1
|
Cao H, Wang M, Cheng A, Tian B, Yang Q, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Yu Y, Zhang L, Chen S, Liu M, Zhu D, Jia R. The functions of herpesvirus shuttling proteins in the virus lifecycle. Front Microbiol 2025; 16:1515241. [PMID: 39973925 PMCID: PMC11837949 DOI: 10.3389/fmicb.2025.1515241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
During viral infection, the transport of various proteins between the nucleus and cytoplasm plays an important role in the viral lifecycle. Shuttling proteins are key factors in the transmission of nucleocytoplasmic information within cells and usually contain nuclear localization signals and nuclear export signals to mediate correct positioning for themselves and other proteins. The nucleocytoplasmic transport process is carried out through the nuclear pore complex on the nuclear envelope and is mediated by specific protein carriers. The viral proteins that function through nucleocytoplasmic shuttling in herpesviruses have gradually been identified as research advances. This article provides an overview of how shuttling proteins utilize nucleocytoplasmic shuttling signals and nuclear transport receptors for nucleocytoplasmic transport, as well as discusses how herpesvirus shuttling proteins enhance the effective infection of viruses by affecting their lifecycle and participating in innate immunity, this review provides a reference for understanding the pathogenesis of herpesvirus infection and determining new antiviral strategies.
Collapse
Affiliation(s)
- Huijun Cao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Ceccopieri C, Madej JP. Chicken Secondary Lymphoid Tissues-Structure and Relevance in Immunological Research. Animals (Basel) 2024; 14:2439. [PMID: 39199973 PMCID: PMC11350708 DOI: 10.3390/ani14162439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Recent discoveries have indicated the importance of developing modern strategies for vaccinations, more ethical research models, and effective alternatives to antibiotic treatment in farm animals. Chickens (Gallus gallus) play a crucial role in this context given the commercial and economic relevance of poultry production worldwide and the search for analogies between the immune systems of humans and birds. Specifically, chicken secondary lymphoid tissues share similar features to their human counterparts. Chickens have several secondary or peripheral lymphoid tissues that are the sites where the adaptive immune response is initiated. The more general classification of these organs divides them into the spleen and skin-, pineal-, or mucosa-associated lymphoid tissues. Each of these tissues is further subdivided into separate lymphoid structures that perform specific and different functions along the animal's body. A review summarizing the state of the art of research on chicken secondary lymphoid organs is of great relevance for the design of future studies.
Collapse
Affiliation(s)
| | - Jan P. Madej
- Department of Immunology, Pathophysiology and Veterinary Preventive Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| |
Collapse
|
3
|
Sabsabi MA, Kheimar A, You Y, von La Roche D, Härtle S, Göbel TW, von Heyl T, Schusser B, Kaufer BB. Unraveling the role of γδ T cells in the pathogenesis of an oncogenic avian herpesvirus. mBio 2024; 15:e0031524. [PMID: 38953352 PMCID: PMC11323538 DOI: 10.1128/mbio.00315-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/12/2024] [Indexed: 07/04/2024] Open
Abstract
Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.
Collapse
Affiliation(s)
| | - Ahmed Kheimar
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Yu You
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Dominik von La Roche
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Thomas W. Göbel
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, München, Germany
| | - Theresa von Heyl
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, München, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences, Technische Universität München, München, Germany
- Center for Infection Prevention (ZIP), Technische Universität München, München, Germany
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
4
|
Souci L, Denesvre C. Interactions between avian viruses and skin in farm birds. Vet Res 2024; 55:54. [PMID: 38671518 PMCID: PMC11055369 DOI: 10.1186/s13567-024-01310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.
Collapse
Affiliation(s)
- Laurent Souci
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France
| | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, UMR1282 ISP, INRAE Centre Val-de-Loire, 37380, Nouzilly, France.
| |
Collapse
|
5
|
Zhu Y, Ma R, Hu L, Yang H, Gong H, He K. Structure, variation and assembly of body-wide microbiomes in endangered crested ibis Nipponia nippon. Mol Ecol 2024; 33:e17238. [PMID: 38108198 DOI: 10.1111/mec.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Limited knowledge of bird microbiome in the all-body niche hinders our understanding of host-microbial relationships and animal health. Here, we characterized the microbial composition of the crested ibis from 13 body sites, representing the cloaca, oral, feather and skin habitats, and explored assembly mechanism structuring the bacterial community of the four habitats respectively. The bacterial community characteristics were distinct among the four habitats. The skin harboured the highest alpha diversity and most diverse functions, followed by feather, oral and cloaca. Individual-specific features were observed when the skin and feathers were concentrated independently. Skin and feather samples of multiple body sites from the same individual were more similar than those from different individuals. Although a significant proportion of the microbiota in the host (85.7%-96.5%) was not derived from the environmental microbiome, as body sites became more exposed to the environment, the relative importance of neutral processes (random drift or dispersal) increased. Neutral processes were the most important contributor in shaping the feather microbiome communities (R2 = .859). A higher percentage of taxa (29.3%) on the skin were selected by hosts compared to taxa on other body habitats. This study demonstrated that niche speciation and partial neutral processes, rather than environmental sources, contribute to microbiome variation in the crested ibis. These results enhance our knowledge of baseline microbial diversity in birds and will aid health management in crested ibises in the future.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Ruifeng Ma
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Lei Hu
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Haiqiong Yang
- Emei Breeding Center for Crested Ibis, Emei, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haizhou Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
6
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
7
|
Glaß M, Hüttelmaier S. IGF2BP1-An Oncofetal RNA-Binding Protein Fuels Tumor Virus Propagation. Viruses 2023; 15:1431. [PMID: 37515119 PMCID: PMC10385356 DOI: 10.3390/v15071431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
The oncofetal RNA-binding protein IGF2BP1 has been reported to be a driver of tumor progression in a multitude of cancer entities. Its main function is the stabilization of target transcripts by shielding these from miRNA-mediated degradation. However, there is growing evidence that several virus species recruit IGF2BP1 to promote their propagation. In particular, tumor-promoting viruses, such as hepatitis B/C and human papillomaviruses, benefit from IGF2BP1. Moreover, recent evidence suggests that non-oncogenic viruses, such as SARS-CoV-2, also take advantage of IGF2BP1. The only virus inhibited by IGF2BP1 reported to date is HIV-1. This review summarizes the current knowledge about the interactions between IGF2BP1 and different virus species. It further recapitulates several findings by presenting analyses from publicly available high-throughput datasets.
Collapse
Affiliation(s)
- Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle, Germany
| |
Collapse
|
8
|
Pasdeloup D, Chuard A, Rémy S, Courvoisier-Guyader K, Denesvre C. The pUL51 Tegument Protein Is Essential for Marek's Disease Virus Growth In Vitro and Bears a Function That Is Critical for Pathogenesis In Vivo. J Virol 2023; 97:e0024223. [PMID: 37154764 PMCID: PMC10231150 DOI: 10.1128/jvi.00242-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/24/2023] [Indexed: 05/10/2023] Open
Abstract
pUL51 is a minor tegument protein important for viral assembly and cell-to-cell spread (CCS) but dispensable for replication in cell culture of all Herpesviruses for which its role has been investigated. Here, we show that pUL51 is essential for the growth of Marek's disease virus, an oncogenic alphaherpesvirus of chickens that is strictly cell-associated in cell culture. MDV pUL51 localized to the Golgi apparatus of infected primary skin fibroblasts, as described for other Herpesviruses. However, the protein was also observed at the surface of lipid droplets in infected chicken keratinocytes, hinting at a possible role of this compartment for viral assembly in the unique cell type involved in MDV shedding in vivo. Deletion of the C-terminal half of pUL51 or fusion of GFP to either the N- or C-terminus were sufficient to disable the protein's essential function(s). However, a virus with a TAP domain fused at the C-terminus of pUL51 was capable of replication in cell culture, albeit with viral spread reduced by 35% and no localization to lipid droplets. In vivo, we observed that although the replication of this virus was moderately impacted, its pathogenesis was strongly impaired. This study describes for the first time the essential role of pUL51 in the biology of a herpesvirus, its association to lipid droplets in a relevant cell type, and its unsuspected role in the pathogenesis of a herpesvirus in its natural host. IMPORTANCE Viruses usually spread from cell to cell through two mechanisms: cell-released virus and/or cell-to-cell spread (CCS). The molecular determinants of CCS and their importance in the biology of viruses during infection of their natural host are unclear. Marek's disease virus (MDV) is a deadly and highly contagious herpesvirus of chickens that produces no cell-free particles in vitro, and therefore, spreads only through CCS in cell culture. Here, we show that viral protein pUL51, an important factor for CCS of Herpesviruses, is essential for MDV growth in vitro. We demonstrate that the fusion of a large tag at the C-terminus of the protein is sufficient to moderately impair viral replication in vivo and almost completely abolish pathogenesis while only slightly reducing viral growth in vitro. This study thus uncovers a role for pUL51 associated with virulence, linked to its C-terminal half, and possibly independent of its essential functions in CCS.
Collapse
Affiliation(s)
- David Pasdeloup
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | - Aurélien Chuard
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | - Sylvie Rémy
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| | | | - Caroline Denesvre
- Laboratory of Biology of Avian Viruses, INRAE-Université de Tours, Nouzilly, France
| |
Collapse
|
9
|
Yu ZH, Zhang YP, Lan XG, Wang YN, Guo RR, Li K, Gao L, Qi XL, Cui HY, Wang XM, Gao YL, Liu CJ. Differences in Pathogenicity and Vaccine Resistance Discovered between Two Epidemic Strains of Marek's Disease Virus in China. Viruses 2023; 15:v15040945. [PMID: 37112925 PMCID: PMC10145439 DOI: 10.3390/v15040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Despite highly effective vaccines, Marek's disease (MD) causes great economic loss to the poultry industry annually, largely due to the continuous emergence of new MD virus (MDV) strains. To explore the pathogenic characteristics of newly emerged MDV strains, we selected two strains (AH/1807 and DH/18) with clinically different pathotypes. We studied each strain's infection process and pathogenicity and observed differences in immunosuppression and vaccine resistance. Specific pathogen-free chickens, unvaccinated or vaccinated with CVI988, were challenged with AH/1807 or DH/18. Both infections induced MD damage; however, differences were observed in terms of mortality (AH/1807: 77.8%, DH/18: 50%) and tumor rates (AH/1807: 50%, DH/18: 33.3%). The immune protection indices of the vaccine also differed (AH/1807: 94.1, DH/18: 61.1). Additionally, while both strains caused interferon-β and interferon-γ expression to decline, DH/18 infection caused stronger immunosuppression than AH/1807. This inhibition persisted even after vaccination, leading to increased replication of DH/18 that ultimately broke through vaccine immune protection. These results indicate that both strains have different characteristics, and that strains such as DH/18, which cause weaker pathogenic damage but can break through vaccine immune protection, require further attention. Our findings increase the understanding of the differences between epidemic strains and factors underlying MD vaccination failure in China.
