1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Zhang S, Zhou M, Shao C, Zhao Y, Liu M, Ni L, Bao Z, Zhang Q, Zhang T, Luo Q, Qu J, Xu Z, Zuo W. Autologous P63+ lung progenitor cell transplantation in idiopathic pulmonary fibrosis: a phase 1 clinical trial. eLife 2025; 13:RP102451. [PMID: 40036154 PMCID: PMC11879106 DOI: 10.7554/elife.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Background In idiopathic pulmonary fibrosis (IPF) patients, alveolar architectures are lost and gas transfer function would decline, which cannot be rescued by conventional anti-fibrotic therapy. P63+ lung basal progenitor cells are reported to have potential to repair damaged lung epithelium in animal models, which need further investigation in clinical trials. Methods We cloned and expanded P63+ progenitor cells from IPF patients to manufacture cell product REGEND001, which were further characterized by morphology and single-cell transcriptomic analysis. Subsequently, an open-label, dose-escalation autologous progenitor cell transplantation clinical trial was conducted. We treated 12 patients with ascending doses of cells: 0.6x, 1x, 2x and 3.3x106 cells/kg bodyweight. The primary outcome was the incidence and severity of cell therapy-related adverse events (AEs); secondary outcome included other safety and efficacy evaluations. Results P63+ basal progenitor cell was safe and tolerated at all doses, with no dose-limiting toxicity or cell therapy-related severe adverse events observed. Patients in three higher dose groups showed significant improvement of lung gas transfer function as well as exercise ability. Resolution of honeycomb lesion was observed in patients of higher dose groups. Conclusions REGEND001 has high safety profile and meanwhile encourages further efficacy exploration in IPF patients. Funding National High Level Hospital Clinical Research Funding (2022-PUMCH-B-108), National Key Research and Development Plan (2024YFA1108900, 2024YFA1108500), Jiangsu Province Science and Technology Special Project Funding (BE2023727), National Biopharmaceutical Technology Research Project Funding (NCTIB2023XB01011), Non-profit Central Research Institute Fund of Chinese Academy of Medical Science (2020-PT320-005), and Regend Therapeutics. Clinical trial number Chinese clinical trial registry: CTR20210349.
Collapse
Affiliation(s)
- Shiyu Zhang
- Shanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Tongji Stem Cell Center, Tongji UniversityShanghaiChina
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chi Shao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Yu Zhao
- Shanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Tongji Stem Cell Center, Tongji UniversityShanghaiChina
| | - Mingzhe Liu
- Shanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Tongji Stem Cell Center, Tongji UniversityShanghaiChina
| | - Lei Ni
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhiyao Bao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qiurui Zhang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ting Zhang
- Super Organ R&D Center, Regend TherapeuticsShanghaiChina
| | - Qun Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zuojun Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Wei Zuo
- Shanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Tongji Stem Cell Center, Tongji UniversityShanghaiChina
- Super Organ R&D Center, Regend TherapeuticsShanghaiChina
- Kiangnan Stem Cell InstituteZhejiangChina
| |
Collapse
|
3
|
Vannan A, Lyu R, Williams AL, Negretti NM, Mee ED, Hirsh J, Hirsh S, Hadad N, Nichols DS, Calvi CL, Taylor CJ, Polosukhin VV, Serezani APM, McCall AS, Gokey JJ, Shim H, Ware LB, Bacchetta MJ, Shaver CM, Blackwell TS, Walia R, Sucre JMS, Kropski JA, McCarthy DJ, Banovich NE. Spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. Nat Genet 2025; 57:647-658. [PMID: 39901013 PMCID: PMC11906353 DOI: 10.1038/s41588-025-02080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Large-scale changes in the structure and cellular makeup of the distal lung are a hallmark of pulmonary fibrosis (PF), but the spatial contexts that contribute to disease pathogenesis have remained uncertain. Using image-based spatial transcriptomics, we analyzed the gene expression of 1.6 million cells from 35 unique lungs. Through complementary cell-based and innovative cell-agnostic analyses, we characterized the localization of PF-emergent cell types, established the cellular and molecular basis of classical PF histopathologic features and identified a diversity of distinct molecularly defined spatial niches in control and PF lungs. Using machine learning and trajectory analysis to segment and rank airspaces on a gradient of remodeling severity, we identified compositional and molecular changes associated with progressive distal lung pathology, beginning with alveolar epithelial dysregulation and culminating with changes in macrophage polarization. Together, these results provide a unique, spatially resolved view of PF and establish methods that could be applied to other spatial transcriptomic studies.
Collapse
Grants
- R01HL145372 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U01HL175444 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL158906 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL126176 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL160551 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01HL092870 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HG011886 U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
- W81XWH1910415 United States Department of Defense | United States Army | Army Medical Command | Congressionally Directed Medical Research Programs (CDMRP)
- GNT1195595 Department of Health | National Health and Medical Research Council (NHMRC)
- GNT1162829 Department of Health | National Health and Medical Research Council (NHMRC)
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
Collapse
Affiliation(s)
- Annika Vannan
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ruqian Lyu
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Arianna L Williams
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicholas M Negretti
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan D Mee
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Joseph Hirsh
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Hirsh
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niran Hadad
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - David S Nichols
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carla L Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chase J Taylor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vasiliy V Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana P M Serezani
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Scott McCall
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason J Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heejung Shim
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew J Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rajat Walia
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Jennifer M S Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Davis J McCarthy
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas E Banovich
- Division of Bioinnovation and Genome Sciences, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
4
|
Melo-Narvaez MC, Gölitz F, Jain E, Gote-Schniering J, Stoleriu MG, Bertrams W, Schmeck B, Yildirim AÖ, Rauen U, Wille T, Lehmann M. Cold storage of human precision-cut lung slices in TiProtec preserves cellular composition and transcriptional responses and enables on-demand mechanistic studies. Respir Res 2025; 26:57. [PMID: 39962456 PMCID: PMC11834602 DOI: 10.1186/s12931-025-03132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Human precision-cut lung slices (hPCLS) are a unique platform for functional, mechanistic, and drug discovery studies in the field of respiratory research. However, tissue availability, generation, and cultivation time represent important challenges for their usage. Therefore, the present study evaluated the efficacy of a specifically designed tissue preservation solution, TiProtec, complete or in absence (-) of iron chelators, for long-term cold storage of hPCLS. METHODS hPCLS were generated from peritumor control tissues and stored in DMEM/F-12, TiProtec, or TiProtec (-) for up to 28 days. Viability, metabolic activity, and tissue structure were determined. Moreover, bulk-RNA sequencing was used to study transcriptional changes, regulated signaling pathways, and cellular composition after cold storage. Induction of cold storage-associated senescence was determined by transcriptomics and immunofluorescence (IF). Finally, cold-stored hPCLS were exposed to a fibrotic cocktail and early fibrotic changes were assessed by RT-qPCR and IF. RESULTS Here, we found that TiProtec preserves the viability, metabolic activity, transcriptional profile, as well as cellular composition of hPCLS for up to 14 days. Cold storage did not significantly induce cellular senescence in hPCLS. Moreover, TiProtec downregulated pathways associated with cell death, inflammation, and hypoxia while activating pathways protective against oxidative stress. Cold-stored hPCLS remained responsive to fibrotic stimuli and upregulated extracellular matrix-related genes such as fibronectin and collagen 1 as well as alpha-smooth muscle actin, a marker for myofibroblasts. CONCLUSIONS Optimized long-term cold storage of hPCLS preserves their viability, metabolic activity, transcriptional profile, and cellular composition for up to 14 days, specifically in TiProtec. Finally, our study demonstrated that cold-stored hPCLS can be used for on-demand mechanistic studies relevant for respiratory research.
