1
|
Forghani S, Mirzaee HR, Rezvani H, Forghani A, Mahdavi Sabet F, Hojjat A, Malekzadeh M, Akbari A, Tabarestani S. The patterns and spectrum of BRCA1 and BRCA2 mutations in Iranian breast and ovarian cancer patients. Fam Cancer 2025; 24:34. [PMID: 40159529 DOI: 10.1007/s10689-025-00459-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
Women with inherited BRCA1/2 mutations are at increased risk of breast and ovarian cancer. The reports on the prevalence and spectrum of these mutations have been primarily focused on individuals with European ancestry. A previous study on Iranian breast cancer patients reported no BRCA1/2 mutation in early-onset breast cancer with no other criteria, which is contrary to other populations. The purpose of this study was to characterize the patterns of these mutations in Iranian breast and ovarian cancer patients and evaluate the predictive efficacy of the Manchester scoring system in patients and their unaffected family members. We retrospectively reviewed the genetic testing performed for breast and ovarian cancer patients and unaffected individuals with a positive family history. The study participants were selected based on the NCCN (National Comprehensive Cancer Network) criteria (version 2.2024). A total of 376 female breast cancer patients, 49 ovarian cancer patients, and 74 unaffected individuals were enrolled in this study. In breast cancer patients, 24 (6.4%) BRCA1 and 23 (6.1%) BRCA2 mutations were detected. In ovarian cancer patients, 9 (18.5%) BRCA1 and 1 (2%) BRCA2 mutations were identified. Three (4.1%) BRCA2 mutations were identified in unaffected individuals. Seven breast cancer patients with age of cancer diagnosis ≤ 40 and no other criteria (including family history) had an underlying mutation: Four BRCA2, and three BRCA1 mutations. The Manchester score performed well, with a sensitivity of 81% and a specificity of 70%. More research is needed to clarify the hereditary component of breast and ovarian cancer in Iranian patients.
Collapse
Affiliation(s)
- Shayan Forghani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaee
- Department of Radiotherapy-Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Rezvani
- Department of Hematology-Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Forghani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahdavi Sabet
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hojjat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Malekzadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Tabarestani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Yang S, Zheng C, Xia C, Kang J, Gu L. Detection of positive selection on depression-associated genes. Heredity (Edinb) 2025:10.1038/s41437-025-00753-1. [PMID: 40075226 DOI: 10.1038/s41437-025-00753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Although depression significantly impacts fitness, some hypotheses suggest that it may offer a survival benefit. However, there has been limited systematic investigation into the selection pressures acting on genes associated with depression at the genomic level. Here, we conducted comparative genomic analyses and computational molecular evolutionary analyses on 320 depression-associated genes at two levels, i.e., across the primate phylogeny (long timescale selection) and in modern human populations (recent selection). We identified seven genes under positive selection in the human lineage, and 46 genes under positive selection in modern human populations. Most positively selected variants in modern human populations were at UTR regions and non-coding exons, indicating the importance of gene expression regulation in the evolution of depression-associated genes. Positively selected genes are not only related to immune responses, but also function in reproduction and dietary adaptation. Notably, the proportion of depression-associated genes under positive selection was significantly higher than the positively selected genes at the genome-wide average level in African, East Asian, and South Asian populations. We also identified two positively selected loci that happened to be associated with depression in the South Asian population. Our study revealed that depression-associated genes are subject to varying selection pressures across different populations. We suggest that, in precision medicine-particularly in gene therapy-it is crucial to consider the specific functions of genes within distinct populations.
Collapse
Affiliation(s)
- Shiyu Yang
- Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510180, China
| | - Chenqing Zheng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Canwei Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jihui Kang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Langyu Gu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| |
Collapse
|
3
|
Fadel YM, Khaled M, Emam M, Marzouk NH, Sobih SED, Abd-Elaty H, Elrashedy WM, Mostafa G, Eldeen SA, Bador M, Antunes A, Hadidi ME. Positive Selection Shapes Breast Cancer Tumor Suppressor Genes: Unveiling Insights into BRCA1, BRCA2, and MDC1 Stability. J Mol Evol 2025; 93:100-110. [PMID: 39681652 DOI: 10.1007/s00239-024-10222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Worldwide, breast cancer is the leading cause of death in women with cancers. Given this situation, new approaches to treatment are urgently needed. Tumor Suppressor Genes (TSGs) defects play a crucial role in tumor development, and recent studies propose their reactivation as a promising way for clinical intervention in breast cancer. Here, we performed detailed evolutionary analyses of 241 breast cancer TSGs across 25 mammalian genomes, revealing 28 genes under strong positive selection. These genes exhibit elevated molecular pressure in codons corresponding to amino acids located in crucial protein domains and motifs. Notably, one positively selected site in the BRCA1 C-terminal domain is known for its role in DNA damage response, suggesting potential interference with DNA repair mechanisms. Moreover, the substitution of some other sites found in important key motifs, namely two codons in BRCA2 (752 and 939) localized within the phosphoinositide-3-OH-kinase-related and playing a crucial role in the DNA repair and the DNA damage checkpoints. Our findings could be inspirational to foster future recommendations for drug-targeting sites and further illuminate the function of these proteins. Finally, the code developed in our study is delivered in the Automated tool for positive selection (ATPs) ( https://github.com/APS-P/Automated-Tool-for-Positive-Selection-ATPS-/wiki ) to assist the easy reproducibility and support future evolutionary genomics analyses.