Collapse
Affiliation(s)
- Zheng-Hao Yu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yan-Ping Zhang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xing-Ge Lan
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Ya-Nan Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rong-Rong Guo
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Kai Li
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Li Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao-Le Qi
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hong-Yu Cui
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiao-Mei Wang
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yu-Long Gao
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chang-Jun Liu
- Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
10
|
Eş I, Kafadenk A, Gormus MB, Inci F. Xenon Difluoride Dry Etching for the Microfabrication of Solid Microneedles as a Potential Strategy in Transdermal Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206510. [PMID: 36929149 DOI: 10.1002/smll.202206510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Although hypodermic needles are a "gold standard" for transdermal drug delivery (TDD), microneedle (MN)-mediated TDD denotes an unconventional approach in which drug compounds are delivered via micron-size needles. Herein, an isotropic XeF2 dry etching process is explored to fabricate silicon-based solid MNs. A photolithographic process, including mask writing, UV exposure, and dry etching with XeF2 is employed, and the MN fabrication is successfully customized by modifying the CAD designs, photolithographic process, and etching conditions. This study enables fabrication of a very dense MNs (up to 1452 MNs cm-2 ) with height varying between 80 and 300 µm. Geometrical features are also assessed using scanning electron microscopy (SEM) and 3D laser scanning microscope. Roughness of the MNs are improved from 0.71 to 0.35 µm after titanium and chromium coating. Mechanical failure test is conducted using dynamic mechanical analyzer to determine displacement and stress/strain values. The coated MNs are subjected to less displacement (≈15 µm) upon the applied force. COMSOL Multiphysics analysis indicates that MNs are safe to use in real-life applications with no fracture. This technique also enables the production of MNs with distinct shape and dimensions. The optimized process provides a wide range of solid MN types to be utilized for epidermis targeting.
Collapse
Affiliation(s)
- Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Abdullah Kafadenk
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - M Burak Gormus
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
11
|
Zheng C, Liang Z, Lin Q, Chen M, Chang C, Zhou J, Yang F, Chen Y, Zhao M, Huang L, Qin L. Pathology, viremia, apoptosis during MDV latency in vaccinated chickens. Virology 2023; 579:169-177. [PMID: 36696868 DOI: 10.1016/j.virol.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/10/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Marek's disease, caused by herpes virus infection, is a highly contagious disease characterized by latent infection. Here, we aimed to study the pathology, viremia and apoptosis during the Marek's Disease Virus (MDV) latency in vaccinated chickens. Vaccinated chickens were inoculated with the MD5 strain and were dissected at different time points. The viremia occurs in the spleen and thymus during the latency period of MD5 infection, however, lesions can be observed in the liver tissue. The latency-associated early gene of MDV, i.e., ICP4, was highly expressed in the spleen and thymus during the early latency. Compared with the early cytolytic stage, apoptosis of splenocytes was remarkably downregulated in the latency period. This study suggests that MDV latency could occur in the spleen and thymus in vaccinated chickens and there is a negative correlation between the MDV latency and apoptosis of spleen. MDV latency can resist the apoptosis of spleen.
Collapse
Affiliation(s)
- Congsen Zheng
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Zexian Liang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Qiaoer Lin
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Meiting Chen
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Chuanzhe Chang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Jun Zhou
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Fan Yang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Yanfeng Chen
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, Guangdong, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China.
| | - Limei Qin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, Guangdong, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China.
| |
Collapse
|
12
|
Lou C, Bai Y, Chai T, Yu H, Lin T, Hu G, Guan Y, Wu B. Research progress on distribution and exposure risk of microbial aerosols in animal houses. Front Vet Sci 2022; 9:1015238. [PMID: 36439349 PMCID: PMC9684608 DOI: 10.3389/fvets.2022.1015238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Environmental aerosols in animal houses are closely related to the productive performance and health level of animals living in the houses. Preferable housing environments can improve animal welfare and production efficiency, so it is necessary to monitor and study these environments. In recent years, there have been many large-scale outbreaks of respiratory diseases related to biological aerosols, especially the novel coronavirus that has been sweeping the world. This has attracted much attention to the mode of aerosol transmission. With the rapid development of large-scale and intensive breeding, microbial aerosols have gradually become the main factor of environmental pollution in animal houses. They not only lead to a large-scale outbreak of infectious diseases, but they also have a certain impact on the health of animals and employees in the houses and increase the difficulty of prevention and control of animal-borne diseases. This paper reviews the distribution, harm, and control measures of microbial aerosols in animal house environments in order to improve people's understanding of them.
Collapse
Affiliation(s)
- Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tongjie Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Tai'an, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Tai'an, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tuorong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Guangming Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuling Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Bo Wu
| |
Collapse
|
13
|
Sánchez Uzcátegui YDV, dos Santos EJM, Matos ER, Silveira FT, Vasconcelos dos Santos T, Póvoa MM. Artificial blood-feeding of phlebotomines (Diptera: Psychodidae: Phlebotominae): is it time to repurpose biological membranes in light of ethical concerns? Parasit Vectors 2022; 15:399. [PMID: 36316748 PMCID: PMC9624050 DOI: 10.1186/s13071-022-05511-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The aims of the present study were to evaluate and compare the efficacy of blood-feeding in phlebotomines through industrially processed membranes from the small intestine of pigs (used for the production of commercial sausages) and the skin of euthanized chicks. METHODS Laboratory-bred Lutzomyia longipalpis and different field-caught phlebotomine species were subjected to the artificial feeding systems under similar conditions. Paired tests were performed using the control (skin from euthanized chicks) and test membranes (pig small intestine). The feeding rates were compared by paired t-test, and Pearson correlation was used to examine the relationship between the thickness of the membranes and feeding rate. RESULTS The feeding rate was greater with the test membrane than with the control membrane for L. longipalpis (t-test, t = -3.3860, P = 0.0054) but not for the most frequent field-caught species, Nyssomyia antunesi (t-test, t = 0.7746, P = 0.4535). The average thicknesses of the control and test membranes were 184 ± 83 µm and 34 ± 12 µm, respectively (Mann-Whitney U-test, U = 0.00, Z = 2.8823, P = 0.0039); however, there was no correlation between feeding rate and membrane thickness. A moderate positive correlation was observed between the number of phlebotomines that fed and the total number of phlebotomines in the cage for each type of membrane and for each species. CONCLUSIONS The test membrane is a viable alternative for the artificial blood-feeding of phlebotomines, and is thus a potential substitute for the skin of animals that are euthanized for this purpose. Feeding rate was independent of membrane thickness.
Collapse
Affiliation(s)
- Yetsenia del Valle Sánchez Uzcátegui
- grid.271300.70000 0001 2171 5249Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil ,grid.419134.a0000 0004 0620 4442Seção de Parasitologia, Instituto Evandro Chagas, Ananindeua, Brazil ,grid.267525.10000 0004 1937 0853Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Eduardo José Melo dos Santos
- grid.271300.70000 0001 2171 5249Genetics of Complex Diseases Laboratory, Universidade Federal do Pará, Belém, Brazil
| | - Edilson Rodrigues Matos
- grid.440587.a0000 0001 2186 5976Laboratório de Pesquisa Carlos Azevedo, Universidade Federal Rural da Amazônia, Belém, Brazil
| | - Fernando Tobias Silveira
- grid.419134.a0000 0004 0620 4442Seção de Parasitologia, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Thiago Vasconcelos dos Santos
- grid.271300.70000 0001 2171 5249Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil ,grid.419134.a0000 0004 0620 4442Seção de Parasitologia, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Marinete Marins Póvoa
- grid.271300.70000 0001 2171 5249Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil ,grid.419134.a0000 0004 0620 4442Seção de Parasitologia, Instituto Evandro Chagas, Ananindeua, Brazil
| |
Collapse
|
14
|
Establishment of a culture model for the prolonged maintenance of chicken feather follicles structure in vitro. PLoS One 2022; 17:e0271448. [PMID: 36206252 PMCID: PMC9544018 DOI: 10.1371/journal.pone.0271448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/30/2022] [Indexed: 11/05/2022] Open
Abstract
Protocols allowing the in vitro culture of human hair follicles in a serum free-medium up to 9 days were developed 30 years ago. By using similar protocols, we achieved the prolonged maintenance in vitro of juvenile feather follicles (FF) microdissected from young chickens. Histology showed a preservation of the FF up to 7 days as well as feather morphology compatible with growth and/or differentiation. The integrity of the FF wall epithelium was confirmed by transmission electron microscopy at Day 5 and 7 of culture. A slight elongation of the feathers was detected up to 5 days for 75% of the examined feathers. By immunochemistry, we demonstrated the maintenance of expression and localization of two structural proteins: scaffoldin and fibronectin. Gene expression (assessed by qRT-PCR) of NCAM, LCAM, Wnt6, Notch1, and BMP4 was not altered. In contrast, Shh and HBS1 expression collapsed, DKK3 increased, and KRT14 transiently increased upon cultivation. This indicates that cultivation modifies the mRNA expression of a few genes, possibly due to reduced growth or cell differentiation in the feather, notably in the barb ridges. In conclusion, we have developed the first method that allows the culture and maintenance of chicken FF in vitro that preserves the structure and biology of the FF close to its in vivo state, despite transcriptional modifications of a few genes involved in feather development. This new culture model may serve to study feather interactions with pathogens or toxics and constitutes a way to reduce animal experimentation.
