1
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
2
|
Ke X, van Soldt B, Vlahos L, Zhou Y, Qian J, George J, Capdevila C, Glass I, Yan K, Califano A, Cardoso WV. Morphogenesis and regeneration share a conserved core transition cell state program that controls lung epithelial cell fate. Dev Cell 2025; 60:819-836.e7. [PMID: 39667932 PMCID: PMC11945641 DOI: 10.1016/j.devcel.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
Transitional cell states are at the crossroads of crucial developmental and regenerative events, yet little is known about how these states emerge and influence outcomes. The alveolar and airway epithelia arise from distal lung multipotent progenitors, which undergo cell fate transitions to form these distinct compartments. The identification and impact of cell states in the developing lung are poorly understood. Here, we identified a population of Icam1/Nkx2-1 epithelial progenitors harboring a transitional state program remarkably conserved in humans and mice during lung morphogenesis and regeneration. Lineage-tracing and functional analyses reveal their role as progenitors to both airways and alveolar cells and the requirement of this transitional program to make distal lung progenitors competent to undergo airway cell fate specification. The identification of a common progenitor cell state in vastly distinct processes suggests a unified program reiteratively regulating outcomes in development and regeneration.
Collapse
Affiliation(s)
- Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin van Soldt
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pulmonary & Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joel George
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Claudia Capdevila
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ian Glass
- Birth Defects Research Laboratory (BDRL), University of Washington, Seattle, WA 98105, USA
| | - Kelley Yan
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pulmonary & Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Khan IS, Molina C, Ren X, Auyeung VC, Cohen M, Tsukui T, Atakilit A, Sheppard D. Impaired myofibroblast proliferation is a central feature of pathologic post-natal alveolar simplification. eLife 2024; 13:RP94425. [PMID: 39660606 PMCID: PMC11634066 DOI: 10.7554/elife.94425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Collapse
Affiliation(s)
- Imran S Khan
- Division of Neonatology, Department of Pediatrics, UCSFSan FranciscoUnited States
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
| | - Christopher Molina
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Xin Ren
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Vincent C Auyeung
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
| | - Max Cohen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Amha Atakilit
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| | - Dean Sheppard
- Cardiovascular Research Institute, UCSFSan FranciscoUnited States
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSFSan FranciscoUnited States
- Department of Medicine, UCSFSan FranciscoUnited States
| |
Collapse
|
4
|
Khan IS, Molina C, Ren X, Auyeung VC, Cohen M, Tsukui T, Atakilit A, Sheppard D. Impaired Myofibroblast Proliferation is a Central Feature of Pathologic Post-Natal Alveolar Simplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572766. [PMID: 38187712 PMCID: PMC10769348 DOI: 10.1101/2023.12.21.572766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFb signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
Collapse
Affiliation(s)
- Imran S. Khan
- Division of Neonatology, Department of Pediatrics, UCSF
- Cardiovascular Research Institute, UCSF
| | - Christopher Molina
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Xin Ren
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Vincent C. Auyeung
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Max Cohen
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Amha Atakilit
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| | - Dean Sheppard
- Cardiovascular Research Institute, UCSF
- Division of Pulmonary, Critical Care, Allergy, and Sleep, UCSF
- Department of Medicine, UCSF
| |
Collapse
|
5
|
Thomas SM, Ankley LM, Conner KN, Rapp AW, McGee AP, LeSage F, Tanner CD, Vielma TE, Scheeres EC, Obar JJ, Olive AJ. TGFβ primes alveolar-like macrophages to induce type I IFN following TLR2 activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611226. [PMID: 39282428 PMCID: PMC11398362 DOI: 10.1101/2024.09.04.611226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Alveolar macrophages (AMs) are key mediators of lung function and are potential targets for therapies during respiratory infections. TGFβ is an important regulator of AM differentiation and maintenance, but how TGFβ directly modulates the innate immune responses of AMs remains unclear. This shortcoming prevents effective targeting of AMs to improve lung function in health and disease. Here we leveraged an optimized ex vivo AM model system, fetal-liver derived alveolar-like macrophages (FLAMs), to dissect the role of TGFβ in AMs. Using transcriptional analysis, we first globally defined how TGFβ regulates gene expression of resting FLAMs. We found that TGFβ maintains the baseline metabolic state of AMs by driving lipid metabolism through oxidative phosphorylation and restricting inflammation. To better understand inflammatory regulation in FLAMs, we next directly tested how TGFβ alters the response to TLR2 agonists. While both TGFβ (+) and TGFβ (-) FLAMs robustly responded to TLR2 agonists, we found an unexpected activation of type I interferon (IFN) responses in FLAMs and primary AMs in a TGFβ-dependent manner. Surprisingly, mitochondrial antiviral signaling protein and the interferon regulator factors 3 and 7 were required for IFN production by TLR2 agonists. Together, these data suggest that TGFβ modulates AM metabolic networks and innate immune signaling cascades to control inflammatory pathways in AMs.
Collapse
Affiliation(s)
- Sean M. Thomas
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Laurisa M. Ankley
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Kayla N. Conner
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Alexander W. Rapp
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Abigail P. McGee
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Francois LeSage
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Christopher D. Tanner
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Taryn E. Vielma
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Eleanor C. Scheeres
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| | - Joshua J. Obar
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Andrew J. Olive
- Department of Microbiology, Genetics, and Immunology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|
6
|
Paramore SV, Goodwin K, Fowler EW, Devenport D, Nelson CM. Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell polarity complex. Development 2024; 151:dev202692. [PMID: 39225402 PMCID: PMC11385325 DOI: 10.1242/dev.202692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Adult mammalian lungs exhibit a fractal pattern, as each successive generation of airways is a fraction of the size of the parental branch. Achieving this structure likely requires precise control of airway length and diameter, as the embryonic airways initially lack the fractal scaling observed in the adult. In monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we characterized the roles of PCP complex components in airway initiation, elongation and widening during branching morphogenesis of the lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP complex function in the lung epithelium. Instead, we found a previously unreported Celsr1-independent role for the PCP complex components Vangl1 and Vangl2 in the pulmonary mesenchyme, where they are required for branch initiation, elongation and widening. Our data thus reveal an explicit function for Vangl1 and Vangl2 that is independent of the core PCP complex, suggesting a functional diversification of PCP complex components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways in the mature lung.
Collapse
Affiliation(s)
- Sarah V. Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric W. Fowler
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
7
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
8
|
Callaway DA, Penkala IJ, Zhou S, Knowlton JJ, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGF-β controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription in mice. J Clin Invest 2024; 134:e172095. [PMID: 38488000 PMCID: PMC10947970 DOI: 10.1172/jci172095] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/05/2024] [Indexed: 03/19/2024] Open
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease disrupting lung health throughout the life of an individual and that is increasing in incidence. The TGF-β superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that TGFbr2 is critical for alveolar epithelial (AT1) cell fate maintenance and function. Loss of TGFbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analyses reveal the necessity of TGFbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGF-β signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGF-β signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
Affiliation(s)
- Danielle A. Callaway
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute
| | - Ian J. Penkala
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
| | - Su Zhou
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J. Knowlton
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Penn-CHOP Lung Biology Institute
| | - Fabian Cardenas-Diaz
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Apoorva Babu
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael P. Morley
- Penn-CHOP Lung Biology Institute
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariana Lopes
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward E. Morrisey
- Penn-CHOP Lung Biology Institute
- Department of Cell and Developmental Biology, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Michalski MN, Williams BO. The Past, Present, and Future of Genetically Engineered Mouse Models for Skeletal Biology. Biomolecules 2023; 13:1311. [PMID: 37759711 PMCID: PMC10526739 DOI: 10.3390/biom13091311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The ability to create genetically engineered mouse models (GEMMs) has exponentially increased our understanding of many areas of biology. Musculoskeletal biology is no exception. In this review, we will first discuss the historical development of GEMMs and how these developments have influenced musculoskeletal disease research. This review will also update our 2008 review that appeared in BONEKey, a journal that is no longer readily available online. We will first review the historical development of GEMMs in general, followed by a particular emphasis on the ability to perform tissue-specific (conditional) knockouts focusing on musculoskeletal tissues. We will then discuss how the development of CRISPR/Cas-based technologies during the last decade has revolutionized the generation of GEMMs.
Collapse
Affiliation(s)
- Megan N. Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
| | - Bart O. Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA;
- Core Technologies and Services, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
10
|
Paramore SV, Goodwin K, Devenport D, Nelson CM. Mesenchymal Vangl facilitates airway elongation and widening independently of the planar cell polarity complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547543. [PMID: 37461477 PMCID: PMC10349956 DOI: 10.1101/2023.07.03.547543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A hallmark of mammalian lungs is the fractal nature of the bronchial tree. In the adult, each successive generation of airways is a fraction of the size of the parental branch. This fractal structure is physiologically beneficial, as it minimizes the energy needed for breathing. Achieving this pattern likely requires precise control of airway length and diameter, as the branches of the embryonic airways initially lack the fractal scaling observed in those of the adult lung. In epithelial monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we comprehensively characterized the roles of PCP-complex components in airway initiation, elongation, and widening during branching morphogenesis of the murine lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP-component expression in the developing airway epithelium. Instead, we found a novel, Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme. Specifically, mesenchymal loss of Vangl1/2 leads to defects in branch initiation, elongation, and widening. At the cellular level, we observe changes in the shape of smooth muscle cells that indicate a potential defect in collective mesenchymal rearrangements, which we hypothesize are necessary for lung morphogenesis. Our data thus reveal an explicit function for Vangl that is independent of the core PCP complex, suggesting a functional diversification of PCP components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways of the mature lung.
