susceptibility
- Humans
- Immune System/immunology
- Immune System/metabolism
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Ligands
- Protein Binding
- Receptors, Natural Killer Cell/genetics
- Receptors, Natural Killer Cell/metabolism
- Treatment Outcome
- Tumor Escape/genetics
- Tumor Escape/immunology
Collapse
Affiliation(s)
- Paolo Sportoletti
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Filomena De Falco
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Beatrice Del Papa
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Stefano Baldoni
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valerio Guarente
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Andrea Marra
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Erica Dorillo
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Chiara Rompietti
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Francesco Maria Adamo
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Loredana Ruggeri
- Centro di Ricerca Emato-Oncologica (CREO), Department of Medicine and Surgery, Institute of Hematology, University of Perugia, 06129 Perugia, Italy; (P.S.); (F.D.F.); (B.D.P.); (S.B.); (V.G.); (A.M.); (E.D.); (C.R.); (F.M.A.); (L.R.)
| | - Mauro Di Ianni
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Department of Oncology and Hematology, Ospedale Civile “Santo Spirito”, ASL Pescara, 65124 Pescara, Italy
| | - Emanuela Rosati
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
- Correspondence:
| |
Collapse
|
45
|
Tomaipitinca L, Russo E, Bernardini G. NK cell surveillance of hematological malignancies. Therapeutic implications and regulation by chemokine receptors. Mol Aspects Med 2021; 80:100968. [PMID: 34045078 DOI: 10.1016/j.mam.2021.100968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022]
Abstract
NK cells are circulating innate lymphoid cells that constantly move from bloodstream into tissues, exerting several functions including tumor surveillance. For this reason, NK cells are considered attractive target for cancer immunotherapy. Several strategies are employed to harness NK cell efficacy especially in hematological tumors, including adoptive transfer, genetic manipulation to overexpress chimeric antigen receptors and cytokine or immunomodulatory drug treatments of ex-vivo cultivated and expanded NK cells. Several chemokine receptors support NK cell tissue homing and are required for efficient tumor infiltration. Nevertheless, chemokine receptor expression is often insufficient, or their respective ligands may not be expressed in the tumor microenvironment, thus limiting NK cell localization at the tumor site. Therefore, strategies to implement expression or promote the function of the correct chemokine receptor/ligand axes have been employed in the last years with promising results in preclinical models. In this review, we discuss how chemokine receptors and their ligands regulate the trafficking and localization of NK cells in hematological tumors and how the chemokine function can be manipulated to improve current therapeutic approaches.
Collapse
Affiliation(s)
- Luana Tomaipitinca
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Eleonora Russo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Pasteur Institute Italia-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
46
|
Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R, Palmieri G. Harnessing CD16-Mediated NK Cell Functions to Enhance Therapeutic Efficacy of Tumor-Targeting mAbs. Cancers (Basel) 2021; 13:cancers13102500. [PMID: 34065399 PMCID: PMC8161310 DOI: 10.3390/cancers13102500] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Natural Killer (NK) cells play a major role in cancer immunotherapy based on tumor-targeting mAbs. NK cell-mediated tumor cell killing and cytokine secretion are powerfully stimulated upon interaction with IgG-opsonized tumor cells, through the aggregation of FcγRIIIA/CD16 IgG receptor. Advances in basic and translational NK cell biology have led to the development of strategies that, by improving mAb-dependent antitumor responses, may overcome the current limitations of antibody therapy attributable to tolerance, immunosuppressive microenvironment, and genotypic factors. This review provides an overview of the immunotherapeutic strategies being pursued to improve the efficacy of mAb-induced NK antitumor activity. The exploitation of antibody combinations, antibody-based molecules, used alone or combined with adoptive NK cell therapy, will be uncovered. Within the landscape of NK cell heterogeneity, we stress the role of memory NK cells as promising effectors in the next generation of immunotherapy with the aim to obtain long-lasting tumor control. Abstract Natural killer (NK) cells hold a pivotal role in tumor-targeting monoclonal antibody (mAb)-based activity due to the expression of CD16, the low-affinity receptor for IgG. Indeed, beyond exerting cytotoxic function, activated NK cells also produce an array of cytokines and chemokines, through which they interface with and potentiate adaptive immune responses. Thus, CD16-activated NK cells can concur to mAb-dependent “vaccinal effect”, i.e., the development of antigen-specific responses, which may be highly relevant in maintaining long-term protection of treated patients. On this basis, the review will focus on strategies aimed at potentiating NK cell-mediated antitumor functions in tumor-targeting mAb-based regimens, represented by (a) mAb manipulation strategies, aimed at augmenting recruitment and efficacy of NK cells, such as Fc-engineering, and the design of bi- or trispecific NK cell engagers and (b) the possible exploitation of memory NK cells, whose distinctive characteristics (enhanced responsiveness to CD16 engagement, longevity, and intrinsic resistance to the immunosuppressive microenvironment) may maximize therapeutic mAb antitumor efficacy.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
| | - Chiara Pighi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- ReiThera Srl, 00128 Rome, Italy
| | - Davide De Federicis
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Correspondence: (R.G.); (G.P.)