Collapse
|
15
|
Lantier I, Mallet C, Souci L, Larcher T, Conradie AM, Courvoisier K, Trapp S, Pasdeloup D, Kaufer BB, Denesvre C. In vivo imaging reveals novel replication sites of a highly oncogenic avian herpesvirus in chickens. PLoS Pathog 2022; 18:e1010745. [PMID: 36037230 PMCID: PMC9462805 DOI: 10.1371/journal.ppat.1010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 09/09/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
In vivo bioluminescence imaging facilitates the non-invasive visualization of biological processes in living animals. This system has been used to track virus infections mostly in mice and ferrets; however, until now this approach has not been applied to pathogens in avian species. To visualize the infection of an important avian pathogen, we generated Marek’s disease virus (MDV) recombinants expressing firefly luciferase during lytic replication. Upon characterization of the recombinant viruses in vitro, chickens were infected and the infection visualized in live animals over the course of 14 days. The luminescence signal was consistent with the known spatiotemporal kinetics of infection and the life cycle of MDV, and correlated well with the viral load measured by qPCR. Intriguingly, this in vivo bioimaging approach revealed two novel sites of MDV replication, the beak and the skin of the feet covered in scales. Feet skin infection was confirmed using a complementary fluorescence bioimaging approach with MDV recombinants expressing mRFP or GFP. Infection was detected in the intermediate epidermal layers of the feet skin that was also shown to produce infectious virus, regardless of the animals’ age at and the route of infection. Taken together, this study highlights the value of in vivo whole body bioimaging in avian species by identifying previously overlooked sites of replication and shedding of MDV in the chicken host. In vivo bioluminescence imaging is a powerful tool to track virus infection in the whole body of living animals. This system has been successfully used in mice, ferrets, rats and even fishes, but until now never in birds. In this study, we performed the first in vivo imaging assessing the spread of an important avian pathogen, the highly oncogenic Marek’s disease virus (MDV). Using a recombinant virus expressing firefly luciferase, we visualized the course of MDV infection in chicks for 14 days. The bioluminescent signal was consistent with the known kinetics and sites of dissemination of MDV, notably in feathers. With this new approach, we also discovered two novels sites of early infection and replication that may contribute to persistent virus shedding. Both novel sites represent hard skin appendages like the feathers: the beak and the skin of the feet that are covered in scales. These results were confirmed with two recombinant viruses expressing fluorescent proteins. Fifty-five years after the discovery of MDV and thanks to in vivo imaging, we provide new insights in MDV life cycle in vivo, highlighting the importance of bioluminescence imaging of the entire body in living animals.
Collapse
Affiliation(s)
| | - Corentin Mallet
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - Laurent Souci
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | | | | | | | - Sascha Trapp
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - David Pasdeloup
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), Freie Universität Berlin, Berlin, Germany
- * E-mail: (BK); (CD)
| | - Caroline Denesvre
- INRAE, UMR1282 ISP, Centre INRAE Val de Loire, Nouzilly, France
- * E-mail: (BK); (CD)
| |
Collapse
|
16
|
Inci I. Characterization of decellularized chicken skin as a tissue engineering scaffold. Biotechnol Appl Biochem 2022; 69:2257-2266. [PMID: 35396883 DOI: 10.1002/bab.2348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/23/2022] [Indexed: 11/06/2022]
Abstract
Decellularization has been applied on many tissues and organs to obtain biomaterials for the applications in tissue engineering. In this study, decellularization and characterization of chicken skin was performed to provide comprehensive information and in-depth details on this material as a potential tissue scaffold. Application of Triton X-100 and sodium dodecyl sulfate (SDS) on tissues in different time intervals as two decellularization protocols were compared according to various aspects such as removal of cellular components, DNA quantification, protection of extracellular matrix (ECM), mechanical properties and cytocompatibility to find the optimum technique during preparation of decellularized scaffold. The results showed that treatment with SDS revealed better results when compared with Triton X-100 regarding to preserve tissue structure and morphology although there was no difference on efficiency of decellularization. In general, the tissues decellularized with SDS demonstrated higher level of cytocompatibility and better mechanical properties in comparison with samples treated with Triton X-100. In conclusion, this study revealed that decellularized chicken skin is a cheap, abundant, and biocompatible material that supports cell attachment, growth, and proliferation. Therefore, it could be used as a proper candidate to prepare scaffolds for the further studies on tissue engineering especially for skin tissue engineering. Decellularized chicken skin was prepared and characterized as an abundant, cheap, and biocompatible material for using it as a tissue scaffold. Tissues were treated with Triton X-100 and sodium dodecyl sulfate (SDS) in various time points and samples were compared regarding to cell removal, cell viability, mechanical properties, and preservation of extracellular matrix. 24 hours of decellularization with SDS could be the optimum method to prepare decellularized chicken skin as a scaffold for skin tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ilyas Inci
- Izmir Democracy University, Vocational School of Health Services, Department of Dentistry Services, Dental Prosthetics Technology, Izmir, 35140, Turkey
| |
Collapse
|
17
|
B cells do not play a role in vaccine-mediated immunity against Marek's disease. Vaccine X 2022; 10:100128. [PMID: 34977551 PMCID: PMC8686028 DOI: 10.1016/j.jvacx.2021.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV), a highly oncogenic α-herpesvirus, is the etiological agent of Marek's disease (MD) in chickens. The antiviral activity of vaccine-induced immunity against MD reduces the level of early cytolytic infection, production of cell-free virions in the feather follicle epithelial cells (FFE), and lymphoma formation. Despite the success of several vaccines that have greatly reduced the economic losses from MD, the mechanism of vaccine-induced immunity is poorly understood. METHODS To provide insight into possible role of B cells in vaccine-mediated protection, we bursectomized birds on day of hatch and vaccinated them eight days later. The birds were challenged 10 days post vaccination with or without receiving adoptive lymphocytes from age-matched control birds prior to inoculation. The study also included vaccinated/challenged and non-vaccinated challenged intact birds. Flowcytometric analysis of PBMN cells were conducted twice post bursectomy to confirm B cell depletion and assess the effect of surgery on T cell population. Immunohistochemical analysis and viral genome copy number assessment in the skin samples at termination was performed to measure the replication rate of MDV in the FFE of the skin tissues of the challenged birds. RESULTS The non-vaccinated/challenged birds developed typical clinical signs of MD while the vaccinated/challenged and bursectomized, vaccinated/challenged groups with or without adoptive lymphocyte transfer, were fully protected with no sign of transient paralysis, weight loss, or T cell lymphomas. Immunohistochemical analysis and viral genome copy number evaluation in the skin samples revealed that unlike the vaccinated/challenged birds a significant number of virus particles were produced in the FFE of the non-vaccinated/challenged birds at termination. In the bursectomized, vaccinated/challenged groups, only a few replicating virions were detected in the skin of birds that received adoptive lymphocytes prior to challenge. CONCLUSIONS The study shows that B cells do not play a critical role in MD vaccine-mediated immunity.
Collapse
|
18
|
Bavananthasivam J, Alqazlan N, Alizadeh M, Matsuyama-Kato A, Astill J, Kulkarni RR, Sharif S. The Regulatory Microenvironment in Feathers of Chickens Infected with Very Virulent Marek's Disease Virus. Viruses 2022; 14:112. [PMID: 35062316 PMCID: PMC8781056 DOI: 10.3390/v14010112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
Abstract
Vaccines against Marek's disease can protect chickens against clinical disease; however, infected chickens continue to propagate the Marek's disease virus (MDV) in feather follicles and can shed the virus into the environment. Therefore, the present study investigated if MDV could induce an immunoregulatory microenvironment in feathers of chickens and whether vaccines can overcome the immune evasive mechanisms of MDV. The results showed an abundance of CD4+CD25+ and CD4+ transforming growth factor-beta (TGF-β)+ T regulatory cells in the feathers of MDV-infected chickens at 21 days post-infection. In contrast, vaccinated chickens had a lower number of regulatory T cells. Furthermore, the expression of TGF-β and programmed cell death receptor (PD)-1 increased considerably in the feathers of Marek's disease virus-infected chickens. The results of the present study raise the possibility of an immunoregulatory environment in the feather pulp of MDV-infected chickens, which may in turn favor replication of infectious MDV in this tissue. Exploring the evasive strategies employed by MDV will facilitate the development of control measures to prevent viral replication and transmission.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.B.); (N.A.); (M.A.); (A.M.-K.); (J.A.)
| | - Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.B.); (N.A.); (M.A.); (A.M.-K.); (J.A.)
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.B.); (N.A.); (M.A.); (A.M.-K.); (J.A.)
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.B.); (N.A.); (M.A.); (A.M.-K.); (J.A.)
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.B.); (N.A.); (M.A.); (A.M.-K.); (J.A.)
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA;
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.B.); (N.A.); (M.A.); (A.M.-K.); (J.A.)
| |
Collapse
|
19
|
Koutsoumanis K, Allende A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Bottari B, Cummins E, Ylivainio K, Muñoz Guajardo I, Ortiz‐Pelaez A, Alvarez‐Ordóñez A. Inactivation of indicator microorganisms and biological hazards by standard and/or alternative processing methods in Category 2 and 3 animal by-products and derived products to be used as organic fertilisers and/or soil improvers. EFSA J 2021; 19:e06932. [PMID: 34900004 PMCID: PMC8638561 DOI: 10.2903/j.efsa.2021.6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The European Commission requested EFSA to assess if different thermal processes achieve a 5 log10 reduction in Enterococcus faecalis or Salmonella Senftenberg (775W) and (if relevant) a 3 log10 reduction in thermoresistant viruses (e.g. Parvovirus) as well as if different chemical processes achieve a 3 log10 reduction of eggs of Ascaris sp., in eight groups of Category 2 and 3 derived products and animal by-products (ABP). These included (1) ash derived from incineration, co-incineration and combustion; (2) glycerine derived from the production of biodiesel and renewable fuels; (3) other materials derived from the production of biodiesel and renewable fuels; (4) hides and skins; (5) wool and hair; (6) feathers and down; (7) pig bristles; and (8) horns, horn products, hooves and hoof products. Data on the presence of viral hazards and on thermal and chemical inactivation of the targeted indicator microorganisms and biological hazards under relevant processing conditions were extracted via extensive literature searches. The evidence was assessed via expert knowledge elicitation. The certainty that the required log10 reductions in the most resistant indicator microorganisms or biological hazards will be achieved for each of the eight groups of materials mentioned above by the thermal and/or chemical processes was (1) 99-100% for the two processes assessed; (2) 98-100% in Category 2 ABP, at least 90-99% in Category 3 ABP; (3) 90-99% in Category 2 ABP; at least 66-90% in Category 3 ABP; (4) 10-66% and 33-66%; (5) 1-33% and 10-50%; (6) 66-90%; (7) 33-66% and 50-95%; (8) 66-95%, respectively. Data generation on the occurrence and reduction of biological hazards by thermal and/or chemical methods in these materials and on the characterisation of the usage pathways of ABP as organic fertilisers/soil improvers is recommended.
Collapse
|
20
|
Okura T, Otomo H, Taneno A, Oishi E. Replication kinetics of turkey herpesvirus in lymphoid organs and feather follicle epithelium in chickens. J Vet Med Sci 2021; 83:1582-1589. [PMID: 34470973 PMCID: PMC8569884 DOI: 10.1292/jvms.21-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that causes
immunosuppression, T-cell lymphomas, and neuropathic disease in infected chickens. To
protect chickens from MDV infection, an avirulent live vaccine of turkey herpesvirus (HVT)
has been successfully used for chickens worldwide. Similar to MDV for natural infection in
both chickens and turkeys, HVT also infects lung in the early stage of infection and then
lymphocytes from lymphoid organs. Virus replication requires cell-to-cell contact for
spreading and semi-productive lytic replication in T and B cells. Then, cell-free
infectious virions matured in the feather follicle epithelium (FFE) are released and
spread through the feather from infected turkeys or chickens. To understand the lifecycle
of HVT in inoculated chickens via the subcutaneous route, we investigate the replication
kinetics and tissue organ tropism of HVT in chickens by a subcutaneous inoculation which
is a major route of MDV vaccination. We show that the progeny virus matured in lymphocytes
from the thymus, spleen, and lung as early as 2 days post-infection (dpi) and bursa of
Fabricius at 4 dpi, whereas viral maturation in the FFE was observed at 6 dpi.
