1
|
Wu S, Zhao S, Hai L, Yang Z, Wang S, Cui D, Xie J. Macrophage polarization regulates the pathogenesis and progression of autoimmune diseases. Autoimmun Rev 2025; 24:103820. [PMID: 40268127 DOI: 10.1016/j.autrev.2025.103820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are integral components of the innate immune system, present in nearly all tissues and organs throughout the body. They exhibit a high degree of plasticity and heterogeneity, participating in immune responses to maintain immune homeostasis. When the immune system loses tolerance, macrophages rapidly proliferate and polarize in response to various signaling pathways within a disrupted microenvironment. The direction of macrophage polarization can be regulated by a variety of factors, including transcription factors, non-coding RNAs, and metabolic reprogramming. Autoimmune diseases arise from the immune system's activation against host cells, with macrophage polarization playing a critical role in the pathogenesis of numerous chronic inflammatory and autoimmune conditions, such as rheumatoid arthritis, systemic lupus erythematosus, immune thrombocytopenic purpura, and type 1 diabetes. Consequently, elucidating the molecular mechanisms underlying macrophage development and function presents opportunities for the development of novel therapeutic targets. This review outlines the functions of macrophage polarization in prevalent autoimmune diseases and the underlying mechanisms involved. Furthermore, we discuss the immunotherapeutic potential of targeting macrophage polarization and highlight the characteristics and recent advancements of promising therapeutic targets. Our aim is to inspire further strategies to restore macrophage balance in preventing and treating autoimmune diseases.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shubi Zhao
- Department of Critical Medicine, School of Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Lei Hai
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziyin Yang
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shifen Wang
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jue Xie
- Department of Blood Transfusion, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Li J, Wang X, Chen Y, Sun X, Fu L, Xin Q, Zhang H, Qin B, Sun N, Li Y, Xu Y, Yang H, Huo D, Dong Y, Wang S, Zhao M, Lin Q, Wang F, Yue B, Gao Y, Jiang Y, Guo R. Exosome-Mediated Lectin Pathway and Resistin-MIF-AA Metabolism Axis Drive Immune Dysfunction in Immune Thrombocytopenia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412378. [PMID: 39792656 PMCID: PMC11905005 DOI: 10.1002/advs.202412378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/01/2024] [Indexed: 01/12/2025]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies. In this study, using flow cytometry (FCM), proteomics, and single-cell RNA sequencing of samples from patients with ITP, it is shown that exosome-mediated lectin complement pathway is involved in the pathogenesis of ITP, which triggers and enlarges the complement activation cascade without effective regulation because of downregulated CD55. The activated complement system enhances the immune response and resistin and further Macrophage Migration Inhibitory Factor (MIF) triggers several proinflammatory signaling pathways, which contribute to the survival of hyperactivated immune cells and dysfunctional arachidonic acid (AA) metabolism. The resistin and MIF are also identified as potential contributors to resistance to glucocorticoid therapy. Taken together, the findings indicate that the lectin pathway of the complement system, resistin, MIF, and AA metabolism may serve as promising targets for ITP treatment, offering novel perspectives on potential therapeutic interventions.
Collapse
Affiliation(s)
- Jin Li
- Translational Medical CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Xiaoqian Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Yaoyao Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Xianlei Sun
- Basic Medical Research CenterAcademy of Medical SciencesZhengzhou UniversityZhengzhouHenan450052China
| | - Liyan Fu
- Department of Laboratory MedicineThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouHenan450046China
| | - Qingxuan Xin
- Department of Laboratory MedicineThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouHenan450046China
| | - Huilin Zhang
- Translational Medical CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Bo Qin
- Translational Medical CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Nannan Sun
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Yingmei Li
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Yan Xu
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Hui Yang
- Translational Cancer Research CenterPeking University First HospitalBeijing100034China
| | - Dawei Huo
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu LaboratoryZhejiang University School of MedicineZhejiang UniversityHang ZhouZhejiang311100China
| | - Yong Dong
- Department of ImmunologySchool of Basic Medical SciencesChengdu Medical CollegeChengduSichuan610500China
| | - Shuya Wang
- Department of Blood TransfusionThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Mengyun Zhao
- Department of HematologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouHenan450000China
| | - Quande Lin
- Department of HematologyThe Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer HospitalZhengzhouHenan450000China
| | - Fang Wang
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Baohong Yue
- Department of Laboratory MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
- Department of Laboratory MedicineThe First Affiliated Hospital of Henan University of Chinese MedicineZhengzhouHenan450046China
| | - Yanxia Gao
- Department of Emergency MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| | - Yong Jiang
- Henan International Joint Laboratory of Infection and ImmunityThe First Affiliated HospitalZhengzhou UniversityZhengzhouHenan450001China
- Henan Key Laboratory of Critical Care MedicineDepartment of Emergency MedicineThe First Affiliated HospitalZhengzhou UniversityZhengzhouHenan450001China
- Institute of Infection and ImmunityHenan Academy of Innovations in Medical ScienceZhengzhouHenan451163China
| | - Rongqun Guo
- Translational Medical CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
- Department of HematologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
3
|
Schoenaker JM, Nelson VS, Henderickx JGE, Terveer EM, Jansen AJG, Porcelijn L, Netelenbos T, Schipperus MR, Kapur R. The intestinal flora: The key to unraveling heterogeneity in immune thrombocytopenia? Blood Rev 2025; 69:101252. [PMID: 39672701 DOI: 10.1016/j.blre.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by enhanced platelet destruction and impaired platelet production, due to a loss of immune tolerance that leads to targeting of platelets and megakaryocytes by glycoprotein-autoantibodies and/or cytotoxic T cells. There is a high degree of heterogeneity in ITP patients signified by unpredictable disease trajectories and treatment responses. Initial studies in humans have identified intestinal microbiota perturbance in ITP. Recently, gut microbial perturbance has been linked to other autoimmune diseases. Based on these findings, we hypothesize that intestinal microbiota may influence ITP pathophysiology through several mechanisms, including induction of platelet-autoantibody production, increasing complement-dependent platelet cytotoxicity, disturbing T cell homeostasis, impairing megakaryocyte function, and increasing platelet-desialylation and -clearance. The pathophysiological heterogeneity of ITP may, at least in part, be attributed to a perturbed intestinal microbiota. Therefore, a better understanding of intestinal microbiota in ITP may result in a more personalized therapeutic approach.
