1
|
Arora P, Periwal N, Goyal Y, Sood V, Kaur B. iIL13Pred: improved prediction of IL-13 inducing peptides using popular machine learning classifiers. BMC Bioinformatics 2023; 24:141. [PMID: 37041520 PMCID: PMC10088697 DOI: 10.1186/s12859-023-05248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Inflammatory mediators play havoc in several diseases including the novel Coronavirus disease 2019 (COVID-19) and generally correlate with the severity of the disease. Interleukin-13 (IL-13), is a pleiotropic cytokine that is known to be associated with airway inflammation in asthma and reactive airway diseases, in neoplastic and autoimmune diseases. Interestingly, the recent association of IL-13 with COVID-19 severity has sparked interest in this cytokine. Therefore characterization of new molecules which can regulate IL-13 induction might lead to novel therapeutics. RESULTS Here, we present an improved prediction of IL-13-inducing peptides. The positive and negative datasets were obtained from a recent study (IL13Pred) and the Pfeature algorithm was used to compute features for the peptides. As compared to the state-of-the-art which used the regularization based feature selection technique (linear support vector classifier with the L1 penalty), we used a multivariate feature selection technique (minimum redundancy maximum relevance) to obtain non-redundant and highly relevant features. In the proposed study (improved IL-13 prediction (iIL13Pred)), the use of the mRMR feature selection method is instrumental in choosing the most discriminatory features of IL-13-inducing peptides with improved performance. We investigated seven common machine learning classifiers including Decision Tree, Gaussian Naïve Bayes, k-Nearest Neighbour, Logistic Regression, Support Vector Machine, Random Forest, and extreme gradient boosting to efficiently classify IL-13-inducing peptides. We report improved AUC, and MCC scores of 0.83 and 0.33 on validation data as compared to the current method. CONCLUSIONS Extensive benchmarking experiments suggest that the proposed method (iIL13Pred) could provide improved performance metrics in terms of sensitivity, specificity, accuracy, the area under the curve - receiver operating characteristics (AUCROC) and Matthews correlation coefficient (MCC) than the existing state-of-the-art approach (IL13Pred) on the validation dataset and an external dataset comprising of experimentally validated IL-13-inducing peptides. Additionally, the experiments were performed with an increased number of experimentally validated training datasets to obtain a more robust model. A user-friendly web server ( www.soodlab.com/iil13pred ) is also designed to facilitate rapid screening of IL-13-inducing peptides.
Collapse
Affiliation(s)
- Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India.
| | - Neha Periwal
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Yash Goyal
- Department of Computer Science, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, Delhi, India
| | - Baljeet Kaur
- Department of Computer Science, Hansraj College, University of Delhi, Delhi, India.
| |
Collapse
|
2
|
Xu Y, Ma J, Ouyang W, Yao RSY, Cao W, Li J, Zou R, Fang C, Zeng F, Yang F, Wang X, Yuan J, Xia H, Wang H, Gong S, Liu Y. Suppression of innate and acquired immunity in severe hand foot and mouth disease caused by EV71 infections in children. Clin Immunol 2023; 248:109260. [PMID: 36791943 DOI: 10.1016/j.clim.2023.109260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Hand, foot, and mouth disease (HFMD) is a common children infectious disease caused by human enteroviruses. Most of the cases have minimal symptoms, however, some patients may develop serious neurological, cardiac complications, or even death. The pathological mechanism leading to severe HFMD is not clearly understood, and the immunological status of the individual patient may play an important role. Transcriptomes of peripheral blood mononuclear cells from EV71-infected patients (n = 45) and healthy controls (n = 36) were examined. Immune pathways were up-regulated in patients with mild disease symptoms (n = 11, M) compared to the healthy controls (n = 36, H), demonstrating an effective anti-viral response upon EV71 infection. However, in patients with severe symptoms (n = 23, S) as well as severe patients following treatment (n = 11, A), their innate and acquired immune pathways were down-regulated, indicating a global immunity suppression. Such immune suppression characteristics could thus provide an opportunity for early EV-71 infection prognosis prediction. Based on our cohort, an SVM model using RNA-seq expression levels of five genes (MCL1, ZBTB37, PLEKHM1P, IFNAR2 and YEATS2) was developed and achieved a high ROC-AUC (91·3%) in predicting severe HFMD. Meanwhile, qPCR fold-changes method was performed based three genes (MCL1, IFNAR2 and YEATS2) on additional cohort. This qPCR method achieved a ROC-AUC of 78.6% in predicting severe HFMD, which the patients could be distinguished in 2-3 h. Therefore, our models demonstrate the possibility of HFMD severity prediction based on the selected biomarkers that predict severe HFMD effectively.
Collapse
Affiliation(s)
- Yi Xu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen 518083, China; BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Rosary Sin Yu Yao
- BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen 518083, China
| | - Wei Cao
- BGI-Shenzhen, Shenzhen 518083, China
| | | | - Rongrong Zou
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Chunxiao Fang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Fansen Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Fengxia Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Xinfa Wang
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Jing Yuan
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China
| | - Huimin Xia
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China
| | - Hui Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom; Oxford-Suzhou Centre for Advanced Research, Suzhou Industrial Park, Suzhou 215123, China.
| | - Sitang Gong
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510120, China.
| | - Yingxia Liu
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen 518112, China.
| |
Collapse
|
3
|
Sun T, Li D, Dai X, Meng C, Li Y, Cheng C, Ji W, Zhu P, Chen S, Yang H, Jin Y, Zhang W, Duan G. Local immune dysregulation and subsequent inflammatory response contribute to pulmonary edema caused by Enterovirus infection in mice. J Med Virol 2023; 95:e28454. [PMID: 36597906 DOI: 10.1002/jmv.28454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/15/2022] [Accepted: 01/01/2023] [Indexed: 01/05/2023]
Abstract
Pulmonary edema that comes on suddenly is the leading cause of mortality in hand-foot-and-mouth disease (HFMD) patients; however, its pathogenesis is still largely unclear. A range of research suggest immunopathogenesis during the occurrence of pulmonary edema in severe HFMD patients. Herein, to investigate the potential mechanism of immune dysregulation in the development of pulmonary edema upon Enterovirus (EV) infection, we established mouse infection models for Enteroviruses (EVs) including Coxsackievirus (CV) A6, Enterovirus A71 (EVA71), and CVA2 exhibiting a high incidence of pulmonary edema. We found that EVs infection induced an immune system disorder by reducing the numbers of pulmonary and circulatory T cells, B cells, macrophages, and monocytes and increasing the numbers of lung neutrophils, myeloid-derived suppressor cells (MDSCs), and activated T cells. In addition, the concentrations of C-X-C motif chemokine ligand 1 (CXCL-1), tumor necrosis factor-alpha, monocyte chemoattractant protein-1, and interleukin 6 were increased in EV-infected lungs. Moreover, we found that EVs replication in mice lungs lead to apoptosis of lung cells and degradation of tight junction proteins. In conclusion, EVs infection likely triggered a complexed immune defense mechanism and caused dysregulation of innate immune cells (MDSCs, neutrophils, monocytes, and macrophages) and adaptive cellular immunity (B cells, T cells). This dysregulation increased the release of cytokines and other inflammatory factors from activated immune-related cells and caused lung barrier damage and pulmonary edema.