Collapse
Affiliation(s)
- Youssef M Fadel
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Marwan Khaled
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Mohamed Emam
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal
| | - Nour H Marzouk
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Sief El-Din Sobih
- Department of Biology, Faculty of Sciences, Utah State University, Logan, UT, 84321, USA
| | - Habiba Abd-Elaty
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Wafaa M Elrashedy
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Gehad Mostafa
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Salma Alm Eldeen
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Mohaned Bador
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Mohamed El Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| |
Collapse
|
4
|
Amin MR, Hasan M, DeGiorgio M. Digital Image Processing to Detect Adaptive Evolution. Mol Biol Evol 2024; 41:msae242. [PMID: 39565932 PMCID: PMC11631197 DOI: 10.1093/molbev/msae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data are limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks. Digital image processing methods termed α-molecules are a class of techniques for multiscale representation of objects that can extract a diverse set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension of the wavelet concept that considers events occurring along curves within images. We show that application of these α-molecule techniques to extract features from image representations of haplotype alignments yield high true positive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, with performance rivaling those of contemporary deep learning approaches for detecting sweeps.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mahmudul Hasan
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
5
|
Ruiz-García M, Castellanos A, Kaston F, Pinedo-Castro M, Shostell JM. New Insights into the Molecular Evolution of Tapirus pinchaque (Tapiridae, Perissodactyla) and the Rise and Fall of Tapirus kabomani as a Full Species. Genes (Basel) 2024; 15:1537. [PMID: 39766804 PMCID: PMC11675149 DOI: 10.3390/genes15121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Large wild mammals are extremely important in their respective ecological communities and are frequently considered to be emblematic. This is the case of the different tapir species, the largest terrestrial mammals from the Neotropics. Despite their large size and being objects of interest for many naturalists, the field still lacks critical genetics and systematics information about tapir species. In the current work, we analyzed four molecular datasets (mitogenomes, and three nuclear genes, RAG 1-2, IRBP, and BRCA1) of two South American tapirs: the Andean tapir (Tapirus pinchaque) and the alleged new species of tapir, Tapirus kabomani. We derived four main findings. (1) Our molecular phylogenetic analyses showed T. pinchaque as the youngest tapir branch in Neotropics and a sister species of Tapirus terrestris. This contradicts the traditional morphological observations of renowned zoologists and paleontologists, who considered T. pinchaque as the oldest Neotropical tapir. (2) Our data does not support that the alleged T. kabomani is a full species. Rather, it is a specific group within T. terrestris. (3) T. pinchaque is the Neotropical tapir species which yielded the lowest levels of genetic diversity (both for mitochondrial and nuclear data). (4) The spatial genetic structure for T. pinchaque shows differences depending on the type of molecular marker used. With mitogenomes, the spatial structure is relatively weak, whereas with two nuclear genes (RAG 1-2 and IRBP), the spatial structure is highly significant. Curiously, for the other nuclear gene (BRCA1), the spatial structure is practically nonexistent. In any case, the northernmost population of T. pinchaque we studied (Los Nevados National Park in Colombia) was in a peripatric situation and was the most genetically differentiated. This is important for the adequate conservation of this population. (5) T. pinchaque showed clear evidence of population expansion during the last part of the Pleistocene, a period during which the dryness and glacial cold extinguished many large mammals in the Americas. However, T. pinchaque survived and spread throughout the Northern Andes.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- Laboratorio de Genética de Poblaciones-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A No 43-82, Bogotá 110311, Colombia;
- Instituto Nacional de Biodiversidad (INABIO), Pje Rumipamba N.341 y Av. De los Shyris, Quito 170135, Ecuador;
| | - Armando Castellanos
- Instituto Nacional de Biodiversidad (INABIO), Pje Rumipamba N.341 y Av. De los Shyris, Quito 170135, Ecuador;
- Andean Bear Fundation, La Isla, Quito 170521, Ecuador
| | - Franz Kaston
- Fundación Nativa, Apartado Aéreo 59199, Bogotá 110121, Colombia;
| | - Myreya Pinedo-Castro
- Laboratorio de Genética de Poblaciones-Biología Evolutiva, Unidad de Genética, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A No 43-82, Bogotá 110311, Colombia;
| | - Joseph Mark Shostell
- Department of Math Science and Technology, University of Minnesota Crookston, Crookston, MN 56716, USA;
| |
Collapse
|
6
|
He J, Kou SH, Li J, Ding X, Wang SM. Pathogenic variants in human DNA damage repair genes mostly arose after the latest human out-of-Africa migration. Front Genet 2024; 15:1408952. [PMID: 38948361 PMCID: PMC11211533 DOI: 10.3389/fgene.2024.1408952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The DNA damage repair (DDR) system in human genome is pivotal in maintaining genomic integrity. Pathogenic variation (PV) in DDR genes impairs their function, leading to genome instability and increased susceptibility to diseases, especially cancer. Understanding the evolution origin and arising time of DDR PV is crucial for comprehending disease susceptibility in modern humans. Methods We used big data approach to identify the PVs in DDR genes in modern humans. We mined multiple genomic databases derived from 251,214 modern humans of African and non-Africans. We compared the DDR PVs between African and non-African. We also mined the DDR PVs in the genomic data derived from 5,031 ancient humans. We used the DDR PVs from ancient humans as the intermediate to further the DDR PVs between African and non-African. Results and discussion We identified 1,060 single-base DDR PVs across 77 DDR genes in modern humans of African and non-African. Direct comparison of the DDR PVs between African and non-African showed that 82.1% of the non-African PVs were not present in African. We further identified 397 single-base DDR PVs in 56 DDR genes in the 5,031 ancient humans dated between 45,045 and 100 years before present (BP) lived in Eurasian continent therefore the descendants of the latest out-of-Africa human migrants occurred 50,000-60,000 years ago. By referring to the ancient DDR PVs, we observed that 276 of the 397 (70.3%) ancient DDR PVs were exclusive in non-African, 106 (26.7%) were shared between non-African and African, and only 15 (3.8%) were exclusive in African. We further validated the distribution pattern by testing the PVs in BRCA and TP53, two of the important genes in genome stability maintenance, in African, non-African, and Ancient humans. Our study revealed that DDR PVs in modern humans mostly emerged after the latest out-of-Africa migration. The data provides a foundation to understand the evolutionary basis of disease susceptibility, in particular cancer, in modern humans.
Collapse
Affiliation(s)
| | | | | | | | - San Ming Wang
- Department of Public Health and Medical Administration, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, University of Macau, Taipa, China
| |
Collapse
|
7
|
Brand CL, Oliver GT, Farkas IZ, Buszczak M, Levine MT. Recurrent Duplication and Diversification of a Vital DNA Repair Gene Family Across Drosophila. Mol Biol Evol 2024; 41:msae113. [PMID: 38865490 PMCID: PMC11210505 DOI: 10.1093/molbev/msae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Maintaining genome integrity is vital for organismal survival and reproduction. Essential, broadly conserved DNA repair pathways actively preserve genome integrity. However, many DNA repair proteins evolve adaptively. Ecological forces like UV exposure are classically cited drivers of DNA repair evolution. Intrinsic forces like repetitive DNA, which also imperil genome integrity, have received less attention. We recently reported that a Drosophila melanogaster-specific DNA satellite array triggered species-specific, adaptive evolution of a DNA repair protein called Spartan/MH. The Spartan family of proteases cleave hazardous, covalent crosslinks that form between DNA and proteins ("DNA-protein crosslink repair"). Appreciating that DNA satellites are both ubiquitous and universally fast-evolving, we hypothesized that satellite DNA turnover spurs adaptive evolution of DNA-protein crosslink repair beyond a single gene and beyond the D. melanogaster lineage. This hypothesis predicts pervasive Spartan gene family diversification across Drosophila species. To study the evolutionary history of the Drosophila Spartan gene family, we conducted population genetic, molecular evolution, phylogenomic, and tissue-specific expression analyses. We uncovered widespread signals of positive selection across multiple Spartan family genes and across multiple evolutionary timescales. We also detected recurrent Spartan family gene duplication, divergence, and gene loss. Finally, we found that ovary-enriched parent genes consistently birthed functionally diverged, testis-enriched daughter genes. To account for Spartan family diversification, we introduce a novel mechanistic model of antagonistic coevolution that links DNA satellite evolution and adaptive regulation of Spartan protease activity. This framework promises to accelerate our understanding of how DNA repeats drive recurrent evolutionary innovation to preserve genome integrity.