Collapse
Affiliation(s)
- M Camila Melo-Narvaez
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Fee Gölitz
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Eshita Jain
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Janine Gote-Schniering
- Department of Rheumatology and Immunology, Department of Pulmonary Medicine, Allergology and Clinical Immunology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Lung Precision Medicine (LPM), Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Mircea Gabriel Stoleriu
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Division for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Lung Clinic Munich-Gauting, Gauting, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry - Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Marburg, Germany
- Member of the German Center of Infectious Disease Research, Marburg, Germany
- Institute for Lung Health (ILH), German Center for Lung Research (DZL), Giessen, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology (IEP), Ludwig-Maximilians University of Munich (LMU), Munich, Germany
| | - Ursula Rauen
- Institute of Physiological Chemistry, University Hospital Essen, Essen, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.
- Department of CBRN Medical Defense, Bundeswehr Medical Academy, Munich, Germany.
| | - Mareike Lehmann
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz Center Munich, German Center for Lung Research (DZL), Munich, Germany.
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany.
- Institute for Lung Health (ILH), German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
5
|
Chilosi M, Ravaglia C, Doglioni C, Piciucchi S, Stefanizzi L, Poletti V. The pathogenesis of idiopathic pulmonary fibrosis: from "folies à deux" to "Culprit cell Trio". Pathologica 2025; 117:3-9. [PMID: 40205925 PMCID: PMC11983081 DOI: 10.32074/1591-951x-1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025] Open
Affiliation(s)
- Marco Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Claudia Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute. Milan, Italy
| | | | - Lavinia Stefanizzi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Venerino Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Bammert M, Ansari M, Haag L, Ahmad Z, Schröder V, Birch J, Santacruz D, Rust W, Viollet C, Strobel B, Dick A, Gantner F, Schlüter H, Ramirez F, Lizé M, Thomas MJ, Le HQ. JUNB O-GlcNAcylation-Mediated Promoter Accessibility of Metabolic Genes Modulates Distinct Epithelial Lineage in Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406751. [PMID: 39676507 PMCID: PMC11791990 DOI: 10.1002/advs.202406751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with substantial unmet medical needs. While aberrant epithelial remodeling is a key factor in IPF progression, the molecular mechanisms behind this process remain elusive. Harnessing a 3D patient-derived organoid model and multi-omics approach, the first inventory of the connection between metabolic alteration, chromatin accessibility, and transcriptional regulation in IPF aberrant epithelial remodeling is provided. This remodeling is characterized by an increase in chromatin accessibility, particularly at JUNB motif-enriched promoter regions proximal to transcription start sites of metabolic and pro-fibrotic genes. Mechanistically, JUNB undergoes O-linked β-N-acetylglucosamine modification (O-GlcNAcylation), a critical step in modulating pro-fibrotic responses to chronic injury. This modification is pivotal in fostering the emergence of aberrant epithelial basal cells in the alveolar niche, a proposed driver of IPF pathology. Specific deletion of O-GlcNAcylation sites on JUNB attenuates the metaplastic differentiation of basal cells, thereby aiding in the restoration of the alveolar lineage. Together, the findings reveal a novel link between metabolic dysregulation and cell fate regulation at the chromatin level in fibrosis, mediated by the O-GlcNAc-JUNB axis, suggesting avenues for the development of new therapeutic strategies in IPF.
Collapse
Affiliation(s)
- Marie‐Therese Bammert
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
- Faculty of BiologyUniversity of Konstanz78457KonstanzGermany
| | - Meshal Ansari
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Leoni Haag
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Zuhdi Ahmad
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Victoria Schröder
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Joseph Birch
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Diana Santacruz
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Werner Rust
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Coralie Viollet
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Benjamin Strobel
- Drug Discovery SciencesBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Alec Dick
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Florian Gantner
- Faculty of BiologyUniversity of Konstanz78457KonstanzGermany
- C.H. Boehringer Sohn AG and Co. KG55218IngelheimGermany
| | - Holger Schlüter
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Fidel Ramirez
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Muriel Lizé
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Matthew J. Thomas
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
- University of BathBathBA27JXUK
| | - Huy Q. Le
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| |
Collapse
|
7
|
Liu X, Wang X, Wu X, Zhan S, Yang Y, Jiang C. Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy. Stem Cell Res Ther 2025; 16:29. [PMID: 39876014 PMCID: PMC11776311 DOI: 10.1186/s13287-025-04152-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions. Recently, airway basal stem cells (BSCs) have emerged as a novel therapeutic strategy in pulmonary regenerative medicine because of their substantial potential in repairing lung structure and function. Airway BSCs, which are strongly capable of self-renewal and multi-lineage differentiation, can effectively attenuate airway epithelial injury caused by environmental factors or genetic disorders, such as cystic fibrosis. This review comprehensively explores the efficacy and action mechanisms of airway BSCs across various lung disease models and describes potential strategies for inducing pluripotent stem cells to differentiate into pulmonary epithelial lineages on the basis of the original research findings. Additionally, the review also discusses the technical and biological challenges in translating these research findings into clinical applications and offers prospective views on future research directions, therefore broadening the landscape of pulmonary regenerative medicine.