Furthermore, semi-quantitative reverse transcription-PCR experiments to measure viral mRNA
expression levels revealed that the higher expression levels of the late genes were
associated with viral maturation in the FFE. These data that tropism and replication
kinetics of HVT could be similar to those of MDV through the intake pathway of natural
infection from respiratory tracts.
Collapse
Affiliation(s)
- Takashi Okura
- Vaxxinova Japan, Choka 809, Nikko, Tochigi 321-1103, Japan
| | - Hiroki Otomo
- Vaxxinova Japan, Choka 809, Nikko, Tochigi 321-1103, Japan
| | - Akira Taneno
- Vaxxinova Japan, Choka 809, Nikko, Tochigi 321-1103, Japan
| | - Eiji Oishi
- Vaxxinova Japan, Choka 809, Nikko, Tochigi 321-1103, Japan
| |
Collapse
|
21
|
Bavananthasivam J, Alizadeh M, Astill J, Alqazlan N, Matsuyama-Kato A, Shojadoost B, Taha-Abdelaziz K, Sharif S. Effects of administration of probiotic lactobacilli on immunity conferred by the herpesvirus of turkeys vaccine against challenge with a very virulent Marek's disease virus in chickens. Vaccine 2021; 39:2424-2433. [PMID: 33781599 DOI: 10.1016/j.vaccine.2021.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022]
Abstract
Several vaccines have been used to control Marek's disease (MD) in chickens. However, the emergence of new strains of Marek's disease virus (MDV) imposes a threat to vaccine efficacy. Therefore, the current study was carried out to investigate whether concurrent administration of probiotics with the herpesvirus of turkeys (HVT) vaccine enhances its protective efficacy against MDV infection. In this regard, a cocktail comprised of four Lactobacillus species was administered with HVT to chicken embryos at embryonic day 18 (ED18) and/or from day 1 to day 4 post-hatch. The results revealed that the administration of a probiotic Lactobacillus with HVT at ED18 followed by oral gavage with the same lactobacilli cocktail to newly hatched chicks for the first 4 days post-hatch increased the expression of major histocompatibility complex (MHC) II on macrophages and B cells in spleen and decreased the number of CD4+CD25+ T regulatory cells in the spleen. Subsequently, chicks were infected with MDV. The chickens that received in ovo HVT and lactobacilli or HVT had higher expression of IFN-α at 21dpi in the spleen compared to the chickens that were challenged with MDV. Also, the expression of IFN-β in cecal tonsils at 10dpi was higher in the groups that received in ovo HVT and lactobacilli and oral lactobacilli compared to the group that received in ovo HVT alone. Moreover, the expression of tumor growth factor (TGF)-β4 at 4 days post-infection was reduced in the group that received both HVT and probiotics at ED18. Additionally, concurrent probiotics administration reduced tumor incidence by half when compared to HVT vaccine alone indicating enhancing effect of lactobacilli with HVT vaccine on host immune responses. In conclusion, these findings suggest the potential use of probiotic lactobacilli as adjuvants with the HVT vaccine against MDV infection in chickens.
Collapse
Affiliation(s)
- Jegarubee Bavananthasivam
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Nadiyah Alqazlan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Bahram Shojadoost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada; Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah 62511, Beni-Suef, Egypt
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
22
|
Role of microRNA and long non-coding RNA in Marek's disease tumorigenesis in chicken. Res Vet Sci 2021; 135:134-142. [PMID: 33485054 DOI: 10.1016/j.rvsc.2021.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Marek's disease virus (MDV), the causative agent of Marek's disease (MD), results in highly infectious phymatosis, lymphatic tissue hyperplasia, and neoplasia. MD is associated with high morbidity and mortality rate. Non-coding RNAs (ncRNAs) entails long non-coding RNA (lncRNA) and microRNA (miRNA). Numerous studies have reported that specific miRNAs and lncRNAs participate in multiple cellular processes, such as proliferation, migration, and tumor cell invasion. Specialized miRNAs and lncRNAs militate a similar role in MD tumor oncogenesis. Despite its growing popularity, only a few reviews are available on ncRNA in MDV tumor oncogenes. Herein, we summarized the role of the miRNAs and lncRNAs in MD tumorigenesis. Altogether, we brought forth the research issues, such as MD prevention, screening, regulatory network formation, novel miRNAs, and lncRNAs analysis in MD that needs to be explored further. This review provides a theoretical platform for the further analysis of miRNAs and lncRNAs functions and the prevention and control of MD and malignancies in domestic animals.
Collapse
|
23
|
Conradie AM, Bertzbach LD, Trimpert J, Patria JN, Murata S, Parcells MS, Kaufer BB. Distinct polymorphisms in a single herpesvirus gene are capable of enhancing virulence and mediating vaccinal resistance. PLoS Pathog 2020; 16:e1009104. [PMID: 33306739 PMCID: PMC7758048 DOI: 10.1371/journal.ppat.1009104] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/23/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Modified-live herpesvirus vaccines are widely used in humans and animals, but field strains can emerge that have a higher virulence and break vaccinal protection. Since the introduction of the first vaccine in the 1970s, Marek’s disease virus overcame the vaccine barrier by the acquisition of numerous genomic mutations. However, the evolutionary adaptations in the herpesvirus genome responsible for the vaccine breaks have remained elusive. Here, we demonstrate that point mutations in the multifunctional meq gene acquired during evolution can significantly alter virulence. Defined mutations found in highly virulent strains also allowed the virus to overcome innate cellular responses and vaccinal protection. Concomitantly, the adaptations in meq enhanced virus shedding into the environment, likely providing a selective advantage for the virus. Our study provides the first experimental evidence that few point mutations in a single herpesviral gene result in drastically increased virulence, enhanced shedding, and escape from vaccinal protection. Viruses can acquire mutations during evolution that alter their virulence. An example of a virus that has shown repeated shifts to higher virulence in response to more efficacious vaccines is the oncogenic Marek’s disease virus (MDV) that infects chickens. Until now, it remained unknown which mutations in the large virus genome are responsible for this increase in virulence. We could demonstrate that very few amino acid changes in the meq oncogene of MDV can significantly alter the virulence of the virus. In addition, these changes also allow the virus to overcome vaccinal protection and enhance the shedding into the environment. Taken together, our data provide fundamental insights into evolutionary changes that allow this deadly veterinary pathogen to evolve towards greater virulence.
Collapse
Affiliation(s)
| | | | - Jakob Trimpert
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Joseph N. Patria
- Department of Biological Sciences, University of Delaware, Newark, United States of America
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mark S. Parcells
- Department of Animal and Food Sciences, University of Delaware, Newark, United States of America
| | - Benedikt B. Kaufer
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
24
|
Boodhoo N, Kamble N, Behboudi S. De Novo Cholesterol Biosynthesis and Its Trafficking in LAMP-1-Positive Vesicles Are Involved in Replication and Spread of Marek's Disease Virus. J Virol 2020; 94:e01001-20. [PMID: 32999035 PMCID: PMC7925193 DOI: 10.1128/jvi.01001-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/25/2020] [Indexed: 01/08/2023] Open
Abstract
Marek's disease virus (MDV) transforms CD4+ T cells and causes a deadly neoplastic disease that is associated with metabolic dysregulation leading to atherosclerosis in chickens. While MDV-infected chickens have normal serum concentrations of cholesterol, their aortic tissues were found to have elevated concentrations of free and esterified cholesterol. Here, we demonstrate that infection of chicken embryonated fibroblasts (CEFs) with highly pathogenic MDV-RB1B increases the cellular cholesterol content and upregulates the genes involved in cholesterol synthesis and cellular cholesterol homeostasis using comprehensive two-dimensional gas chromatography-mass spectrometry and real-time PCR (RT-PCR), respectively. Using small pharmacological inhibitors and gene silencing, we established an association between MDV-RB1B replication and mevalonic acid, sterol, and cholesterol biosynthesis and trafficking/redistribution. We propose that MDV trafficking is mediated by lysosome-associated membrane protein 1 (LAMP-1)-positive vesicles based on short hairpin RNA (shRNA) gene silencing and the colocalization of LAMP-1, glycoprotein B (gB) of MDV, and cholesterol (filipin III) fluorescence signal intensity peaks. In conclusion, our results demonstrate that MDV hijacks cellular cholesterol biosynthesis and cholesterol trafficking to facilitate cell-to-cell spread in a LAMP-1-dependent mechanism.IMPORTANCE MDV disrupts lipid metabolism and causes atherosclerosis in MDV-infected chickens; however, the role of cholesterol metabolism in the replication and spread of MDV is unknown. MDV-infected cells do not produce infectious cell-free virus in vitro, raising the question about the mechanism involved in the cell-to-cell spread of MDV. In this report, we provide evidence that MDV replication depends on de novo cholesterol biosynthesis and uptake. Interruption of cholesterol trafficking within multivesicular bodies (MVBs) by chemical inhibitors or gene silencing reduced MDV titers and cell-to-cell spread. Finally, we demonstrated that MDV gB colocalizes with cholesterol and LAMP-1, suggesting that viral protein trafficking is mediated by LAMP-1-positive vesicles in association with cholesterol. These results provide new insights into the cholesterol dependence of MDV replication.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Nitin Kamble
- The Pirbright Institute, Pirbright, Woking, United Kingdom
| | - Shahriar Behboudi
- The Pirbright Institute, Pirbright, Woking, United Kingdom
- Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
25
|
Mardivirus Infection and Persistence in Feathers of a Chicken Model Harboring a Local Autoimmune Response. Microorganisms 2020; 8:microorganisms8101613. [PMID: 33092272 PMCID: PMC7589623 DOI: 10.3390/microorganisms8101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 11/23/2022] Open
Abstract
Herpesvirus of turkey (HVT) is commonly used as a vaccine to protect chickens against Marek’s disease. Following vaccination, HVT infects feathers where it can be detected in all chicken lines examined. Unlike the parental Brown line (BL), Smyth line (SL) chickens develop vitiligo, due to autoimmune destruction of melanocytes in feathers. Previous reports showed a strong inflammatory response in Smyth chickens’ feathers at vitiligo onset, that subsided once melanocytes were destroyed, and depigmentation was complete. Here, we questioned whether the local autoimmune response in the Smyth model influences HVT infection and persistence in feathers. For this, one-day-old SL and BL chickens were vaccinated with Newcastle disease (rHVT-ND). Vitiligo was scored and HVT loads in pigmented and non-pigmented growing feathers were quantified regularly over 20 weeks. Chickens of both lines showed moderate HVT loads in feathers. At the onset of active vitiligo, the HVT load was significantly higher in SL compared to BL feathers. However, no difference in HVT loads was noticed between pigmented and non-pigmented feathers from SL chickens. Therefore, surprisingly, the inflammatory response in feathers of SL chickens did not inhibit HVT infection and persistence, but on the contrary, temporarily promoted HVT infection in feathers.