Collapse
Affiliation(s)
- Cara L Brand
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Genevieve T Oliver
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabella Z Farkas
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Buszczak
- Department of Molecular Biology and Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mia T Levine
- Department of Biology and Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Zhao B, Li J, Sinha S, Qin Z, Kou SH, Xiao F, Lei H, Chen T, Cao W, Ding X, Wang SM. Pathogenic variants in human DNA damage repair genes mostly arose in recent human history. BMC Cancer 2024; 24:415. [PMID: 38575974 PMCID: PMC10993466 DOI: 10.1186/s12885-024-12160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Genome stability is maintained by the DNA damage repair (DDR) system composed of multiple DNA repair pathways of hundreds of genes. Germline pathogenic variation (PV) in DDR genes damages function of the affected DDR genes, leading to genome instability and high risk of diseases, in particular, cancer. Knowing evolutionary origin of the PVs in human DDR genes is essential to understand the etiology of human diseases. However, answer to the issue remains largely elusive. In this study, we analyzed evolutionary origin for the PVs in human DDR genes. METHODS We identified 169 DDR genes by referring to various databases and identified PVs in the DDR genes of modern humans from ClinVar database. We performed a phylogenetic analysis to analyze the conservation of human DDR PVs in 100 vertebrates through cross-species genomic data comparison using the phyloFit program of the PHAST package and visualized the results using the GraphPad Prism software and the ggplot module. We identified DDR PVs from over 5000 ancient humans developed a database to host the DDR PVs ( https://genemutation.fhs.um.edu.mo/dbDDR-AncientHumans ). Using the PV data, we performed a molecular archeological analysis to compare the DDR PVs between modern humans and ancient humans. We analyzed evolution selection of DDR genes across 20 vertebrates using the CodeML in PAML for phylogenetic analysis. RESULTS Our phylogenic analysis ruled out cross-species conservation as the origin of human DDR PVs. Our archeological approach identified rich DDR PVs shared between modern and ancient humans, which were mostly dated within the last 5000 years. We also observed similar pattern of quantitative PV distribution between modern and ancient humans. We further detected a set of ATM, BRCA2 and CHEK2 PVs shared between human and Neanderthals. CONCLUSIONS Our study reveals that human DDR PVs mostly arose in recent human history. We propose that human high cancer risk caused by DDR PVs can be a by-product of human evolution.
Collapse
Affiliation(s)
- Bojin Zhao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Jiaheng Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Zixin Qin
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Si Hoi Kou
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Fengxia Xiao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Huijun Lei
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Tianhui Chen
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Wenming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, 310022, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310018, China
| | - Xiaofan Ding
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
9
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
10
|
Korneenko TV, Pestov NB. Oncogenic BRCA1,2 Mutations in the Human Lineage-A By-Product of Sexual Selection? Biomedicines 2023; 12:22. [PMID: 38275383 PMCID: PMC10813183 DOI: 10.3390/biomedicines12010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
In this review, we discuss the long-known problem of tissue-specific carcinogenesis in BRCA1 and BRCA2 mutation carriers: while the genes are expressed ubiquitously, increased cancer risk is observed mostly in the breast and ovaries, and to a much lesser extent, in some other tissues such as the prostate or pancreas. We reevaluate hypotheses on the evolutionary origin of these mutations in humans. Also, we align together the reports that at least some great apes have much lower risks of epithelial cancers in general and breast cancer in particular with the fact that humans have more voluminous breast tissue as compared to their closest extant relatives, particularly chimpanzees and bonobos. We conjecture that this disparity may be a consequence of sexual selection, augmented via selection for enhanced lactation. Further, we argue that there is an organ-specific enigma similar to the Peto paradox: breast cancer risk in humans is only minimally correlated with breast size. These considerations lead to the hypothesis that, along with the evolutionary development of larger breasts in humans, additional changes have played a balancing role in suppressing breast cancer. These yet-to-be-discovered mechanisms, while purely speculative, may be valuable to understanding human breast cancer, though they may not be exclusive to the mammary gland epithelial cells. Combining these themes, we review some anti-carcinogenesis preventive strategies and prospects of new interventions against breast cancer.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| |
Collapse
|
11
|
Liu K, Hu L, Wang S, Chen X, Liu Y, Zhao S, Wang H, Li L, Li H. An efficient qPCR assay for the quantification of human cells in preclinical animal models by targeting human specific DNA in the intron of BRCA1. Mol Biol Rep 2023; 50:9229-9237. [PMID: 37805662 DOI: 10.1007/s11033-023-08853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Precise quantification of grafted human cells in preclinical animal models such as non-human primates, rodents and rabbits is needed for the evaluations of the safety and efficacy of cell therapy. Quantitative PCR (qPCR) as a swift, sensitive and powerful assay is suitable for human cell quantification. However, it is a formidable challenge due to that the genome of non-human primates share more than 95% of similarity as human. METHODS In the present study, we developed a probe-based quantitative PCR (qPCR) assay for the quantification of human cells in preclinical animal models via targeting human specific DNA in the intron of BRCA1 (termed BRCA1-qPCR). The 5' and 3' end of BRCA1-qPCR probe was conjugated with FAM and non-fluorescent quencher-minor groove binder (NFQ-MGB), respectively. 1 µg of genomic DNA from human and preclinical animal models including rhesus monkeys, cynomolgus monkeys, New Zealand white rabbits, SD rats, C57BL/6 and BALB/c mice were used for determining the specificity and sensitivity of the BRCA1-qPCR assay. A calibration curve was generated by BRCA1-qPCR analysis of linearized plasmid containing targeted human specific DNA in BRCA1. The BRCA1-qPCR assay was validated by analysis of 0.003%, 0.03% and 0.3% of human leukocytes mixed within murine leukocytes. RESULTS The BRCA1-qPCR assay detected human DNA rather than DNA from tested species. The amplification efficiency of the BRCA1-qPCR assay was 95.4% and the linearity of the calibration curve was R2 = 0.9997. The BRCA1-qPCR assay detected as low as 5 copies of human specific DNA and is efficient to specially amplify 30 pg human DNA in the presence of 1 µg of genomic DNA from tested species, respectively. The BRCA1-qPCR assay was able to quantify as low as 0.003% of human cells within murine leukocytes. CONCLUSION The BRCA1-qPCR assay is efficient for the quantification of human cells in preclinical animal models.