Collapse
Affiliation(s)
- Tiantian Sun
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinchen Dai
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Caiyun Meng
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Yi Li
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Cheng Cheng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Cui G, Wang H, Yang C, Zhou X, Wang J, Wang T, Ma T. Berberine prevents lethal EV71 neurological infection in newborn mice. Front Pharmacol 2022; 13:1027566. [PMID: 36386168 PMCID: PMC9640474 DOI: 10.3389/fphar.2022.1027566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022] Open
Abstract
Enterovirus 71 (EV71) is the major pathogen causing fatal neurological complications of hand, foot, and mouth disease (HFMD) in young children. Currently no effective antiviral therapy is available. In the present study, we found that natural compound Berberine (BBR) displayed potent inhibitory effects on EV71 replication in various neural cells (IC50 of 2.79–4.03 μM). In a newborn mouse model of lethal EV71 infection, Berberine at 2–5 mg/kg markedly reduced mortality and clinical scores. Consistently, the replication of EV71 and pathological changes were attenuated in various infected organs including brain and lung with BBR treatment. Interestingly, EV71 infection in the brain mainly localized in the peripheral zone of brainstem and largely in astrocytes. Primary culture of astrocytes from newborn mouse brain confirmed the efficient EV71 replication that was mostly inhibited by BBR treatment at 5 μM. Further investigations revealed remarkably elevated cellular reactive oxygen species (ROS) levels that coincided with EV71 replication in primary cultured astrocytes and various cell lines. BBR largely abolished the virus-elevated ROS production and greatly diminished EV71 replication by up-regulating NFE2 like bZIP transcription factor 2 (Nrf2) via the kelch like ECH associated protein 1 (Keap)-Nrf2 axis. The nuclear localization of Nrf2 and expression of downstream antioxidant enzymes heme oxygenase 1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1) were increased significantly by BBR treatment. Collectively, our findings revealed that BBR prevents lethal EV71 neurological infection via inhibiting virus replication through regulating Keap-Nrf2 axis and ROS generation in astrocytes of brainstem, thus providing a potential antiviral treatment for severe EV71 infection associated with neurological complications.
Collapse
|
5
|
Yang F, Zhang N, Chen Y, Yin J, Xu M, Cheng X, Ma R, Meng J, Du Y. Role of Non-Coding RNA in Neurological Complications Associated With Enterovirus 71. Front Cell Infect Microbiol 2022; 12:873304. [PMID: 35548469 PMCID: PMC9081983 DOI: 10.3389/fcimb.2022.873304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Enterovirus 71 (EV71) is the main pathogenic virus that causes hand, foot, and mouth disease (HFMD). Studies have reported that EV71-induced infections including aseptic meningitis, acute flaccid paralysis, and even neurogenic pulmonary edema, can progress to severe neurological complications in infants, young children, and the immunosuppressed population. However, the mechanisms through which EV71 causes neurological diseases have not been fully explored. Non-coding RNAs (ncRNAs), are RNAs that do not code for proteins, play a key role in biological processes and disease development associated with EV71. In this review, we summarized recent advances concerning the impacts of ncRNAs on neurological diseases caused by interaction between EV71 and host, revealing the potential role of ncRNAs in pathogenesis, diagnosis and treatment of EV71-induced neurological complications.
Collapse
Affiliation(s)
- Feixiang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiancai Yin
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Muchen Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Cheng
- First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Ruyi Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| | - Yinan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- *Correspondence: Yinan Du, ; Jialin Meng,
| |
Collapse
|
6
|
Anemoside B4 inhibits enterovirus 71 propagation in mice through upregulating 14-3-3 expression and type I interferon responses. Acta Pharmacol Sin 2022; 43:977-991. [PMID: 34321612 DOI: 10.1038/s41401-021-00733-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/29/2021] [Indexed: 01/03/2023]
Abstract
Enterovirus 71 (EV71) is the major pathogens of human hand, foot, and mouth disease (HFMD). EV71 efficiently escapes innate immunity responses of the host to cause infection. At present, no effective antiviral drugs for EV71 are available. Anemoside B4 (B4) is a natural saponin isolated from the roots of Pulsatilla chinensis (Bunge) Regel. P. chinensis extracts that shows a wide variety of biological activities. In this study, we investigated the antiviral activities of B4 against EV71 both in cell culture and in suckling mice. We showed that B4 (12.5-200 μM) dose dependently increased the viability of EV71-infected RD cells with an IC50 value of 24.95 ± 0.05 μM against EV71. The antiviral activity of B4 was associated with enhanced interferon (IFN)-β response, since knockdown of IFN-β abolished its antiviral activity. We also confirmed that the enhanced IFN response was mediated via activation of retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) pathway, and it was executed by upregulation of 14-3-3 protein, which disrupted the interaction between yes-associated protein (YAP) and interferon regulatory factor 3 (IRF3). By using amino acids in cell culture (SILAC)-based proteomics profiling, we identified the Hippo pathway as the top-ranking functional cluster in B4-treated EV71-infected cells. In vivo experiments were conducted in suckling mice (2-day-old) infected with EV71 and subsequently B4 (200 mg · kg-1 · d-1, i.p.) was administered for 16 days. We showed that B4 administration effectively suppressed EV71 replication and improved muscle inflammation and limb activity. Meanwhile, B4 administration regulated the expressions of HFMD biomarkers IL-10 and IFN-γ, attenuating complications of EV71 infection. Collectively, our results suggest that B4 could enhance the antiviral effect of IFN-β by orchestrating Hippo and RLRs pathway, and B4 would be a potential lead compound for developing an anti-EV71 drug.
Collapse
|
7
|
Early-life EV-A71 infection augments allergen-induced airway inflammation in asthma through trained macrophage immunity. Cell Mol Immunol 2021; 18:472-483. [PMID: 33441966 PMCID: PMC8027667 DOI: 10.1038/s41423-020-00621-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Virus-induced asthma is prevalent among children, but its underlying mechanisms are unclear. Accumulated evidence indicates that early-life respiratory virus infection increases susceptibility to allergic asthma. Nonetheless, the relationship between systemic virus infections, such as enterovirus infection, and the ensuing effects on allergic asthma development is unknown. Early-life enterovirus infection was correlated with higher risks of allergic diseases in children. Adult mice exhibited exacerbated mite allergen-induced airway inflammation following recovery from EV-A71 infection in the neonatal period. Bone marrow-derived macrophages (BMDMs) from recovered EV-A71-infected mice showed sustained innate immune memory (trained immunity) that could drive naïve T helper cells toward Th2 and Th17 cell differentiation when in contact with mites. Adoptive transfer of EV-A71-trained BMDMs induced augmented allergic inflammation in naïve recipient mice, which was inhibited by 2-deoxy-D-glucose (2-DG) pretreatment, suggesting that trained macrophages following enterovirus infection are crucial in the progression of allergic asthma later in life.