Collapse
|
26
|
Shimizu M, Nii T, Isobe N, Yoshimura Y. Effects of avian infectious bronchitis with Newcastle disease and Marek's disease vaccinations on the expression of toll-like receptors and avian β-defensins in the kidneys of broiler chicks. Poult Sci 2020; 99:7092-7100. [PMID: 33248626 PMCID: PMC7486820 DOI: 10.1016/j.psj.2020.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to determine the effect of vaccinations for avian infectious bronchitis with Newcastle disease (IB/ND) and Marek's disease (MD) on the expression of toll-like receptors (TLR) that recognize viral RNA and microbial DNA, and AvBD in chick kidneys. Day-old chicks were vaccinated with MD or IB/ND vaccines or received no treatment (control group). The gene expression of TLR and AvBD in the kidneys of 3-day-old chicks and 10-day-old chicks was examined using real-time PCR. The localization of AvBD2 and AvBD4 was examined by immunohistochemistry at day three only. At 3 days of age, the expression of TLR7 and TLR21 was significantly higher in the IB/ND group (but not in the MD group) than in the control group. Conversely, at 10 days of age there was no significant difference in the expression of the three TLR between groups. In the 3-day-old chicks the expression levels of AvBD4, 5, 6, and 7 were higher in the MD group than in the control group. Furthermore, at this age, the expression levels of other AvBD were not significantly different between the control and vaccination (MD and IB/ND) groups. At 10 days of age, no AvBD expression was affected by MD and IB/ND vaccinations. Immunohistochemistry results localized AvBD2 in the leukocytes in the interstitial tissue and AvBD4 in the surface of microvillus epithelial cells of renal tubules, and in the epithelial cells of the collecting ducts and ureter. The localization of AvBD2 and AvBD4 was identified in all chicks. We suggest that the expression of innate immune molecules (including TLR and AvBD) in kidneys could be modulated by MD and IB/ND vaccination when performed at the day-old stage. Although the effects of both vaccinations may subside within 10 days, the enhanced expression of those innate immune molecules may support the innate immunodefense function in the kidneys of young chicks.
Collapse
Affiliation(s)
- Masahiro Shimizu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.
| |
Collapse
|
27
|
Davidson I. Out of Sight, but Not Out of Mind: Aspects of the Avian Oncogenic Herpesvirus, Marek's Disease Virus. Animals (Basel) 2020; 10:E1319. [PMID: 32751762 PMCID: PMC7459476 DOI: 10.3390/ani10081319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Marek's disease virus is an economically important avian herpesvirus that causes tumors and immunosuppression in chickens and turkeys. The virus, disease, and vaccines have been known for more than 50 years, but as knowledge gaps still exists, intensive research is still ongoing. The understanding of MDV complexity can provide scientific insight in topics that cannot be experimented in humans, providing a unique model that is dually useful for the benefit of the poultry industry and for studying general herpesvirology. The present review presents the following topics: the MDV biology, the vaccine's and virulent virus' peculiar presence in feathers, protection by vaccination. In addition, two relatively behind the scenes topics are reviewed; first, the meq MDV oncogene and its recent implication in molecular epidemiology and in the MDV virulence determination, and second, the functionality of conformational epitopes of the MDV immunodominant protein, glycoprotein B. Our studies were particular, as they were the only ones describing three-dimensional MDV gB oligomers. MDV gB (glycoprotein B) continuous and discontinuous epitopes were shown to possess distinctive neutralization activities. In contrast, the significance of oligomerization of the viral membrane proteins for the creation of discontinuous epitopes in other herpesviruses was explored extensively.
Collapse
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan 50250, Israel
| |
Collapse
|
28
|
Morphological and Immunohistochemical Examination of Lymphoproliferative Lesions Caused by Marek's Disease Virus in Breeder Chickens. Animals (Basel) 2020; 10:ani10081280. [PMID: 32727058 PMCID: PMC7460422 DOI: 10.3390/ani10081280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The poultry industry is the most intensive and fastest growing among all livestock production systems, and, in the last decades, it has expanded exponentially due to an increasing demand for meat and eggs. Marek’s disease is a highly contagious and rapidly progressive lymphoproliferative disease. It is one of the most dangerous diseases of those affecting the sector because it causes important economic losses. Although widely controlled by vaccination programs, sometimes chickens are not totally protected, and the presence of virulent field strains can allow outbreaks. This case describes the occurrence of Marek’s disease observed in a breeder chicken flock that reported an increase in mortality rate (+0.4–0.6%) after the 32nd week. Histological analysis has highlighted severe lesions on visceral organs of chickens caused by Marek’s disease, especially in the intestinal tract of a hen that had a tumor mass in the distal part of the cloaca. Immunohistochemical staining confirmed the disease-associated tumor. The aim of this study was to underline the importance of vaccine administration related to the maintenance of proper biosecurity practice, especially in the first week of the raising cycle. In addition, monitoring for disease even after vaccination is crucial to minimize economic loss. Abstract Marek’s disease is widely controlled by vaccination programs; however, chickens are not totally protected, especially immediately after the vaccination when a strong challenge could interfere with the effectiveness of vaccination in the absence of proper biosecurity practice. This case report describes the occurrence of Marek’s disease (MD) observed in a breeder chicken flock reared southeast of Sicily. MD outbreak occurred from 32 to 47 weeks with an increase in weekly mortality rate (+0.4–0.6%). Overall, mortality rate related to Marek’s disease was about 6% at the end of the cycle. Carcasses of chickens found during the occurrence of disease underwent necropsy, and tissues were collected to confirm the infection. Gizzard, cecal tonsil, intestine, spleen and tumor mass were collected and analyzed from a carcass of one hen, 32 weeks old and apparently asymptomatic. Multiplex real-time PCR performed on spleen tissues detected the presence of MD virus pathogenic strain. Macroscopic and microscopic evaluation of the rest of the samples confirmed the neoplastic disease. Moreover, the immunophenotype of the tumor cells was identified as CD3 positive by immunohistochemical (IHC) staining. The vaccinated flock had become rapidly infected with the MD virus, which proves that the challenge of the MD virus was too strong in the rearing house at the beginning of the cycle, causing the outbreak.
Collapse
|
29
|
Song C, Yang Y, Hu J, Yu S, Sun Y, Qiu X, Tan L, Meng C, Liao Y, Liu W, Ding C. Safety and Efficacy Evaluation of Recombinant Marek's Disease Virus with REV-LTR. Vaccines (Basel) 2020; 8:vaccines8030399. [PMID: 32698460 PMCID: PMC7564749 DOI: 10.3390/vaccines8030399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, chickens vaccinated with the CVI988/Rispens vaccine showed increased tumor incidence. Moreover, many strains of Marek's disease virus (MDV) that were naturally integrated with the long terminal repeat (LTR) of the avian reticuloendotheliosis virus (REV) have been isolated, which means it is necessary to develop a new vaccine. In this study, two LTR sequences were inserted into Rispens to construct a recombinant MDV (rMDV). Then, the safety and efficacy of rMDV were evaluated separately in chickens. The growth rate curves showed that the insertion of REV-LTR into MDV enabled a faster replication in vitro than Rispens. Chickens immunized with high or repeated dose rMDV had no MD clinical signs. Further, no tumor, tissue lesions, or evident pathological changes were observed in the chicken organs. Polymerase chain reaction (PCR) and virus isolation revealed that rMDV had the ability to spread horizontally to non-immunized chickens and had no impact on the environment. After five passages in chickens, there were no obvious lesions, and the LTR insertion was stable. There were also no deletions or mutations, which indicates that rMDV is safe in chickens. In addition, rMDV has an advantage over Rispens against vvMDV Md5 at low doses. All results demonstrate that the transgenic strain of rMDV with REV-LTR can be used as a live attenuated vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Chan Ding
- Correspondence: ; Tel.: +86-21-34293441; Fax: +86-21-34293461
| |
Collapse
|
30
|
Bertzbach LD, Conradie AM, You Y, Kaufer BB. Latest Insights into Marek's Disease Virus Pathogenesis and Tumorigenesis. Cancers (Basel) 2020; 12:cancers12030647. [PMID: 32164311 PMCID: PMC7139298 DOI: 10.3390/cancers12030647] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022] Open
Abstract
Marek’s disease virus (MDV) infects chickens and causes one of the most frequent cancers in animals. Over 100 years of research on this oncogenic alphaherpesvirus has led to a profound understanding of virus-induced tumor development. Live-attenuated vaccines against MDV were the first that prevented cancer and minimized the losses in the poultry industry. Even though the current gold standard vaccine efficiently protects against clinical disease, the virus continuously evolves towards higher virulence. Emerging field strains were able to overcome the protection provided by the previous two vaccine generations. Research over the last few years revealed important insights into the virus life cycle, cellular tropism, and tumor development that are summarized in this review. In addition, we discuss recent data on the MDV transcriptome, the constant evolution of this highly oncogenic virus towards higher virulence, and future perspectives in MDV research.
Collapse
|
31
|
Rémy S, Le Pape G, Gourichon D, Gardin Y, Denesvre C. Chickens can durably clear herpesvirus vaccine infection in feathers while still carrying vaccine-induced antibodies. Vet Res 2020; 51:24. [PMID: 32093754 PMCID: PMC7041111 DOI: 10.1186/s13567-020-00749-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Marek’s disease (MD) is a major disease of chickens induced by Marek’s disease virus (MDV) associated to lethal lymphomas. Current MD vaccines protect against lymphomas, but fail to prevent infection and shedding. The control of MDV shedding is crucial in order to eradicate this highly contagious virus. Like pathogenic MDV, MD vaccines infect the feather follicles of the skin before being shed into the environment. MD vaccines constitute excellent models to study virus interaction with feathers, the unique excretion source of these viruses. Herein we studied the viral persistence in feathers of a MD vaccine, the recombinant turkey herpesvirus (rHVT-ND). We report that most of the birds showed a persistent HVT infection of feathers over 41 weeks with moderate viral loads. Interestingly, 20% of the birds were identified as low HVT producers, among which six birds cleared the infection. Indeed, after week 14–26, these birds named controllers had undetectable HVT DNA in their feathers through week 41. All vaccinated birds developed antibodies to NDV, which lasted until week 41 in 95% of the birds, including the controllers. No correlation was found between HVT loads in feathers and NDV antibody titers over time. Interestingly, no HVT DNA was detected in the spleens of four controllers. This is the first description of chickens that durably cleared MD vaccine infection of feathers suggesting that control of Mardivirus shedding is achievable by the host.