Collapse
MESH Headings
- Humans
- Gastrointestinal Microbiome/immunology
- Purpura, Thrombocytopenic, Idiopathic/microbiology
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Purpura, Thrombocytopenic, Idiopathic/pathology
- Blood Platelets/immunology
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Animals
- Disease Susceptibility
- Autoantibodies/immunology
Collapse
Affiliation(s)
- Jente M Schoenaker
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.
| | - Vivianne S Nelson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, the Netherlands; Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Jannie G E Henderickx
- Center for Microbiome Analyses and Therapeutics, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID) Research, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID) Research, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Netherlands Donor Feces Bank, LUCID Medical Microbiology & Infection Prevention, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - A J Gerard Jansen
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands.
| | - Leendert Porcelijn
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Sanquin, 1066 CX Amsterdam, the Netherlands.
| | - Tanja Netelenbos
- Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, the Netherlands.
| | | | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Suzuki K, Akiyama M, Takei H, Kaneko Y. Successful rituximab treatment in a seronegative rheumatoid arthritis patient with concurrent cold agglutinin syndrome and immune thrombocytopenia. Rheumatol Int 2024; 45:2. [PMID: 39692788 DOI: 10.1007/s00296-024-05759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/16/2024] [Indexed: 12/19/2024]
Abstract
Cold agglutinin disease, a subtype of cold-type autoimmune hemolytic anemia, is referred to as cold agglutinin syndrome (CAS) when it develops secondary to other conditions. Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by the peripheral destruction of platelets. While both CAS and ITP can occur in patients with rheumatoid arthritis (RA), their concurrent manifestation in a single patient has not been reported, leaving the optimal treatment strategy for such a complex case unclear. Given that rituximab has been reported to be effective in treating RA, CAS, and ITP, it may be a promising treatment option for cases where these three conditions co-occur. We present the first case of RA complicated by both CAS and ITP, where the patient achieved complete remission with rituximab therapy. Furthermore, our review of the literature identified three cases of CAS and three cases of ITP in RA patients, all successfully treated with rituximab. These findings highlight the potential efficacy of rituximab in managing this challenging and potentially life-threatening combination of autoimmune diseases.
Collapse
MESH Headings
- Humans
- Anemia, Hemolytic, Autoimmune/drug therapy
- Anemia, Hemolytic, Autoimmune/complications
- Antirheumatic Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/complications
- Purpura, Thrombocytopenic, Idiopathic/drug therapy
- Purpura, Thrombocytopenic, Idiopathic/complications
- Rituximab/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Koji Suzuki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Takei
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
5
|
Lambert MP. On the horizon: upcoming new agents for the management of ITP. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:692-699. [PMID: 39644072 DOI: 10.1182/hematology.2024000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Treatment of immune thrombocytopenia (ITP) has evolved over the last 20 years in response to our increased understanding of the pathophysiology of this complex immune disorder. New treatments in development have taken advantage of our evolving understanding of the biology of this disease to target new mechanisms and expand the available ways in which to approach patients with this disorder. This review focuses on novel therapeutics in the ITP pipeline and discusses the pathophysiology of ITP that has led to their development.
Collapse
Affiliation(s)
- Michele P Lambert
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Kim TO, Geris JM, Flanagan JM, Grace RF, Lambert MP, O’Farrell C, Rose MJ, Shimano KA, Niss O, Neunert C, Nakano TA, MacMath D, Dinu B, Kirk SE, Neufeld EJ, Despotovic JM, Scheurer ME, Grimes AB. Genetic variants in canonical Wnt signaling pathway associated with pediatric immune thrombocytopenia. Blood Adv 2024; 8:5529-5538. [PMID: 39189922 PMCID: PMC11538615 DOI: 10.1182/bloodadvances.2024012776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Through the use of genetic sequencing, molecular variants driving autoimmunity are increasingly identified in patients with chronic and refractory immune cytopenias. With the goal of discovering genetic variants that predispose to pediatric immune thrombocytopenia (ITP) or increase risk for chronic disease, we conducted a genome-wide association study in a large multi-institutional cohort of pediatric patients with ITP. A total of 591 patients were genotyped using an Illumina Global Screening Array BeadChip. Six variants met genome-wide significance in comparison between children with ITP and a cohort of healthy children. One variant in NAV2 was inversely associated with ITP (adjusted odds ratio [aOR], 0.52; P = 3.2 × 10-11). Two other variants in close proximity to NKD1 were also inversely associated with ITP (aOR, 0.43; P = 8.86 × 10-15; aOR, 0.48; P = 1.84 × 10-16). These genes have been linked to the canonical Wnt signaling pathway. No variants met genome-wide significance in comparison of those with ITP that self-resolved in <1 year versus those who developed chronic ITP. This study identifies genetic variants that may contribute to ITP risk and raises a novel pathway with a potential role in ITP pathogenesis.
Collapse
Affiliation(s)
- Taylor Olmsted Kim
- Department of Pediatrics/ Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Jennifer M. Geris
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jonathan M. Flanagan
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Rachael F. Grace
- Harvard Medical School, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston Children’s Hospital, Boston, MA
| | - Michele P. Lambert
- Division of Hematology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Candelaria O’Farrell
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Melissa J. Rose
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Nationwide Children’s Hospital, Columbus, OH
- Pediatrics, The Ohio State University, Columbus, OH
| | - Kristin A. Shimano
- University of California San Francisco, Benioff Children’s Hospital, San Francisco, CA
| | - Omar Niss
- Department of Pediatrics, Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- University of Cincinnati College of Medicine, Cincinnati, OH
| | - Cindy Neunert
- Columbia University Irving Medical Center, Morgan Stanley Children’s Hospital, New York, NY
- Columbia University Irving Medical Center, New York, NY
| | - Taizo A. Nakano
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, CO
| | - Derek MacMath
- National Institute of Allergy and Infectious Disease, Bethesda, MD
| | - Bogdan Dinu
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Susan E. Kirk
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | | | | | - Michael E. Scheurer
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Amanda B. Grimes
- Texas Children’s Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
8
|
Al-Samkari H. 2025 update on clinical trials in immune thrombocytopenia. Am J Hematol 2024; 99:2178-2190. [PMID: 39105413 PMCID: PMC11469945 DOI: 10.1002/ajh.27448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Although the development and regulatory approval of the thrombopoietin receptor agonists revolutionized aspects of the immune thrombocytopenia (ITP) treatment landscape over the past two decades, there remain many areas of high unmet need. Therefore, a number of investigational and repurposed agents are currently undergoing clinical development in ITP. In a departure from historical trials, which largely focused on the indefinite treatment of persistent or chronic ITP, ongoing trials run the gamut of disease phases, and include novel agents being evaluated in early phases of the disease to attempt to modify the disease course. Many agents in development target disease pathophysiologic mechanisms not previously targeted by agents in current use, including platelet autoantibody recycling, B-cell maturation and differentiation, long-lived plasma cells, and the complement system, among others. These agents represent promising treatment options for patients with otherwise refractory disease or who are intolerant of currently available therapies. Additionally, with our increasing understanding of the diverse immune mechanisms at play in ITP, the expansion of the therapeutic armamentarium to include agents targeting diverse pathophysiologic mechanisms may allow a more personalized therapeutic selection in the future. This manuscript provides an up-to-date, in-depth overview of recently completed and ongoing clinical trials in ITP.