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Correspondence: (R.G.); (G.P.)
| |
Collapse
|
47
|
St-Pierre F, Bhatia S, Chandra S. Harnessing Natural Killer Cells in Cancer Immunotherapy: A Review of Mechanisms and Novel Therapies. Cancers (Basel) 2021; 13:1988. [PMID: 33924213 PMCID: PMC8074597 DOI: 10.3390/cancers13081988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes that are integral to the body's innate immunity, resulting in a rapid immune response to stressed or infected cells in an antigen-independent manner. The innate immune system plays an important role in the recognition of tumor-derived stress-related factors and is critical to subsequent adaptive immune responses against tumor antigens. The aim of this review is to discuss mechanisms by which tumor cells evade NK cells and to outline strategies that harness NK cells for cancer immunotherapy. We discuss strategies to relieve the exhausted state of NK cells, recent therapies focused on targeting NK-cell-specific activating and inhibitory receptors, the use of cytokines IL-2 and IL-15 to stimulate autologous or allogeneic NK cells, and ongoing trials exploring the use of genetically modified NK cells and chimeric antigen-receptor-modified NK (CAR-NK) cells.
Collapse
Affiliation(s)
- Frederique St-Pierre
- Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA;
| | - Shailender Bhatia
- Division of Medical Oncology, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98195, USA;
| | - Sunandana Chandra
- Division of Hematology Oncology, Robert H. Lurie Comprehensive Cancer, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
48
|
Natural Killer Cells in Post-Transplant Lymphoproliferative Disorders. Cancers (Basel) 2021; 13:cancers13081836. [PMID: 33921413 PMCID: PMC8068932 DOI: 10.3390/cancers13081836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
Post-transplant lymphoproliferative disorders (PTLDs) are life-threatening complications arising after solid organ or hematopoietic stem cell transplantations. Although the majority of these lymphoproliferations are of B cell origin, and are frequently associated with primary Epstein-Barr virus (EBV) infection or reactivation in the post-transplant period, rare cases of T cell and natural killer (NK) cell-originated PTLDs have also been described. A general assumption is that PTLDs result from the impairment of anti-viral and anti-tumoral immunosurveillance due to the long-term use of immunosuppressants in transplant recipients. T cell impairment is known to play a critical role in the immune-pathogenesis of post-transplant EBV-linked complications, while the role of NK cells has been less investigated, and is probably different between EBV-positive and EBV-negative PTLDs. As a part of the innate immune response, NK cells are critical for protecting hosts during the early response to virus-induced tumors. The complexity of their function is modulated by a myriad of activating and inhibitory receptors expressed on cell surfaces. This review outlines our current understanding of NK cells in the pathogenesis of PTLD, and discusses their potential implications for current PTLD therapies and novel NK cell-based therapies for the containment of these disorders.
Collapse
|
49
|
Lamb MG, Rangarajan HG, Tullius BP, Lee DA. Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther 2021; 12:211. [PMID: 33766099 PMCID: PMC7992329 DOI: 10.1186/s13287-021-02277-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
The adoptive transfer of natural killer (NK) cells is an emerging therapy in the field of immuno-oncology. In the last 3 decades, NK cells have been utilized to harness the anti-tumor immune response in a wide range of malignancies, most notably with early evidence of efficacy in hematologic malignancies. NK cells are dysfunctional in patients with hematologic malignancies, and their number and function are further impaired by chemotherapy, radiation, and immunosuppressants used in initial therapy and hematopoietic stem cell transplantation. Restoring this innate immune deficit may lead to improved therapeutic outcomes. NK cell adoptive transfer has proven to be a safe in these settings, even in the setting of HLA mismatch, and a deeper understanding of NK cell biology and optimized expansion techniques have improved scalability and therapeutic efficacy. Here, we review the use of NK cell therapy in hematologic malignancies and discuss strategies to further improve the efficacy of NK cells against these diseases.
Collapse
Affiliation(s)
- Margaret G Lamb
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA. .,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA.
| | - Hemalatha G Rangarajan
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Brian P Tullius
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Dean A Lee
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| |
Collapse
|
50
|
Csizmar CM, Ansell SM. Engaging the Innate and Adaptive Antitumor Immune Response in Lymphoma. Int J Mol Sci 2021; 22:3302. [PMID: 33804869 PMCID: PMC8038124 DOI: 10.3390/ijms22073302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy has emerged as a powerful therapeutic strategy for many malignancies, including lymphoma. As in solid tumors, early clinical trials have revealed that immunotherapy is not equally efficacious across all lymphoma subtypes. For example, immune checkpoint inhibition has a higher overall response rate and leads to more durable outcomes in Hodgkin lymphomas compared to non-Hodgkin lymphomas. These observations, combined with a growing understanding of tumor biology, have implicated the tumor microenvironment as a major determinant of treatment response and prognosis. Interactions between lymphoma cells and their microenvironment facilitate several mechanisms that impair the antitumor immune response, including loss of major histocompatibility complexes, expression of immunosuppressive ligands, secretion of immunosuppressive cytokines, and the recruitment, expansion, and skewing of suppressive cell populations. Accordingly, treatments to overcome these barriers are being rapidly developed and translated into clinical trials. This review will discuss the mechanisms of immune evasion, current avenues for optimizing the antitumor immune response, clinical successes and failures of lymphoma immunotherapy, and outstanding hurdles that remain to be addressed.
Collapse
Affiliation(s)
| | - Stephen M. Ansell
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|