Collapse
Affiliation(s)
- Ke Liu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China
| | - Lang Hu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Siyu Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Xinzhu Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuting Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Li
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, China.
| | - Hui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
- Department of Biotechnology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
12
|
Amin MR, Hasan M, Arnab SP, DeGiorgio M. Tensor Decomposition-based Feature Extraction and Classification to Detect Natural Selection from Genomic Data. Mol Biol Evol 2023; 40:msad216. [PMID: 37772983 PMCID: PMC10581699 DOI: 10.1093/molbev/msad216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
Inferences of adaptive events are important for learning about traits, such as human digestion of lactose after infancy and the rapid spread of viral variants. Early efforts toward identifying footprints of natural selection from genomic data involved development of summary statistic and likelihood methods. However, such techniques are grounded in simple patterns or theoretical models that limit the complexity of settings they can explore. Due to the renaissance in artificial intelligence, machine learning methods have taken center stage in recent efforts to detect natural selection, with strategies such as convolutional neural networks applied to images of haplotypes. Yet, limitations of such techniques include estimation of large numbers of model parameters under nonconvex settings and feature identification without regard to location within an image. An alternative approach is to use tensor decomposition to extract features from multidimensional data although preserving the latent structure of the data, and to feed these features to machine learning models. Here, we adopt this framework and present a novel approach termed T-REx, which extracts features from images of haplotypes across sampled individuals using tensor decomposition, and then makes predictions from these features using classical machine learning methods. As a proof of concept, we explore the performance of T-REx on simulated neutral and selective sweep scenarios and find that it has high power and accuracy to discriminate sweeps from neutrality, robustness to common technical hurdles, and easy visualization of feature importance. Therefore, T-REx is a powerful addition to the toolkit for detecting adaptive processes from genomic data.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mahmudul Hasan
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
13
|
Kou SH, Li J, Tam B, Lei H, Zhao B, Xiao F, Wang S. TP53 germline pathogenic variants in modern humans were likely originated during recent human history. NAR Cancer 2023; 5:zcad025. [PMID: 37304756 PMCID: PMC10251638 DOI: 10.1093/narcan/zcad025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
TP53 is crucial for maintaining genome stability and preventing oncogenesis. Germline pathogenic variation in TP53 damages its function, causing genome instability and increased cancer risk. Despite extensive study in TP53, the evolutionary origin of the human TP53 germline pathogenic variants remains largely unclear. In this study, we applied phylogenetic and archaeological approaches to identify the evolutionary origin of TP53 germline pathogenic variants in modern humans. In the phylogenic analysis, we searched 406 human TP53 germline pathogenic variants in 99 vertebrates distributed in eight clades of Primate, Euarchontoglires, Laurasiatheria, Afrotheria, Mammal, Aves, Sarcopterygii and Fish, but we observed no direct evidence for the cross-species conservation as the origin; in the archaeological analysis, we searched the variants in 5031 ancient human genomes dated between 45045 and 100 years before present, and identified 45 pathogenic variants in 62 ancient humans dated mostly within the last 8000 years; we also identified 6 pathogenic variants in 3 Neanderthals dated 44000 to 38515 years before present and 1 Denisovan dated 158 550 years before present. Our study reveals that TP53 germline pathogenic variants in modern humans were likely originated in recent human history and partially inherited from the extinct Neanderthals and Denisovans.
Collapse
Affiliation(s)
- Si Hoi Kou
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Jiaheng Li
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Benjamin Tam
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Huijun Lei
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Bojin Zhao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Fengxia Xiao
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
14
|
Chian JS, Li J, Wang SM. Evolutionary Origin of Human PALB2 Germline Pathogenic Variants. Int J Mol Sci 2023; 24:11343. [PMID: 37511102 PMCID: PMC10379391 DOI: 10.3390/ijms241411343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
PALB2 (Partner and localizer of BRCA2) is crucial for repairing DNA double-stranded breaks (DSBs) through homologous recombination (HR). Germline pathogenic variation in PALB2 disrupts DNA damage repair and increases the risk of Fanconi Anemia, breast cancer, and ovarian cancer. Determination of the evolutionary origin of human PALB2 variants will promote a deeper understanding of the biological basis of PALB2 germline variation and its roles in human diseases. We tested the evolution origin for 1444 human PALB2 germline variants, including 484 pathogenic and 960 benign variants. We performed a phylogenic analysis by tracing the variants in 100 vertebrates. However, we found no evidence to show that cross-species conservation was the origin of PALB2 germline pathogenic variants, but it is indeed a rich source for PALB2 germline benign variants. We performed a paleoanthropological analysis by tracing the variants in over 5000 ancient humans. We identified 50 pathogenic in 71 ancient humans dated from 32,895 to 689 before the present, of which 90.1% were dated within the recent 10,000 years. PALB2 benign variants were also highly shared with ancient humans. Data from our study reveal that human PALB2 pathogenic variants mostly arose in recent human history.
Collapse
Affiliation(s)
- Jia Sheng Chian
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| | - Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao
| |
Collapse
|
15
|
Arnab SP, Amin MR, DeGiorgio M. Uncovering Footprints of Natural Selection Through Spectral Analysis of Genomic Summary Statistics. Mol Biol Evol 2023; 40:msad157. [PMID: 37433019 PMCID: PMC10365025 DOI: 10.1093/molbev/msad157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the selected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. In recent years, numerous methods have been devised that consider genomic spatial distributions across summary statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each analysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, allowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the population-genomic toolkit for learning about adaptive processes from genomic data.
Collapse
Affiliation(s)
- Sandipan Paul Arnab
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Md Ruhul Amin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
16
|
Gu L, Xia C, Yang S, Yang G. The adaptive evolution of cancer driver genes. BMC Genomics 2023; 24:215. [PMID: 37098512 PMCID: PMC10131384 DOI: 10.1186/s12864-023-09301-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 04/08/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Cancer is a life-threatening disease in humans; yet, cancer genes are frequently reported to be under positive selection. This suggests an evolutionary-genetic paradox in which cancer evolves as a secondary product of selection in human beings. However, systematic investigation of the evolution of cancer driver genes is sparse. RESULTS Using comparative genomics analysis, population genetics analysis and computational molecular evolutionary analysis, the evolution of 568 cancer driver genes of 66 cancer types were evaluated at two levels, selection on the early evolution of humans (long timescale selection in the human lineage during primate evolution, i.e., millions of years), and recent selection in modern human populations (~ 100,000 years). Results showed that eight cancer genes covering 11 cancer types were under positive selection in the human lineage (long timescale selection). And 35 cancer genes covering 47 cancer types were under positive selection in modern human populations (recent selection). Moreover, SNPs associated with thyroid cancer in three thyroid cancer driver genes (CUX1, HERC2 and RGPD3) were under positive selection in East Asian and European populations, consistent with the high incidence of thyroid cancer in these populations. CONCLUSIONS These findings suggest that cancer can be evolved, in part, as a by-product of adaptive changes in humans. Different SNPs at the same locus can be under different selection pressures in different populations, and thus should be under consideration during precision medicine, especially for targeted medicine in specific populations.
Collapse
Affiliation(s)
- Langyu Gu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China.
| | - Canwei Xia
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shiyu Yang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510180, Guangdong, China
| | - Guofen Yang
- Department of Gynecology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
17
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
18
|
Wang SM. A global perspective on the ethnic-specific BRCA variation and its implication in clinical application. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:14-20. [PMID: 39036311 PMCID: PMC11256725 DOI: 10.1016/j.jncc.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Pathogenic BRCA1 and BRCA2 (BRCA) variation is the genetic predisposition for high cancer risk affecting mostly breast and ovarian. BRCA variation information is widely used in clinical diagnosis, treatment, and prevention of BRCA-related cancer. The positive selection imposed on human BRCA leads to highly ethnic-specific BRCA variation to adapt different living environment on earth. Most of the human BRCA variants identified so far were from the European descendant populations and used as the standard reference for global human populations, whereas BRCA variation in other ethnic populations remains poorly characterized. This review addresses the origin of ethnic-specific BRCA variation, the importance of ethnic-specific BRCA variation in clinical application, the limitation of current BRCA variation data, and potential solutions to fill the gap.