Collapse
Affiliation(s)
| | | | | | - Celeste M Nelson
- Department of Molecular Biology
- Department of Chemical & Biological Engineering
| |
Collapse
|
11
|
Callaway DA, Penkala IJ, Zhou S, Cardenas-Diaz F, Babu A, Morley MP, Lopes M, Garcia BA, Morrisey EE. TGFβ controls alveolar type 1 epithelial cell plasticity and alveolar matrisome gene transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540035. [PMID: 37214932 PMCID: PMC10197675 DOI: 10.1101/2023.05.09.540035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Premature birth disrupts normal lung development and places infants at risk for bronchopulmonary dysplasia (BPD), a disease increasing in incidence which disrupts lung health throughout the lifespan. The TGFβ superfamily has been implicated in BPD pathogenesis, however, what cell lineage it impacts remains unclear. We show that Tgfbr2 is critical for AT1 cell fate maintenance and function. Loss of Tgfbr2 in AT1 cells during late lung development leads to AT1-AT2 cell reprogramming and altered pulmonary architecture, which persists into adulthood. Restriction of fetal lung stretch and associated AT1 cell spreading through a model of oligohydramnios enhances AT1-AT2 reprogramming. Transcriptomic and proteomic analysis reveal the necessity of Tgfbr2 expression in AT1 cells for extracellular matrix production. Moreover, TGFβ signaling regulates integrin transcription to alter AT1 cell morphology, which further impacts ECM expression through changes in mechanotransduction. These data reveal the cell intrinsic necessity of TGFβ signaling in maintaining AT1 cell fate and reveal this cell lineage as a major orchestrator of the alveolar matrisome.
Collapse
|
12
|
Goodwin AT, John AE, Joseph C, Habgood A, Tatler AL, Susztak K, Palmer M, Offermanns S, Henderson NC, Jenkins RG. Stretch regulates alveologenesis and homeostasis via mesenchymal Gαq/11-mediated TGFβ2 activation. Development 2023; 150:dev201046. [PMID: 37102682 PMCID: PMC10259661 DOI: 10.1242/dev.201046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
Alveolar development and repair require tight spatiotemporal regulation of numerous signalling pathways that are influenced by chemical and mechanical stimuli. Mesenchymal cells play key roles in numerous developmental processes. Transforming growth factor-β (TGFβ) is essential for alveologenesis and lung repair, and the G protein α subunits Gαq and Gα11 (Gαq/11) transmit mechanical and chemical signals to activate TGFβ in epithelial cells. To understand the role of mesenchymal Gαq/11 in lung development, we generated constitutive (Pdgfrb-Cre+/-;Gnaqfl/fl;Gna11-/-) and inducible (Pdgfrb-Cre/ERT2+/-;Gnaqfl/fl;Gna11-/-) mesenchymal Gαq/11 deleted mice. Mice with constitutive Gαq/11 gene deletion exhibited abnormal alveolar development, with suppressed myofibroblast differentiation, altered mesenchymal cell synthetic function, and reduced lung TGFβ2 deposition, as well as kidney abnormalities. Tamoxifen-induced mesenchymal Gαq/11 gene deletion in adult mice resulted in emphysema associated with reduced TGFβ2 and elastin deposition. Cyclical mechanical stretch-induced TGFβ activation required Gαq/11 signalling and serine protease activity, but was independent of integrins, suggesting an isoform-specific role for TGFβ2 in this model. These data highlight a previously undescribed mechanism of cyclical stretch-induced Gαq/11-dependent TGFβ2 signalling in mesenchymal cells, which is imperative for normal alveologenesis and maintenance of lung homeostasis.
Collapse
Affiliation(s)
- Amanda T. Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alison E. John
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Chitra Joseph
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Anthony Habgood
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Amanda L. Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Nottingham NIHR Biomedical Research Centre, Nottingham, NG7 2RD, UK
- Respiratory Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katalin Susztak
- Department of Medicine, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew Palmer
- Department of Pathology, Division of Nephrology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4238, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ, UK
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - R. Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| |
Collapse
|
13
|
Calthorpe RJ, Poulter C, Smyth AR, Sharkey D, Bhatt J, Jenkins G, Tatler AL. Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L285-L296. [PMID: 36625900 PMCID: PMC9988523 DOI: 10.1152/ajplung.00106.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
As survival of extremely preterm infants continues to improve, there is also an associated increase in bronchopulmonary dysplasia (BPD), one of the most significant complications of preterm birth. BPD development is multifactorial resulting from exposure to multiple antenatal and postnatal stressors. BPD has both short-term health implications and long-term sequelae including increased respiratory, cardiovascular, and neurological morbidity. Transforming growth factor β (TGF-β) is an important signaling pathway in lung development, organ injury, and fibrosis and is implicated in the development of BPD. This review provides a detailed account on the role of TGF-β in antenatal and postnatal lung development, the effect of known risk factors for BPD on the TGF-β signaling pathway, and how medications currently in use or under development, for the prevention or treatment of BPD, affect TGF-β signaling.
Collapse
Affiliation(s)
- Rebecca J Calthorpe
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Poulter
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alan R Smyth
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Don Sharkey
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jayesh Bhatt
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amanda L Tatler
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
14
|
Nasri A, Foisset F, Ahmed E, Lahmar Z, Vachier I, Jorgensen C, Assou S, Bourdin A, De Vos J. Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3467. [PMID: 34943975 PMCID: PMC8700565 DOI: 10.3390/cells10123467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amel Nasri
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Florent Foisset
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Engi Ahmed
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Zakaria Lahmar
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
| | - Christian Jorgensen
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
- Department of Cell and Tissue Engineering, Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France
| |
Collapse
|
15
|
Miao Q, Chen H, Luo Y, Chiu J, Chu L, Thornton ME, Grubbs BH, Kolb M, Lou J, Shi W. Abrogation of mesenchyme-specific TGF-β signaling results in lung malformation with prenatal pulmonary cysts in mice. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1158-L1168. [PMID: 33881909 DOI: 10.1152/ajplung.00299.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The TGF-β signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-β signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-β signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-β signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-β receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-β signaling through the GSK3β-β-catenin-Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-β signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-β signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.
Collapse
Affiliation(s)
- Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Allergy, Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ling Chu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Matthew E Thornton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brendan H Grubbs
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Martin Kolb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jianlin Lou
- Institute of Occupational Diseases, Hangzhou Medical College (Zhejiang Academy of Medical Science), Hangzhou, People's Republic of China
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
16
|
Fernandez-Gonzalez A. TGF-β and NF-κB Cross-Talk: Unexpected Encounters in the Developing Lung. Am J Respir Cell Mol Biol 2021; 64:275-276. [PMID: 33321052 PMCID: PMC7909339 DOI: 10.1165/rcmb.2020-0515ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Lipid Mediators Regulate Pulmonary Fibrosis: Potential Mechanisms and Signaling Pathways. Int J Mol Sci 2020; 21:ijms21124257. [PMID: 32549377 PMCID: PMC7352853 DOI: 10.3390/ijms21124257] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease of unknown etiology characterized by distorted distal lung architecture, inflammation, and fibrosis. The molecular mechanisms involved in the pathophysiology of IPF are incompletely defined. Several lung cell types including alveolar epithelial cells, fibroblasts, monocyte-derived macrophages, and endothelial cells have been implicated in the development and progression of fibrosis. Regardless of the cell types involved, changes in gene expression, disrupted glycolysis, and mitochondrial oxidation, dysregulated protein folding, and altered phospholipid and sphingolipid metabolism result in activation of myofibroblast, deposition of extracellular matrix proteins, remodeling of lung architecture and fibrosis. Lipid mediators derived from phospholipids, sphingolipids, and polyunsaturated fatty acids play an important role in the pathogenesis of pulmonary fibrosis and have been described to exhibit pro- and anti-fibrotic effects in IPF and in preclinical animal models of lung fibrosis. This review describes the current understanding of the role and signaling pathways of prostanoids, lysophospholipids, and sphingolipids and their metabolizing enzymes in the development of lung fibrosis. Further, several of the lipid mediators and enzymes involved in their metabolism are therapeutic targets for drug development to treat IPF.