Collapse
Affiliation(s)
- Xingren Liu
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Wang
- Department of Emergency, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xue Wu
- Department of Pulmonary and Critical Care Medicine, Bazhong Enyang District People's Hospital, Bazhong, China
| | - Shuhua Zhan
- Department of Pulmonary and Critical Care Medicine, Aba Tibetan and Qiang Autonomous Prefecture People's Hospital, Maerkang, China
| | - Yan Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Caiyu Jiang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Hu Y, Hu Q, Ansari M, Riemondy K, Pineda R, Sembrat J, Leme AS, Ngo K, Morgenthaler O, Ha K, Gao B, Janssen WJ, Basil MC, Kliment CR, Morrisey E, Lehmann M, Evans CM, Schiller HB, Königshoff M. Airway-derived emphysema-specific alveolar type II cells exhibit impaired regenerative potential in COPD. Eur Respir J 2024; 64:2302071. [PMID: 39147413 PMCID: PMC11618816 DOI: 10.1183/13993003.02071-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Emphysema, the progressive destruction of gas exchange surfaces in the lungs, is a hallmark of COPD that is presently incurable. This therapeutic gap is largely due to a poor understanding of potential drivers of impaired tissue regeneration, such as abnormal lung epithelial progenitor cells, including alveolar type II (ATII) and airway club cells. We discovered an emphysema-specific subpopulation of ATII cells located in enlarged distal alveolar sacs, termed asATII cells. Single-cell RNA sequencing and in situ localisation revealed that asATII cells co-express the alveolar marker surfactant protein C and the club cell marker secretaglobin-3A2 (SCGB3A2). A similar ATII subpopulation derived from club cells was also identified in mouse COPD models using lineage labelling. Human and mouse ATII subpopulations formed 80-90% fewer alveolar organoids than healthy controls, indicating reduced progenitor function. Targeting asATII cells or their progenitor club cells could reveal novel COPD treatment strategies.
Collapse
Affiliation(s)
- Yan Hu
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Qianjiang Hu
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ricardo Pineda
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Sembrat
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adriana S Leme
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenny Ngo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Olivia Morgenthaler
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kellie Ha
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Bifeng Gao
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Corrine R Kliment
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC)/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Co-senior authors
| | - Herbert B Schiller
- Research Unit Precision Regenerative Medicine (PRM), Helmholtz Munich, Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), Munich, Germany
- Co-senior authors
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Co-senior authors
| |
Collapse
|
9
|
Nguyen ND, Rosas L, Khaliullin T, Jiang P, Hasanaj E, Ovando-Ricardez JA, Bueno M, Rahman I, Pryhuber GS, Li D, Ma Q, Finkel T, Königshoff M, Eickelberg O, Rojas M, Mora AL, Lugo-Martinez J, Bar-Joseph Z. scDOT: optimal transport for mapping senescent cells in spatial transcriptomics. Genome Biol 2024; 25:288. [PMID: 39516853 PMCID: PMC11546560 DOI: 10.1186/s13059-024-03426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The low resolution of spatial transcriptomics data necessitates additional information for optimal use. We developed scDOT, which combines spatial transcriptomics and single cell RNA sequencing to improve the ability to reconstruct single cell resolved spatial maps and identify senescent cells. scDOT integrates optimal transport and expression deconvolution to learn non-linear couplings between cells and spots and to infer cell placements. Application of scDOT to lung spatial transcriptomics data improves on prior methods and allows the identification of the spatial organization of senescent cells, their neighboring cells and novel genes involved in cell-cell interactions that may be driving senescence.
Collapse
Affiliation(s)
- Nam D Nguyen
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Lorena Rosas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Timur Khaliullin
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Peiran Jiang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Euxhen Hasanaj
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jose A Ovando-Ricardez
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Marta Bueno
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Ana L Mora
- Dorothy M. Davis Heart and Lung Research Institute, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, the Ohio State University, Columbus, OH, USA
| | - Jose Lugo-Martinez
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
- Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Sui J, Xiao H, Mbaekwe U, Ting NC, Murday K, Hu Q, Gregory AD, Kapellos TS, Yildirim AÖ, Königshoff M, Zhang Y, Sciurba F, Das J, Kliment CR. Interpretable machine learning uncovers epithelial transcriptional rewiring and a role for Gelsolin in COPD. JCI Insight 2024; 9:e180239. [PMID: 39352744 PMCID: PMC11601586 DOI: 10.1172/jci.insight.180239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/23/2024] [Indexed: 11/09/2024] Open
Abstract
Transcriptomic analyses have advanced the understanding of complex disease pathophysiology including chronic obstructive pulmonary disease (COPD). However, identifying relevant biologic causative factors has been limited by the integration of high dimensionality data. COPD is characterized by lung destruction and inflammation, with smoke exposure being a major risk factor. To define previously unknown biological mechanisms in COPD, we utilized unsupervised and supervised interpretable machine learning analyses of single-cell RNA-Seq data from the mouse smoke-exposure model to identify significant latent factors (context-specific coexpression modules) impacting pathophysiology. The machine learning transcriptomic signatures coupled to protein networks uncovered a reduction in network complexity and new biological alterations in actin-associated gelsolin (GSN), which was transcriptionally linked to disease state. GSN was altered in airway epithelial cells in the mouse model and in human COPD. GSN was increased in plasma from patients with COPD, and smoke exposure resulted in enhanced GSN release from airway cells from patients with COPD. This method provides insights into rewiring of transcriptional networks that are associated with COPD pathogenesis and provides a translational analytical platform for other diseases.