Collapse
Affiliation(s)
- San Ming Wang
- Ministry of Education Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
19
|
Kechin A, Boyarskikh U, Barinov A, Tanas A, Kazakova S, Zhevlova A, Khrapov E, Subbotin S, Mishukova O, Kekeeva T, Demidova I, Filipenko M. A spectrum of BRCA1 and BRCA2 germline deleterious variants in ovarian cancer in Russia. Breast Cancer Res Treat 2023; 197:387-395. [PMID: 36367610 DOI: 10.1007/s10549-022-06782-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Pathogenic variants (PVs) in BRCA1 and BRCA2 genes are essential biomarkers of an increased breast and ovarian cancer risk and tumor sensitivity to poly ADP ribose polymerase inhibitors. In Russia, eight PVs were thought to be the most common, among which BRCA1 c.5266dup is the most frequently identified one. METHODS We show the distribution of BRCA1/2 PVs identified with quantitative PCR and targeted next-generation sequencing in 1399 ovarian cancer patients recruited into the study from 72 Russian regions in 2015-2021. RESULTS The most abundant PVs were c.5266dup (41.0%), c.4035del (7.0%), c.1961del (6.3%), c.181 T > G (5.2%), c.3756_3759del (1.8%), c.3700_3704del (1.5%), and c.68_69del (1.5%), all found in BRCA1 and known to be recurrent in Russia. Several other frequent PVs were identified: c.5152 + 1G > T (1.2%), c.1687C > T (1.0%), c.4689C > G (0.9%), c.1510del (0.6%), c.2285_2286del (0.6%) in the BRCA1 gene; and c.5286 T > G (1.2%), c.2808_2811del (0.8%), c.3847_3848del (0.8%), c.658_659del (0.7%), c.7879A > T (0.6%), in the BRCA2 gene. For the most common PV in the BRCA2 gene c.5286 T > G, we suggested that it arose about 700 years ago and is a new founder mutation. CONCLUSION This study extends our knowledge about the BRCA1 and BRCA2 pathogenic variants variability.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Ulyana Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey Barinov
- Moscow City Oncology Hospital No 62 of the Moscow Health Department, Istra, 143423, Russia
| | - Alexander Tanas
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | | | | | - Evgeniy Khrapov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Sergey Subbotin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga Mishukova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatiana Kekeeva
- Research Centre for Medical Genetics, Moscow, 115522, Russia
| | - Irina Demidova
- Moscow City Oncology Hospital No 62 of the Moscow Health Department, Istra, 143423, Russia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
20
|
Deycmar S, Gomes B, Charo J, Ceppi M, Cline JM. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J Immunother Cancer 2023; 11:e005514. [PMID: 36593067 PMCID: PMC9808758 DOI: 10.1136/jitc-2022-005514] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/03/2023] Open
Abstract
The complexity of cancer immunotherapy (CIT) demands reliable preclinical models to successfully translate study findings to the clinics. Non-human primates (NHPs; here referring to rhesus and cynomolgus macaques) share broad similarities with humans including physiology, genetic homology, and importantly also immune cell populations, immune regulatory mechanisms, and protein targets for CIT. Furthermore, NHP naturally develop cancers such as colorectal and breast cancer with an incidence, pathology, and age pattern comparable to humans. Thus, these tumor-bearing monkeys (TBMs) have the potential to bridge the experimental gap between early preclinical cancer models and patients with human cancer.This review presents our current knowledge of NHP immunology, the incidence and features of naturally-occurring cancers in NHP, and recent TBM trials investigating CIT to provide a scientific rationale for this unique model for human cancer.
Collapse
Affiliation(s)
- Simon Deycmar
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Bruno Gomes
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
| | - Jehad Charo
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Maurizio Ceppi
- Roche Pharmaceutical Research and Early Development Oncology, Roche Innovation Center Basel, Basel, Switzerland
- iTeos Therapeutics Inc, Watertown, Massachusetts, USA
| | - J Mark Cline
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
21
|
Qin Z, Huang T, Guo M, Wang SM. Distinct landscapes of deleterious variants in DNA damage repair system in ethnic human populations. Life Sci Alliance 2022; 5:5/9/e202101319. [PMID: 35595529 PMCID: PMC9122833 DOI: 10.26508/lsa.202101319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/03/2022] Open
Abstract
Deleterious variants in the DNA damage repair system can cause genome instability and increase cancer risk. The highly ethnic-specific DDR deleterious variation from this study suggests its potential relationship with different disease susceptibility in ethnic human populations. Deleterious variants in DNA damage repair (DDR) system can cause genome instability and increase cancer risk. In this study, we analyzed the deleterious variants in DDR system in 16 ethnic human populations. From the genetic variants in 169 DDR genes involved in nine DDR pathways collected from 158,612 individuals of different ethnic background, we identified 1,781 deleterious variants in 81 DDR genes in eight DDR pathways (https://genemutation.fhs.um.edu.mo/dbddr-global/). Our analysis showed although the quantity of deleterious variants was loaded at a similar level, the landscape of the variants differed substantially among different populations that two-third of the variants were present in single ethnic populations, and the rest was mostly shared between the populations with closer geographic and genetic relationship. The highly ethnic-specific DDR deleterious variation suggests its potential relationship with different disease susceptibility in ethnic human populations.
Collapse
Affiliation(s)
- Zixin Qin
- Cancer Centre and Institute of Translational Medicine, Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- Cancer Centre and Institute of Translational Medicine, Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, China
| | - Maoni Guo
- Cancer Centre and Institute of Translational Medicine, Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
22
|
Huang J, Zhong Y, Makohon-Moore AP, White T, Jasin M, Norell MA, Wheeler WC, Iacobuzio-Donahue CA. Evidence for reduced BRCA2 functional activity in Homo sapiens after divergence from the chimpanzee-human last common ancestor. Cell Rep 2022; 39:110771. [PMID: 35508134 PMCID: PMC11740715 DOI: 10.1016/j.celrep.2022.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 10/12/2021] [Accepted: 04/12/2022] [Indexed: 11/03/2022] Open
Abstract
We performed a comparative analysis of human and 12 non-human primates to identify sequence variations in known cancer genes. We identified 395 human-specific fixed non-silent substitutions that emerged during evolution of human. Using bioinformatics analyses for functional consequences, we identified a number of substitutions that are predicted to alter protein function; one of these mutations is located at the most evolutionarily conserved domain of human BRCA2.