Collapse
|
18
|
Piersigilli F, Syed M, Lam TT, Dotta A, Massoud M, Vernocchi P, Quagliariello A, Putignani L, Auriti C, Salvatori G, Bagolan P, Bhandari V. An omic approach to congenital diaphragmatic hernia: a pilot study of genomic, microRNA, and metabolomic profiling. J Perinatol 2020; 40:952-961. [PMID: 32080334 DOI: 10.1038/s41372-020-0623-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The omic approach can help identify a signature that can be potentially used as biomarkers in babies with congenital diaphragmatic hernia (CDH). OBJECTIVES To find a specific microRNA (miR) and metabolic fingerprint of the tracheal aspirates (TA) of CDH patients. We conducted a genetic analysis from blood samples. METHODS TA samples collected in the first 48 h of life in patients with CDH, compared with age-matched controls. Metabolomics done by a mass spectroscopy-based assay. Genomics done using chromosomal microarray analysis. RESULTS CDH (n = 17) and 16 control neonates enrolled. miR-16, miR-17, miR-18, miR-19b, and miR-20a had an increased expression, while miR-19a had a twofold decreased expression in CDH patients, compared with age-matched control patients. Specific metabolites separated neonates with CDH from controls. A genetic mutation found in a small subset of patients. CONCLUSIONS Specific patterns of metabolites and miR expression can be discerned in TA samples in infants with CDH.
Collapse
Affiliation(s)
- Fiammetta Piersigilli
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.,Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Mansoor Syed
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA.,Section of Neonatal-Perinatal Medicine, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, 160 East Erie Avenue, Philadelphia, PA, 19134, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA.,Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Andrea Dotta
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Michela Massoud
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Quagliariello
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, Rome, Italy.,Unit of Parasitology, Department of Laboratory and Immunological, Diagnostics Bambino Gesù Children's Hospital, Rome, Italy
| | - Cinzia Auriti
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guglielmo Salvatori
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Bagolan
- Division of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Vineet Bhandari
- Division of Perinatal Medicine, Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA. .,Section of Neonatal-Perinatal Medicine, Department of Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, 160 East Erie Avenue, Philadelphia, PA, 19134, USA. .,Division of Neonatology, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
19
|
Chu L, Luo Y, Chen H, Miao Q, Wang L, Moats R, Wang T, Kennedy JC, Henske EP, Shi W. Mesenchymal folliculin is required for alveolar development: implications for cystic lung disease in Birt-Hogg-Dubé syndrome. Thorax 2020; 75:486-493. [PMID: 32238524 DOI: 10.1136/thoraxjnl-2019-214112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pulmonary cysts and spontaneous pneumothorax are presented in most patients with Birt-Hogg-Dubé (BHD) syndrome, which is caused by loss of function mutations in the folliculin (FLCN) gene. The pathogenic mechanisms underlying the cystic lung disease in BHD are poorly understood. METHODS Mesenchymal Flcn was specifically deleted in mice or in cultured lung mesenchymal progenitor cells using a Cre/loxP approach. Dynamic changes in lung structure, cellular and molecular phenotypes and signalling were measured by histology, immunofluorescence staining and immunoblotting. RESULTS Deletion of Flcn in mesoderm-derived mesenchymal cells results in significant reduction of postnatal alveolar growth and subsequent alveolar destruction, leading to cystic lesions. Cell proliferation and alveolar myofibroblast differentiation are inhibited in the Flcn knockout lungs, and expression of the extracellular matrix proteins Col3a1 and elastin are downregulated. Signalling pathways including mTORC1, AMP-activated protein kinase, ERK1/2 and Wnt-β-catenin are differentially affected at different developmental stages. All the above changes have statistical significance (p<0.05). CONCLUSIONS Mesenchymal Flcn is an essential regulator during alveolar development and maintenance, through multiple cellular and molecular mechanisms. The mesenchymal Flcn knockout mouse model provides the first in vivo disease model that may recapitulate the stages of cyst development in human BHD. These findings elucidate the developmental origins and mechanisms of lung disease in BHD.
Collapse
Affiliation(s)
- Ling Chu
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yongfeng Luo
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hui Chen
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Qing Miao
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Larry Wang
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rex Moats
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Tiansheng Wang
- The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - John C Kennedy
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wei Shi
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Gon Y, Shimizu T, Mizumura K, Maruoka S, Hikichi M. Molecular techniques for respiratory diseases: MicroRNA and extracellular vesicles. Respirology 2019; 25:149-160. [PMID: 31872560 DOI: 10.1111/resp.13756] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 12/11/2022]
Abstract
miRNA are a class of evolutionarily conserved non-coding 19- to 22-nt regulatory RNA. They affect various cellular functions through modulating the transcriptional and post-transcriptional levels of their target mRNA by changing the stability of protein-coding transcripts or attenuating protein translation. miRNA were discovered in the early 1990s, and they have been the focus of new research in both basic and clinical medical sciences. Today, it has become clear that specific miRNA are linked to the pathogenesis of respiratory diseases, as well as cancer and cardiovascular disease. In addition, EV, including exosomes, which are small membrane-bound vesicles secreted by cells, were found to contain various functional miRNA that can be used for diagnostic and therapeutic purposes. As body fluids, such as blood and respiratory secretions, are major miRNA sources in the body, EV carrying extracellular miRNA are considered potentially useful for the diagnosis and assessment of pathological conditions, as well as the treatment of respiratory or other diseases. Although research in the field of lung cancer is actively progressing, studies in other respiratory fields have emerged recently as well. In this review, we provide an update in the topics of miRNA and EV focused on airway inflammatory diseases, such as asthma and COPD, and explore their potential for clinical applications on respiratory diseases.
Collapse
Affiliation(s)
- Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mari Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
Mesenchyme-specific deletion of Tgf-β1 in the embryonic lung disrupts branching morphogenesis and induces lung hypoplasia. J Transl Med 2019; 99:1363-1375. [PMID: 31028279 PMCID: PMC7422700 DOI: 10.1038/s41374-019-0256-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/08/2023] Open
Abstract
Proper lung development depends on the precise temporal and spatial expression of several morphogenic factors, including Fgf10, Fgf9, Shh, Bmp4, and Tgf-β. Over- or under-expression of these molecules often leads to aberrant embryonic or postnatal lung development. Herein, we deleted the Tgf-β1 gene specifically within the lung embryonic mesenchymal compartment at specific gestational stages to determine the contribution of this cytokine to lung development. Mutant embryos developed severe lung hypoplasia and died at birth due to the inability to breathe. Despite the markedly reduced lung size, proliferation and differentiation of the lung epithelium was not affected by the lack of mesenchymal expression of the Tgf-β1 gene, while apoptosis was significantly increased in the mutant lung parenchyma. Lack of mesenchymal expression of the Tgf-β1 gene was also associated with reduced lung branching morphogenesis, with accompanying inhibition of the local FGF10 signaling pathway as well as abnormal development of the vascular system. To shed light on the mechanism of lung hypoplasia, we quantified the phosphorylation of 226 proteins in the mutant E12.5 lung compared with control. We identified five proteins, Hrs, Vav2, c-Kit, the regulatory subunit of Pi3k (P85), and Fgfr1, that were over- or under-phosphorylated in the mutant lung, suggesting that they could be indispensable effectors of the TGF-β signaling program during embryonic lung development. In conclusion, we have uncovered novel roles of the mesenchyme-specific Tgf-β1 ligand in embryonic mouse lung development and generated a mouse model that may prove helpful to identify some of the key pathogenic mechanisms underlying lung hypoplasia in humans.
Collapse
|
22
|
Riemondy KA, Jansing NL, Jiang P, Redente EF, Gillen AE, Fu R, Miller AJ, Spence JR, Gerber AN, Hesselberth JR, Zemans RL. Single cell RNA sequencing identifies TGFβ as a key regenerative cue following LPS-induced lung injury. JCI Insight 2019; 5:123637. [PMID: 30913038 PMCID: PMC6538357 DOI: 10.1172/jci.insight.123637] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Many lung diseases result from a failure of efficient regeneration of damaged alveolar epithelial cells (AECs) after lung injury. During regeneration, AEC2s proliferate to replace lost cells, after which proliferation halts and some AEC2s transdifferentiate into AEC1s to restore normal alveolar structure and function. Although the mechanisms underlying AEC2 proliferation have been studied, the mechanisms responsible for halting proliferation and inducing transdifferentiation are poorly understood. To identify candidate signaling pathways responsible for halting proliferation and inducing transdifferentiation, we performed single cell RNA sequencing on AEC2s during regeneration in a murine model of lung injury induced by intratracheal LPS. Unsupervised clustering revealed distinct subpopulations of regenerating AEC2s: proliferating, cell cycle arrest, and transdifferentiating. Gene expression analysis of these transitional subpopulations revealed that TGFβ signaling was highly upregulated in the cell cycle arrest subpopulation and relatively downregulated in transdifferentiating cells. In cultured AEC2s, TGFβ was necessary for cell cycle arrest but impeded transdifferentiation. We conclude that during regeneration after LPS-induced lung injury, TGFβ is a critical signal halting AEC2 proliferation but must be inactivated to allow transdifferentiation. This study provides insight into the molecular mechanisms regulating alveolar regeneration and the pathogenesis of diseases resulting from a failure of regeneration.