Collapse
|
8
|
Enterovirus A71 Infection Activates Human Immune Responses and Induces Pathological Changes in Humanized Mice. J Virol 2019; 93:JVI.01066-18. [PMID: 30429352 DOI: 10.1128/jvi.01066-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Since the discovery of enterovirus A71 (EV-A71) half a century ago, it has been recognized as the cause of large-scale outbreaks of hand-foot-and-mouth disease worldwide, particularly in the Asia-Pacific region, causing great concern for public health and economic burdens. Detailed mechanisms on the modulation of immune responses after EV-A71 infection have not been fully known, and the lack of appropriate models hinders the development of promising vaccines and drugs. In the present study, NOD-scid IL2Rγ-/- (NSG) mice with a human immune system (humanized mice) at the age of 4 weeks were found to be susceptible to a human isolate of EV-A71 infection. After infection, humanized mice displayed limb weakness, which is similar to the clinical features found in some of the EV-A71-infected patients. Histopathological examination indicated the presence of vacuolation, gliosis, or meningomyelitis in brain stem and spinal cord, which were accompanied by high viral loads detected in these organs. The numbers of activated human CD4+ and CD8+ T cells were upregulated after EV-A71 infection, and EV-A71-specific human T cell responses were found. Furthermore, the secretion of several proinflammatory cytokines, such as human gamma interferon (IFN-γ), interleukin-8 (IL-8), and IL-17A, was elevated in the EV-A71-infected humanized mice. Taken together, our results suggested that the humanized mouse model permits insights into the human immune responses and the pathogenesis of EV-A71 infection, which may provide a platform for the evaluation of anti-EV-A71 drug candidates in the future.IMPORTANCE Despite causing self-limited hand-food-and-mouth disease in younger children, EV-A71 is consistently associated with severe forms of neurological complications and pulmonary edema. Nevertheless, only limited vaccines and drugs have been developed over the years, which is possibly due to a lack of models that can more accurately recapitulate human specificity, since human is the only natural host for wild-type EV-A71 infection. Our humanized mouse model not only mimics histological symptoms in patients but also allows us to investigate the function of the human immune system during infection. It was found that human T cell responses were activated, accompanied by an increase in the production of proinflammatory cytokines in EV-A71-infected humanized mice, which might contribute to the exacerbation of disease pathogenesis. Collectively, this model allows us to delineate the modulation of human immune responses during EV-A71 infection and may provide a platform to evaluate anti-EV-A71 drug candidates in the future.
Collapse
|
9
|
Jin Y, Zhang C, Zhang R, Ren J, Chen S, Sui M, Zhou G, Dang D, Zhu J, Feng H, Xi Y, Yang H, Duan G. Pulmonary edema following central nervous system lesions induced by a non- mouse-adapted EV71 strain in neonatal BALB/c mice. Virol J 2017; 14:243. [PMID: 29282065 PMCID: PMC5745784 DOI: 10.1186/s12985-017-0911-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/14/2017] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Enterovirus (EV) infection has been a serious health issue in Asia-Pacific region. It has been indicated that the occurrence of fatal hand foot and mouth disease (HFMD) cases following EV71 infection is mainly attributed to pulmonary edema. However, the development of pulmonary disorders after EV71 infection remains largely unknown. To establish an EV71-infected animal model and further explore the underlying association of central nervous system (CNS) invasion with pulmonary edema, we isolated a clinical source EV71 strain (ZZ1350) from a severe case in Henan Province. METHODS We evaluated the cytotoxicity of ZZ1350 strain and the susceptibility in 3-day-old BALB/c mice with intraperitoneal, intracerebral and intramuscular inoculation. Various histopathological and immunohistochemical techniques were applied to determine the target organs or tissue damage after infection. Correlation analysis was used to identify the relationship between CNS injury and pulmonary disorders. RESULTS Our experimental results suggested that ZZ1350 (C4 subtype) had high cytotoxicity against African green monkey kidney (Vero) cells and human rhabdomyosarcoma (RD) cells and neonatal BALB/c mice were highly susceptible to the infection with ZZ1350 through three different inoculation routes (2 × 106 pfu/mouse) exhibiting severe neurological and respiratory symptoms that were similar to clinical observation. Viral replication was found in brain, spinal cord, skeletal muscle, lung, spleen, liver, heart of infected mice and these sections also showed histopathological changes. We found that brain histology score was positive correlated with lung histology score in total experimental mice and mice under the three inoculation routes (P < 0.05). At the same time, there were positive correlations between spinal cord score and lung score in total experimental mice and mice with intracerebral inoculation (P < 0.05). CONCLUSIONS ZZ1350 strain is effective to establish animal model of EV71 infection with severe neurological and respiratory symptoms. The development of pulmonary disorders after EV71 infection is associated with severity of CNS damage.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Chao Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People’s Republic of China
| | - Jingchao Ren
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People’s Republic of China
- Department of Epidemiology, College of Public Health, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Meili Sui
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Guangyuan Zhou
- Department of Epidemiology, College of Public Health, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Dejian Dang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Jiehui Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Huifen Feng
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan People’s Republic of China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, People’s Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, Henan 450001 China
| |
Collapse
|
10
|
Wang LC, Yao HW, Chang CF, Wang SW, Wang SM, Chen SH. Suppression of interleukin-6 increases enterovirus A71 lethality in mice. J Biomed Sci 2017; 24:94. [PMID: 29233145 PMCID: PMC5726025 DOI: 10.1186/s12929-017-0401-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background Enterovirus A71 (EV-A71) infection can induce fatal encephalitis in young children. Clinical reports show that interleukin-6 (IL-6) levels in the serum and cerebrospinal fluid of infected patients with brainstem encephalitis are significantly elevated. We used a murine model to address the significance of endogenous IL-6 in EV-A71 infection. Results EV-A71 infection transiently increased serum and brain IL-6 protein levels in mice. Most importantly, absence of IL-6 due to gene knockout or depletion of IL-6 using neutralizing monoclonal antibody enhanced the mortality and tissue viral load of infected mice. Absence of IL-6 increased the damage in the central nervous system and decreased the lymphocyte and virus-specific antibody responses of infected mice. Conclusions Endogenous IL-6 functions to clear virus and protect the host from EV-A71 infection. Our study raises caution over the use of anti-IL-6 antibody or pentoxifylline to reduce IL-6 for patient treatment. Electronic supplementary material The online version of this article (10.1186/s12929-017-0401-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Chiu Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Hui-Wen Yao
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Chuan-Fa Chang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China.,Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Shainn-Wei Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China.,Institute of Molecular Medicine, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Shih-Min Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China.,Department of Pediatrics, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China
| | - Shun-Hua Chen
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, 701, Republic of China.