Collapse
Affiliation(s)
- Justin Sui
- Division of Pulmonary, Allergy and Critical Care Medicine
- Department of Cellular and Molecular Pathology, and
| | - Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ugonna Mbaekwe
- Division of Pulmonary, Allergy and Critical Care Medicine
- Department of Cellular and Molecular Pathology, and
| | - Nai-Chun Ting
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Kaley Murday
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Qianjiang Hu
- Division of Pulmonary, Allergy and Critical Care Medicine
| | | | - Theodore S. Kapellos
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig Maximilians University (LMU) of Munich, Munich, Germany
| | - Ali Öender Yildirim
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center (CPC), Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig Maximilians University (LMU) of Munich, Munich, Germany
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Corrine R. Kliment
- Division of Pulmonary, Allergy and Critical Care Medicine
- Department of Cellular and Molecular Pathology, and
| |
Collapse
|
11
|
Wang J, Li K, Hao D, Li X, Zhu Y, Yu H, Chen H. Pulmonary fibrosis: pathogenesis and therapeutic strategies. MedComm (Beijing) 2024; 5:e744. [PMID: 39314887 PMCID: PMC11417429 DOI: 10.1002/mco2.744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic and progressive lung disease characterized by extensive alterations of cellular fate and function and excessive accumulation of extracellular matrix, leading to lung tissue scarring and impaired respiratory function. Although our understanding of its pathogenesis has increased, effective treatments remain scarce, and fibrotic progression is a major cause of mortality. Recent research has identified various etiological factors, including genetic predispositions, environmental exposures, and lifestyle factors, which contribute to the onset and progression of PF. Nonetheless, the precise mechanisms by which these factors interact to drive fibrosis are not yet fully elucidated. This review thoroughly examines the diverse etiological factors, cellular and molecular mechanisms, and key signaling pathways involved in PF, such as TGF-β, WNT/β-catenin, and PI3K/Akt/mTOR. It also discusses current therapeutic strategies, including antifibrotic agents like pirfenidone and nintedanib, and explores emerging treatments targeting fibrosis and cellular senescence. Emphasizing the need for omni-target approaches to overcome the limitations of current therapies, this review integrates recent findings to enhance our understanding of PF and contribute to the development of more effective prevention and management strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Kuan Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - De Hao
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
| | - Xue Li
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Yu Zhu
- Department of Clinical LaboratoryNankai University Affiliated Third Central HospitalTianjinChina
- Department of Clinical LaboratoryThe Third Central Hospital of TianjinTianjin Key Laboratory of Extracorporeal Life Support for Critical DiseasesArtificial Cell Engineering Technology Research Center of TianjinTianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Hongzhi Yu
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Respiratory MedicineHaihe HospitalTianjin UniversityTianjinChina
- Department of TuberculosisHaihe HospitalTianjin UniversityTianjinChina
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese MedicineTianjin Institute of Respiratory DiseasesTianjinChina
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe HospitalTianjin UniversityTianjinChina
| |
Collapse
|
12
|
Hiller BE, Mizgerd JP. IFN-γ and YAP lead epithelial cells astray after severe respiratory infection. J Clin Invest 2024; 134:e185072. [PMID: 39352386 PMCID: PMC11444161 DOI: 10.1172/jci185072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Ineffective recovery from pneumonia can lead to interstitial lung disease characterized by aberrant epithelial cells in fibrotic regions. In this issue of the JCI, Lin et al. define molecular pathways leading to the development and persistence of keratin 5+ (Krt5+) epithelial cells in the alveolar parenchyma when mice struggle to recover from influenza infection. The receptor for IFN-γ on lung epithelium was essential for the formation of aberrant Krt5+ cells and fibrotic lung disease. The transcription factor Yes-associated protein 1 (YAP) was necessary for persistence of these Krt5+ cells, and IFN-γ activated YAP in lung epithelial cells via JAK, focal adhesion kinase (FAK), and Src kinases. These findings establish a targetable pathway underlying some of the pulmonary postacute sequelae of pneumonia.
Collapse
Affiliation(s)
| | - Joseph P. Mizgerd
- Pulmonary Center
- Department of Medicine
- Department of Virology, Immunology, and Microbiology, and
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Burgy O, Königshoff M. Teatime: epigallocatechin gallate targets fibroblast-epithelial cell crosstalk to combat lung fibrosis. J Clin Invest 2024; 134:e183970. [PMID: 39286980 PMCID: PMC11405033 DOI: 10.1172/jci183970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Epigallocatechin gallate (EGCG) is a polyphenol plant metabolite abundant in tea that has demonstrated antifibrotic properties in the lung. In this issue of the JCI, Cohen, Brumwell, and colleagues interrogated the mechanistic action of EGCG by investigating lung biopsies of patients with mild interstitial lung disease (ILD) who had undergone EGCG treatment. EGCG targeted the WNT inhibitor SFRP2, which was enriched in fibrotic fibroblasts and acted as a TGF-β target, with paracrine effects leading to pathologic basal metaplasia of alveolar epithelial type 2 cells. This study emphasizes the epithelial-mesenchymal trophic unit as a central signaling hub in lung fibrosis. Understanding and simultaneous targeting of interlinked signaling pathways, such as TGF-β and WNT, paves the road for future treatment options for pulmonary fibrosis.