Collapse
Affiliation(s)
- Kent A. Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Nicole L. Jansing
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Peng Jiang
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth F. Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Austin E. Gillen
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rui Fu
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alyssa J. Miller
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason R. Spence
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony N. Gerber
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Jay R. Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rachel L. Zemans
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, Colorado, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Saito A, Horie M, Nagase T. TGF-β Signaling in Lung Health and Disease. Int J Mol Sci 2018; 19:ijms19082460. [PMID: 30127261 PMCID: PMC6121238 DOI: 10.3390/ijms19082460] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/18/2018] [Accepted: 08/18/2018] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-β is an evolutionarily conserved pleiotropic factor that regulates a myriad of biological processes including development, tissue regeneration, immune responses, and tumorigenesis. TGF-β is necessary for lung organogenesis and homeostasis as evidenced by genetically engineered mouse models. TGF-β is crucial for epithelial-mesenchymal interactions during lung branching morphogenesis and alveolarization. Expression and activation of the three TGF-β ligand isoforms in the lungs are temporally and spatially regulated by multiple mechanisms. The lungs are structurally exposed to extrinsic stimuli and pathogens, and are susceptible to inflammation, allergic reactions, and carcinogenesis. Upregulation of TGF-β ligands is observed in major pulmonary diseases, including pulmonary fibrosis, emphysema, bronchial asthma, and lung cancer. TGF-β regulates multiple cellular processes such as growth suppression of epithelial cells, alveolar epithelial cell differentiation, fibroblast activation, and extracellular matrix organization. These effects are closely associated with tissue remodeling in pulmonary fibrosis and emphysema. TGF-β is also central to T cell homeostasis and is deeply involved in asthmatic airway inflammation. TGF-β is the most potent inducer of epithelial-mesenchymal transition in non-small cell lung cancer cells and is pivotal to the development of tumor-promoting microenvironment in the lung cancer tissue. This review summarizes and integrates the current knowledge of TGF-β signaling relevant to lung health and disease.
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
24
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
25
|
Fernandes-Silva H, Vaz-Cunha P, Barbosa VB, Silva-Gonçalves C, Correia-Pinto J, Moura RS. Retinoic acid regulates avian lung branching through a molecular network. Cell Mol Life Sci 2017; 74:4599-4619. [PMID: 28735443 PMCID: PMC11107646 DOI: 10.1007/s00018-017-2600-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022]
Abstract
Retinoic acid (RA) is of major importance during vertebrate embryonic development and its levels need to be strictly regulated otherwise congenital malformations will develop. Through the action of specific nuclear receptors, named RAR/RXR, RA regulates the expression of genes that eventually influence proliferation and tissue patterning. RA has been described as crucial for different stages of mammalian lung morphogenesis, and as part of a complex molecular network that contributes to precise organogenesis; nonetheless, nothing is known about its role in avian lung development. The current report characterizes, for the first time, the expression pattern of RA signaling members (stra6, raldh2, raldh3, cyp26a1, rarα, and rarβ) and potential RA downstream targets (sox2, sox9, meis1, meis2, tgfβ2, and id2) by in situ hybridization. In the attempt of unveiling the role of RA in chick lung branching, in vitro lung explants were performed. Supplementation studies revealed that RA stimulates lung branching in a dose-dependent manner. Moreover, the expression levels of cyp26a1, sox2, sox9, rarβ, meis2, hoxb5, tgfβ2, id2, fgf10, fgfr2, and shh were evaluated after RA treatment to disclose a putative molecular network underlying RA effect. In situ hybridization analysis showed that RA is able to alter cyp26a1, sox9, tgfβ2, and id2 spatial distribution; to increase rarβ, meis2, and hoxb5 expression levels; and has a very modest effect on sox2, fgf10, fgfr2, and shh expression levels. Overall, these findings support a role for RA in the proximal-distal patterning and branching morphogenesis of the avian lung and reveal intricate molecular interactions that ultimately orchestrate branching morphogenesis.
Collapse
Affiliation(s)
- Hugo Fernandes-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Patrícia Vaz-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Violina Baranauskaite Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Carla Silva-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, 4710-243, Braga, Portugal
| | - Rute Silva Moura
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
- Biology Department, School of Sciences, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
26
|
Guo H, Kazadaeva Y, Ortega FE, Manjunath N, Desai TJ. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol 2017; 430:214-223. [PMID: 28811219 PMCID: PMC5634525 DOI: 10.1016/j.ydbio.2017.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/09/2023]
Abstract
GW182 (also known asTNRC6) family members are critically involved in the final effector phase of miRNA-mediated mRNA repression. The three mammalian paralogs, TNRC6a, b and c, are thought to be redundant based on Argonaute (Ago) binding, tethering assays, and RNAi silencing of individual members in cell lines. To test this idea, we generated TNRC6a, b and c knockout mice. TNRC6a mutants die at mid-gestation, while b- and c- deleted mice are born at a Mendelian ratio. However, the majority of TNRC6b and all TNRC6c mutants die within 24h after birth, the latter with respiratory failure. Necropsy of TNRC6c mutants revealed normal-appearing airways that give rise to abnormally thick-walled distal gas exchange sacs. Immunohistological analysis of mutant lungs demonstrated a normal distribution of bronchiolar and alveolar cells, indicating that loss of TNRC6c did not abrogate epithelial cell differentiation. The cellular kinetics and relative proportions of endothelial, epithelial, and mesenchymal cells were also not altered. However, the underlying capillary network was simplified and endothelial cells had failed to become tightly apposed to the surface epithelium in TNRC6c mutants, presumably causing the observed respiratory failure. TGFβ family mutant mice exhibit a similar lung phenotype of thick-walled air sacs and neonatal lethality, and qRT-PCR confirmed dynamic downregulation of TGFβ1 and TGFβR2 in TNRC6c mutant lungs during sacculation. VEGFR, but not VEGF-A ligand, was also lower, likely reflecting the overall reduced capillary density in TNRC6c mutants. Together, these results demonstrate that GW182 paralogs are not functionally redundant in vivo. Surprisingly, despite regulating a general cellular process, TNRC6c is selectively required only in the distal lung and not until late in gestation for proper expression of the TGFβ family genes that drive sacculation. These results imply a complex and indirect mode of regulation of sacculation by TNRC6c, mediated in part by dynamic transcriptional repression of an inhibitor of TGFβ family gene expression.
Collapse
Affiliation(s)
- Hua Guo
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Yana Kazadaeva
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Fabian E Ortega
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Narasimaswamy Manjunath
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, United States
| | - Tushar J Desai
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, CA 94305, United States.
| |
Collapse
|
27
|
Ren S, Luo Y, Chen H, Warburton D, Lam HC, Wang LL, Chen P, Henske EP, Shi W. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3261-3272. [PMID: 27768862 DOI: 10.1016/j.ajpath.2016.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/09/2016] [Accepted: 08/29/2016] [Indexed: 01/15/2023]
Abstract
The tuberous sclerosis complex (TSC) proteins are critical negative regulators of the mammalian/mechanistic target of rapamycin complex 1 pathway. Germline mutations of TSC1 or TSC2 cause TSC, affecting multiple organs, including the kidney and lung, and causing substantial morbidity and mortality. The mechanisms of organ-specific disease in TSC remain incompletely understood, and the impact of TSC inactivation on mesenchymal lineage cells has not been specifically studied. We deleted Tsc2 specifically in mesoderm-derived mesenchymal cells of multiple organs in mice using the Dermo1-Cre driver. The Dermo1-Cre-driven Tsc2 conditional knockout mice had body growth retardation and died approximately 3 weeks after birth. Significant phenotypes were observed in the postnatal kidney and lung. Inactivation of Tsc2 in kidney mesenchyme caused polycystic lesions starting from the second week of age, with increased cell proliferation, tubular epithelial hyperplasia, and epithelial-mesenchymal transition. In contrast, Tsc2 deletion in lung mesenchyme led to decreased cell proliferation, reduced postnatal alveolarization, and decreased differentiation with reduced numbers of alveolar myofibroblast and type II alveolar epithelial cells. Two major findings thus result from this model: inactivation of Tsc2 in mesoderm-derived cells causes increased cell proliferation in the kidneys but reduced proliferation in the lungs, and inactivation of Tsc2 in mesoderm-derived cells causes epithelial-lined renal cysts. Therefore, Tsc2-mTOR signaling in mesenchyme is essential for the maintenance of renal structure and for lung alveolarization.
Collapse
Affiliation(s)
- Siying Ren
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, People's Republic of China; Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Yongfeng Luo
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Hui Chen
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hilaire C Lam
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Larry L Wang
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central-South University, Changsha, People's Republic of China
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
28
|
Lüdtke TH, Rudat C, Wojahn I, Weiss AC, Kleppa MJ, Kurz J, Farin HF, Moon A, Christoffels VM, Kispert A. Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Dev Cell 2016; 39:239-253. [PMID: 27720610 DOI: 10.1016/j.devcel.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Numerous signals drive the proliferative expansion of the distal endoderm and the underlying mesenchyme during lung branching morphogenesis, but little is known about how these signals are integrated. Here, we show by analysis of conditional double mutants that the two T-box transcription factor genes Tbx2 and Tbx3 act together in the lung mesenchyme to maintain branching morphogenesis. Expression of both genes depends on epithelially derived Shh signaling, with additional modulation by Bmp, Wnt, and Tgfβ signaling. Genetic rescue experiments reveal that Tbx2 and Tbx3 function downstream of Shh to maintain pro-proliferative mesenchymal Wnt signaling, in part by direct repression of the Wnt antagonists Frzb and Shisa3. In combination with our previous finding that Tbx2 and Tbx3 repress the cell-cycle inhibitors Cdkn1a and Cdkn1b, we conclude that Tbx2 and Tbx3 maintain proliferation of the lung mesenchyme by way of at least two molecular mechanisms: regulating cell-cycle regulation and integrating the activity of multiple signaling pathways.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anne Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
| |
Collapse
|
29
|
Antony N, McDougall AR, Mantamadiotis T, Cole TJ, Bird AD. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms. Sci Rep 2016; 6:25569. [PMID: 27150575 PMCID: PMC4858709 DOI: 10.1038/srep25569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1(-/-) mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1(-/-) mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1(-/-) mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development.