| |
Collapse
|
11
|
Smith-Norowitz TA, Carvajal-Raga S, Weedon J, Joks R, Norowitz KB, Weaver D, Durkin HG, Hammerschlag MR, Kohlhoff S. Increased seroprevalence of Enterovirus 71 IgE antibodies in asthmatic compared with non-asthmatic children. Ir J Med Sci 2017; 186:495-503. [PMID: 27440276 DOI: 10.1007/s11845-016-1480-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Asthma is a common pediatric chronic inflammatory airway disease. Respiratory viral infections are frequent infectious triggers for exacerbations of asthma. OBJECTIVE We sought to determine whether Enterovirus 71 (EV71), a ubiquitous virus that causes systemic inflammatory responses in children but is not a known respiratory pathogen, can also serve as an infectious trigger for asthma. METHODS Specific EV71 IgE and IgM antibodies (Abs), total serum IgE, and IL-2 and IL-4 cytokine levels in serum of asthmatic and non-asthmatic children (N = 42, ages 5-19; N = 35, ages 1-20, respectively) were measured (ELISA). RESULTS Asthmatic children had higher EV71 IgE Ab levels than non-asthmatic (P < 0.001). Non-asthmatic children had significantly higher EV71 IgM Ab levels than asthmatic (P < 0.001). Despite low serum IgE levels of non-asthmatic, compared with asthmatic (P < 0.001), the non-asthmatic children produced significantly more IL-2 and IL-4 than asthmatic (P < 0.001; P < 0.001). The ages of the asthmatics, but not the non-asthmatics had a significant effect on the levels of EV 71 IgE Abs (P = 0.02; P = 0.356). A test of difference between these two slopes was significant. However, the ages of the non-asthmatic, but not the asthmatic children had a significant effect on the levels of EV 71 IgM Abs; a test of difference between these two slopes was significant. CONCLUSIONS Increased specific EV71 IgE Ab responses may indicate that EV71 infection may also be an infectious trigger in asthma. However, the role of specific EV71 IgM Abs, Th2 cytokines, and age in non-asthmatic children should be further studied.
Collapse
Affiliation(s)
- T A Smith-Norowitz
- Department of Pediatrics, State University of New York Downstate Medical Center, Box 49, 450 Clarkson Ave., Brooklyn, New York, 11203, USA.
- Center for Allergy and Asthma Research, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA.
| | - S Carvajal-Raga
- Department of Pediatrics, State University of New York Downstate Medical Center, Box 49, 450 Clarkson Ave., Brooklyn, New York, 11203, USA
| | - J Weedon
- Statistical Design and Analysis Research Division, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
| | - R Joks
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
- Center for Allergy and Asthma Research, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
| | - K B Norowitz
- Department of Pediatrics, State University of New York Downstate Medical Center, Box 49, 450 Clarkson Ave., Brooklyn, New York, 11203, USA
| | - D Weaver
- Department of Pediatrics, State University of New York Downstate Medical Center, Box 49, 450 Clarkson Ave., Brooklyn, New York, 11203, USA
| | - H G Durkin
- Department of Pathology, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
- Center for Allergy and Asthma Research, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
| | - M R Hammerschlag
- Department of Pediatrics, State University of New York Downstate Medical Center, Box 49, 450 Clarkson Ave., Brooklyn, New York, 11203, USA
| | - S Kohlhoff
- Department of Pediatrics, State University of New York Downstate Medical Center, Box 49, 450 Clarkson Ave., Brooklyn, New York, 11203, USA
- Center for Allergy and Asthma Research, State University of New York Downstate Medical Center, Brooklyn, New York, 11203, USA
| |
Collapse
|
12
|
Zhu L, Qi BX, Fang DH, Qi GJ, Gao K, Hu BL. [Application of esmolol in severe hand, foot, and mouth disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:44-48. [PMID: 28100321 PMCID: PMC7390115 DOI: 10.7499/j.issn.1008-8830.2017.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To study the clinical effect and mechanism of action of esmolol in the treatment of severe hand, foot, and mouth disease (HFMD). METHODS A prospective randomized controlled trial was performed. A total of 102 children with severe HFMD were enrolled in the study and were randomly divided into conventional treatment and esmolol treatment groups (n=51 each). The children in the conventional treatment group were given conventional treatment according to the guidelines for the diagnosis and treatment of HFMD. Those in the esmolol treatment group were given esmolol in addition to the conventional treatment. The heart rate (HR), systolic blood pressure (SBP), and respiratory rate (RR) were continuously monitored for all children. Blood samples were collected from all children before treatment and 1, 3, and 5 days after treatment to measure the levels of norepinephrine (NE), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-κB) p65 in mononuclear cells. Serum levels of myocardial enzymes and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured before treatment and after 5 days of treatment. RESULTS There were no significant differences in HR, SBP, RR, NE, TNF-α, IL-6, NF-κB p65, serum myocardial enzymes, and NT-proBNP before treatment between the conventional treatment and esmolol treatment groups. Both groups had significant reductions in these parameters at each time point (P<0.05). Compared with the conventional treatment group, the esmolol treatment group had significant improvements in the above parameters after 1 and 3 days of treatment (P<0.05). After 5 days of treatment, the esmolol treatment group had significant improvements in serum levels of myocardial enzymes and NT-proBNP compared with the conventional treatment group (P<0.05). CONCLUSIONS Early application of esmolol can effectively stabilize the vital signs of the children with severe HFMD. Its mechanism of action may be related to reducing serum catecholamine concentration, alleviating myocardial damage, improving cardiac function, and reducing inflammatory response.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Intensive Care Unit, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, China.
| | | | | | | | | | | |
Collapse
|
13
|
Zhu L, Qi BX, Fang DH, Qi GJ, Gao K, Hu BL. [Application of esmolol in severe hand, foot, and mouth disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:44-48. [PMID: 28100321 PMCID: PMC7390115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/26/2016] [Indexed: 08/01/2024]
Abstract
OBJECTIVE To study the clinical effect and mechanism of action of esmolol in the treatment of severe hand, foot, and mouth disease (HFMD). METHODS A prospective randomized controlled trial was performed. A total of 102 children with severe HFMD were enrolled in the study and were randomly divided into conventional treatment and esmolol treatment groups (n=51 each). The children in the conventional treatment group were given conventional treatment according to the guidelines for the diagnosis and treatment of HFMD. Those in the esmolol treatment group were given esmolol in addition to the conventional treatment. The heart rate (HR), systolic blood pressure (SBP), and respiratory rate (RR) were continuously monitored for all children. Blood samples were collected from all children before treatment and 1, 3, and 5 days after treatment to measure the levels of norepinephrine (NE), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nuclear factor-kappa B (NF-κB) p65 in mononuclear cells. Serum levels of myocardial enzymes and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured before treatment and after 5 days of treatment. RESULTS There were no significant differences in HR, SBP, RR, NE, TNF-α, IL-6, NF-κB p65, serum myocardial enzymes, and NT-proBNP before treatment between the conventional treatment and esmolol treatment groups. Both groups had significant reductions in these parameters at each time point (P<0.05). Compared with the conventional treatment group, the esmolol treatment group had significant improvements in the above parameters after 1 and 3 days of treatment (P<0.05). After 5 days of treatment, the esmolol treatment group had significant improvements in serum levels of myocardial enzymes and NT-proBNP compared with the conventional treatment group (P<0.05). CONCLUSIONS Early application of esmolol can effectively stabilize the vital signs of the children with severe HFMD. Its mechanism of action may be related to reducing serum catecholamine concentration, alleviating myocardial damage, improving cardiac function, and reducing inflammatory response.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Intensive Care Unit, Xuzhou Children's Hospital, Xuzhou, Jiangsu 221006, China.