Collapse
Affiliation(s)
- Sylvie Rémy
- Laboratoire de Biologie des Virus Aviaires, ISP, INRAE, Université Tours, Nouzilly, France
| | - Gilles Le Pape
- Anastats, 14 rue de la Bretonnerie, 37000, Tours, France
| | | | | | - Caroline Denesvre
- Laboratoire de Biologie des Virus Aviaires, ISP, INRAE, Université Tours, Nouzilly, France.
| |
Collapse
|
32
|
Glutaminolysis and Glycolysis Are Essential for Optimal Replication of Marek's Disease Virus. J Virol 2020; 94:JVI.01680-19. [PMID: 31748393 PMCID: PMC6997755 DOI: 10.1128/jvi.01680-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023] Open
Abstract
Viruses can manipulate host cellular metabolism to provide energy and essential biosynthetic requirements for efficient replication. Marek’s disease virus (MDV), an avian alphaherpesvirus, causes a deadly lymphoma in chickens and hijacks host cell metabolism. This study provides evidence for the importance of glycolysis and glutaminolysis, but not fatty acid β-oxidation, as an essential energy source for the replication and spread of MDV. Moreover, it suggests that in MDV infection, as in many tumor cells, glutamine is used for generation of energetic and biosynthetic requirements of the MDV infection, while glucose is used biosynthetically. Viruses may hijack glycolysis, glutaminolysis, or fatty acid β-oxidation of host cells to provide the energy and macromolecules required for efficient viral replication. Marek’s disease virus (MDV) causes a deadly lymphoproliferative disease in chickens and modulates metabolism of host cells. Metabolic analysis of MDV-infected chicken embryonic fibroblasts (CEFs) identified elevated levels of metabolites involved in glutamine catabolism, such as glutamic acid, alanine, glycine, pyrimidine, and creatine. In addition, our results demonstrate that glutamine uptake is elevated by MDV-infected cells in vitro. Although glutamine, but not glucose, deprivation significantly reduced cell viability in MDV-infected cells, both glutamine and glucose were required for virus replication and spread. In the presence of minimum glutamine requirements based on optimal cell viability, virus replication was partially rescued by the addition of the tricarboxylic acid (TCA) cycle intermediate, α-ketoglutarate, suggesting that exogenous glutamine is an essential carbon source for the TCA cycle to generate energy and macromolecules required for virus replication. Surprisingly, the inhibition of carnitine palmitoyltransferase 1a (CPT1a), which is elevated in MDV-infected cells, by chemical (etomoxir) or physiological (malonyl-CoA) inhibitors, did not reduce MDV replication, indicating that MDV replication does not require fatty acid β-oxidation. Taken together, our results demonstrate that MDV infection activates anaplerotic substrate from glucose to glutamine to provide energy and macromolecules required for MDV replication, and optimal MDV replication occurs when the cells do not depend on mitochondrial β-oxidation. IMPORTANCE Viruses can manipulate host cellular metabolism to provide energy and essential biosynthetic requirements for efficient replication. Marek’s disease virus (MDV), an avian alphaherpesvirus, causes a deadly lymphoma in chickens and hijacks host cell metabolism. This study provides evidence for the importance of glycolysis and glutaminolysis, but not fatty acid β-oxidation, as an essential energy source for the replication and spread of MDV. Moreover, it suggests that in MDV infection, as in many tumor cells, glutamine is used for generation of energetic and biosynthetic requirements of the MDV infection, while glucose is used biosynthetically.
Collapse
|
33
|
Kaboudi K. Virus-induced immunosuppression in turkeys ( Meleagris gallopavo): A review. Open Vet J 2019; 9:349-360. [PMID: 32042658 PMCID: PMC6971353 DOI: 10.4314/ovj.v9i4.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/30/2019] [Indexed: 12/11/2022] Open
Abstract
Immunosuppression is characterized by a dysfunction of humoral and/or cellular immune response leading to increase of susceptibility to secondary infections, increase of mortality and morbidity, poor productivity, and welfare and vaccination failures. Humoral immune response depression is due to perturbation of soluble factors, as complement and chemokines in innate immunity and antibodies or cytokines in adaptive immunity. At the cellular immune response, immunosuppression is the consequence of the dysfunction of T-cells, B-cells, heterophils, monocytes, macrophages, and natural Killer cells. Immunosuppression in turkeys can be caused by numerous, non-infectious, and infectious agents, having variable pathological and molecular mechanisms. Interactions between them are very complex. This paper reviews the common viruses inducing clinical and sub-clinical immunosuppression in turkeys, and enteric and neoplastic viruses in particular, as well as the interactions among them. The evaluation of immunosuppression is currently based on classical approach; however, new technique such as the microarray technology is being developed to investigate immunological mediator’s genes detection. Controlling of immunosuppression include, in general, biosecurity practices, maintaining appropriate breeding conditions and vaccination of breeders and their progeny. Nevertheless, few vaccines are available against immunosuppressive viruses in turkey’s industry. The development of new control strategies is reviewed.
Collapse
Affiliation(s)
- Khaled Kaboudi
- Department of Poultry Farming and Pathology, National Veterinary Medicine School, University of Manouba, 2020 Sidi Thabet, Tunisia
| |
Collapse
|
34
|
|
35
|
Abaidullah M, Peng S, Kamran M, Song X, Yin Z. Current Findings on Gut Microbiota Mediated Immune Modulation against Viral Diseases in Chicken. Viruses 2019; 11:v11080681. [PMID: 31349568 PMCID: PMC6722953 DOI: 10.3390/v11080681] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Chicken gastrointestinal tract is an important site of immune cell development that not only regulates gut microbiota but also maintains extra-intestinal immunity. Recent studies have emphasized the important roles of gut microbiota in shaping immunity against viral diseases in chicken. Microbial diversity and its integrity are the key elements for deriving immunity against invading viral pathogens. Commensal bacteria provide protection against pathogens through direct competition and by the production of antibodies and activation of different cytokines to modulate innate and adaptive immune responses. There are few economically important viral diseases of chicken that perturb the intestinal microbiota diversity. Disruption of microbial homeostasis (dysbiosis) associates with a variety of pathological states, which facilitate the establishment of acute viral infections in chickens. In this review, we summarize the calibrated interactions among the microbiota mediated immune modulation through the production of different interferons (IFNs) ILs, and virus-specific IgA and IgG, and their impact on the severity of viral infections in chickens. Here, it also shows that acute viral infection diminishes commensal bacteria such as Lactobacillus, Bifidobacterium, Firmicutes, and Blautia spp. populations and enhances the colonization of pathobionts, including E. coli, Shigella, and Clostridial spp., in infected chickens.
Collapse
Affiliation(s)
- Muhammad Abaidullah
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuwei Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Kamran
- Queensland Alliance for Agriculture and food Innovation, The University of Queensland, Brisbane 4072, Australia
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
36
|
Sunkaraa L, Ahmad SM, Heidari M. RNA-seq analysis of viral gene expression in the skin of Marek's disease virus infected chickens. Vet Immunol Immunopathol 2019; 213:109882. [PMID: 31307672 DOI: 10.1016/j.vetimm.2019.109882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 11/25/2022]
Abstract
Marek's disease virus (MDV), a highly cell-associated oncogenic avian α-herpesvirus, is the causative agent of malignant transformation of T cells in domestic chickens. The latently infected CD4+CD8- T cells carry the virus through the blood stream and establish lymphomas in the skin, visceral organs and peripheral nerves. The feather follicle epithelium (FFE) is the only anatomical site where fully infectious enveloped virions are produced and eventually disseminated into the environment to infect contact birds. Therefore, skin and FFE play a critical role as being the common source of re-infection of birds sharing the same habitat. The molecular mechanism involved in the replication and assembly of MDV in the FFE leading to the production and release of cell-free infectious virus particles is unknown and to date no viral or host gene has been implicated in the process. To examine alterations in the expression pattern of viral genes, we performed RNA-seq on the skin samples of Marek's disease virus-infected susceptible chickens at 10, 20, and 30 days post infection. For comparative analysis of the expression patterns of viral genes between the skin and spleen of the MD-susceptible and resistant lines, Real-Time RT-PCR was employed. In total, RNA-seq based analysis identified 42 viral genes that were differentially expressed in the skin of infected birds. Majority of the identified genes are involved in DNA replication, capsid, tegument, and envelop formation. Comparative analysis between the skin and spleen of MD-susceptible and resistant chicken lines, revealed significantly higher expression of the genes in the skin of either lines than the spleen. Furthermore, much higher expression of the genes was observed in the skin of the susceptible line than the resistant line.
Collapse
Affiliation(s)
- Lakshmi Sunkaraa
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States; Department of Agriculture, East Lansing, MI, United States
| | | | - Mohammad Heidari
- Avian Disease and Oncology Laboratory, Agriculture Research Service, United States; Department of Agriculture, East Lansing, MI, United States.
| |
Collapse
|
37
|
Ross AA, Rodrigues Hoffmann A, Neufeld JD. The skin microbiome of vertebrates. MICROBIOME 2019; 7:79. [PMID: 31122279 PMCID: PMC6533770 DOI: 10.1186/s40168-019-0694-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/08/2019] [Indexed: 05/05/2023]
Abstract
The skin constitutes the primary physical barrier between vertebrates and their external environment. Characterization of skin microorganisms is essential for understanding how a host evolves in association with its microbial symbionts, modeling immune system development, diagnosing illnesses, and exploring the origins of potential zoonoses that affect humans. Although many studies have characterized the human microbiome with culture-independent techniques, far less is known about the skin microbiome of other mammals, amphibians, birds, fish, and reptiles. The aim of this review is to summarize studies that have leveraged high-throughput sequencing to better understand the skin microorganisms that associate with members of classes within the subphylum Vertebrata. Specifically, links will be explored between the skin microbiome and vertebrate characteristics, including geographic location, biological sex, animal interactions, diet, captivity, maternal transfer, and disease. Recent literature on parallel patterns between host evolutionary history and their skin microbial communities, or phylosymbiosis, will also be analyzed. These factors must be considered when designing future microbiome studies to ensure that the conclusions drawn from basic research translate into useful applications, such as probiotics and successful conservation strategies for endangered and threatened animals.