Collapse
Affiliation(s)
- N. Antony
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
| | - A. R. McDougall
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
- The Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia
| | - T. Mantamadiotis
- Department of Pathology, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - T. J. Cole
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
| | - A. D. Bird
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, 3800, Victoria, Australia
| |
Collapse
|
30
|
Ahlfeld SK, Wang J, Gao Y, Snider P, Conway SJ. Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:777-93. [PMID: 26878215 DOI: 10.1016/j.ajpath.2015.11.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 12/22/2022]
Abstract
Septation of the gas-exchange saccules of the morphologically immature mouse lung requires regulated timing, spatial direction, and dosage of transforming growth factor (TGF)-β signaling. We found that neonatal hyperoxia acutely initially diminished saccular TGF-β signaling coincident with alveolar simplification. However, sustained hyperoxia resulted in a biphasic response and subsequent up-regulation of TGF-β signaling, ultimately resulting in bronchopulmonary dysplasia. Significantly, we found that the TGF-β-induced matricellular protein (TGFBI) was similarly biphasically altered in response to hyperoxia. Moreover, genetic ablation revealed that TGFBI was required for normal alveolar structure and function. Although the phenotype was not neonatal lethal, Tgfbi-deficient lungs were morphologically abnormal. Mutant septal tips were stunted, lacked elastin-positive tips, exhibited reduced proliferation, and contained abnormally persistent alveolar α-smooth muscle actin myofibroblasts. In addition, Tgfbi-deficient lungs misexpressed TGF-β-responsive follistatin and serpine 1, and transiently suppressed myofibroblast platelet-derived growth factor α differentiation marker. Finally, despite normal lung volume, Tgfbi-null lungs displayed diminished elastic recoil and gas exchange efficiency. Combined, these data demonstrate that initial suppression of the TGF-β signaling apparatus, as well as loss of key TGF-β effectors (like TGFBI), underlies early alveolar structural defects, as well as long-lasting functional deficits routinely observed in chronic lung disease of infancy patients. These studies underline the complex (and often contradictory) role of TGF-β and indicate a need to design studies to associate alterations with initial appearance of phenotypical changes suggestive of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Shawn K Ahlfeld
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jian Wang
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yong Gao
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paige Snider
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
31
|
Unique Tracheal Fluid MicroRNA Signature Predicts Response to FETO in Patients With Congenital Diaphragmatic Hernia. Ann Surg 2015; 262:1130-40. [DOI: 10.1097/sla.0000000000001054] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Saito A, Nagase T. Hippo and TGF-β interplay in the lung field. Am J Physiol Lung Cell Mol Physiol 2015; 309:L756-67. [PMID: 26320155 DOI: 10.1152/ajplung.00238.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway is comprised of a kinase cascade that involves mammalian Ste20-like serine/threonine kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) and leads to inactivation of transcriptional coactivator with PDZ-binding motif (TAZ) and yes-associated protein (YAP). Protein stability and subcellular localization of TAZ/YAP determine its ability to regulate a diverse array of biological processes, including proliferation, apoptosis, differentiation, stem/progenitor cell properties, organ size control, and tumorigenesis. These actions are enabled by interactions with various transcription factors or through cross talk with other signaling pathways. Interestingly, mechanical stress has been shown to be an upstream regulator of TAZ/YAP activity, and this finding provides a novel clue for understanding how mechanical forces influence a broad spectrum of biological processes, which involve cytoskeletal structure, cell adhesion, and extracellular matrix (ECM) organization. Transforming growth factor-β (TGF-β) pathway is a critical component of lung development and the progression of lung diseases including emphysema, fibrosis, and cancer. In addition, TGF-β is a key regulator of ECM remodeling and cell differentiation processes such as epithelial-mesenchymal transition. In this review, we summarize the current knowledge of the Hippo pathway regarding lung development and diseases, with an emphasis on its interplay with TGF-β signaling.
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan; and Division for Health Service Promotion, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan; and
| |
Collapse
|
33
|
Lim R, Muljadi R, Koulaeva E, Vosdoganes P, Chan ST, Acharya R, Gurusinghe S, Ritvos O, Pasternack A, Wallace EM. Activin A contributes to the development of hyperoxia-induced lung injury in neonatal mice. Pediatr Res 2015; 77:749-56. [PMID: 25760549 DOI: 10.1038/pr.2015.46] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/22/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is one of the leading causes of morbidity and mortality in babies born prematurely, yet there is no curative treatment. In recent years, a number of inhibitors against TGFβ signaling have been tested for their potential to prevent neonatal injury associated with hyperoxia, which is a contributing factor of BPD. In this study, we assessed the contribution of activin A-a member of the TGFβ superfamily-to the development of hyperoxia-induced lung injury in neonatal mice. METHODS We placed newborn C57Bl6 mouse pups in continuous hyperoxia (85% O2) to mimic many aspects of BPD including alveolar simplification and pulmonary inflammation. The pups were administered activin A receptor type IIB-Fc antagonist (ActRIIB-Fc) at 5 mg/kg or follistatin at 0.1 mg/kg on postnatal days 4, 7, 10, and 13. RESULTS Treatment with ActRIIB-Fc and follistatin protected against hyperoxia-induced growth retardation. ActRIIB-Fc also reduced pulmonary leukocyte infiltration, normalized tissue: airspace ratio and increased septal crest density. These findings were associated with reduced phosphorylation of Smad3 and decreased matrix metalloproteinase (MMP)-9 activity. CONCLUSION This study suggests that activin A signaling may contribute to the pathology of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Rebecca Lim
- 1] The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia [2] Department of Obstetrics and Gynecology, Monash University, Victoria, Australia
| | - Ruth Muljadi
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia
| | - Eugenia Koulaeva
- Department of Obstetrics and Gynecology, Monash University, Victoria, Australia
| | - Patricia Vosdoganes
- Department of Obstetrics and Gynecology, Monash University, Victoria, Australia
| | - Siow Teng Chan
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia
| | - Rutu Acharya
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia
| | - Seshini Gurusinghe
- The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia
| | - Olli Ritvos
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Arja Pasternack
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Euan M Wallace
- 1] The Ritchie Centre, MIMR-PHI Institute of Medical Research, Victoria, Australia [2] Department of Obstetrics and Gynecology, Monash University, Victoria, Australia
| |
Collapse
|
34
|
DeCant BT, Principe DR, Guerra C, Pasca di Magliano M, Grippo PJ. Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Front Physiol 2014; 5:464. [PMID: 25538623 PMCID: PMC4255505 DOI: 10.3389/fphys.2014.00464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/14/2022] Open
Abstract
The study of pancreatic cancer has prompted the development of numerous mouse models that aim to recapitulate the phenotypic and mechanistic features of this deadly malignancy. This review accomplishes two tasks. First, it provides an overview of the models that have been used as representations of both the neoplastic and carcinoma phenotypes. Second, it presents new modeling schemes that ultimately will serve to more faithfully capture the temporal and spatial progression of the human disease, providing platforms for improved understanding of the role of non-epithelial compartments in disease etiology as well as evaluating therapeutic approaches.
Collapse
Affiliation(s)
- Brian T DeCant
- Department of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Daniel R Principe
- Department of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas Madrid, Spain
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
35
|
Bird AD, Choo YL, Hooper SB, McDougall ARA, Cole TJ. Mesenchymal glucocorticoid receptor regulates the development of multiple cell layers of the mouse lung. Am J Respir Cell Mol Biol 2014; 50:419-28. [PMID: 24053134 DOI: 10.1165/rcmb.2013-0169oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Endogenous glucocorticoid (GC) hormones, signaling via the GC receptor (GR), are essential for normal lung development, and synthetic GCs are routinely used to treat respiratory disorders of very preterm babies. Germline GR knockout (GR(-/-)) mice show immature lung morphology and severe lung cellular hyperplasia during embryogenesis and die at birth due to respiratory failure. Two recent studies have reported contradictory results regarding the necessity for GR expression in specific lung germ layers during respiratory maturation. We further investigate in detail the lung phenotype in mice with a conditional deletion of GR in the endothelium, mesenchyme, and lung epithelium. We show that loss of GR in the mesenchyme alone produces a retarded lung phenotype almost identical to that of germline GR(-/-) mice, including severe postnatal lethality and lung cell hyperplasia. Loss of GR in lung epithelial cells and the endothelium had no gross effect on survival or lung morphology, but loss of epithelial GR caused increased cell proliferation in multiple compartments. Mesenchymal GR loss also produced increased epithelial cell proliferation, implying the existence of GC-regulated germ layer cross-talk. Protein levels of GR-mediated cell cycle regulators, including the cyclin-dependent kinase inhibitor p21(CIP1) and the growth factor midkine, were unaffected by mesenchymal GR deletion, yet expression of the extracellular matrix proteoglycan versican was up-regulated in the distal lung on loss of mesenchymal GR. These results show that GR-mediated signaling from the mesenchyme regulates respiratory maturation and ultimately survival at birth and that a key GR-repressed transcriptional target in lung mesenchymal cells is versican.