| | | | | | | | | | | |
Collapse
|
14
|
Xing J, Liu D, Shen S, Su Z, Zhang L, Duan Y, Tong F, Liang Y, Wang H, Deng F, Hu Z, Zhou Y. Pathologic Studies of Fatal Encephalomyelitis in Children Caused by Enterovirus 71. Am J Clin Pathol 2016; 146:95-106. [PMID: 27357294 DOI: 10.1093/ajcp/aqw089] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Enterovirus 71 (EV71) is the major pathogen of hand, foot, and mouth disease and can cause death; however, its pathogenesis remains elusive. METHODS We performed a detailed systematic histopathologic examination and molecular studies on six autopsy cases of EV71 infection using H&E, immunohistochemistry, double immunofluorescence staining, and nested reverse transcription polymerase chain reaction. RESULTS Characteristic features of acute encephalomyelitis were observed. Viral antigens were mainly detected in neuronal cytoplasm and processes in the different brainstem nuclei and spinal cord, including the anterior and posterior horn cells. Viral antigens were also positive in the nerve roots of spinal cord and autonomic ganglia of intestines. CONCLUSIONS Our study revealed direct pathologic evidence supporting viral entry into the central nervous system (CNS) through peripheral nerves. In addition to the major motor pathway, EV71 can also enter the CNS via peripheral sensory and autonomic pathways in retrograde axonal transport.
Collapse
Affiliation(s)
- Jingjun Xing
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Pathology, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhengyuan Su
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lin Zhang
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijie Duan
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Tong
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Liang
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yiwu Zhou
- From the Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wang Z, Nicholls JM, Liu F, Wang J, Feng Z, Liu D, Sun Y, Zhou C, Li Y, Li H, Qi S, Huang X, Sui J, Liao Q, Peiris M, Yu H, Wang Y. Pulmonary and central nervous system pathology in fatal cases of hand foot and mouth disease caused by enterovirus A71 infection. Pathology 2016; 48:267-74. [PMID: 27020504 DOI: 10.1016/j.pathol.2015.12.450] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/28/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
In the past 17 years, neurological disease associated with enterovirus A71 (EV-A71) has increased dramatically in the Asia-Pacific region with a high fatality rate in young infants, often due to pulmonary oedema, however the mechanism of this oedema remains obscure. We analysed the brainstem, heart and lungs of 15 fatal cases of confirmed EV-A71 infection in order to understand the pathophysiological mechanism of death and pulmonary oedema. In keeping with other case studies, the main cause of death was neurogenic pulmonary oedema. In the brainstem, 11 cases showed inflammation and all cases showed parenchymal inflammation with seven cases showing moderate or severe clasmatodendrosis. No viral antigen was detected in sections of the brainstem in any of the cases. All fatal cases showed evidence of pulmonary oedema; however, there was absence of direct pulmonary viral damage or myocarditis-induced damage and EV-A71 viral antigen staining was negative. Though there was no increase in staining for Na/K-ATPase, 11 of the 15 cases showed a marked reduction in aquaporin-4 staining in the lung, and this reduction may contribute to the development of fatal pulmonary oedema.
Collapse
Affiliation(s)
- Zijun Wang
- Division of Laboratory Management, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - John M Nicholls
- Department of Pathology, Hong Kong University, Hong Kong Special Administrative Region, China
| | - Fengfeng Liu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Joshua Wang
- Department of Pathology, Hong Kong University, Hong Kong Special Administrative Region, China
| | - Zijian Feng
- Office of the Director, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Dongge Liu
- Pathology Department, Beijing Hospital, Beijing, China
| | - Yanni Sun
- Pathology Department, Beijing Capital Medical University Affiliated Xuanwu Hospital, Beijing, China
| | - Cheng Zhou
- Beijing IPE Center for Clinical Laboratory, Beijing, China
| | - Yunqian Li
- Pathology Department, Affiliated Hospital of Guilin Medical University, China
| | - Hai Li
- Institution for Infectious Disease Control and Prevention, Guangxi Provincial Centre for Disease Control and Prevention, Nanning, Guangxi, China
| | - Shunxiang Qi
- Institution for Infectious Disease Control and Prevention, Hebei Provincial Centre for Disease Control and Prevention, Shijiazhuang, Hebei, China
| | - Xueyong Huang
- Institution for Infectious Disease Control and Prevention, Henan Provincial Centre for Disease Control and Prevention, Zhengzhou, Henan, China
| | - Jilin Sui
- Division of Infectious Disease Control and Prevention, Changping District Centre for Disease Control and Prevention, Beijing, China
| | - Qiaohong Liao
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yu Wang
- Office of the Director, Chinese Centre for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
16
|
Innate Immunity and Immune Evasion by Enterovirus 71. Viruses 2015; 7:6613-30. [PMID: 26694447 PMCID: PMC4690884 DOI: 10.3390/v7122961] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/16/2015] [Accepted: 12/09/2015] [Indexed: 12/23/2022] Open
Abstract
Enterovirus 71 (EV71) is a major infectious disease affecting millions of people worldwide and it is the main etiological agent for outbreaks of hand foot and mouth disease (HFMD). Infection is often associated with severe gastroenterological, pulmonary, and neurological diseases that are most prevalent in children. Currently, no effective vaccine or antiviral drugs exist against EV71 infection. A lack of knowledge on the molecular mechanisms of EV71 infection in the host and the virus-host interactions is a major constraint to developing specific antiviral strategies against this infection. Previous studies have identified and characterized the function of several viral proteins produced by EV71 that interact with the host innate immune proteins, including type I interferon signaling and microRNAs. These interactions eventually promote efficient viral replication and increased susceptibility to the disease. In this review we discuss the functions of EV71 viral proteins in the modulation of host innate immune responses to facilitate viral replication.
Collapse
|
17
|
Neurotropic Enterovirus Infections in the Central Nervous System. Viruses 2015; 7:6051-66. [PMID: 26610549 PMCID: PMC4664993 DOI: 10.3390/v7112920] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023] Open
Abstract
Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.