Collapse
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Zheng SS, Perdomo JS. Desialylation and Apoptosis in Immune Thrombocytopenia: Implications for Pathogenesis and Treatment. Curr Issues Mol Biol 2024; 46:11942-11956. [PMID: 39590303 PMCID: PMC11592706 DOI: 10.3390/cimb46110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease in which platelet autoantibodies play a significant role in its pathogenesis. Regulatory T cell dysfunction and T cell-mediated cytotoxicity also contribute to thrombocytopenia. Current therapies are directed towards immune suppression and modulation as well as stimulation of platelet production with thrombopoietin receptor agonists. Additional mechanisms of the pathogenesis of ITP have been suggested by recent experimental data. One of these processes, known as desialylation, involves antibody-induced removal of terminal sialic acid residues on platelet surface glycoproteins, leading to hepatic platelet uptake and thrombocytopenia. Apoptosis, or programmed platelet death, may also contribute to the pathogenesis of ITP. The extent of the impact of desialylation and apoptosis on ITP, the relative proportion of patients affected, and the role of antibody specificity are still the subject of investigation. This review will discuss both historical and new evidence of the influence of desialylation and apoptosis in the pathogenesis of ITP, with an emphasis on the clinical implications of these developments. Further understanding of both platelet desialylation and apoptosis might change current clinical practice and improve patient outcomes.
Collapse
Affiliation(s)
- Shiying Silvia Zheng
- Haematology Research Unit, St. George and Sutherland Clinical Campuses, School of Medicine & Health, University of New South Wales, Kogarah, NSW 2217, Australia;
- Department of Haematology, St. George Hospital, Kogarah, NSW 2217, Australia
| | - José Sail Perdomo
- Haematology Research Group, Central Clinical School, Faculty Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Sun L, Zhang Y, Chen P, Jiang N, Feng Q, Xu S, Peng J, Sheng Z. The effects of complement-independent, autoantibody-induced apoptosis of platelets in immune thrombocytopenia (ITP). Ann Hematol 2024:10.1007/s00277-024-05999-z. [PMID: 39271523 DOI: 10.1007/s00277-024-05999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Autoantibodies that cause platelet apoptosis may play a role in the development of immune thrombocytopenia (ITP), specifically antibodies that target GPIIbIIIa and GPIbα. Our research aims to compare the impact of the antigen specificity of antiplatelet antibodies on normal platelets under conditions that do not rely on complement. Using a modified monoclonal antibody-specific immobilization of platelet antigen (MAIPA) assay, we detected the levels of autoantibodies against specific platelet membrane glycoproteins (GPIIb/IIIa, GPIb/IX) in the plasma of 36 patients diagnosed with chronic ITP. IgG was isolated and purified using a protein A agarose affinity chromatography column, and their concentrations were measured using spectrophotometry. We obtained normal platelets and treated them with the purified IgG anti-GPIIb/IIIa and/or anti-GPIb/IX antibodies, as well as an IgG-free buffer and healthy control IgG. Flow cytometry was used to analyze markers of apoptosis, including phosphatidylserine (PS) exposure, mitochondrial inner membrane potential (ΔΨm), and platelet particle formation. Our results indicate that ITP patients with GPIb/IX-specific autoantibodies can induce platelet apoptosis and platelet particle formation through complement-independent pathways, which are not associated with platelet activation, while GPIIb/IIIa-specific autoantibodies did not have this effect. This suggests that specific autoantibodies may serve as a valuable predictive tool to identify patients who could potentially benefit from complement-inhibiting therapy in the future.
Collapse
Affiliation(s)
- Lin Sun
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China
- Central Hospital Affiliated to Shandong Fist Medical University, Shandong, China
| | - Yichen Zhang
- Central Hospital Affiliated to Shandong Fist Medical University, Shandong, China
| | - Ping Chen
- Central Hospital Affiliated to Shandong Fist Medical University, Shandong, China
| | - Nan Jiang
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China
| | - Qi Feng
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China
| | - Shuqian Xu
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China
| | - Jun Peng
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China.
| | - Zi Sheng
- Department of Hematology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhuaxi Rd, Jinan, 250012, China.
| |
Collapse
|
11
|
Dalmia S, Harnett B, Al-Samkari H, Arnold DM. Novel treatments for immune thrombocytopenia: targeting platelet autoantibodies. Expert Rev Hematol 2024; 17:609-616. [PMID: 39072415 DOI: 10.1080/17474086.2024.2385485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by low platelets and an increased risk of bleeding. Platelet autoantibodies target major platelet glycoproteins and cause Fc-mediated platelet destruction in the spleen and reticuloendothelial systems. As mechanisms of disease, platelet autoantibodies are important therapeutic targets. Neonatal Fc receptor (FcRn) antagonists are a new class of therapeutics that reduce the half-life of immunoglobulin G including pathogenic platelet autoantibodies. Spleen tyrosine kinase (Syk) inhibitors interfere with Fc-mediated platelet clearance. Bruton's tyrosine kinase (BTK) inhibitors and B-cell activating factor (BAFF) inhibitors reduce antibody production. The efficacy of these targeted therapies provides new support for the role of platelet autoantibodies in pathogenesis of ITP even these antibodies can be difficult to detect. AREAS COVERED This review includes an in-depth exploration of the pathophysiologic mechanisms of ITP, focusing on autoantibodies. Treatments outlined in this review include a) FcRn antagonists, b) complement inhibitors, c) B-cell directed therapies such as BTK inhibitors, and anti-BAFF agents, d) Syk inhibitors, e) plasma-cell directed therapies, and f) novel cellular therapeutic products. EXPERT OPINION Platelet autoantibodies are often elusive in ITP, yet novel treatments targeting this pathway reinforce their role in the pathogenesis of this autoimmune platelet disorder.
Collapse
Affiliation(s)
- Shreyash Dalmia
- Department of Oncology, McMaster University, Hamilton, Canada
| | - Brian Harnett
- Department of Hematology, Memorial University of Newfoundland, St. John's, Canada
| | | | - Donald M Arnold
- Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
12
|
Xiao Z, He Z, Nguyen HLL, Thakur RK, Hammami MB, Narvel H, Vegivinti CTR, Townsend N, Billett H, Murakhovskaya I. Obesity is associated with adverse outcomes in primary immune thrombocytopenia - a retrospective single-center study. Ann Hematol 2024; 103:3453-3461. [PMID: 38864906 PMCID: PMC11358207 DOI: 10.1007/s00277-024-05836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The pathophysiology of immune thrombocytopenia (ITP) involves immune-mediated platelet destruction. The presence of adipose tissue in obese individuals creates an inflammatory environment that could potentially impact the clinical course and outcomes of ITP. However the relationship between obesity and ITP outcomes has not been well described. We evaluated ITP outcomes in 275 patients diagnosed with primary ITP from 2012 to 2022. Patients were categorized into four groups based on their body mass index (BMI) at diagnosis. Female gender was associated with a lower platelet count at the time of diagnosis at any BMI. Patients with high BMI had lower platelet counts at diagnosis and at platelet nadir (p < 0.001), an increased likelihood of requiring therapy (p < 0.001) and requiring multiple lines of therapy (p = 0.032). Non-obese patients who required corticosteroid treatment experienced a longer remission duration compared to obese patients (p = 0.009) and were less likely to be steroid-dependent (p = 0.048). Our findings suggest that obesity may be a significant risk factor for developing ITP and for ITP prognosis. Future studies are needed to evaluate the role of weight loss intervention in improving ITP outcomes.