Collapse
Affiliation(s)
- A Daniel Bird
- 1 Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria
| | | | | | | | | |
Collapse
|
36
|
Hilgendorff A, Reiss I, Ehrhardt H, Eickelberg O, Alvira CM. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol 2014; 50:233-45. [PMID: 24024524 DOI: 10.1165/rcmb.2013-0014tr] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neonatal chronic lung disease, also known as bronchopulmonary dysplasia (BPD), is the most common complication of premature birth, affecting up to 30% of very low birth weight infants. Improved medical care has allowed for the survival of the most premature infants and has significantly changed the pathology of BPD from a disease marked by severe lung injury to the "new" form characterized by alveolar hypoplasia and impaired vascular development. However, increased patient survival has led to a paucity of pathologic specimens available from infants with BPD. This, combined with the lack of a system to model alveolarization in vitro, has resulted in a great need for animal models that mimic key features of the disease. To this end, a number of animal models have been created by exposing the immature lung to injuries induced by hyperoxia, mechanical stretch, and inflammation and most recently by the genetic modification of mice. These animal studies have 1) allowed insight into the mechanisms that determine alveolar growth, 2) delineated factors central to the pathogenesis of neonatal chronic lung disease, and 3) informed the development of new therapies. In this review, we summarize the key findings and limitations of the most common animal models of BPD and discuss how knowledge obtained from these studies has informed clinical care. Future studies should aim to provide a more complete understanding of the pathways that preserve and repair alveolar growth during injury, which might be translated into novel strategies to treat lung diseases in infants and adults.
Collapse
Affiliation(s)
- Anne Hilgendorff
- 1 Department of Perinatology Grosshadern, Ludwig-Maximilian-University, Munich, Germany
| | | | | | | | | |
Collapse
|
37
|
Zhang W, Menke DB, Jiang M, Chen H, Warburton D, Turcatel G, Lu CH, Xu W, Luo Y, Shi W. Spatial-temporal targeting of lung-specific mesenchyme by a Tbx4 enhancer. BMC Biol 2013; 11:111. [PMID: 24225400 PMCID: PMC3907025 DOI: 10.1186/1741-7007-11-111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 12/21/2022] Open
Abstract
Background Reciprocal interactions between lung mesenchymal and epithelial cells play essential roles in lung organogenesis and homeostasis. Although the molecular markers and related animal models that target lung epithelial cells are relatively well studied, molecular markers of lung mesenchymal cells and the genetic tools to target and/or manipulate gene expression in a lung mesenchyme-specific manner are not available, which becomes a critical barrier to the study of lung mesenchymal biology and the related pulmonary diseases. Results We have identified a mouse Tbx4 gene enhancer that contains conserved DNA sequences across many vertebrate species with lung or lung-like gas exchange organ. We then generate a mouse line to express rtTA/LacZ under the control of the Tbx4 lung enhancer, and therefore a Tet-On inducible transgenic system to target lung mesenchymal cells at different developmental stages. By combining a Tbx4-rtTA driven Tet-On inducible Cre expression mouse line with a Cre reporter mouse line, the spatial-temporal patterns of Tbx4 lung enhancer targeted lung mesenchymal cells were defined. Pulmonary endothelial cells and vascular smooth muscle cells were targeted by the Tbx4-rtTA driver line prior to E11.5 and E15.5, respectively, while other subtypes of lung mesenchymal cells including airway smooth muscle cells, fibroblasts, pericytes could be targeted during the entire developmental stage. Conclusions Developmental lung mesenchymal cells can be specifically marked by Tbx4 lung enhancer activity. With our newly created Tbx4 lung enhancer-driven Tet-On inducible system, lung mesenchymal cells can be specifically and differentially targeted in vivo for the first time by controlling the doxycycline induction time window. This novel system provides a unique tool to study lung mesenchymal cell lineages and gene functions in lung mesenchymal development, injury repair, and regeneration in mice.
Collapse
Affiliation(s)
- Wenming Zhang
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 4650 Sunset Blvd,, MS 35, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xu W, Liu C, Kaartinen V, Chen H, Lu CH, Zhang W, Luo Y, Shi W. TACE in perinatal mouse lung epithelial cells promotes lung saccular formation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L953-63. [PMID: 24142516 DOI: 10.1152/ajplung.00189.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tumor necrosis factor-α converting enzyme (TACE) is a cell membrane sheddase, expressed in both developmental lung epithelia and mesenchyme. Global abrogation of TACE results in neonatal lethality and multiple organ developmental abnormalities, including dysplastic lung. To further define the roles of TACE in regulating lung development, lung epithelial and/or mesenchymal specific TACE conditional knockout mice were generated. Blockade of TACE function in developing lung epithelial cells caused reduced saccular formation, decreased cell proliferation, and reduced mid-distal lung epithelial cell differentiation. In contrast, mesenchymal TACE knockout did not have any phenotypic change in developing lung. Simultaneous abrogation of TACE in both lung epithelial and mesenchymal cells did not result in a more severe lung abnormality. Interestingly, these lung-specific TACE conditional knockout mice were not neonatal lethal, and their lung structures were essentially normal after alveolarization. In addition, TACE conditional knockout in developing cardiomyocytes resulted in noncompaction of ventricular myocardium, as seen in TACE conventional knockout mice. However, these mice were also not neonatal lethal. In conclusion, lung epithelial TACE is essential for promoting fetal lung saccular formation, but not postnatal lung alveolarization in mice. Because the developmental abnormality of either lung or heart induced by TACE deficiency does not directly lead to neonatal lethality, the neonatal death of TACE conventional knockout mice is likely a result of synergistic effects of multiple organ abnormalities.
Collapse
Affiliation(s)
- Wei Xu
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Mailstop 35, Los Angeles, CA 90027.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Zhao L, Yee M, O'Reilly MA. Transdifferentiation of alveolar epithelial type II to type I cells is controlled by opposing TGF-β and BMP signaling. Am J Physiol Lung Cell Mol Physiol 2013; 305:L409-18. [PMID: 23831617 DOI: 10.1152/ajplung.00032.2013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alveolar epithelial type II (ATII) cells are essential for maintaining normal lung homeostasis because they produce surfactant, express innate immune proteins, and can function as progenitors for alveolar epithelial type I (ATI) cells. Although autocrine production of transforming growth factor (TGF)-β1 has been shown to promote the transdifferentiation of primary rat ATII to ATI cells in vitro, mechanisms controlling this process still remain poorly defined. Here, evidence is provided that Tgf-β1, -2, -3 mRNA and phosphorylated SMAD2 and SMAD3 significantly increase as primary cultures of mouse ATII cells transdifferentiate to ATI cells. Concomitantly, bone morphogenetic protein (Bmp)-2 and -4 mRNA, and phosphorylated SMAD1/5/8 expression decrease. Exogenously supplied recombinant human TGF-β1 inhibited BMP signaling and enhanced transdifferentiation by promoting the loss of ATII cell-specific gene expression and weakly stimulating ATI cell-specific gene expression. On the other hand, exogenously supplied recombinant human BMP-4 inhibited TGF-β signaling and delayed transdifferentiation by inhibiting the gain in ATI cell-specific gene expression and weakly delaying the loss of ATII cell-specific gene expression. In mouse lung epithelial (MLE15) cells, small-interfering RNA (siRNA) knockdown of TGF-β receptor type-1 enhanced basal expression of ATII genes while siRNA RNA knockdown of BMP receptors type-1a and -1b enhanced basal expression of ATI genes. Together, these results suggest that the rate of ATII cell transdifferentiation is controlled by the opposing actions of BMP and TGF-β signaling that switch during the process of transdifferentiation.
Collapse
Affiliation(s)
- Lan Zhao
- Dept. of Pediatrics, Box 850, The Univ. of Rochester, School of Medicine and Dentistry, 601 Elmwood Ave., Rochester NY 14642.
| | | | | |
Collapse
|
40
|
Kunzmann S, Collins JJ, Kuypers E, Kramer BW. Thrown off balance: the effect of antenatal inflammation on the developing lung and immune system. Am J Obstet Gynecol 2013; 208:429-37. [PMID: 23313727 DOI: 10.1016/j.ajog.2013.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 12/24/2012] [Accepted: 01/04/2013] [Indexed: 12/15/2022]
Abstract
In recent years, translational research with various animal models has been helpful to answer basic questions about the effect of antenatal inflammation on maturation and development of the fetal lung and immune system. The fetal lung and immune systems are very plastic and their development can be conditioned and influenced by both endogenous and/or exogenous factors. Antenatal inflammation can induce pulmonary inflammation, leading to lung injury and remodeling in the fetal lung. Exposure to antenatal inflammation can induce interleukin-1α production, which enhances surfactant protein and lipid synthesis thereby promoting lung maturation. Interleukin-1α is therefore a candidate for the link between lung inflammation and lung maturation, preventing respiratory distress syndrome in preterm infants. Antenatal inflammation can, however, cause structural changes in the fetal lung and affect the expression of growth factors, such as transforming growth factor-beta, connective tissue growth factor, fibroblast growth factor-10, or bone morphogenetic protein-4, which are essential for branching morphogenesis. These alterations cause alveolar and microvascular simplification resembling the histology of bronchopulmonary dysplasia. Antenatal inflammation may also affect neonatal outcome by modulating the responsiveness of the immune system. Lipopolysaccharide-tolerance (endotoxin hyporesponsiveness/immunoparalysis), induced by exposure to inflammation in utero, may prevent fetal lung damage, but increases susceptibility to postnatal infections. Moreover, prenatal exposure to inflammation appears to be a predisposition for the development of adverse neonatal outcomes, like bronchopulmonary dysplasia, if the preterm infant is exposed to a second postnatal hit, such as mechanical ventilation oxygen exposure, infections, or steroids.