Collapse
Affiliation(s)
- Olivier Burgy
- INSERM U1231, Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Constitutive Reference Center for Rare Pulmonary Diseases-OrphaLung, University Hospital Dijon-Bourgogne, Dijon, France
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Zhang J, Wang S, Liu Z, Zhong C, Lei Y, Zheng Q, Xu Y, Shan S, He H, Ren T. Connexin 25 maintains self-renewal and functions of airway basal cells for airway regeneration. Stem Cell Res Ther 2024; 15:286. [PMID: 39256871 PMCID: PMC11389295 DOI: 10.1186/s13287-024-03908-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The formation of stem cell clones enables close contact of stem cells inside. The gap junctions in such clone spheres establish a microenvironment that allows frequent intercellular communication to maintain self-renewal and functions of stem cells. Nevertheless, the essential gap junction protein for molecular signaling in clones is poorly known. METHODS Primary human airway basal cells (hBCs) were isolated from brushing samples through bronchoscopy and then cultured. A tightly focused femtosecond laser was used to excite the local Ca2+ in an individual cell to initiate an internal Ca2+ wave in a clone to screen gap junction proteins. Immunoflourescence staining and clonogenicity assay were used to evaluate self-renewal and functions. RNA and protein levels were assessed by PCR and Western blot. Air-liquid interface assay was conducted to evaluate the differentiation potential. A Naphthalene injury mouse model was used to assess the regeneration potential. RESULTS Herein, we identify Connexin 25 (Cx25) dominates intercellular Ca2+ communications in clones of hBCs in vitro to maintain the self-renewal and pluripotency of them. The self-renewal and in vitro differentiation functions and in vivo regeneration potential of hBCs in an airway damage model are both regulated by Cx25. The abnormal expression of Cx25 is validated in several diseases including IPF, Covid-19 and bronchiectasis. CONCLUSION Cx25 is essential for hBC clones in maintaining self-renewal and functions of hBCs via gap junctions.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Shaoyang Wang
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Zeyu Liu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Zhong
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuqiong Lei
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Qi Zheng
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yongle Xu
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
15
|
Upadhyay V, Yoon YM, Vazquez SE, Velez TE, Jones KD, Lee CT, Law CS, Wolters PJ, Lee S, Yang MM, Farrand E, Noth I, Strek ME, Anderson MS, DeRisi JL, Sperling AI, Shum AK. Phage Immunoprecipitation-Sequencing Reveals CDHR5 Autoantibodies in Select Patients With Interstitial Lung Disease. ACR Open Rheumatol 2024; 6:568-580. [PMID: 38952015 PMCID: PMC11506559 DOI: 10.1002/acr2.11696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE Interstitial lung diseases (ILDs) are a heterogeneous group of disorders that can develop in patients with connective tissue diseases. Establishing autoimmunity in ILD impacts prognosis and treatment. Patients with ILD are screened for autoimmunity by measuring antinuclear autoantibodies, rheumatoid factors, and other nonspecific tests. However, this approach may miss autoimmunity that manifests as autoantibodies to tissue antigens not previously defined in ILD. METHODS We use Phage Immunoprecipitation-Sequencing (PhIP-Seq) to conduct an autoantibody discovery screen of patients with ILD and controls. We screened for novel autoantigen candidates using PhIP-Seq. We next developed a radio-labeled binding assay and validated the leading candidate in 398 patients with ILD recruited from two academic medical centers and 138 blood bank individuals that formed our reference cohort. RESULTS PhIP-Seq identified 17 novel autoreactive targets, and machine learning classifiers derived from these targets discriminated ILD serum from controls. Among the 17 candidates, we validated CDHR5 and found CDHR5 autoantibodies in patients with rheumatologic disorders and importantly, patients not previously diagnosed with autoimmunity. Using survival and transplant free-survival data available from one of the two centers, patients with CDHR5 autoantibodies showed worse survival compared with other patients with connective tissue disease ILD. CONCLUSION We used PhIP-Seq to define a novel CDHR5 autoantibody in a subset of select patients with ILD. Our data complement a recent study showing polymorphisms in the CDHR5-IRF7 gene locus strongly associated with titer of anticentromere antibodies in systemic sclerosis, creating a growing body of evidence suggesting a link between CDHR5 and autoimmunity.
Collapse
Affiliation(s)
| | | | - Sara E. Vazquez
- University of California San Francisco and Chan Zuckerberg Biohub
| | - Tania E. Velez
- University of Chicago, Illinois, and University of VirginiaCharlottesville
| | | | | | | | | | | | | | | | - Imre Noth
- University of VirginiaCharlottesville
| | | | | | - Joseph L. DeRisi
- University of California San Francisco and Chan Zuckerberg Biohub
| | - Anne I. Sperling
- University of Chicago, Illinois, and University of VirginiaCharlottesville
| | | |
Collapse
|
16
|
Liu X, Zhang X, Liang J, Noble PW, Jiang D. Aging-Associated Molecular Changes in Human Alveolar Type I Cells. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10012. [PMID: 39220636 PMCID: PMC11361087 DOI: 10.35534/jrbtm.2024.10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human alveolar type I (AT1) cells are specialized epithelial cells that line the alveoli in the lungs where gas exchange occurs. The primary function of AT1 cells is not only to facilitate efficient gas exchange between the air and the blood in the lungs, but also to contribute to the structural integrity of the alveoli to maintain lung function and homeostasis. Aging has notable effects on the structure, function, and regenerative capacity of human AT1 cells. However, our understanding of the molecular mechanisms driving these age-related changes in AT1 cells remains limited. Leveraging a recent single-cell transcriptomics dataset we generated on healthy human lungs, we identified a series of significant molecular alterations in AT1 cells from aged lungs. Notably, the aged AT1 cells exhibited increased cellular senescence and chemokine gene expression, alongside diminished epithelial features such as decreases in cell junctions, endocytosis, and pulmonary matrisome gene expression. Gene set analyses also indicated that aged AT1 cells were resistant to apoptosis, a crucial mechanism for turnover and renewal of AT1 cells, thereby ensuring alveolar integrity and function. Further research on these alterations is imperative to fully elucidate the impact on AT1 cells and is indispensable for developing effective therapies to preserve lung function and promote healthy aging.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
17
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
18
|
Franzén L, Olsson Lindvall M, Hühn M, Ptasinski V, Setyo L, Keith BP, Collin A, Oag S, Volckaert T, Borde A, Lundeberg J, Lindgren J, Belfield G, Jackson S, Ollerstam A, Stamou M, Ståhl PL, Hornberg JJ. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat Genet 2024; 56:1725-1736. [PMID: 38951642 PMCID: PMC11319205 DOI: 10.1038/s41588-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis and limited treatment options. Efforts to identify effective treatments are thwarted by limited understanding of IPF pathogenesis and poor translatability of available preclinical models. Here we generated spatially resolved transcriptome maps of human IPF (n = 4) and bleomycin-induced mouse pulmonary fibrosis (n = 6) to address these limitations. We uncovered distinct fibrotic niches in the IPF lung, characterized by aberrant alveolar epithelial cells in a microenvironment dominated by transforming growth factor beta signaling alongside predicted regulators, such as TP53 and APOE. We also identified a clear divergence between the arrested alveolar regeneration in the IPF fibrotic niches and the active tissue repair in the acutely fibrotic mouse lung. Our study offers in-depth insights into the IPF transcriptional landscape and proposes alveolar regeneration as a promising therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Lovisa Franzén