Collapse
Affiliation(s)
- Zhengrui Xiao
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Zhiqiang He
- School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hieu Liem Le Nguyen
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Rahul Kumar Thakur
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - M Bakri Hammami
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hiba Narvel
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Charan Thej Reddy Vegivinti
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Noelle Townsend
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Henny Billett
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA
| | - Irina Murakhovskaya
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10467, USA.
| |
Collapse
|
13
|
Semple JW, Schifferli A, Cooper N, Saad H, Mytych DT, Chea LS, Newland A. Immune thrombocytopenia: Pathophysiology and impacts of Romiplostim treatment. Blood Rev 2024; 67:101222. [PMID: 38942688 DOI: 10.1016/j.blre.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disease caused by immune-mediated platelet destruction and decreased platelet production. ITP is characterized by an isolated thrombocytopenia (<100 × 109/L) and increased risk of bleeding. The disease has a complex pathophysiology wherein immune tolerance breakdown leads to platelet and megakaryocyte destruction. Therapeutics such as corticosteroids, intravenous immunoglobulins (IVIg), rituximab, and thrombopoietin receptor agonists (TPO-RAs) aim to increase platelet counts to prevent hemorrhage and increase quality of life. TPO-RAs act via stimulation of TPO receptors on megakaryocytes to directly stimulate platelet production. Romiplostim is a TPO-RA that has become a mainstay in the treatment of ITP. Treatment significantly increases megakaryocyte maturation and growth leading to improved platelet production and it has recently been shown to have additional immunomodulatory effects in treated patients. This review will highlight the complex pathophysiology of ITP and discuss the usage of Romiplostim in ITP and its ability to potentially immunomodulate autoimmunity.
Collapse
Affiliation(s)
- John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden, Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, USA.
| | - Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | | | | | | | | | - Adrian Newland
- Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
14
|
Saldanha A, Colella MP, Villaça PR, Thachil J, Orsi FA. The immune thrombocytopenia paradox: Should we be concerned about thrombosis in ITP? Thromb Res 2024; 241:109109. [PMID: 39137700 DOI: 10.1016/j.thromres.2024.109109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Despite the predisposition to bleeding, patients with immune thrombocytopenia (ITP) may also have an increased risk of arterial and venous thrombosis, which can contribute to significant morbidity. The risk of thrombosis increases with age and the presence of cardiovascular risk factors. This narrative review explores the multifactorial nature of thrombosis in ITP, focusing on new pathological mechanisms, emerging evidence on the association between established treatments and thrombotic risk, the role of novel treatment approaches, and the challenges in assessing the balance between bleeding and thrombosis in ITP. The review also explores the challenges in managing acute thrombotic events in ITP, since the platelet count does not always reliably predict either the risk of bleeding or thrombosis and antithrombotic strategies lack specific guidelines for ITP. Notably, second-line therapeutic options, such as splenectomy and thrombopoietin receptor agonists (TPO-RAs), exhibit an increased risk of thrombosis especially in older individuals or those with multiple thrombotic risk factors or previous thrombosis, emphasizing the importance of careful risk assessment before treatment selection. In this context, it is important to consider second-line therapies such as rituximab and other immunosuppressive agents, dapsone and fostamatinib, which are not associated with increased thrombotic risk. In particular, fostamatinib, an oral spleen tyrosine kinase inhibitor, has promisingly low thrombotic risk. During the current era of the emergence of several novel ITP therapies that do not pose additional risks for thrombosis, it is critical to outline evidence-based strategies for the prevention and treatment of thrombosis in ITP patients.
Collapse
Affiliation(s)
- Artur Saldanha
- Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), Brazil; Hematology and Hemotherapy Center of Alagoas (HEMOAL), Brazil
| | | | - Paula Ribeiro Villaça
- Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), Brazil
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Fernanda Andrade Orsi
- Hospital das Clinicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), Brazil; Department of Pathology, Faculty of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Brazil.
| |
Collapse
|
15
|
Martínez-Carballeira D, Bernardo Á, Caro A, Soto I, Gutiérrez L. Treatment of Immune Thrombocytopenia: Contextualization from a Historical Perspective. Hematol Rep 2024; 16:390-412. [PMID: 39051412 PMCID: PMC11270329 DOI: 10.3390/hematolrep16030039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated decrease in platelet count and an increased risk of bleeding. The pathogenesis is complex, affecting multiple components of the immune system and causing both peripheral destruction of platelets and inadequate production in the bone marrow. In this article, we review the treatment of ITP from a historical perspective, discussing first line and second line treatments, and management of refractory disease.
Collapse
Affiliation(s)
- Daniel Martínez-Carballeira
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (Á.B.); (A.C.); (I.S.)
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Ángel Bernardo
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (Á.B.); (A.C.); (I.S.)
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alberto Caro
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (Á.B.); (A.C.); (I.S.)
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Inmaculada Soto
- Department of Hematology, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (Á.B.); (A.C.); (I.S.)
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
16
|
Zhang Q, Huang M, Thomas ER, Wang L, Liu J, Li X, Luo J, Zou W, Wu J. The role of platelet desialylation as a biomarker in primary immune thrombocytopenia: mechanisms and therapeutic perspectives. Front Immunol 2024; 15:1409461. [PMID: 38979425 PMCID: PMC11228137 DOI: 10.3389/fimmu.2024.1409461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Primary immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by the destruction of platelets. Although it was long believed that the critical role of autoantibodies in platelet destruction, primarily through the Fc-dependent platelet clearance pathway, recent findings indicate that the significance of the Fc-independent platelet clearance pathway mediated by hepatocytes, thus shedding light on a previously obscure aspect of ITP pathogenesis. Within this context, the desialylation of platelets has emerged as a pivotal biochemical marker. Consequently, targeting platelet desialylation emerges as a novel therapeutic strategy in the pathogenesis of ITP. Notably, prevailing research has largely focused on antiplatelet antibodies and the glycosylation-associated mechanisms of platelet clearance, while comprehensive analysis of platelet desialylation remains scant. In response, we retrospectively discuss the historical progression, inducing factors, generation process, and molecular regulatory mechanisms underlying platelet desialylation in ITP pathogenesis. By systematically evaluating the most recent research findings, we contribute to a comprehensive understanding of the intricate processes involved. Moreover, our manuscript delves into the potential application of desialylation regulatory strategies in ITP therapy, heralding novel therapeutic avenues. In conclusion, this manuscript not only fills a critical void in existing literature but also paves the way for future research by establishing a systematic theoretical framework. By inspiring new research ideas and offering insights into the development of new therapeutic strategies and targeted drugs, our study is poised to significantly advance the clinical management of ITP.