Collapse
|
41
|
Warburton D, Shi W, Xu B. TGF-β-Smad3 signaling in emphysema and pulmonary fibrosis: an epigenetic aberration of normal development? Am J Physiol Lung Cell Mol Physiol 2012; 304:L83-5. [PMID: 23161884 DOI: 10.1152/ajplung.00258.2012] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well accepted that TGF-β signaling has critical functional roles in lung development, injury, and repair. We showed previously that null mutation of Smad3, a critical node in the TGF-β pathway, protects mice against fibrosis induced by bleomycin. However, more recently we noticed that abnormal alveolarization also occurs in Smad3-deficient mice and that this is followed by progressive emphysema-like alveolar wall destruction mediated by MMP9. We now know that Smad3 cooperates with c-Jun to synergistically regulate a protein deacetylase SIRT1, by binding to an AP-1 site in the SIRT1 promoter. Consistently, Smad3 knockout lung at postnatal day 28 had reduced SIRT1 expression, which in turn resulted in increased histone acetylation at the binding sites of the transcription factors AP-1, NF-κB, and Pea3 on the MMP9 promoter, as well as increased acetylation of NF-κB. Thus, upon TGF-β activation, phosphorylated Smad3 can be translocated into the nucleus with Smad4, whereat Smad3 in turn collaborates with c-Jun to activate SIRT1 transcription. SIRT1 can deacetylate NF-κB at lysine 30, as well as histones adjacent to the transcription factor AP-1, NF-κB, and Pea3 binding sites of the MMP9 promoter, thereby suppressing MMP9 transcription, hence fixing MMP9 in the OFF mode. Conversely, when Smad3 is missing, this regulatory pathway is inactivated so that MMP9 is epigenetically turned ON. We postulate that these developmental epigenetic mechanisms by which Smad3 regulates MMP9 transcription cell autonomously may be important in modulating both emphysema and pulmonary fibrosis and that this could explain why both pathologies can appear within the same lung specimen.
Collapse
Affiliation(s)
- David Warburton
- Saban Research Institute, Children's Hospital Los Angeles, 4650 Sunset Blvd. MS35, Los Angeles, CA 90027, USA.
| | | | | |
Collapse
|
42
|
Maina JN. Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 2012; 9:16. [PMID: 22871018 PMCID: PMC3502106 DOI: 10.1186/1742-9994-9-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023] Open
Abstract
Gas exchangers fundamentally form by branching morphogenesis (BM), a mechanistically profoundly complex process which derives from coherent expression and regulation of multiple genes that direct cell-to-cell interactions, differentiation, and movements by signaling of various molecular morphogenetic cues at specific times and particular places in the developing organ. Coordinated expression of growth-instructing factors determines sizes and sites where bifurcation occurs, by how much a part elongates before it divides, and the angle at which branching occurs. BM is essentially induced by dualities of factors where through feedback- or feed forward loops agonists/antagonists are activated or repressed. The intricate transactions between the development orchestrating molecular factors determine the ultimate phenotype. From the primeval time when the transformation of unicellular organisms to multicellular ones occurred by systematic accretion of cells, BM has been perpetually conserved. Canonical signalling, transcriptional pathways, and other instructive molecular factors are commonly employed within and across species, tissues, and stages of development. While much still remain to be elucidated and some of what has been reported corroborated and reconciled with rest of existing data, notable progress has in recent times been made in understanding the mechanism of BM. By identifying and characterizing the morphogenetic drivers, and markers and their regulatory dynamics, the elemental underpinnings of BM have been more precisely explained. Broadening these insights will allow more effective diagnostic and therapeutic interventions of developmental abnormalities and pathologies in pre- and postnatal lungs. Conservation of the molecular factors which are involved in the development of the lung (and other branched organs) is a classic example of nature's astuteness in economically utilizing finite resources. Once purposefully formed, well-tested and tried ways and means are adopted, preserved, and widely used to engineer the most optimal phenotypes. The material and time costs of developing utterly new instruments and routines with every drastic biological change (e.g. adaptation and speciation) are circumvented. This should assure the best possible structures and therefore functions, ensuring survival and evolutionary success.
Collapse
Affiliation(s)
- John N Maina
- Department of Zoology, University of Johannesburg, Auckland Park 2006, P,O, Box 524, Johannesburg, South Africa.
| |
Collapse
|
43
|
Capelari DN, Sánchez SI, Ortega HH, Ciuffo GM, Fuentes LB. Effects of maternal captopril treatment during late pregnancy on neonatal lung development in rats. ACTA ACUST UNITED AC 2012; 177:97-106. [DOI: 10.1016/j.regpep.2012.05.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 03/10/2012] [Accepted: 05/05/2012] [Indexed: 11/28/2022]
|
44
|
Velten M, Britt RD, Heyob KM, Welty SE, Eiberger B, Tipple TE, Rogers LK. Prenatal inflammation exacerbates hyperoxia-induced functional and structural changes in adult mice. Am J Physiol Regul Integr Comp Physiol 2012; 303:R279-90. [PMID: 22718803 DOI: 10.1152/ajpregu.00029.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Maternally derived inflammatory mediators, such as IL-6 and IL-8, contribute to preterm delivery, low birth weight, and respiratory insufficiency, which are routinely treated with oxygen. Premature infants are at risk for developing adult-onset cardiac, metabolic, and pulmonary diseases. Long-term pulmonary consequences of perinatal inflammation are unclear. We tested the hypothesis that a hostile perinatal environment induces profibrotic pathways resulting in pulmonary fibrosis, including persistently altered lung structure and function. Pregnant C3H/HeN mice injected with LPS or saline on embryonic day 16. Offspring were placed in room air (RA) or 85% O(2) for 14 days and then returned to RA. Pulmonary function tests, microCTs, molecular and histological analyses were performed between embryonic day 18 and 8 wk. Alveolarization was most compromised in LPS/O(2)-exposed offspring. Collagen staining and protein levels were increased, and static compliance was decreased only in LPS/O(2)-exposed mice. Three-dimensional microCT reconstruction and quantification revealed increased tissue densities only in LPS/O(2) mice. Diffuse interstitial fibrosis was associated with decreased micro-RNA-29, increased transforming growth factor-β expression, and phosphorylation of Smad2 during embryonic or early fetal lung development. Systemic maternal LPS administration in combination with neonatal hyperoxic exposure induces activation of profibrotic pathways, impaired alveolarization, and diminished lung function that are associated with prenatal and postnatal suppression of miR-29 expression.
Collapse
Affiliation(s)
- Markus Velten
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Warburton D. Developmental responses to lung injury: repair or fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:S2. [PMID: 23259863 PMCID: PMC3368777 DOI: 10.1186/1755-1536-5-s1-s2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lung development is a complex and finely balanced process. Yet the lung has a relatively limited repertoire of responses to injury, which, depending on severity of the injury and developmental stage and susceptibility of the lung, culminate in stopping development, followed by more or less successful repair or alternatively in fibrosis. Unlike fetal skin, which heals scarlessly early in gestation, but scars later in gestation and increasingly so postnatally, the damaged fetal lung does heal, but not very well. Thus lung injury appears to entrain a default developmental/repair mechanism involving increased amounts of activated TGF beta ligand signaling. When this occurs prior to or very early in the process of alveolarization, excessive TGF beta ligand inhibits further alveolarization, a disease process phenotype that has been termed Bronchopulmonary Dysplasia in extreme human prematurity. However, once alveolarization is sufficiently advanced as in mid to late gestation fetal monkey, late gestation human or adult mouse, rat or human lung, excessive TGF beta signaling results in pulmonary fibrosis. Recently we have further shown that FGF10 signaling, a process that is necessary for distal lung morphogenesis, can also antagonize bleomycin-induced lung fibrosis in adult mice by a mechanism involving inhibition of active TGF beta ligand bioavailability. We therefore suggest that lung development, repair and fibrosis have many fundamental mechanisms in common, that potentially can be manipulated using cells or soluble factors that optimize the alveolar milieu to prevent and possibly even to reverse lung fibrosis.