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Martina Olsson Lindvall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Hühn
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victoria Ptasinski
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Laura Setyo
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Benjamin P Keith
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Astrid Collin
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven Oag
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas Volckaert
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Borde
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Julia Lindgren
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Graham Belfield
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonya Jackson
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Stamou
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Patrik L Ståhl
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| | - Jorrit J Hornberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
19
|
Liu X, Zhang X, Yao C, Liang J, Noble PW, Jiang D. Transcriptomics Analysis Identifies the Decline in the Alveolar Type II Stem Cell Niche in Aged Human Lungs. Am J Respir Cell Mol Biol 2024; 71:229-241. [PMID: 38635761 PMCID: PMC11299088 DOI: 10.1165/rcmb.2023-0363oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024] Open
Abstract
Aging poses a global public health challenge, which is linked to the rise of age-related lung diseases. The precise understanding of the molecular and genetic changes in the aging lung that elevate the risk of acute and chronic lung diseases remains incomplete. Alveolar type II (AT2) cells are stem cells that maintain epithelial homeostasis and repair the lung after injury. AT2 progenitor function decreases with aging. The maintenance of AT2 function requires niche support from other cell types, but little has been done to characterize alveolar alterations with aging in the AT2 niche. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged AT2 cells demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 (Activator Protein-1) transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in collagen and elastin transcription and a loss of support to epithelial cell stemness. The decline of the AT2 niche is further exacerbated by a dysregulated genetic program in macrophages and dysregulated communications between AT2 and macrophages in aged human lungs. These findings highlight the dysregulations observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women’s Guild Lung Institute and
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Changfu Yao
- Department of Medicine and Women’s Guild Lung Institute and
| | - Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute and
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
20
|
Tan Q, Wellmerling JH, Song S, Dresler SR, Meridew JA, Choi KM, Li Y, Prakash Y, Tschumperlin DJ. Targeting CEBPA to restore cellular identity and tissue homeostasis in pulmonary fibrosis. JCI Insight 2024; 9:e175290. [PMID: 39012710 PMCID: PMC11343593 DOI: 10.1172/jci.insight.175290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
Fibrosis in the lung is thought to be driven by epithelial cell dysfunction and aberrant cell-cell interactions. Unveiling the molecular mechanisms of cellular plasticity and cell-cell interactions is imperative to elucidating lung regenerative capacity and aberrant repair in pulmonary fibrosis. By mining publicly available RNA-Seq data sets, we identified loss of CCAAT enhancer-binding protein alpha (CEBPA) as a candidate contributor to idiopathic pulmonary fibrosis (IPF). We used conditional KO mice, scRNA-Seq, lung organoids, small-molecule inhibition, and potentially novel gene manipulation methods to investigate the role of CEBPA in lung fibrosis and repair. Long-term (6 months or more) of Cebpa loss in AT2 cells caused spontaneous fibrosis and increased susceptibility to bleomycin-induced fibrosis. Cebpa knockout (KO) in these mice significantly decreased AT2 cell numbers in the lung and reduced expression of surfactant homeostasis genes, while increasing inflammatory cell recruitment as well as upregulating S100a8/a9 in AT2 cells. In vivo treatment with an S100A8/A9 inhibitor alleviated experimental lung fibrosis. Restoring CEBPA expression in lung organoids ex vivo and during experimental lung fibrosis in vivo rescued CEBPA deficiency-mediated phenotypes. Our study establishes a direct mechanistic link between CEBPA repression, impaired AT2 cell identity, disrupted tissue homeostasis, and lung fibrosis.
Collapse
Affiliation(s)
- Qi Tan
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jack H. Wellmerling
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Shengren Song
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Sara R. Dresler
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey A. Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kyoung M. Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Yong Li
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Y.S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Jobe A, Vijayan R. Orphan G protein-coupled receptors: the ongoing search for a home. Front Pharmacol 2024; 15:1349097. [PMID: 38495099 PMCID: PMC10941346 DOI: 10.3389/fphar.2024.1349097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Tsoyi K, Rosas IO. Fibroblast heterogeneity in pulmonary fibrosis: a new target for therapeutics development? Eur Respir J 2024; 63:2302188. [PMID: 38331439 DOI: 10.1183/13993003.02188-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/10/2024]
Affiliation(s)
- Konstantin Tsoyi
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Vannan A, Lyu R, Williams AL, Negretti NM, Mee ED, Hirsh J, Hirsh S, Nichols DS, Calvi CL, Taylor CJ, Polosukhin VV, Serezani APM, McCall AS, Gokey JJ, Shim H, Ware LB, Bacchetta MJ, Shaver CM, Blackwell TS, Walia R, Sucre JMS, Kropski JA, McCarthy DJ, Banovich NE. Image-based spatial transcriptomics identifies molecular niche dysregulation associated with distal lung remodeling in pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571954. [PMID: 38168317 PMCID: PMC10760144 DOI: 10.1101/2023.12.15.571954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The human lung is structurally complex, with a diversity of specialized epithelial, stromal and immune cells playing specific functional roles in anatomically distinct locations, and large-scale changes in the structure and cellular makeup of this distal lung is a hallmark of pulmonary fibrosis (PF) and other progressive chronic lung diseases. Single-cell transcriptomic studies have revealed numerous disease-emergent/enriched cell types/states in PF lungs, but the spatial contexts wherein these cells contribute to disease pathogenesis has remained uncertain. Using sub-cellular resolution image-based spatial transcriptomics, we analyzed the gene expression of more than 1 million cells from 19 unique lungs. Through complementary cell-based and innovative cell-agnostic analyses, we characterized the localization of PF-emergent cell-types, established the cellular and molecular basis of classical PF histopathologic disease features, and identified a diversity of distinct molecularly-defined spatial niches in control and PF lungs. Using machine-learning and trajectory analysis methods to segment and rank airspaces on a gradient from normal to most severely remodeled, we identified a sequence of compositional and molecular changes that associate with progressive distal lung pathology, beginning with alveolar epithelial dysregulation and culminating with changes in macrophage polarization. Together, these results provide a unique, spatially-resolved characterization of the cellular and molecular programs of PF and control lungs, provide new insights into the heterogeneous pathobiology of PF, and establish analytical approaches which should be broadly applicable to other imaging-based spatial transcriptomic studies.