Collapse
Affiliation(s)
- Qianhui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Miao Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Elizabeth Rosalind Thomas
- Department of Microbiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, India
| | - Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiesi Luo
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Education Ministry Key Laboratory of Medical Electrophysiology, Medical Key Laboratory for Drug Discovery and Druggability Evaluation of Sichuan Province, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Luzhou, China
| |
Collapse
|
17
|
Won KD, Gil Gonzalez L, Cruz-Leal Y, Pavon Oro A, Lazarus AH. Antagonism of the Platelet-Activating Factor Pathway Mitigates Inflammatory Adverse Events Driven by Anti-erythrocyte Antibody Therapy in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1531-1539. [PMID: 38506555 DOI: 10.4049/jimmunol.2300638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet counts primarily due to antiplatelet autoantibodies. Anti-D is a donor-derived polyclonal Ab against the rhesus D Ag on erythrocytes used to treat ITP. Unfortunately, adverse inflammatory/hypersensitivity reactions and a Food and Drug Administration-issued black box warning have limited its clinical use. This underscores the imperative to understand the inflammatory pathway associated with anti-erythrocyte Ab-based therapies. TER119 is an erythrocyte-specific Ab with anti-D-like therapeutic activity in murine ITP, while also exhibiting a distinct inflammatory signature involving production of CCL2, CCL5, and CXCL9 but not IFN-γ. Therefore, TER119 has been used to elucidate the potential mechanism underlying the adverse inflammatory activity associated with anti-erythrocyte Ab therapy in murine ITP. Prior work has demonstrated that TER119 administration is associated with a dramatic decrease in body temperature and inflammatory cytokine/chemokine production. The work presented in the current study demonstrates that inhibiting the highly inflammatory platelet-activating factor (PAF) pathway with PAF receptor antagonists prevents TER119-driven changes in body temperature and inhibits the production of the CCL2, CCL5, and CXCL9 inflammatory cytokines in CD-1 mice. Phagocytic cells and a functional TER119 Fc region were found to be necessary for TER119-induced body temperature changes and increases in CXCL9 and CCL2. Taken together, this work reveals the novel requirement of the PAF pathway in causing adverse inflammatory activity associated with anti-erythrocyte Ab therapy in a murine model and provides a strategy of mitigating these potential reactions without altering therapeutic activity.
Collapse
Affiliation(s)
- Kevin Doyoon Won
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lazaro Gil Gonzalez
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yoelys Cruz-Leal
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Alequis Pavon Oro
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Britto J, Holbrook A, Sun H, Cserti-Gazdewich C, Prokopchuk-Gauk O, Hsia C, Khamisa K, Yenson PR, Sholzberg M, Olney HJ, Shivakumar S, Jones D, Merkeley H, Costello J, Jamula E, Arnold DM. Thrombopoietin Receptor Agonists and Other Second-Line Therapies for Immune Thrombocytopenia: A Narrative Review With a Focus on Drug Access in Canada. CLIN INVEST MED 2024; 47:13-22. [PMID: 38546381 DOI: 10.3138/cim-2024-2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet counts and increased risk of bleeding. After corticosteroids with or without intravenous immune globulin (first-line treatment), second-line treatment options include rituximab, splenectomy, thrombopoietin receptor agonists (TPO-RAs), and fostamatinib. In Canada, the choice of second-line therapy is influenced by access to medications. The goals of this narrative review are to 1) summarize the evidence for the use of TPO-RAs and other second-line therapies in ITP and 2) highlight differences in public funding criteria for TPO-RAs across provinces and territories in Canada. METHODS We conducted a literature review of second-line therapies for ITP. We solicited information on public funding programs for TPO-RAs in Canada from health care providers, pharmacists, and provincial ministries of health. RESULTS Head-to-head trials involving TPO-RAs, rituximab, splenectomy, and fostamatinib are lacking. There is substantial evidence of effect for TPO-RAs in improving platelet count levels, health-related quality of life, bleeding, and fatigue from placebo-controlled trials and observational studies; however, access to TPO-RAs through provincial funding programs in Canada is variable. Splenectomy failure is a prerequisite for the funding of TPO-RAs in Ontario, Manitoba, and Saskatchewan, but not in Alberta or Quebec. Other provinces either do not have access to public funding or funding is provided on a case-by-case basis. DISCUSSION TPO-RAs are effective second-line therapies for the treatment of ITP; however, access is variable across Canada, which results in health disparities and poor uptake of international treatment guidelines.
Collapse
Affiliation(s)
- Joanne Britto
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Anne Holbrook
- Department of Medicine, Division of Clinical Pharmacology and Toxicology, McMaster University, Hamilton, Ontario, Canada
| | - Haowei Sun
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Christine Cserti-Gazdewich
- Department of Medicine/Division of Hematology, University of Toronto and University Health Network, Toronto, Ontario, Canada
| | - Oksana Prokopchuk-Gauk
- Department of Pathology and Lab Medicine, University of Saskatchewan, Saskatchewan Health Authority, Canada
| | - Cyrus Hsia
- Division of Hematology, Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Karima Khamisa
- Division of Hematology, Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Paul R Yenson
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Sholzberg
- Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harold J Olney
- Department of Medicine, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Sudeep Shivakumar
- Division of Hematology, Nova Scotia Health Authority, Halifax, NS, Canada
| | - David Jones
- Department of Hematology, Eastern Health, Memorial University, Newfoundland & Labrador, Canada
| | - Hayley Merkeley
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline Costello
- Department of Hematology, Eastern Health, Memorial University, Newfoundland & Labrador, Canada
| | - Erin Jamula
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Centre for Transfusion Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
19
|
Delshad M, Davoodi-Moghaddam Z, Pourbagheri-Sigaroodi A, Faranoush M, Abolghasemi H, Bashash D. Translating mechanisms into therapeutic strategies for immune thrombocytopenia (ITP): Lessons from clinical trials. Thromb Res 2024; 235:125-147. [PMID: 38335568 DOI: 10.1016/j.thromres.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder that causes a significant reduction in peripheral blood platelet count. Fortunately, due to an increased understanding of ITP, there have been significant improvements in the diagnosis and treatment of these patients. Over the past decade, there have been a variety of proven therapeutic options available for ITP patients, including intravenous immunoglobulins (IVIG), Rituximab, corticosteroids, and thrombopoietin receptor agonists (TPO-RAs). Although the effectiveness of current therapies in treating more than two-thirds of patients, still some patients do not respond well to conventional therapies or fail to achieve long-term remission. Recently, a significant advancement has been made in identifying various mechanisms involved in the pathogenesis of ITP, leading to the development of novel treatments targeting these pathways. It seems that new agents that target plasma cells, Bruton tyrosine kinase, FcRn, platelet desialylation, splenic tyrosine kinase, and classical complement pathways are opening new ways to treat ITP. In this study, we reviewed the pathophysiology of ITP and summarized updates in this population's management and treatment options. We also took a closer look at the 315 ongoing trials to investigate their progress status and compare the effectiveness of interventions. May our comprehensive view of ongoing clinical trials serve as a guiding beacon, illuminating the path towards future trials of different drugs in the treatment of ITP patients.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Davoodi-Moghaddam
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolghasemi
- Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Mititelu A, Onisâi MC, Roșca A, Vlădăreanu AM. Current Understanding of Immune Thrombocytopenia: A Review of Pathogenesis and Treatment Options. Int J Mol Sci 2024; 25:2163. [PMID: 38396839 PMCID: PMC10889445 DOI: 10.3390/ijms25042163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The management of immune thrombocytopenia (ITP) and the prediction of patient response to therapy still represent a significant and constant challenge in hematology. ITP is a heterogeneous disease with an unpredictable evolution. Although the pathogenesis of ITP is currently better known and its etiology has been extensively studied, up to 75% of adult patients with ITP may develop chronicity, which represents a significant burden on patients' quality of life. A major risk of ITP is bleeding, but knowledge on the exact relationship between the degree of thrombocytopenia and bleeding symptoms, especially at a lower platelet count, is lacking. The actual management of ITP is based on immune suppression (corticosteroids and intravenous immunoglobulins), or the use of thrombopoietin receptor agonists (TPO-RAs), rituximab, or spleen tyrosine kinase (Syk) inhibitors. A better understanding of the underlying pathology has facilitated the development of a number of new targeted therapies (Bruton's tyrosine kinase inhibitors, neonatal Fc receptors, strategies targeting B and plasma cells, strategies targeting T cells, complement inhibitors, and newer TPO-RAs for improving megakaryopoiesis), which seem to be highly effective and well tolerated and result in a significant improvement in patients' quality of life. The disadvantage is that there is a lack of knowledge of the predictive factors of response to treatments, which would help in the development of an optimized treatment algorithm for selected patients.