Collapse
|
18
|
Zhongping X, Hua L, Ting Y, Zhengling L, Min F, Tianhong X, Runxiang L, Dong S, Guangju J, Lei Y, Rong Y, Fangyu L, Qihan L. Biological characteristics of different epidemic enterovirus 71 strains and their pathogeneses in neonatal mice and rhesus monkeys. Virus Res 2015; 213:82-89. [PMID: 26555165 DOI: 10.1016/j.virusres.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/01/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022]
Abstract
Hand, foot and mouth disease (HFMD) has been prevalent in China since 2008. Enterovirus 71 (EV71) is a common causative agent of HFMD, and various strains of EV71 are prevalent worldwide. The EV71C4 subgenotype is the most endemic strain in China. However, few studies investigating the biological characteristics and pathogeneses of different C4 strains have been reported. Therefore, the current study investigated 19 clinical EV71 strains in neonatal ICR mice and neonatal rhesus monkeys by comparing pathogenicity; the virulence of different viral passages, dosages, and routes of infection; and the effects produced by subject animal age. These 19 clinical EV71 strains, which were of the same subtype, displayed varying pathogenic effects. Three strains (HE31, 231 and 262) induced limb paralysis in neonatal ICR mice. In addition, the degree of virulence was largely dependent upon the dose, route of infection, and number of passages of the challenge virus, as well as the ages of the infected animals. The present study provides valuable basic data to enable further research into EV71 pathogenesis and to facilitate the development of new drugs and vaccines.
Collapse
Affiliation(s)
- Xie Zhongping
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Li Hua
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yang Ting
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Liu Zhengling
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Feng Min
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Xie Tianhong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Long Runxiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Shen Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Jiang Guangju
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yue Lei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yang Rong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Luo Fangyu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Li Qihan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
19
|
Enterovirus 71 Proteins 2A and 3D Antagonize the Antiviral Activity of Gamma Interferon via Signaling Attenuation. J Virol 2015; 89:7028-37. [PMID: 25926657 DOI: 10.1128/jvi.00205-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Enterovirus 71 (EV71) infection causes severe mortality involving multiple possible mechanisms, including cytokine storm, brain stem encephalitis, and fulminant pulmonary edema. Gamma interferon (IFN-γ) may confer anti-EV71 activity; however, the claim that disease severity is highly correlated to an increase in IFN-γ is controversial and would indicate an immune escape initiated by EV71. This study, investigating the role of IFN-γ in EV71 infection using a murine model, showed that IFN-γ was elevated. Moreover, IFN-γ receptor-deficient mice showed higher mortality rates and more severe disease progression with slower viral clearance than wild-type mice. In vitro results showed that IFN-γ pretreatment reduced EV71 yield, whereas EV71 infection caused IFN-γ resistance with attenuated IFN-γ signaling in IFN regulatory factor 1 (IRF1) gene transactivation. To study the immunoediting ability of EV71 proteins in IFN-γ signaling, 11 viral proteins were stably expressed in cells without cytotoxicity; however, viral proteins 2A and 3D blocked IFN-γ-induced IRF1 transactivation following a loss of signal transducer and activator of transcription 1 (STAT1) nuclear translocation. Viral 3D attenuated IFN-γ signaling accompanied by a STAT1 decrease without interfering with IFN-γ receptor expression. Restoration of STAT1 or blocking 3D activity was able to rescue IFN-γ signaling. Interestingly, viral 2A attenuated IFN-γ signaling using another mechanism by reducing the serine phosphorylation of STAT1 following the inactivation of extracellular signal-regulated kinase without affecting STAT1 expression. These results demonstrate the anti-EV71 ability of IFN-γ and the immunoediting ability by EV71 2A and 3D, which attenuate IFN-γ signaling through different mechanisms. IMPORTANCE Immunosurveillance by gamma interferon (IFN-γ) may confer anti-enterovirus 71 (anti-EV71) activity; however, the claim that disease severity is highly correlated to an increase in IFN-γ is controversial and would indicate an immune escape initiated by EV71. IFN-γ receptor-deficient mice showed higher mortality and more severe disease progression, indicating the anti-EV71 property of IFN-γ. However, EV71 infection caused cellular insusceptibility in response to IFN-γ stimulation. We used an in vitro system with viral protein expression to explore the novel IFN-γ inhibitory properties of the EV71 2A and 3D proteins through the different mechanisms. According to this study, targeting either 2A or 3D pharmacologically and/or genetically may sustain a cellular susceptibility in response to IFN-γ, particularly for IFN-γ-mediated anti-EV71 activity.
Collapse
|
20
|
Hung HC, Shih SR, Chang TY, Fang MY, Hsu JTA. The combination effects of licl and the active leflunomide metabolite, A771726, on viral-induced interleukin 6 production and EV-A71 replication. PLoS One 2014; 9:e111331. [PMID: 25412347 PMCID: PMC4239034 DOI: 10.1371/journal.pone.0111331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/22/2014] [Indexed: 01/29/2023] Open
Abstract
Enterovirus 71 (EV-A71) is a neurotropic virus that can cause severe complications involving the central nervous system. No effective antiviral therapeutics are available for treating EV-A71 infection and drug discovery efforts are rarely focused to target this disease. Thus, the main goal of this study was to discover existing drugs with novel indications that may effectively inhibit EV-A71 replication and the inflammatory cytokines elevation. In this study, we showed that LiCl, a GSK3β inhibitor, effectively suppressed EV-A71 replication, apoptosis and inflammatory cytokines production (Interleukin 6, Interleukin-1β) in infected cells. Furthermore, LiCl and an immunomodular agent were shown to strongly synergize with each other in suppressing EV-A71 replication. The results highlighted potential new treatment regimens in suppressing sequelae caused by EV-A71 replication.