Collapse
Affiliation(s)
- Annika Vannan
- Translational Genomics Research Institute, Phoenix, AZ
| | - Ruqian Lyu
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, AUS
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, AUS
| | | | - Nicholas M. Negretti
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan D. Mee
- Translational Genomics Research Institute, Phoenix, AZ
| | - Joseph Hirsh
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel Hirsh
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David S. Nichols
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carla L. Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chase J. Taylor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vasiliy. V. Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ana PM Serezani
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A. Scott McCall
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason J. Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heejung Shim
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, AUS
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew J. Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs Medical Center, Nashville, TN
| | - Rajat Walia
- Department of Thoracic Disease and Transplantation, Norton Thoracic Institute, Phoenix, AZ, USA
| | - Jennifer MS Sucre
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Veterans Affairs Medical Center, Nashville, TN
| | - Davis J McCarthy
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, AUS
- Melbourne Integrative Genomics, University of Melbourne, Parkville, VIC, AUS
| | | |
Collapse
|
24
|
Dann E, Cujba AM, Oliver AJ, Meyer KB, Teichmann SA, Marioni JC. Precise identification of cell states altered in disease using healthy single-cell references. Nat Genet 2023; 55:1998-2008. [PMID: 37828140 PMCID: PMC10632138 DOI: 10.1038/s41588-023-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Joint analysis of single-cell genomics data from diseased tissues and a healthy reference can reveal altered cell states. We investigate whether integrated collections of data from healthy individuals (cell atlases) are suitable references for disease-state identification and whether matched control samples are needed to minimize false discoveries. We demonstrate that using a reference atlas for latent space learning followed by differential analysis against matched controls leads to improved identification of disease-associated cells, especially with multiple perturbed cell types. Additionally, when an atlas is available, reducing control sample numbers does not increase false discovery rates. Jointly analyzing data from a COVID-19 cohort and a blood cell atlas, we improve detection of infection-related cell states linked to distinct clinical severities. Similarly, we studied disease states in pulmonary fibrosis using a healthy lung atlas, characterizing two distinct aberrant basal states. Our analysis provides guidelines for designing disease cohort studies and optimizing cell atlas use.
Collapse
Affiliation(s)
- Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter Group, The Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Genentech, San Francisco, CA, USA.
| |
Collapse
|
25
|
Sui J, Boatz JC, Shi J, Hu Q, Li X, Zhang Y, Königshoff M, Kliment CR. Loss of ANT1 Increases Fibrosis and Epithelial Cell Senescence in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:556-569. [PMID: 37487137 PMCID: PMC10633847 DOI: 10.1165/rcmb.2022-0315oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive lung scarring and remodeling. Although treatments exist that slow disease progression, IPF is irreversible, and there is no cure. Cellular senescence, a major hallmark of aging, has been implicated in IPF pathogenesis, and mitochondrial dysfunction is increasingly recognized as a driver of senescence. Adenine nucleotide translocases (ANTs) are abundant mitochondrial ATP-ADP transporters critical for regulating cell fate and maintaining mitochondrial function. We sought to determine how alterations in ANTs influence cellular senescence in pulmonary fibrosis. We found that SLC25A4 (solute carrier family 25 member 4) (ANT1) and SLC25A5 (ANT2) expression is reduced in the lungs of patients with IPF, particularly within alveolar type II (AT2) cells, by single-cell RNA sequencing and tissue staining. Loss of ANT1 by siRNA in lung epithelial cells resulted in increased senescence markers such as β-galactosidase and p21, with a reduction in the ratio of nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide. Bleomycin-treated ANT1 knockdown cells also had increased senescence markers compared with bleomycin-treated control cells. Loss of ANT1 in AT2 cells resulted in a reduction in alveolar organoid growth, with an increase in p21 by staining. Global loss of ANT1 resulted in worse lung fibrosis and increased senescence in the bleomycin- and asbestos-induced mouse models of pulmonary fibrosis. In summary, loss of ANT1 contributes to IPF pathogenesis through mitochondrial dysfunction, increased senescence, and decreased regenerative capacity of AT2 cells, resulting in enhanced lung fibrosis. Modulation of ANTs presents a new therapeutic avenue that may alter cellular senescence pathways and limit pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin Sui
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer C Boatz
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian Shi
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qianjiang Hu
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoyun Li
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie Königshoff
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Corrine R Kliment
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Bondonese A, Craig A, Fan L, Valenzi E, Bain W, Lafyatis R, Sembrat J, Chen K, Snyder ME. Impact of enzymatic digestion on single cell suspension yield from peripheral human lung tissue. Cytometry A 2023; 103:777-785. [PMID: 37449375 PMCID: PMC10592386 DOI: 10.1002/cyto.a.24777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
An increasing number of translational investigations of lung biology rely on analyzing single cell suspensions obtained from human lungs. To obtain these single cell suspensions, human lungs from biopsies or research-consented organ donors must be subjected to mechanical and enzymatic digestion prior to analysis with either flow cytometry or single cell RNA sequencing. A variety of enzymes have been used to perform tissue digestion, each with potential limitations. To better understand the limitations of each enzymatic digestion protocol and to establish a framework for comparing studies across protocols, we performed five commonly published protocols in parallel from identical samples obtained from 6 human lungs. Following mechanical (gentleMACS™) and enzymatic digestion, we quantified cell count and viability using a Nexcelom Cellometer and determined cell phenotype using multiparameter spectral flow cytometry (Cytek™ Aurora). We found that all protocols were superior in cellular yield and viability when compared to mechanical digestion alone. Protocols high in dispase cleaved immune markers CD4, CD8, CD69, and CD103 and contributed to an increased monocyte to macrophage yield. Similarly, dispase led to a differential epithelial cell yield, with increased TSPN8+ and ITGA6+ epithelial cells and reduced CD66e+ cells. When compared to collagenase D, collagenase P protocols yielded increased AT1 and AT2 cells and decreased endothelial cells. These results provide a framework for selecting an enzymatic digestion protocol best suited to the scientific question and allow for comparison of studies using different protocols.
Collapse
Affiliation(s)
| | - Andrew Craig
- Department of Medicine, University of Pittsburgh
| | - Li Fan
- Department of Medicine, University of Pittsburgh
| | | | - William Bain
- Department of Medicine, University of Pittsburgh
| | | | - John Sembrat
- Department of Medicine, University of Pittsburgh
| | - Kong Chen
- Department of Medicine, University of Pittsburgh
| | - Mark E. Snyder
- Department of Medicine, University of Pittsburgh
- Department of Immunology, University of Pittsburgh
- Starzl Transplantation Institute
| |
Collapse
|
27
|
Parimon T, Chen P, Stripp BR, Liang J, Jiang D, Noble PW, Parks WC, Yao C. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325:C483-C495. [PMID: 37458437 PMCID: PMC10511168 DOI: 10.1152/ajpcell.00239.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
28
|
Liu X, Zhang X, Yao C, Liang J, Noble PW, Jiang D. A transcriptional cell atlas identifies the decline in the AT2 niche in aged human lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545378. [PMID: 37398304 PMCID: PMC10312782 DOI: 10.1101/2023.06.16.545378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Aging poses a global public health challenge, associated with molecular and physiological changes in the lungs. It increases susceptibility to acute and chronic lung diseases, yet the underlying molecular and cellular drivers in aged populations are not fully appreciated. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged alveolar epithelial cells, including both alveolar type II (AT2) and type I (AT1) cells, demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in Collagen and Elastin transcription. The decline of the AT2 niche is further exacerbated by a weakened endothelial cell phenotype and a dysregulated genetic program in macrophages. These findings highlight the dysregulation observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.