Collapse
Affiliation(s)
- Alina Mititelu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| | - Minodora-Cezarina Onisâi
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| | - Adrian Roșca
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania;
| | - Ana Maria Vlădăreanu
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (M.-C.O.); (A.M.V.)
| |
Collapse
|
21
|
Moulinet T, Moussu A, Pierson L, Pagliuca S. The many facets of immune-mediated thrombocytopenia: Principles of immunobiology and immunotherapy. Blood Rev 2024; 63:101141. [PMID: 37980261 DOI: 10.1016/j.blre.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune condition, due to peripheral platelet destruction through antibody-dependent cellular phagocytosis, complement-dependent cytotoxicity, cytotoxic T lymphocyte-mediated cytotoxicity, and megakaryopoiesis alteration. This condition may be idiopathic or triggered by drugs, vaccines, infections, cancers, autoimmune disorders and systemic diseases. Recent advances in our understanding of ITP immunobiology support the idea that other forms of thrombocytopenia, for instance, occurring after immunotherapy or cellular therapies, may share a common pathophysiology with possible therapeutic implications. If a decent pipeline of old and new agents is currently deployed for classical ITP, in other more complex immune-mediated thrombocytopenic disorders, clinical management is less harmonized and would deserve further prospective investigations. Here, we seek to provide a fresh overview of pathophysiology and current therapeutical algorithms for adult patients affected by this disorder with specific insights into poorly codified scenarios, including refractory ITP and post-immunotherapy/cellular therapy immune-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Thomas Moulinet
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France; UMR 7365, IMoPA, Lorraine University, CNRS, Nancy, France
| | - Anthony Moussu
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Ludovic Pierson
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Simona Pagliuca
- UMR 7365, IMoPA, Lorraine University, CNRS, Nancy, France; Department of Hematology, Regional Competence Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
22
|
Jiang D, Rosenlind K, Baxter S, Gernsheimer T, Gulsuner S, Allenspach EJ, Keel SB. Evaluating the prevalence of inborn errors of immunity in adults with chronic immune thrombocytopenia or Evans syndrome. Blood Adv 2023; 7:7202-7208. [PMID: 37792884 PMCID: PMC10702780 DOI: 10.1182/bloodadvances.2023011042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are monogenic disorders that predispose patients to immune dysregulation, autoimmunity, and infection. Autoimmune cytopenias, such as immune thrombocytopenia (ITP) and Evans syndrome (a combination of ITP and autoimmune hemolytic anemia), are increasingly recognized phenotypes of IEI. Although recent findings suggest that IEIs may commonly underlie pediatric ITP and Evans syndrome, its prevalence in adult patients with these disorders remains undefined. This study sought to estimate the prevalence of underlying IEIs among adults with persistent or chronic ITP or Evans syndrome using a next-generation sequencing panel encompassing >370 genes implicated in IEIs. Forty-four subjects were enrolled from an outpatient adult hematology clinic at a tertiary referral center in the United States, with a median age of 49 years (range, 20-83). Fourteen subjects (31.8%) had secondary ITP, including 8 (18.2%) with Evans syndrome. No cases of IEI were identified despite a high representation of subjects with a personal history of autoimmunity (45.5%) and early onset of disease (median age at diagnosis of 40 years [range, 2-77]), including 20.5% who were initially diagnosed as children. Eight subjects (18.2%) were found to be carriers of pathogenic IEI variants, which, in their heterozygous state, are not disease-causing. One case of TUBB1-related congenital thrombocytopenia was identified. Although systematic screening for IEI has been proposed for pediatric patients with Evans syndrome, findings from this real-world study suggest that inclusion of genetic testing for IEI in the routine work-up of adults with ITP and Evans syndrome has a low diagnostic yield.
Collapse
MESH Headings
- Humans
- Adult
- Child
- Young Adult
- Middle Aged
- Aged
- Aged, 80 and over
- Child, Preschool
- Adolescent
- Anemia, Hemolytic, Autoimmune/epidemiology
- Anemia, Hemolytic, Autoimmune/genetics
- Anemia, Hemolytic, Autoimmune/complications
- Purpura, Thrombocytopenic, Idiopathic/epidemiology
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/complications
- Autoimmunity
- Prevalence
- Thrombocytopenia/epidemiology
- Thrombocytopenia/genetics
- Thrombocytopenia/complications
Collapse
Affiliation(s)
- Debbie Jiang
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology, Massachusetts General Hospital, Boston, MA
| | | | - Sarah Baxter
- Division of Rheumatology, Seattle Children’s Hospital, Seattle, WA
| | - Terry Gernsheimer
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Siobán B. Keel
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
23
|
Shindo R, Abe R, Oku K, Tanaka T, Matsueda Y, Wada T, Arinuma Y, Tanaka S, Ikenoue T, Miyakawa Y, Yamaoka K. Involvement of the complement system in immune thrombocytopenia: review of the literature. Immunol Med 2023; 46:182-190. [PMID: 37237432 DOI: 10.1080/25785826.2023.2213976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Immune thrombocytopenia (ITP) is a thrombocytopenic condition induced by autoimmune mechanisms and includes secondary ITP with underlying diseases such as connective tissue diseases (CTD). In recent years, it has been elucidated that the subsets of the ITP are associated with complement abnormalities but much remains unclear. To perform a literature review and identify the characteristics of complement abnormalities in ITP. PUBMED was used to collect the literature published up to June 2022 related to ITP and complement abnormalities. Primary and secondary ITP (CTD-related) were examined. Out of the collected articles, 17 were extracted. Eight articles were related to primary ITP (pITP) and 9 to CTD-related ITP. Analysis of the literature revealed that the ITP severity was inversely correlated with serum C3, C4 levels in both ITP subgroups. In pITP, a wide range of complement abnormalities was reported, including abnormalities of initial proteins, complement regulatory proteins, or the end products. In CTD-related ITP, reported complement abnormalities were limited to the initial proteins. Activation of the early complement system, mainly through activation of C3 and its precursor protein C4, was reported for both ITPs. On the other hand, more extensive complement activation has been reported in pITP.