Collapse
Affiliation(s)
- Jinlong Huang
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yi Zhong
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin P Makohon-Moore
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Travis White
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
23
|
Lopez A, Nichols Doyle R, Sandoval C, Nisson K, Yang V, Fregoso OI. Viral Modulation of the DNA Damage Response and Innate Immunity: Two Sides of the Same Coin. J Mol Biol 2022; 434:167327. [PMID: 34695379 PMCID: PMC9119581 DOI: 10.1016/j.jmb.2021.167327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
The DDR consists of multiple pathways that sense, signal, and respond to anomalous DNA. To promote efficient replication, viruses have evolved to engage and even modulate the DDR. In this review, we will discuss a select set of diverse viruses and the range of mechanisms they evolved to interact with the DDR and some of the subsequent cellular consequences. There is a dichotomy in that the DDR can be both beneficial for viruses yet antiviral. We will also review the connection between the DDR and innate immunity. Previously believed to be disparate cellular functions, more recent research is emerging that links these processes. Furthermore, we will discuss some discrepancies in the literature that we propose can be remedied by utilizing more consistent DDR-focused assays. By doing so, we hope to obtain a much clearer understanding of how broadly these mechanisms and phenotypes are conserved among all viruses. This is crucial for human health since understanding how viruses manipulate the DDR presents an important and tractable target for antiviral therapies.
Collapse
Affiliation(s)
- Andrew Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Karly Nisson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Vivian Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Li J, Zhao B, Huang T, Qin Z, Wang SM. Human BRCA pathogenic variants were originated during recent human history. Life Sci Alliance 2022; 5:5/5/e202101263. [PMID: 35165121 PMCID: PMC8860097 DOI: 10.26508/lsa.202101263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. BRCA germline pathogenic variants increase cancer risk. However, the evolutionary origin of human BRCA pathogenic variants remains largely elusive. We tested the 2,972 human BRCA1 and 3,652 human BRCA2 pathogenic variants from ClinVar database in 100 vertebrates across eight clades, but failed to find evidence to show cross-species evolution conservation as the origin; we searched the variants in 2,792 ancient human genome data, and identified 28 BRCA1 and 22 BRCA2 pathogenic variants in 44 cases dated from 45,000 to 300 yr ago; we analyzed the haplotype-dated human BRCA pathogenic founder variants, and observed that they were mostly arisen within the past 3,000 yr; we traced ethnic distribution of human BRCA pathogenic variants, and found that the majority were present in single or a few ethnic populations. Based on the data, we propose that human BRCA pathogenic variants were highly likely arisen in recent human history after the latest out-of-Africa migration, and the expansion of modern human population could largely increase the variation spectrum.
Collapse
Affiliation(s)
- Jiaheng Li
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Bojin Zhao
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- MoE Frontiers Science Center for Precision Oncology, Cancer Center and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
25
|
Lee SH. A Routine Sanger Sequencing Target Specific Mutation Assay for SARS-CoV-2 Variants of Concern and Interest. Viruses 2021; 13:2386. [PMID: 34960655 PMCID: PMC8706074 DOI: 10.3390/v13122386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
As SARS-CoV-2 continues to spread among human populations, genetic changes occur and accumulate in the circulating virus. Some of these genetic changes have caused amino acid mutations, including deletions, which may have a potential impact on critical SARS-CoV-2 countermeasures, including vaccines, therapeutics, and diagnostics. Considerable efforts have been made to categorize the amino acid mutations of the angiotensin-converting enzyme 2 (ACE2) receptor binding domain (RBD) of the spike (S) protein, along with certain mutations in other regions within the S protein as specific variants, in an attempt to study the relationship between these mutations and the biological behavior of the virus. However, the currently used whole genome sequencing surveillance technologies can test only a small fraction of the positive specimens with high viral loads and often generate uncertainties in nucleic acid sequencing that needs additional verification for precision determination of mutations. This article introduces a generic protocol to routinely sequence a 437-bp nested RT-PCR cDNA amplicon of the ACE2 RBD and a 490-bp nested RT-PCR cDNA amplicon of the N-terminal domain (NTD) of the S gene for detection of the amino acid mutations needed for accurate determination of all variants of concern and variants of interest according to the definitions published by the U.S. Centers for Disease Control and Prevention. This protocol was able to amplify both nucleic acid targets into cDNA amplicons to be used as templates for Sanger sequencing on all 16 clinical specimens that were positive for SARS-CoV-2.
Collapse
Affiliation(s)
- Sin Hang Lee
- Affiliation Milford Molecular Diagnostics Laboratory, 2044 Bridgeport Avenue, Milford, CT 06460, USA
| |
Collapse
|
26
|
Wang X, Wang SM. DNA damage repair system in C57BL/6 J mice is evolutionarily stable. BMC Genomics 2021; 22:669. [PMID: 34535077 PMCID: PMC8447752 DOI: 10.1186/s12864-021-07983-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022] Open
Abstract
Background DNA damage repair (DDR) system is vital in maintaining genome stability and survival. DDR consists of over 160 genes in 7 different pathways to repair specific type of DNA damage caused by external and internal damaging factors. The functional importance of DDR system implies that evolution could play important roles in maintaining its functional intactness to perform its function. Indeed, it has been observed that positive selection is present in BRCA1 and BRCA2 (BRCA), which are key genes in homologous recombination pathway of DDR system, in the humans and its close relatives of chimpanzee and bonobos. Efforts have been made to investigate whether the same selection could exist for BRCA in other mammals but found no evidence so far. However, as most of the studies in non-human mammals analyzed only a single or few individuals in the studied species, the observation may not reflect the true status in the given species. Furthermore, few studies have studied evolution selection in other DDR genes except BRCA. In current study, we used laboratory mouse C57BL/6 J as a model to address evolution selection on DDR genes in non-primate mammals by dynamically monitoring genetic variation across 30 generations in C57BL/6 J. Results Using exome sequencing, we collected coding sequences of 169 DDR genes from 44 C57BL/6 J individual genomes in 2018. We compared the coding sequences with the mouse reference genome sequences derived from 1998 C57BL/6 J DNA, and with the mouse Eve6B reference genome sequences derived from 2003 C57BL/6 J DNA, covering 30 generations of C57BL/6 J from 1998 to 2018. We didn’t identify meaningful coding variation in either Brca1 or Brca2, or in 167 other DDR genes across the 30 generations. In the meantime, we did identify 812 coding variants in 116 non-DNA damage repair genes during the same period, which served as a quality control to validate the reliability of our analytic pipeline and the negative results in DDR genes. Conclusions DDR genes in laboratory mouse strain C57BL/6 J were not under positive selection across its 30-generation period, highlighting the possibility that DDR system in rodents could be evolutionarily stable. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07983-7.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
27
|
Rowley PA, Ellahi A, Han K, Patel JS, Van Leuven JT, Sawyer SL. Nuku, a family of primate retrocopies derived from KU70. G3 (BETHESDA, MD.) 2021; 11:jkab163. [PMID: 34849803 PMCID: PMC8496227 DOI: 10.1093/g3journal/jkab163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/30/2021] [Indexed: 11/16/2022]
Abstract
The gene encoding the ubiquitous DNA repair protein, Ku70p, has undergone extensive copy number expansion during primate evolution. Gene duplications of KU70 have the hallmark of long interspersed element-1 mediated retrotransposition with evidence of target-site duplications, the poly-A tails, and the absence of introns. Evolutionary analysis of this expanded family of KU70-derived "NUKU" retrocopies reveals that these genes are both ancient and also actively being created in extant primate species. NUKU retrocopies show evidence of functional divergence away from KU70, as evinced by their altered pattern of tissue expression and possible tissue-specific translation. Molecular modeling predicted that amino acid changes in Nuku2p at the interaction interface with Ku80p would prevent the assembly of the Ku heterodimer. The lack of Nuku2p-Ku80p interaction was confirmed by yeast two-hybrid assay, which contrasts the robust interaction of Ku70p-Ku80p. While several NUKU retrocopies appear to have been degraded by mutation, NUKU2 shows evidence of positive natural selection, suggesting that this retrocopy is undergoing neofunctionalization. Although Nuku proteins do not appear to antagonize retrovirus transduction in cell culture, the observed expansion and rapid evolution of NUKUs could be being driven by alternative selective pressures related to infectious disease or an undefined role in primate physiology.