Collapse
Affiliation(s)
- Hui-Chen Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shin-Ru Shih
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
- Clinical Virology Laboratory, Department of Clinical Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Teng-Yuan Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Yu Fang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - John T.-A. Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
21
|
Chen Z, Li R, Xie Z, Huang G, Yuan Q, Zeng J. IL-6, IL-10 and IL-13 are associated with pathogenesis in children with Enterovirus 71 infection. Int J Clin Exp Med 2014; 7:2718-2723. [PMID: 25356130 PMCID: PMC4211780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
In the present study, the aim was to reveal the relationship of serum IL-6, IL-10 and IL-13 levels in patient with Enterovirus 71 (EV71) infection. To elucidate the role of immune mechanisms in the pathogenesis of Hand, foot, and mouth disease (HFMD), we analyzed the cytokine of 112 EV71-infected patients. A significant elevation of serum (interleukin) IL-6, IL-10 and IL-13 levels in patients with EV71 infection compare with Un-EV71 infection HFMD patient and Healthy individuals. The production of inflammatory cytokines was increased with disease clinical stage. In addition, the immunological consequences of these cytokine in patient with EV71 infection showed a downward trend after cure. These data suggested that EV71 infection significantly increased the release of circulating IL-6, IL-10 and IL-13. The systemic inflammatory response may play an important role in the pathogenesis of HFMD. Moreover, this study may be designed to evaluate the potential therapeutic of medicine in the treatment of patients with EV71 infection.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Pediatrics, Dongguan People’s HospitalDongguan 523059, China
| | - Ruiqin Li
- Department of Pediatrics, Dongguan People’s HospitalDongguan 523059, China
| | - Zhichao Xie
- Department of Pediatrics, Dongguan People’s HospitalDongguan 523059, China
| | - Guoqiang Huang
- Department of Pediatrics, Dongguan People’s HospitalDongguan 523059, China
| | - Qingchun Yuan
- Department of Pediatrics, Dongguan People’s HospitalDongguan 523059, China
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guandong Medical CollegeDongguan 523808, China
| |
Collapse
|
22
|
Yu P, Gao Z, Zong Y, Bao L, Xu L, Deng W, Li F, Lv Q, Gao Z, Xu Y, Yao Y, Qin C. Histopathological features and distribution of EV71 antigens and SCARB2 in human fatal cases and a mouse model of enterovirus 71 infection. Virus Res 2014; 189:121-32. [PMID: 24842162 DOI: 10.1016/j.virusres.2014.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
Enterovirus 71 (EV71) is a neurotropic pathogen that causes hand, foot, and mouth disease. While infection is usually self-limiting, a minority of patients infected with EV71 develop severe neurological complications. In humans, EV71 has been reported to utilize the scavenger receptor class B, member 2 (SCARB2) as a receptor for infectious cellular entry. In this study, we define the pathological features of EV71-associated disease as well as the distribution of EV71 antigen and SCARB2 in human fatal cases and a mouse model. Histopathologically, human fatal cases showed severe central nervous system (CNS) changes, mainly in the brainstems, spinal cords, and thalamus. These patient further exhibited pulmonary edema and necrotic enteritis. Immunohistochemical analysis of human fatal cases demonstrated that EV71 antigen and SCARB2 were observed mainly in neurons, microglia cells and inflammatory cells in the CNS, and epithelial cells in the intestines. However, skeletal muscle tissue was negative for EV71 antigen. In a mouse model of EV71 infection, we observed massive necrotic myositis, different degrees of viral diseases in CNS, and extensive interstitial pneumonia. In mice, EV71 exhibits strong myotropism compared to the neurotropism seen in humans. EV71 antigen was detected in the spinal cord and brainstem of mice. However, there was no clear correlation between mouse SCARB2 and EV71 antigen distribution in the mouse model, consistent with previous results that SCARB2 functions as a receptor for EV71 in humans but not mice. The EV71-induced lesions seen in the mouse model resembled the pathological changes seen in human samples. These results increase our understanding of EV71 pathogenesis and will inform further work developing a mouse model for EV71 infection.
Collapse
MESH Headings
- Animals
- Antigens, Viral/analysis
- CD36 Antigens/analysis
- Child, Preschool
- Disease Models, Animal
- Enterovirus A, Human/physiology
- Female
- Genome, Viral
- Hand, Foot and Mouth Disease/pathology
- Hand, Foot and Mouth Disease/virology
- Humans
- Infant
- Lysosomal Membrane Proteins/analysis
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- RNA, Viral/genetics
- Receptors, Scavenger/analysis
- Receptors, Virus/analysis
- Sequence Analysis, DNA
- Viral Tropism
Collapse
Affiliation(s)
- Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| | - Zifen Gao
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China.
| | - Yuanyuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China.
| | - Linlin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| | - Lili Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| | - Qi Lv
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| | - Zhancheng Gao
- Department of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China.
| | - Yanfeng Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| | - Yanfeng Yao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing 100021, China.
| |
Collapse
|
23
|
Wang YF, Yu CK. Animal models of enterovirus 71 infection: applications and limitations. J Biomed Sci 2014; 21:31. [PMID: 24742252 PMCID: PMC4013435 DOI: 10.1186/1423-0127-21-31] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 04/11/2014] [Indexed: 01/06/2023] Open
Abstract
Human enterovirus 71 (EV71) has emerged as a neuroinvasive virus that is responsible for several outbreaks in the Asia-Pacific region over the past 15 years. Appropriate animal models are needed to understand EV71 neuropathogenesis better and to facilitate the development of effective vaccines and drugs. Non-human primate models have been used to characterize and evaluate the neurovirulence of EV71 after the early outbreaks in late 1990s. However, these models were not suitable for assessing the neurovirulence level of the virus and were associated with ethical and economic difficulties in terms of broad application. Several strategies have been applied to develop mouse models of EV71 infection, including strategies that employ virus adaption and immunodeficient hosts. Although these mouse models do not closely mimic human disease, they have been applied to determine the pathogenesis of and treatment and prevention of the disease. EV71 receptor-transgenic mouse models have recently been developed and have significantly advanced our understanding of the biological features of the virus and the host-parasite interactions. Overall, each of these models has advantages and disadvantages, and these models are differentially suited for studies of EV71 pathogenesis and/or the pre-clinical testing of antiviral drugs and vaccines. In this paper, we review the characteristics, applications and limitation of these EV71 animal models, including non-human primate and mouse models.
Collapse
Affiliation(s)
| | - Chun-Keung Yu
- Center of Infectious Disease and Signaling Research, Collage of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
24
|
Wang SM, Liu CC. Update of enterovirus 71 infection: epidemiology, pathogenesis and vaccine. Expert Rev Anti Infect Ther 2014; 12:447-56. [PMID: 24579906 DOI: 10.1586/14787210.2014.895666] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Enterovirus 71 (EV71) is a neurotropic human pathogen that is the causative agent of hand foot and mouth disease (HFMD), herpangina and brain stem encephalitis. Recurrent EV71 epidemics of various scales have occurred in the Asia-Pacific region. Several specific cell surface molecules serve as the receptors for EV71. Identification of the receptors is an important step to understand EV71 disease. Cytokines, lymphocytes and monocytes contribute significantly to EV71 pathogenesis. The interaction of EV71 and receptors may be associated with the cytokines immunopathogenesis. Some animal models have been established and aim to explore the pathogenesis of EV71 infections. EV71 antibodies can neutralize or enhance infection at subneutralizing levels. These results are important for EV71 vaccine and therapeutics design. Several clinical trials of human inactivated EV71 vaccine have recently been completed. The purpose of this review is to summarize recent discoveries about the epidemiology and pathogenesis of EV71 and provide insights into human vaccine development.