Collapse
Affiliation(s)
- Ashley A Ross
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
- Present address: Ontario Veterinary College, University of Guelph, 419 Gordon St, Guelph, Ontario, N1G 2W1, Canada
| | - Aline Rodrigues Hoffmann
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 660 Raymond Stotzer Pkwy, College Station, TX, USA
| | - Josh D Neufeld
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
38
|
Sun GR, Zhou LY, Zhang YP, Zhang F, Yu ZH, Pan Q, Gao L, Li K, Wang YQ, Cui HY, Qi X, Gao YL, Wang XM, Liu CJ. Differential expression of type I interferon mRNA and protein levels induced by virulent Marek's disease virus infection in chickens. Vet Immunol Immunopathol 2019; 212:15-22. [PMID: 31213247 DOI: 10.1016/j.vetimm.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 12/24/2022]
Abstract
Marek's disease virus (MDV), an α-herpesvirus targeting avian species, causes fatal Marek's disease (MD) in chickens. The host interferon (IFN) responses play a key role in resisting viral infection. However, host IFN responses following MDV infection in the chicken central immune organs (thymus and bursa of Fabricius), which contain numerous MDV target cells, is poorly understood. In this study, we performed animal experiments in specific pathogen-free chickens infected with two virulent MDV strains (BS/15 and Md5) or without infection as negative controls. Specifically, the type I IFN (IFN-α and IFN-β) transcriptional and proteomic expression levels at 7, 10, 14, 17, and 21 days post infection (dpi) were detected and analyzed. Our results indicated that the mRNA and protein expression levels of IFN-α and IFN-β in the thymus and bursa of Fabricius were mainly downregulated in cytolytic infection (such as 10 dpi) and reactivation (such as 17 dpi) stages, but not the latent (such as 14 dpi) stage of MDV infection, which was determined by comprehensively analyzing the MDV viral load and immune organ damage caused by MDV infection. These data suggest that MDV could inhibit the expression of host type I IFNs, which may be involved in the MDV-induced host immunosuppression and contribute to the immune escape of MDV from host immunity. Furthermore, we found that the downregulated expression of the host type I IFNs induced by BS/15 and Md5 infection was significantly different, which we speculated may be related to the diverse virulence and pathogenicity of MDV strains. In conclusion, our study demonstrated that MDV mostly inhibited the expression of type I IFNs in infected hosts, which may be associated to its pathogenesis.
Collapse
Affiliation(s)
- Guo-Rong Sun
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Lin-Yi Zhou
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Yan-Ping Zhang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Feng Zhang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Zheng-Hao Yu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Qing Pan
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Li Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Kai Li
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Yong-Qiang Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Hong-Yu Cui
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Xiaole Qi
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Yu-Long Gao
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Xiao-Mei Wang
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| | - Chang-Jun Liu
- Division of Avian Immunosuppressive Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, PR China.
| |
Collapse
|
39
|
Neerukonda SN, Katneni UK, Bott M, Golovan SP, Parcells MS. Induction of the unfolded protein response (UPR) during Marek's disease virus (MDV) infection. Virology 2018; 522:1-12. [PMID: 29979959 DOI: 10.1016/j.virol.2018.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022]
Abstract
Marek's disease (MD) is a pathology of chickens associated with paralysis, immune suppression, and the rapid formation of T-cell lymphomas. MD is caused by the herpesvirus, Marek's disease virus (MDV). We examined endoplasmic reticulum (ER) stress and the activation of unfolded protein response (UPR) pathways during MDV infection of cells in culture and lymphocytes in vivo. MDV strains activate the UPR as measured by increased mRNA expression of GRP78/BiP with concomitant XBP1 splicing and induction of its target gene, EDEM1. Cell culture replication of virulent, but not vaccine MDVs, activated the UPR at late in infection. Pathotype-associated UPR activation was induced to a greater level by a vv + MDV. Discrete UPR activation was observed during MDV in vivo infection, with the level of UPR modulation being affected by the MDV oncoprotein Meq. Finally, ATF6 was found to be activated in vv + MDV-induced primary lymphomas, suggesting a possible role in tumor progression.
Collapse
Affiliation(s)
- Sabari Nath Neerukonda
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | - Upendra K Katneni
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | - Matthew Bott
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| | | | - Mark S Parcells
- Department of Animal and Food Sciences, University of Delaware, 052 Townsend Hall, 531 South College Ave, Newark, DE 19716, United States.
| |
Collapse
|
40
|
Berthault C, Larcher T, Härtle S, Vautherot JF, Trapp-Fragnet L, Denesvre C. Atrophy of primary lymphoid organs induced by Marek's disease virus during early infection is associated with increased apoptosis, inhibition of cell proliferation and a severe B-lymphopenia. Vet Res 2018; 49:31. [PMID: 29587836 PMCID: PMC5870490 DOI: 10.1186/s13567-018-0526-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
Marek's disease is a multi-faceted highly contagious disease affecting chickens caused by the Marek's disease alphaherpesvirus (MDV). MDV early infection induces a transient immunosuppression, which is associated with thymus and bursa of Fabricius atrophy. Little is known about the cellular processes involved in primary lymphoid organ atrophy. Here, by in situ TUNEL assay, we demonstrate that MDV infection results in a high level of apoptosis in the thymus and bursa of Fabricius, which is concomitant to the MDV lytic cycle. Interestingly, we observed that in the thymus most of the MDV infected cells at 6 days post-infection (dpi) were apoptotic, whereas in the bursa of Fabricius most of the apoptotic cells were uninfected suggesting that MDV triggers apoptosis by two different modes in these two primary lymphoid organs. In addition, a high decrease of cell proliferation was observed from 6 to 14 dpi in the bursa of Fabricius follicles, and not in the thymus. Finally, with an adapted absolute blood lymphocyte count, we demonstrate a major B-lymphopenia during the two 1st weeks of infection, and propose this method as a potent non-invasive tool to diagnose MDV bursa of Fabricius infection and atrophy. Our results demonstrate that the thymus and bursa of Fabricius atrophies are related to different cell mechanisms, with different temporalities, that affect infected and uninfected cells.
Collapse
Affiliation(s)
| | | | - Sonja Härtle
- Department of Veterinary Science, Ludwig-Maximilians University of Munich, 80539, Muenchen, Germany
| | | | | | | |
Collapse
|
41
|
Davidson I, Natour-Altory A, Raibstein I, Kin E, Dahan Y, Krispin H, Elkin N. Monitoring the uptake of live avian vaccines by their detection in feathers. Vaccine 2017; 36:637-643. [PMID: 29287680 DOI: 10.1016/j.vaccine.2017.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 12/03/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Protection against diseases caused by the avian viruses, Marek's disease, Infectious laryngotracheitis, chicken anemia and turkey meningoencephalitis is achieved by live vaccines. The application quality is important to assure proper uptake in commercial flocks. We describe a novel evaluation method for the vaccination process by sequential monitoring the vaccine viruses in feathers. Feather collection is easy, non-invasive and non-lethal for the birds, therefore advantageous for monitoring purposes. To demonstrate the vaccine virus presence, an innovative assay of nested real-time amplification was approached because vaccine viruses presence in vivo is less abundant comparing to virulent wild-type isolates. The Marek's disease virus vaccine virus, Rispens/CVI988, in feathers of commercial flock was detected from 4 to 7 days and for at least 3 months post-vaccination, until the survey stopped. As the drinking water route was newly adopted for Infectious laryngotracheitis vaccination, one or two vaccine doses/bird were administered. The virus uptake was detected in feathers between 2 and 20 days-post-vaccination. With a doubled vaccine dose the positivity bird rate was higher. For the first time the chicken anemia vaccine virus presence in chicken feathers was demonstrated between 14 and 35 days-post-vaccination. No previous studies were available, thus in parallel to feathers the vaccine virus was demonstrated in the livers and spleens. The turkey meningoencephalitis vaccine virus uptake in turkey feather-pulps is even more innovative because this is the first turkey virus amplified from feather-pulps. The vaccine virus presence resemble the kinetics of the other 3 viruses, 3-21 days-post-vaccination. Detecting the specific antibodies following vaccination possessed a lower sensitivity than vaccine virus demonstration in feathers. In summary, the presented assay can be adopted for the quality evaluation of the vaccination process in poultry.
Collapse
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel.
| | | | - Israel Raibstein
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Eitan Kin
- Phibro Animal Health, Ltd., Bet Shemesh, Israel.
| | - Yaad Dahan
- Efrat Broiler Breeder Ltd., Granot, Gan Shmuel, Israel.
| | - Haim Krispin
- Yavne Hatcheries & Breeders Ltd., Kibutz Yavne, Israel.
| | - Nati Elkin
- Biovac, Biological Laboratories Ltd., Israel.
| |
Collapse
|
42
|
Adedeji AJ, Abdu PA, Luka PD, Owoade AA, Joannis TM. Application of loop-mediated isothermal amplification assay in the detection of herpesvirus of turkey (FC 126 strain) from chicken samples in Nigeria. Vet World 2017; 10:1383-1388. [PMID: 29263603 PMCID: PMC5732347 DOI: 10.14202/vetworld.2017.1383-1388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022] Open
Abstract
Aim: This study was designed to optimize and apply the use of loop-mediated isothermal amplification (LAMP) as an alternative to conventional polymerase chain reaction (PCR) for the detection of herpesvirus of turkeys (HVT) (FC 126 strain) in vaccinated and non-vaccinated poultry in Nigeria. Materials and Methods: HVT positive control (vaccine) was used for optimization of LAMP using six primers that target the HVT070 gene sequence of the virus. These primers can differentiate HVT, a Marek’s disease virus (MDV) serotype 3 from MDV serotypes 1 and 2. Samples were collected from clinical cases of Marek’s disease (MD) in chickens, processed and subjected to LAMP and PCR. Results: LAMP assay for HVT was optimized. HVT was detected in 60% (3/5) and 100% (5/5) of the samples analyzed by PCR and LAMP, respectively. HVT was detected in the feathers, liver, skin, and spleen with average DNA purity of 3.05-4.52 μg DNA/mg (A260/A280) using LAMP. Conventional PCR detected HVT in two vaccinated and one unvaccinated chicken samples, while LAMP detected HVT in two vaccinated and three unvaccinated corresponding chicken samples. However, LAMP was a faster and simpler technique to carry out than PCR. Conclusion: LAMP assay for the detection of HVT was optimized. LAMP and PCR detected HVT in clinical samples collected. LAMP assay can be a very good alternative to PCR for detection of HVT and other viruses. This is the first report of the use of LAMP for the detection of viruses of veterinary importance in Nigeria. LAMP should be optimized as a diagnostic and research tool for investigation of poultry diseases such as MD in Nigeria.