Collapse
Affiliation(s)
- Paul A Rowley
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Aisha Ellahi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78751, USA
| | - Kyudong Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio- Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Jagdish Suresh Patel
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA and
| | - James T Van Leuven
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA and
| | - Sara L Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80302, USA
| |
Collapse
|
28
|
Pawłowski B, Żelaźniewicz A. The evolution of perennially enlarged breasts in women: a critical review and a novel hypothesis. Biol Rev Camb Philos Soc 2021; 96:2794-2809. [PMID: 34254729 DOI: 10.1111/brv.12778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022]
Abstract
The possession of permanent, adipose breasts in women is a uniquely human trait that develops during puberty, well in advance of the first pregnancy. The adaptive role and developmental pattern of this breast morphology, unusual among primates, remains an unresolved conundrum. The evolutionary origins of this trait have been the focus of many hypotheses, which variously suggest that breasts are a product of sexual selection or of natural selection due to their putative role in assisting in nursing or as a thermoregulatory organ. Alternative hypotheses assume that permanent breasts are a by-product of other evolutionary changes. We review and evaluate these hypotheses in the light of recent literature on breast morphology, physiology, phylogeny, ontogeny, sex differences, and genetics in order to highlight their strengths and flaws and to propose a coherent perspective and a new hypothesis on the evolutionary origins of perennially enlarged breasts in women. We propose that breasts appeared as early as Homo ergaster, originally as a by-product of other coincident evolutionary processes of adaptive significance. These included an increase in subcutaneous fat tissue (SFT) in response to the demands of thermoregulatory and energy storage, and of the ontogenetic development of the evolving brain. An increase in SFT triggered an increase in oestradiol levels (E2). An increase in meat in the diet of early Homo allowed for further hormonal changes, such as greater dehydroepiandrosterone (DHEA/S) synthesis, which were crucial for brain evolution. DHEA/S is also easily converted to E2 in E2-sensitive body parts, such as breasts and gluteofemoral regions, causing fat accumulation in these regions, enabling the evolution of perennially enlarged breasts. Furthermore, it is also plausible that after enlarged breasts appeared, they were co-opted for other functions, such as attracting mates and indicating biological condition. Finally, we argue that the multifold adaptive benefits of SFT increase and hormonal changes outweighed the possible costs of perennially enlarged breasts, enabling their further development.
Collapse
Affiliation(s)
- Bogusław Pawłowski
- Department of Human Biology, University of Wrocław, ul. Przybyszewskiego 63, Wrocław, 51-148, Poland
| | - Agnieszka Żelaźniewicz
- Department of Human Biology, University of Wrocław, ul. Przybyszewskiego 63, Wrocław, 51-148, Poland
| |
Collapse
|
29
|
Sahm A, Koch P, Horvath S, Hoffmann S. An analysis of methylome evolution in primates. Mol Biol Evol 2021; 38:4700-4714. [PMID: 34175932 PMCID: PMC8557466 DOI: 10.1093/molbev/msab189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although the investigation of the epigenome becomes increasingly important, still little is known about the long-term evolution of epigenetic marks and systematic investigation strategies are still lacking. Here, we systematically demonstrate the transfer of classic phylogenetic methods such as maximum likelihood based on substitution models, parsimony, and distance-based to interval-scaled epigenetic data. Using a great apes blood data set, we demonstrate that DNA methylation is evolutionarily conserved at the level of individual CpGs in promotors, enhancers, and genic regions. Our analysis also reveals that this epigenomic conservation is significantly correlated with its transcription factor binding density. Binding sites for transcription factors involved in neuron differentiation and components of AP-1 evolve at a significantly higher rate at methylation than at the nucleotide level. Moreover, our models suggest an accelerated epigenomic evolution at binding sites of BRCA1, chromobox homolog protein 2, and factors of the polycomb repressor 2 complex in humans. For most genomic regions, the methylation-based reconstruction of phylogenetic trees is at par with sequence-based reconstruction. Most strikingly, phylogenetic reconstruction using methylation rates in enhancer regions was ineffective independently of the chosen model. We identify a set of phylogenetically uninformative CpG sites enriched in enhancers controlling immune-related genes.
Collapse
Affiliation(s)
- Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
30
|
Chian J, Sinha S, Qin Z, Wang SM. BRCA1 and BRCA2 Variation in Taiwanese General Population and the Cancer Cohort. Front Mol Biosci 2021; 8:685174. [PMID: 34235180 PMCID: PMC8256441 DOI: 10.3389/fmolb.2021.685174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/28/2021] [Indexed: 01/08/2023] Open
Abstract
BRCA1 and BRCA2 (BRCA) play essential roles in maintaining genome stability. Rapidly evolving human BRCA generates oncogenic variants causing high cancer risk. BRCA variation is ethnic-specific in reflecting adaptation and/or effects of genetic drift. Taiwanese population of 23.8 million is an admixture of multiple ethnic origins; Taiwan's subtropical and tropical climate and geographically islandic location provide a unique natural environment. Therefore, Taiwanese population provides a unique model to study human BRCA variation. Through collecting, standardizing, annotating, and classifying publicly available BRCA variants derived from Taiwanese general population and the cancer cohort, we identified 335 BRCA variants, of which 164 were from 1,517 non-cancer individuals, 126 from 2,665 cancer individuals, and 45 from both types of individuals. We compared the variant data with those from other ethnic populations such as mainland Chinese, Macau Chinese, Japanese, Korean, Indian, and non-Asians. We observed that the sharing rates with other Asian ethnic populations were correlated with its genetic relationship. Over 60% of the 335 Taiwanese BRCA variants were VUS, unclassified variants, or novel variants, reflecting the ethnic-specific features of Taiwanese BRCA variation. While it remains challenging to classify these variants, our structural and in silico analyses predicted their enrichment of BRCA deleterious variants. We further determined the 3.8% prevalence of BRCA pathogenic variants in the Taiwanese breast cancer cohort, and determined 0.53% prevalence of the BRCA pathogenic variants in Taiwanese general population, with the estimated 126,140 BRCA pathogenic variant carriers. We identified BRCA2 c.5164_5165delAG at BRCA2 BRC6 motif as a potential founder mutation in Taiwanese population. Our study on BRCA variation in Taiwanese and other East Asian populations demonstrates that ethnic specificity is a common phenomenon for BRCA variation in East Asian population; the data generated from the study provide a reference for clinical applications in BRCA-related cancer in Taiwanese population.