Collapse
Affiliation(s)
- Risa Shindo
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ryohei Abe
- Department of Hematology, Saitama Medical University Hospital, Saitama, Japan
| | - Kenji Oku
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomoki Tanaka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yu Matsueda
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tatsuhiko Wada
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshiyuki Arinuma
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| | - Sumiaki Tanaka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
- Department of Rheumatology, Kitasato University Medical Center, Kitamoto, Japan
| | - Tatsuyoshi Ikenoue
- Data Science and AI Innovation Research Promotion Center, Shiga University, Hikone, Japan
- Department of Healthcare Epidemiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitaka Miyakawa
- Department of Hematology, Saitama Medical University Hospital, Saitama, Japan
| | - Kunihiro Yamaoka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
24
|
Roeser A, Lazarus AH, Mahévas M. B cells and antibodies in refractory immune thrombocytopenia. Br J Haematol 2023; 203:43-53. [PMID: 37002711 DOI: 10.1111/bjh.18773] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder mediated by pathogenic autoantibodies secreted by plasma cells (PCs) in many patients. In refractory ITP patients, the persistence of splenic and bone marrow autoreactive long-lived PCs (LLPCs) may explain primary failure of rituximab and splenectomy respectively. The reactivation of autoreactive memory B cells generating new autoreactive PCs contributes to relapses after initial response to rituximab. Emerging strategies targeting B cells and PCs aim to prevent the settlement of splenic LLPCs with the combination of anti-BAFF and rituximab, to deplete autoreactive PCs with anti-CD38 antibodies, and to induce deeper B-cell depletion in tissues with novel anti-CD20 monoclonal antibodies and anti-CD19 therapies. Alternative strategies, focused on controlling autoantibody mediated effects, have also been developed, including SYK and BTK inhibitors, complement inhibitors, FcRn blockers and inhibitors of platelet desialylation.
Collapse
Affiliation(s)
- Anaïs Roeser
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| |
Collapse
|
25
|
Cines DB. Pathogenesis of refractory ITP: Overview. Br J Haematol 2023; 203:10-16. [PMID: 37735546 PMCID: PMC10539016 DOI: 10.1111/bjh.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
A subset of individuals with 'primary' or 'idiopathic' immune thrombocytopenia (ITP) who fail to respond to conventional first- and second-line agents or who lose responsiveness are considered to have 'refractory' disease (rITP), placing them at increased risk of bleeding and complications of intensive treatment. However, the criteria used to define the refractory state vary among studies, which complicates research and clinical investigation. Moreover, it is unclear whether rITP is simply 'more severe' ITP, or if there are specific pathogenic pathways that are more likely to result in refractory disease, and whether the presence or development of rITP can be established or anticipated based on these differences. This paper reviews potential biological features that may be associated with rITP, including genetic and epigenetic risk factors, dysregulation of T cells and cytokine networks, antibody affinity and specificity, activation of complement, impaired platelet production and alterations in platelet viability and clearance. These findings indicate the need for longitudinal studies using novel clinically available methodologies to identify and monitor pathogenic T cells, platelet antibodies and other clues to the development of refractory disease.
Collapse
Affiliation(s)
- Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Al-Samkari H, Neufeld EJ. Novel therapeutics and future directions for refractory immune thrombocytopenia. Br J Haematol 2023; 203:65-78. [PMID: 37735554 PMCID: PMC11101754 DOI: 10.1111/bjh.19078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder affecting approximately 1 in 20 000 people. While most patients with ITP are successfully managed with the current set of standard and approved therapeutics, patients who cannot be adequately managed with these therapies, considered to have refractory ITP, are not uncommon. Therefore, there remains an ongoing need for novel therapeutics and drug development in ITP. Several agents exploiting novel targets and mechanisms in ITP are presently under clinical development, with trials primarily recruiting heavily pretreated patients and those with otherwise refractory disease. Such agents include the neonatal Fc receptor antagonist efgartigimod, the Bruton tyrosine kinase inhibitor rilzabrutinib, the complement inhibitors sutimlimab and iptacopan and anti-CD38 monoclonal antibodies such as daratumumab and mezagitamab, among others. Each of these agents exploits therapeutic targets or other aspects of ITP pathophysiology currently not targeted by the existing approved agents (thrombopoietin receptor agonists and fostamatinib). This manuscript offers an in-depth review of the current available data for novel therapeutics in ITP presently undergoing phase 2 or 3 studies in patients with heavily pretreated or refractory ITP. It additionally highlights the future directions for drug development in refractory ITP, including discussion of innovative clinical trial designs, health-related quality of life as an indispensable clinical trial end-point and balancing potential toxicities of drugs with their potential benefits in a bleeding disorder in which few patients suffer life-threatening bleeding.
Collapse
Affiliation(s)
- Hanny Al-Samkari
- Division of Hematology Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ellis J. Neufeld
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN
| |
Collapse
|
27
|
Weitz IC, Liebman HA. Complement in immune thrombocytopenia (ITP): The role of complement in refractory ITP. Br J Haematol 2023; 203:96-100. [PMID: 37735550 DOI: 10.1111/bjh.19070] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Immune thrombocytopenia (ITP) is a disorder characterized by low platelets due to increased clearance and decreased platelet production. While ITP has been characterized as an acquired disorder of the adaptive immune system, the resulting platelet autoantibodies provide ancillary links to the innate immune system via antibody interaction with the complement system. Most autoantibodies in patients with ITP are of the IgG1 subclass, which can be potent activators of the classical complement pathway. Antibody-coated platelets can initiate complement activation via the classical pathway leading to both direct platelet destruction and enhanced clearance of C3b-coated platelets by complement receptors. Similar autoantibody interactions with bone marrow megakaryocytes can also result in complement injury and ineffective thrombopoiesis. The development of novel therapeutic complement inhibitors has revived interest in the role of complement in autoantibody-mediated disorders, such as ITP. A recent early-phase clinical trial of a classical complement pathway inhibitor has demonstrated efficacy in a subset of ITP patients refractory to conventional immune modulation. In this review, we will analyse the role of complement in refractory ITP.
Collapse
Affiliation(s)
- Ilene Ceil Weitz
- Jane Anne Nohl Division of Hematology, University of Southern California-Keck School of Medicine, Los Angeles, California, USA
| | - Howard Allen Liebman
- Jane Anne Nohl Division of Hematology, University of Southern California-Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
28
|
Moore DC, Arnall JR. Sutimlimab: A Complement C1s Inhibitor for the Management of Cold Agglutinin Disease-Associated Hemolysis. Ann Pharmacother 2023; 57:970-977. [PMID: 36476151 DOI: 10.1177/10600280221138802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE To review the pharmacology, pharmacokinetics, efficacy, safety, dosing and administration, and place in therapy of sutimlimab for the management of cold agglutinin disease (CAD)-associated hemolysis. DATA SOURCES A literature search of PubMed (1966-October 2022) was conducted using the keywords sutimlimab, BIVV009, and cold agglutinin. Data were also obtained from prescribing information, meeting abstracts, and clinicaltrials.gov. STUDY SELECTION AND DATA EXTRACTION All published prospective clinical trials, prescribing information, and meeting abstracts on sutimlimab for the treatment of CAD were reviewed. DATA SYNTHESIS Sutimlimab is a first-in-class complement C1s inhibitor indicated for the treatment of CAD-associated hemolysis. This approval was based on the phase III CARDINAL trial, which evaluated sutimlimab in patients with CAD-associated hemolysis. The primary endpoint of achieving a hemoglobin of ≥12 g/dL or increase of ≥2 above baseline was achieved by 54% of patients with sutimlimab in the 26-week trial. The phase III CADENZA trial was a placebo-controlled trial in which sutimlimab has demonstrated a significant improvement in the composite endpoint of hemoglobin increase of ≥1.5 g/dL, avoidance of transfusion, and avoidance of additional CAD therapies (73% sutimlimab vs 15% placebo). RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE IN COMPARISON WITH EXISTING DRUGS Sutimlimab rapidly halts hemolysis, improves hemoglobin, and improves quality-of-life in patients with CAD. Safety issues with sutimlimab include infusion-related reactions and risk of serious infections with encapsulated bacteria. CONCLUSIONS Sutimlimab provides an additional therapeutic option in the treatment of CAD-associated hemolysis that can lead to rapid improvement in hemoglobin and anemia-related symptoms.