Collapse
Affiliation(s)
- A J Adedeji
- Viral Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - P A Abdu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - P D Luka
- Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - A A Owoade
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - T M Joannis
- Regional Laboratory for Animal Influenza and Other Transboundary Animal Diseases, National Veterinary Research Institute, Vom, Nigeria
| |
Collapse
|
43
|
In Vitro Replication of Chelonid Herpesvirus 5 in Organotypic Skin Cultures from Hawaiian Green Turtles (Chelonia mydas). J Virol 2017; 91:JVI.00404-17. [PMID: 28615209 DOI: 10.1128/jvi.00404-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022] Open
Abstract
Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with chelonid herpesvirus 5 (ChHV5), which has historically been refractory to growth in tissue culture. Here we show, for the first time, de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative of active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included (i) either in vitro cultures of ChHV5-positive tumor biopsy specimens (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and (ii) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies that revealed intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegument formation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign of active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures, in which most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as a model for culture of other viruses that are resistant to replication in conventional cell culture.IMPORTANCE A major challenge in virology is the study of viruses that cannot be grown in the laboratory. One example is chelonid herpesvirus 5 (ChHV5), which is associated with fibropapillomatosis, a globally distributed, debilitating, and fatal tumor disease of endangered marine turtles. Pathological examination shows that ChHV5 is shed in skin. Here we show that ChHV5 will grow in vitro if we replicate the complex three-dimensional structure of turtle skin. Moreover, lytic virus growth requires a close interplay between fibroblasts and keratinocytes. Finally, the morphogenesis of herpesviral growth in three-dimensional cultures reveals a far richer, and likely more realistic, array of capsid morphologies than that encountered in traditional monolayer cell cultures. Our findings have applications to other viruses, including those of humans.
Collapse
|
44
|
Jordan I, John K, Höwing K, Lohr V, Penzes Z, Gubucz-Sombor E, Fu Y, Gao P, Harder T, Zádori Z, Sandig V. Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines. Avian Pathol 2017; 45:137-55. [PMID: 26814192 DOI: 10.1080/03079457.2016.1138280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Veterinary vaccines contribute to food security, interrupt zoonotic transmissions, and help to maintain overall health in livestock. Although vaccines are usually cost-effective, their adoption depends on a multitude of factors. Because poultry vaccines are usually given to birds with a short life span, very low production cost per dose is one important challenge. Other hurdles are to ensure a consistent and reliable supply of very large number of doses, and to have flexible production processes to accommodate a range of different pathogens and dosage requirements. Most poultry vaccines are currently being produced on primary avian cells derived from chicken or waterfowl embryos. This production system is associated with high costs, logistic complexities, rigid intervals between harvest and production, and supply limitations. We investigated whether the continuous cell lines Cairina retina and CR.pIX may provide a substrate independent of primary cell cultures or embryonated eggs. Viruses examined for replication in these cell lines are strains associated with, or contained in vaccines against egg drop syndrome, Marek's disease, Newcastle disease, avian influenza, infectious bursal disease and Derzsy's disease. Each of the tested viruses required the development of unique conditions for replication that are described here and can be used to generate material for in vivo efficacy studies and to accelerate transfer of the processes to larger production volumes.
Collapse
Affiliation(s)
| | | | | | | | - Zoltán Penzes
- b Ceva-Phylaxia Veterinary Biologicals Co. Ltd. , Budapest , Hungary
| | | | - Yan Fu
- c Ningbo Tech-Bank Co Ltd , Shanghai , People's Republic of China
| | - Peng Gao
- c Ningbo Tech-Bank Co Ltd , Shanghai , People's Republic of China
| | - Timm Harder
- d Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Zoltán Zádori
- e Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences , Budapest , Hungary
| | | |
Collapse
|
45
|
Davidson I, Raibstein I, Altory-Natour A, Simanov M, Khinich Y. Development of duplex dual-gene and DIVA real-time RT-PCR assays and use of feathers as a non-invasive sampling method for diagnosis of Turkey Meningoencephalitis Virus. Avian Pathol 2017; 46:256-264. [DOI: 10.1080/03079457.2016.1256471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Irit Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Israel Raibstein
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Michael Simanov
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Yevgeny Khinich
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| |
Collapse
|
46
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
47
|
Kumar MA, Barathidasan R, Palanivelu M, Singh S, Wani MY, Malik YS, Singh R, Dhama K. A novel recombinant Meq protein based dot-ELISA for rapid and confirmatory diagnosis of Marek’s disease induced lymphoma in poultry. J Virol Methods 2016; 236:271-280. [DOI: 10.1016/j.jviromet.2016.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
48
|
Heidari M, Wang D, Delekta P, Sun S. Marek's disease virus immunosuppression alters host cellular responses and immune gene expression in the skin of infected chickens. Vet Immunol Immunopathol 2016; 180:21-28. [PMID: 27692091 DOI: 10.1016/j.vetimm.2016.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 08/05/2016] [Accepted: 08/31/2016] [Indexed: 11/19/2022]
Abstract
Marek's disease virus (MDV), a highly cell-associated lymphotropic α-herpesvirus, is the causative agent of Marek's disease (MD) in domestic chickens. MDV replicates in chicken lymphocytes and establishes a latent infection within CD4+ T cells. The latently infected CD4+ T cells carry the virus to visceral organs, peripheral nerves, and feather follicle epithelium (FFE). FFE is the only anatomical site where infectious enveloped cell-free virus particles are produced and disseminated into the environment. This study investigated the immunological responses and mechanism of viral-induced immunosuppression and immune evasion in the FFE. Strong viral replication and lack of a significant number of cytotoxic T lymphocytes (CTL) in the infected tissues was prominent. Although the overall gene expression pattern was suggestive of a Th1 type immune response, the expression levels of several key immune genes were down regulated in the infected tissues. The mechanism of MDV-induced immunosuppression appears to be through inhibition of CTL function due to down regulation of CD8 glycoprotein and/or blocking of CTL migration due to decrease expression of cell adhesion molecules.
Collapse
Affiliation(s)
- Mohammad Heidari
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, United States.
| | - Dan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Phillip Delekta
- United States Department of Agriculture, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, United States
| | - Shuhong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
49
|
Couteaudier M, Courvoisier K, Trapp-Fragnet L, Denesvre C, Vautherot JF. Keratinocytes derived from chicken embryonic stem cells support Marek's disease virus infection: a highly differentiated cell model to study viral replication and morphogenesis. Virol J 2016; 13:7. [PMID: 26742789 PMCID: PMC4705758 DOI: 10.1186/s12985-015-0458-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/23/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Marek's disease is a virus disease with worldwide distribution that causes major losses to poultry production. Vaccines against Marek's disease virus, an oncogenic alphaherpesvirus, reduce tumour formation but have no effect on virus shedding. Successful horizontal virus transmission is linked to the active viral replication in feather follicle epithelial cells of infected chickens, from which infectious viral particles are shed into the environment. The feather follicle epithelium is the sole tissue in which those infectious particles are produced and no in vitro cell-systems can support this highly efficient morphogenesis. We previously characterized embryonic stem-cell-derived keratinocytes, showing they display a marker-gene profile similar to skin keratinocytes, and therefore we tested their susceptibility to Marek's disease virus infection. FINDINGS We show herein that keratinocytes derived from chicken embryonic stem-cells are fully permissive to the replication of either non-pathogenic or pathogenic Marek's disease viruses. All viruses replicated on all three keratinocyte lines and kinetics of viral production as well as viral loads were similar to those obtained on primary cells. Morphogenesis studies were conducted on infected keratinocytes and on corneocytes, showing that all types of capsids/virions were present inside the cells, but extracellular viruses were absent. CONCLUSIONS The keratinocyte lines are the first epithelial cell-line showing ectodermal specific markers supporting Marek's disease virus replication. In this in vitro model the replication lead to the production of cell-associated viral progeny. Further work will be devoted to the study of relationship between 3D differentiation of keratinocytes and Marek's disease virus replication.
Collapse
Affiliation(s)
- Mathilde Couteaudier
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Katia Courvoisier
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Laetitia Trapp-Fragnet
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Caroline Denesvre
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| | - Jean-François Vautherot
- INRA - Université François-Rabelais de Tours, UMR 1282 Infectiologie et Santé Publique, ISP, F-37380, Nouzilly, France.
| |
Collapse
|
50
|
Zhang YP, Lv HC, Bao KY, Gao YL, Gao HL, le Qi X, Cui HY, Wang YQ, Li K, Gao L, Wang XM, Liu CJ. Molecular and pathogenicity characterization of Gallid herpesvirus 2 newly isolated in China from 2009 to 2013. Virus Genes 2015; 52:51-60. [PMID: 26611441 DOI: 10.1007/s11262-015-1264-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
During the course of our continuous surveillance of Gallid herpesvirus 2 (GaHV-2), 44 isolates were obtained from GaHV-2-positive chickens of different flocks in China from 2009 to 2013. The meq gene, considered as a major GaHV-2 oncogene, was sequenced and was found to contain an open reading frame of 1020 nucleotides encoding a 339 amino acid (aa) polypeptide in all isolates. Compared with the GaHV-2 GA strain, the meq genes in 15.9 % (7/44) of the isolates analyzed in this study contained an aa substitution mutation at position 88 (A to T) of which is the first report. The main characteristics of Chinese GaHV-2 isolates meq genes included the substitutions K77E, D80Y, V115A, T139A, P176R, and P217A, and the aa substitution frequency at positions 139 and 176 showed an increase. To test the pathogenicity of the isolates, a pathogenicity study and a vaccination-challenge test were performed on three selected isolates (ZY/1203, WC/1203, and WC/1110) and reference strain GA. The results showed that the three isolates induced gross Marek's disease (MD) lesions in 95.0-100 % cases, which was a higher rate than that obtained for strain GA (82.4 %). Three isolates induced mortality in 10-21.1 % of specific-pathogen-free chickens, which was similar to results with strain GA (23.5 %). The commercially available CVI988 vaccine induced lower protective indices (PIs) against ZY/1203 (82.4) and WC/1110 (83.3) as compared to those against WC/1203 (100) and GA (100). These results showed an evolving trend in the meq genes of the isolates; three isolates exhibited higher morbidity as compared to the reference strain and the vaccine induced lower PIs against two isolates as compared to that against the reference strain.
Collapse
Affiliation(s)
- Yan-Ping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Chao Lv
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Ke-Yan Bao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Yu-Long Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Lei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Xiao- le Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Hong-Yu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Yong-Qiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China
| | - Xiao-Mei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| | - Chang-Jun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150001, People's Republic of China.
| |
Collapse
|