Collapse
Affiliation(s)
- Shih-Min Wang
- Department of Emergency Medicine, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | | |
Collapse
|
25
|
Zhang Y, Yang E, Pu J, Liu L, Che Y, Wang J, Liao Y, Wang L, Ding D, Zhao T, Ma N, Song M, Wang X, Shen D, Tang D, Huang H, Zhang Z, Chen D, Feng M, Li Q. The gene expression profile of peripheral blood mononuclear cells from EV71-infected rhesus infants and the significance in viral pathogenesis. PLoS One 2014; 9:e83766. [PMID: 24392094 PMCID: PMC3879270 DOI: 10.1371/journal.pone.0083766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 11/07/2013] [Indexed: 12/03/2022] Open
Abstract
Enterovirus 71 (EV71) is the major pathogen responsible for fatal hand, foot and mouth disease (HFMD). Our previous work reported on an EV71-infected rhesus monkey infant model that presented with histo-pathologic changes of the central nervous system (CNS) and lungs. This study is focused on the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs) from EV71-infected rhesus monkey infants. The expression of more than 500 functional genes associated with multiple pathways was modulated. The expression of genes associated with immune inflammatory responses was up-regulated during the period from days 4 to 10 post-infection. The expression of two genes (TAC1 and IL17A), which play major roles in inflammatory reactions, was remarkably up-regulated during the infection period. Furthermore, a higher expression level of the TAC1 gene was identified in the CNS compared to the lungs, but a high expression level of the IL-17A gene was observed in the lungs and not in the CNS. The results of this study suggest at least two facts about EV71 infection, which are that: the TAC1 gene that encodes substance P and neurokinin-A is present in both PBMCs and the hypothalamus; and the up-regulation of IL-17A is sustained in the peripheral blood.
Collapse
Affiliation(s)
- Ying Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Erxia Yang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Jing Pu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Longding Liu
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Yanchun Che
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Jingjing Wang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Yun Liao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Lichun Wang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Dong Ding
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Ting Zhao
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Na Ma
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Ming Song
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Xi Wang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Dong Shen
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Donghong Tang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Hongtai Huang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Zhixiao Zhang
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| | - Dai Chen
- Department of Bioinformatic analyses, Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Mingfei Feng
- Department of Bioinformatic analyses, Novel Bioinformatics Co., Ltd, Shanghai, China
| | - Qihan Li
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medicine Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
26
|
Xiu JH, Zhu H, Xu YF, Liu JN, Xia XZ, Zhang LF. Necrotizing myositis causes restrictive hypoventilation in a mouse model for human enterovirus 71 infection. Virol J 2013; 10:215. [PMID: 23809248 PMCID: PMC3710232 DOI: 10.1186/1743-422x-10-215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 06/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterovirus 71 (EV71) infections are associated with a high prevalence of hand, foot and mouth disease (HFMD) in children and occasionally cause lethal complications. Most infections are self-limiting. However, resulting complications, including aseptic meningitis, encephalitis, poliomyelitis-like acute flaccid paralysis, and neurological pulmonary edema or hemorrhage, are responsible for the lethal symptoms of EV71 infection, the pathogenesis of which remain to be clarified. RESULTS In the present study, 2-week-old Institute of Cancer Research (ICR) mice were infected with a mouse-adapted EV71 strain. These infected mice demonstrated progressive paralysis and died within 12 days post infection (d.p.i.). EV71, which mainly replicates in skeletal muscle tissues, caused severe necrotizing myositis. Lesions in the central nervous system (CNS) and other tissues were not observed. CONCLUSIONS Necrotizing myositis of respiratory-related muscles caused severe restrictive hypoventilation and subsequent hypoxia, which could explain the fatality of EV71-infected mice. This finding suggests that, in addition to CNS injury, necrotic myositis may also be responsible for the paralysis and death observed in EV71-infected mice.
Collapse
|
27
|
Lee YP, Wang YF, Wang JR, Huang SW, Yu CK. Enterovirus 71 blocks selectively type I interferon production through the 3C viral protein in mice. J Med Virol 2012; 84:1779-89. [PMID: 22997081 DOI: 10.1002/jmv.23377] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Type I interferons (IFNs) represent an essential innate defense mechanism for controlling enterovirus 71 (EV 71) infection. Mice inoculated with EV 71 produced a significantly lower amount of type I IFNs than those inoculated with poly (I:C), adenovirus type V, or coxsackievirus B3 (CB3). EV 71 infection, however, mounted a proinflammatory response with a significant increase in the levels of serum and brain interleukin (IL)-6, monocyte chemoattractant protein-1, tumor necrosis factor, and IFN-γ. EV 71 infection abolished both poly (I:C)- and CB3-induced type I IFN production of mice. Such effect was not extended to other enteroviruses including coxsackievirus A24, B2, B3, and echovirus 9, as mice infected with these viruses retained type I IFN responsiveness upon poly (I:C) challenge. In addition, EV 71-infected RAW264.7 cells produced significantly lower amount of type I IFNs than non-infected cells upon poly (I:C) stimulation. The inhibitory effect of EV 71 on type I IFN production was attributed to the viral protein 3C, which was confirmed using over-expression systems in both mice and RAW264.7 cells. The 3C over-expression, however, did not interfere with poly (I:C)-induced proinflammatory cytokine production. These findings indicate that EV 71 can hamper the host innate defense by blocking selectively type I IFN synthesis through the 3C viral protein.
Collapse
Affiliation(s)
- Yi-Ping Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Cytokine immunopathogenesis of enterovirus 71 brain stem encephalitis. Clin Dev Immunol 2012; 2012:876241. [PMID: 22956971 PMCID: PMC3432373 DOI: 10.1155/2012/876241] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/27/2012] [Indexed: 12/19/2022]
Abstract
Enterovirus 71 (EV71) is one of the most important causes of herpangina and hand, foot, and mouth disease. It can also cause severe complications of the central nervous system (CNS). Brain stem encephalitis with pulmonary edema is the severe complication that can lead to death. EV71 replicates in leukocytes, endothelial cells, and dendritic cells resulting in the production of immune and inflammatory mediators that shape innate and acquired immune responses and the complications of disease. Cytokines, as a part of innate immunity, favor the development of antiviral and Th1 immune responses. Cytokines and chemokines play an important role in the pathogenesis EV71 brain stem encephalitis. Both the CNS and the systemic inflammatory responses to infection play important, but distinctly different, roles in the pathogenesis of EV71 pulmonary edema. Administration of intravenous immunoglobulin and milrinone, a phosphodiesterase inhibitor, has been shown to modulate inflammation, to reduce sympathetic overactivity, and to improve survival in patients with EV71 autonomic nervous system dysregulation and pulmonary edema.
Collapse
|
29
|
Huang HI, Weng KF, Shih SR. Viral and host factors that contribute to pathogenicity of enterovirus 71. Future Microbiol 2012; 7:467-79. [DOI: 10.2217/fmb.12.22] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The single-stranded RNA virus enterovirus 71 (EV71), which belongs to the Picornaviridae family, has caused epidemics worldwide, particularly in the Asia–Pacific region. Most EV71 infections result in mild clinical symptoms, including herpangina and hand, foot and mouth disease. However, serious pathological complications have also been reported, especially for young children. The mechanisms of EV71 disease progression remain unclear. The pathogenesis of adverse clinical outcomes may relate to many factors, including cell tropism, cell death and host immune responses. This article reviews the recent advances in the identification of factors determining EV71 cell tropism, the associated mechanisms of viral infection-induced cell death and the interplay between EV71 and immunity.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- The Center for Molecular & Clinical Immunology, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|