Collapse
Affiliation(s)
- Donald C Moore
- Department of Pharmacy, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| | - Justin R Arnall
- Specialty Pharmacy Service, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
29
|
Xiao Z, Murakhovskaya I. Rituximab resistance in ITP and beyond. Front Immunol 2023; 14:1215216. [PMID: 37575230 PMCID: PMC10422042 DOI: 10.3389/fimmu.2023.1215216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The pathophysiology of immune thrombocytopenia (ITP) is complex and encompasses innate and adaptive immune responses, as well as megakaryocyte dysfunction. Rituximab is administered in relapsed cases and has the added benefit of inducing treatment-free remission in over 50% of patients. Nevertheless, the responses to this therapy are not long-lasting, and resistance development is frequent. B cells, T cells, and plasma cells play a role in developing resistance. To overcome this resistance, targeting these pathways through splenectomy and novel therapies that target FcγR pathway, FcRn, complement, B cells, plasma cells, and T cells can be useful. This review will summarize the pathogenetic mechanisms implicated in rituximab resistance and examine the potential therapeutic interventions to overcome it. This review will explore the efficacy of established therapies, as well as novel therapeutic approaches and agents currently in development.
Collapse
Affiliation(s)
| | - Irina Murakhovskaya
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
30
|
González-López TJ, Newland A, Provan D. Current Concepts in the Diagnosis and Management of Adult Primary Immune Thrombocytopenia: Our Personal View. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:815. [PMID: 37109773 PMCID: PMC10143742 DOI: 10.3390/medicina59040815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an acquired blood disorder that causes a reduction in circulating platelets with the potential for bleeding. The incidence of ITP is slightly higher in adults and affects more women than men until 60 years, when males are more affected. Despite advances in basic science, primary ITP remains a diagnosis of exclusion. The disease is heterogeneous in its clinical behavior and response to treatment. This reflects the complex underlying pathophysiology, which remains ill-understood. Platelet destruction plays a role in thrombocytopenia, but underproduction is also a major contributing factor. Active ITP is a proinflammatory autoimmune disease involving abnormalities within the T and B regulatory cell compartments, along with several other immunological abnormalities. Over the last several years, there has been a shift from using immunosuppressive therapies for ITP towards approved treatments, such as thrombopoietin receptor agonists. The recent COVID-19 pandemic has hastened this management shift, with thrombopoietin receptor agonists becoming the predominant second-line treatment. A greater understanding of the underlying mechanisms has led to the development of several targeted therapies, some of which have been approved, with others still undergoing clinical development. Here we outline our view of the disease, including our opinion about the major diagnostic and therapeutic challenges. We also discuss our management of adult ITP and our placement of the various available therapies.
Collapse
Affiliation(s)
| | - Adrian Newland
- Academic Haematology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2BB, UK
| | - Drew Provan
- Academic Haematology Unit, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2BB, UK
| |
Collapse
|
31
|
Rodeghiero F. Recent progress in ITP treatment. Int J Hematol 2023; 117:316-330. [PMID: 36622549 DOI: 10.1007/s12185-022-03527-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/10/2023]
Abstract
In this review, the recently approved drugs avatrombopag and fostamatinib, which were not extensively covered within 2019 international recommendations for ITP, will be discussed in some detail. Avatrombopag appears more convenient than eltrombopag as it does not require dietary restrictions or subcutaneous administration like romiplostim. However, data on quality of life (QoL) are lacking and the rate of thromboembolic events in exposed patients is not negligible. Efficacy of fostamatinib, an inhibitor of macrophagic activity, is supported by placebo-controlled trials in patients refractory to several therapies, including TPO-RA. While hypertension and diarrhea have been reported, only one minor thrombotic event occurred in 146 exposed patients. In addition, several new treatment combinations and new agents entered clinical investigation in recent years. In a UK trial, combining mycophenolate mofetil with corticosteroids as first line therapy was more effective than corticosteroids alone, but at the cost of worse QoL. No combination, including oseltamivir or all-trans retinoic acid or danazol, resulted in convincing evidence of superior efficacy and safety when used in first or later lines of treatment. Agents targeting specific mechanisms are also discussed: sutimlimab (complement inhibitor); rilzabrutinib (BTK inhibitor) and efgartigimod (modified Fc fragment inhibiting FcRn). Only efgartigimod has completed phase 3 investigation.
Collapse
Affiliation(s)
- Francesco Rodeghiero
- Hematology Project Foundation, Affiliated to the Department of Hematology, "S. Bortolo" Hospital, Contrà San Francesco 41, 36100, Vicenza, Italy.
| |
Collapse
|
32
|
Liu XG, Hou Y, Hou M. How we treat primary immune thrombocytopenia in adults. J Hematol Oncol 2023; 16:4. [PMID: 36658588 PMCID: PMC9850343 DOI: 10.1186/s13045-023-01401-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Primary immune thrombocytopenia (ITP) is an immune-mediated bleeding disorder characterized by decreased platelet counts and an increased risk of bleeding. Multiple humoral and cellular immune abnormalities result in accelerated platelet destruction and suppressed platelet production in ITP. The diagnosis remains a clinical exclusion of other causes of thrombocytopenia. Treatment is not required except for patients with active bleeding, severe thrombocytopenia, or cases in need of invasive procedures. Corticosteroids, intravenous immunoglobulin, and anti-RhD immunoglobulin are the classical initial treatments for newly diagnosed ITP in adults, but these agents generally cannot induce a long-term response in most patients. Subsequent treatments for patients who fail the initial therapy include thrombopoietic agents, rituximab, fostamatinib, splenectomy, and several older immunosuppressive agents. Other potential therapeutic agents, such as inhibitors of Bruton's tyrosine kinase and neonatal Fc receptor, are currently under clinical evaluation. An optimized treatment strategy should aim at elevating the platelet counts to a safety level with minimal toxicity and improving patient health-related quality of life, and always needs to be tailored to the patients and disease phases. In this review, we address the concepts of adult ITP diagnosis and management and provide a comprehensive overview of current therapeutic strategies under general and specific situations.
Collapse
Affiliation(s)
- Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|