Collapse
Affiliation(s)
- David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine and Ostrow School of Dentistry, University of Southern California, 4650 Sunset Boulevard, Los Angeles, California, 90027, USA
| |
Collapse
|
46
|
Ahlfeld SK, Conway SJ. Aberrant signaling pathways of the lung mesenchyme and their contributions to the pathogenesis of bronchopulmonary dysplasia. ACTA ACUST UNITED AC 2011; 94:3-15. [PMID: 22125178 DOI: 10.1002/bdra.22869] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 01/12/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease in infants born extremely preterm, typically before 28 weeks' gestation, characterized by a prolonged need for supplemental oxygen or positive pressure ventilation beyond 36 weeks postmenstrual age. The limited number of autopsy samples available from infants with BPD in the postsurfactant era has revealed a reduced capacity for gas exchange resulting from simplification of the distal lung structure with fewer, larger alveoli because of a failure of normal lung alveolar septation and pulmonary microvascular development. The mechanisms responsible for alveolar simplification in BPD have not been fully elucidated, but mounting evidence suggests that aberrations in the cross-talk between growth factors of the lung mesenchyme and distal airspace epithelium have a key role. Animal models that recapitulate the human condition have expanded our knowledge of the pathology of BPD and have identified candidate matrix components and growth factors in the developing lung that are disrupted by conditions that predispose infants to BPD and interfere with normal vascular and alveolar morphogenesis. This review focuses on the deviations from normal lung development that define the pathophysiology of BPD and summarizes the various candidate mesenchyme-associated proteins and growth factors that have been identified as being disrupted in animal models of BPD. Finally, future areas of research to identify novel targets affected in arrested lung development and recovery are discussed.
Collapse
Affiliation(s)
- Shawn K Ahlfeld
- Developmental Biology and Neonatal Medicine Program, H.B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana.
| | | |
Collapse
|
47
|
Degryse AL, Tanjore H, Xu XC, Polosukhin VV, Jones BR, Boomershine CS, Ortiz C, Sherrill TP, McMahon FB, Gleaves LA, Blackwell TS, Lawson WE. TGFβ signaling in lung epithelium regulates bleomycin-induced alveolar injury and fibroblast recruitment. Am J Physiol Lung Cell Mol Physiol 2011; 300:L887-97. [PMID: 21441353 PMCID: PMC3119129 DOI: 10.1152/ajplung.00397.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/22/2011] [Indexed: 12/13/2022] Open
Abstract
The response of alveolar epithelial cells (AECs) to lung injury plays a central role in the pathogenesis of pulmonary fibrosis, but the mechanisms by which AECs regulate fibrotic processes are not well defined. We aimed to elucidate how transforming growth factor-β (TGFβ) signaling in lung epithelium impacts lung fibrosis in the intratracheal bleomycin model. Mice with selective deficiency of TGFβ receptor 2 (TGFβR2) in lung epithelium were generated and crossed to cell fate reporter mice that express β-galactosidase (β-gal) in cells of lung epithelial lineage. Mice were given intratracheal bleomycin (0.08 U), and the following parameters were assessed: AEC death by terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling assay, inflammation by total and differential cell counts from bronchoalveolar lavage, fibrosis by scoring of trichrome-stained lung sections, and total lung collagen content. Mice with lung epithelial deficiency of TGFβR2 had improved AEC survival, despite greater lung inflammation, after bleomycin administration. At 3 wk after bleomycin administration, mice with epithelial TGFβR2 deficiency showed a significantly attenuated fibrotic response in the lungs, as determined by semiquantitatve scoring and total collagen content. The reduction in lung fibrosis in these mice was associated with a marked decrease in the lung fibroblast population, both total lung fibroblasts and epithelial-to-mesenchymal transition-derived (S100A4(+)/β-gal(+)) fibroblasts. Attenuation of TGFβ signaling in lung epithelium provides protection from bleomycin-induced fibrosis, indicating a critical role for the epithelium in transducing the profibrotic effects of this cytokine.
Collapse
Affiliation(s)
- Amber L Degryse
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Coordinate activation of inflammatory gene networks, alveolar destruction and neonatal death in AKNA deficient mice. Cell Res 2011; 21:1564-77. [PMID: 21606955 DOI: 10.1038/cr.2011.84] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gene expression can be regulated by chromatin modifiers, transcription factors and proteins that modulate DNA architecture. Among the latter, AT-hook transcription factors have emerged as multifaceted regulators that can activate or repress broad A/T-rich gene networks. Thus, alterations of AT-hook genes could affect the transcription of multiple genes causing global cell dysfunction. Here we report that targeted deletions of mouse AKNA, a hypothetical AT-hook-like transcription factor, sensitize mice to pathogen-induced inflammation and cause sudden neonatal death. Compared with wild-type littermates, AKNA KO mice appeared weak, failed to thrive and most died by postnatal day 10. Systemic inflammation, predominantly in the lungs, was accompanied by enhanced leukocyte infiltration and alveolar destruction. Cytologic, immunohistochemical and molecular analyses revealed CD11b(+)Gr1(+) neutrophils as major tissue infiltrators, neutrophilic granule protein, cathelin-related antimicrobial peptide and S100A8/9 as neutrophil-specific chemoattracting factors, interleukin-1β and interferon-γ as proinflammatory mediators, and matrix metalloprotease 9 as a plausible proteolytic trigger of alveolar damage. AKNA KO bone marrow transplants in wild-type recipients reproduced the severe pathogen-induced reactions and confirmed the involvement of neutrophils in acute inflammation. Moreover, promoter/reporter experiments showed that AKNA could act as a gene repressor. Our results support the concept of coordinated pathway-specific gene regulation functions modulating the intensity of inflammatory responses, reveal neutrophils as prominent mediators of acute inflammation and suggest mechanisms underlying the triggering of acute and potentially fatal immune reactions.
Collapse
|
49
|
Jonigk D, Merk M, Hussein K, Maegel L, Theophile K, Muth M, Lehmann U, Bockmeyer CL, Mengel M, Gottlieb J, Welte T, Haverich A, Golpon H, Kreipe H, Laenger F. Obliterative airway remodeling: molecular evidence for shared pathways in transplanted and native lungs. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:599-608. [PMID: 21281792 DOI: 10.1016/j.ajpath.2010.10.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/12/2010] [Accepted: 10/21/2010] [Indexed: 02/06/2023]
Abstract
Obliteration of the small airways is a largely unresolved challenge in pulmonary medicine. It represents either the irreversible cause of functional impairment or a morphologic disorder of limited importance in a multitude of diseases. Bronchiolitis obliterans is a key complication of lung transplantation. No predictive markers for the onset of obliterative remodeling are currently available. To further elucidate the molecular mechanisms of airway remodeling, compartment-specific expression patterns were analyzed in patients. For this purpose, remodeled and nonremodeled bronchioli were isolated from transplanted and nontransplanted lung explants using laser-assisted microdissection (n = 24). mRNA expression of 45 fibrosis-associated genes was measured using quantitative real-time RT-PCR. For 20 genes, protein expression was also analyzed by immunohistochemistry. Infiltrating cells were characterized at conventional histology and immunohistochemistry. Obliterative remodeling of the small airways in transplanted and nontransplanted lungs shared similar grades of chronic inflammation and pivotal fibrotic pathways such as transforming growth factor β signaling and increased collagen expression. Bone morphogenetic protein and thrombospondin signaling, and also matrix metalloproteinases and tissue inhibitor of metalloproteinases, were primarily up-regulated in obliterative airway remodeling in nontransplanted lungs. In transplanted lungs, clinical remodeled bone morphogenetic protein but nonremodeled bronchioli were characterized by a concordant up-regulation of matrix metalloproteinase-9, RANTES, and tissue inhibitor of metalloproteinase-1. These distinct expression patterns warrant further investigation as potential markers of impending airway remodeling, especially for prospective longitudinal molecular profiling.
Collapse
Affiliation(s)
- Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xu B, Chen C, Chen H, Zheng SG, Bringas P, Xu M, Zhou X, Chen D, Umans L, Zwijsen A, Shi W. Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate fetal lung development. Development 2011; 138:925-35. [PMID: 21270055 DOI: 10.1242/dev.062687] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone morphogenetic protein 4 (Bmp4) is essential for lung development. To define the intracellular signaling mechanisms by which Bmp4 regulates lung development, BMP-specific Smad1 or Smad5 was selectively knocked out in fetal mouse lung epithelial cells. Abrogation of lung epithelial-specific Smad1, but not Smad5, resulted in retardation of lung branching morphogenesis and reduced sacculation, accompanied by altered distal lung epithelial cell proliferation and differentiation and, consequently, severe neonatal respiratory failure. By combining cDNA microarray with ChIP-chip analyses, Wnt inhibitory factor 1 (Wif1) was identified as a novel target gene of Smad1 in the developing mouse lung epithelial cells. Loss of Smad1 transcriptional activation of Wif1 was associated with reduced Wif1 expression and increased Wnt/β-catenin signaling activity in lung epithelia, resulting in specific fetal lung abnormalities. This suggests a novel regulatory loop of Bmp4-Smad1-Wif1-Wnt/β-catenin in coordinating BMP and Wnt pathways to control fetal lung development.
Collapse
Affiliation(s)
- Bing Xu
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|