Collapse
|
29
|
Rajesh R, Atallah R, Bärnthaler T. Dysregulation of metabolic pathways in pulmonary fibrosis. Pharmacol Ther 2023; 246:108436. [PMID: 37150402 DOI: 10.1016/j.pharmthera.2023.108436] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disorder of unknown origin and the most common interstitial lung disease. It progresses with the recruitment of fibroblasts and myofibroblasts that contribute to the accumulation of extracellular matrix (ECM) proteins, leading to the loss of compliance and alveolar integrity, compromising the gas exchange capacity of the lung. Moreover, while there are therapeutics available, they do not offer a cure. Thus, there is a pressing need to identify better therapeutic targets. With the advent of transcriptomics, proteomics, and metabolomics, the cellular mechanisms underlying disease progression are better understood. Metabolic homeostasis is one such factor and its dysregulation has been shown to impact the outcome of IPF. Several metabolic pathways involved in the metabolism of lipids, protein and carbohydrates have been implicated in IPF. While metabolites are crucial for the generation of energy, it is now appreciated that metabolites have several non-metabolic roles in regulating cellular processes such as proliferation, signaling, and death among several other functions. Through this review, we succinctly elucidate the role of several metabolic pathways in IPF. Moreover, we also discuss potential therapeutics which target metabolism or metabolic pathways.
Collapse
Affiliation(s)
- Rishi Rajesh
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Reham Atallah
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
30
|
Königshoff M, Eickelberg O. Listen to the WNT; It Talks: WNT7A Drives Epithelial-Mesenchymal Cross-Talk within the Fibrotic Niche in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 68:239-240. [PMID: 36525670 PMCID: PMC9989476 DOI: 10.1165/rcmb.2022-0479ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Sahu SK, Ozantürk AN, Kulkarni DH, Ma L, Barve RA, Dannull L, Lu A, Starick M, McPhatter J, Garnica L, Sanfillipo-Burchman M, Kunen J, Wu X, Gelman AE, Brody SL, Atkinson JP, Kulkarni HS. Lung epithelial cell-derived C3 protects against pneumonia-induced lung injury. Sci Immunol 2023; 8:eabp9547. [PMID: 36735773 PMCID: PMC10023170 DOI: 10.1126/sciimmunol.abp9547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
The complement component C3 is a fundamental plasma protein for host defense, produced largely by the liver. However, recent work has demonstrated the critical importance of tissue-specific C3 expression in cell survival. Here, we analyzed the effects of local versus peripheral sources of C3 expression in a model of acute bacterial pneumonia induced by Pseudomonas aeruginosa. Whereas mice with global C3 deficiency had severe pneumonia-induced lung injury, those deficient only in liver-derived C3 remained protected, comparable to wild-type mice. Human lung transcriptome analysis showed that secretory epithelial cells, such as club cells, express high levels of C3 mRNA. Mice with tamoxifen-induced C3 gene ablation from club cells in the lung had worse pulmonary injury compared with similarly treated controls, despite maintaining normal circulating C3 levels. Last, in both the mouse pneumonia model and cultured primary human airway epithelial cells, we showed that stress-induced death associated with C3 deficiency parallels that seen in Factor B deficiency rather than C3a receptor deficiency. Moreover, C3-mediated reduction in epithelial cell death requires alternative pathway component Factor B. Thus, our findings suggest that a pathway reliant on locally derived C3 and Factor B protects the lung mucosal barrier.
Collapse
Affiliation(s)
- Sanjaya K. Sahu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ayşe N. Ozantürk
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Devesha H. Kulkarni
- Division of Gastroenterology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lina Ma
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ruteja A Barve
- Department of Genetics, Washington University School of Medicine; St. Louis, USA
| | - Linus Dannull
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Angel Lu
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Marick Starick
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Ja’Nia McPhatter
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Lorena Garnica
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Maxwell Sanfillipo-Burchman
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University School of Medicine; St. Louis, USA
| | - Jeremy Kunen
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Xiaobo Wu
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine; St. Louis, USA
| | - Steven L. Brody
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - John P. Atkinson
- Division of Rheumatology, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine; St. Louis, USA
| |
Collapse
|
32
|
Jiang A, Liu N, Wang J, Zheng X, Ren M, Zhang W, Yao Y. The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: Friend or foe? Front Immunol 2022; 13:1022228. [PMID: 36544757 PMCID: PMC9760949 DOI: 10.3389/fimmu.2022.1022228] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/08/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with a bleak prognosis. Mounting evidence suggests that IPF shares bio-molecular similarities with lung cancer. Given the deep understanding of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway in cancer immunity and the successful application of immune checkpoint inhibitors (ICIs) in lung cancer, recent studies have noticed the role of the PD-1/PD-L1 axis in IPF. However, the conclusions are ambiguous, and the latent mechanisms remain unclear. In this review, we will summarize the role of the PD-1/PD-L1 axis in IPF based on current murine models and clinical studies. We found that the PD-1/PD-L1 pathway plays a more predominant profibrotic role than its immunomodulatory role in IPF by interacting with multiple cell types and pathways. Most preclinical studies also indicated that blockade of the PD-1/PD-L1 pathway could attenuate the severity of pulmonary fibrosis in mice models. This review will bring significant insights into understanding the role of the PD-1/PD-L1 pathway in IPF and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengdi Ren
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhang
- Military Physical Education Teaching and Research Section of Air Force Medical Service Training Base, Air Force Medical University, Xi’an, China,*Correspondence: Yu Yao, ; Wei Zhang,
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yu Yao, ; Wei Zhang,
| |
Collapse
|