Collapse
Affiliation(s)
- Jiasheng Chian
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
31
|
Zhang L, Feng L, Lou M, Deng X, Liu C, Li L. The ovarian carcinoma risk with the polymorphisms of CYP1B1 come from the positive selection. Am J Transl Res 2021; 13:4322-4341. [PMID: 34150017 PMCID: PMC8205773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Ovarian carcinoma is one of the major causes of gynecological cancer. This study aimed to evaluate the association of CYP1 family polymorphism with the risk of ovarian carcinoma and chemotherapy resistance. Positive selection was detected among human CYP1A1, CYP1A2, and CYP1B1, and other species. Several positive sites were detected by site models and brach-site models. Meta-analysis was conducted for the sites rs1056836 (MAF 0.39) and rs1056827 (MAF 0.36) of CYP1B1 to clarify the association between gene polymorphisms and ovarian carcinoma risk. Subgroup analysis showed the association of rs1056836 polymorphism with ovarian cancer risk among Caucasians and Asians, while all the six genetic models showed no association among African-Americans. All the six genetic models showed no association of rs1056827 polymorphism with ovarian cancer risk. The polymorphisms of rs1056836 associated with ovarian cancer risk were detected in chemotherapy-sensitive and drug-resistant ovarian cancer patients. DNA was extracted from 62 chemotherapy resistance Ovarian carcinoma tissue samples and 137 chemotherapy-sensitive ovarian carcinoma tissue samples as controls. Gene polymorphisms were genotyped using the Sequenom MassARRAY SNP approach. There was no significant association between the CYP1B1 rs1056836 polymorphism and chemotherapy resistance of ovarian cancer in all genetic models. The results suggest that rs1056836 polymorphism of gene CYP1B1 under obvious selection pressure had a significantly increased risk for ovarian carcinoma. However, it had no significant correlation with chemotherapy resistance of ovarian cancer.
Collapse
Affiliation(s)
- Liying Zhang
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University Nanning, China
| | - Liyuan Feng
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University Nanning, China
| | - Meng Lou
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University Nanning, China
| | - Xihan Deng
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University Nanning, China
| | - Chuanzhong Liu
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University Nanning, China
| | - Li Li
- Department of Gynecologic Oncology, The Affiliated Tumor Hospital of Guangxi Medical University Nanning, China
| |
Collapse
|
32
|
Judd EN, Gilchrist AR, Meyerson NR, Sawyer SL. Positive natural selection in primate genes of the type I interferon response. BMC Ecol Evol 2021; 21:65. [PMID: 33902453 PMCID: PMC8074226 DOI: 10.1186/s12862-021-01783-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Background The Type I interferon response is an important first-line defense against viruses. In turn, viruses antagonize (i.e., degrade, mis-localize, etc.) many proteins in interferon pathways. Thus, hosts and viruses are locked in an evolutionary arms race for dominance of the Type I interferon pathway. As a result, many genes in interferon pathways have experienced positive natural selection in favor of new allelic forms that can better recognize viruses or escape viral antagonists. Here, we performed a holistic analysis of selective pressures acting on genes in the Type I interferon family. We initially hypothesized that the genes responsible for inducing the production of interferon would be antagonized more heavily by viruses than genes that are turned on as a result of interferon. Our logic was that viruses would have greater effect if they worked upstream of the production of interferon molecules because, once interferon is produced, hundreds of interferon-stimulated proteins would activate and the virus would need to counteract them one-by-one.
Results We curated multiple sequence alignments of primate orthologs for 131 genes active in interferon production and signaling (herein, “induction” genes), 100 interferon-stimulated genes, and 100 randomly chosen genes. We analyzed each multiple sequence alignment for the signatures of recurrent positive selection. Counter to our hypothesis, we found the interferon-stimulated genes, and not interferon induction genes, are evolving significantly more rapidly than a random set of genes. Interferon induction genes evolve in a way that is indistinguishable from a matched set of random genes (22% and 18% of genes bear signatures of positive selection, respectively). In contrast, interferon-stimulated genes evolve differently, with 33% of genes evolving under positive selection and containing a significantly higher fraction of codons that have experienced selection for recurrent replacement of the encoded amino acid. Conclusion Viruses may antagonize individual products of the interferon response more often than trying to neutralize the system altogether.
Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01783-z.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Alison R Gilchrist
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Nicholas R Meyerson
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA
| | - Sara L Sawyer
- Department of Molecular, Cellular and Developmental Biology; BioFrontiers Institute, University of Colorado Boulder, Boulder, USA.
| |
Collapse
|
33
|
Dumas G, Malesys S, Bourgeron T. Systematic detection of brain protein-coding genes under positive selection during primate evolution and their roles in cognition. Genome Res 2021; 31:484-496. [PMID: 33441416 PMCID: PMC7919455 DOI: 10.1101/gr.262113.120] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
The human brain differs from that of other primates, but the genetic basis of these differences remains unclear. We investigated the evolutionary pressures acting on almost all human protein-coding genes (N = 11,667; 1:1 orthologs in primates) based on their divergence from those of early hominins, such as Neanderthals, and non-human primates. We confirm that genes encoding brain-related proteins are among the most strongly conserved protein-coding genes in the human genome. Combining our evolutionary pressure metrics for the protein-coding genome with recent data sets, we found that this conservation applied to genes functionally associated with the synapse and expressed in brain structures such as the prefrontal cortex and the cerebellum. Conversely, several genes presenting signatures commonly associated with positive selection appear as causing brain diseases or conditions, such as micro/macrocephaly, Joubert syndrome, dyslexia, and autism. Among those, a number of DNA damage response genes associated with microcephaly in humans such as BRCA1, NHEJ1, TOP3A, and RNF168 show strong signs of positive selection and might have played a role in human brain size expansion during primate evolution. We also showed that cerebellum granule neurons express a set of genes also presenting signatures of positive selection and that may have contributed to the emergence of fine motor skills and social cognition in humans. This resource is available online and can be used to estimate evolutionary constraints acting on a set of genes and to explore their relative contributions to human traits.
Collapse
Affiliation(s)
- Guillaume Dumas
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
- Department of Psychiatry, Université de Montreal, CHU Sainte-Justine Hospital, Montreal H3T 1C5, Quebec, Canada
| | - Simon Malesys
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, Université de Paris, Paris 75015, France
| |
Collapse
|
34
|
Trusler O, Goodwin J, Laslett AL. BRCA1 and BRCA2 associated breast cancer and the roles of current modelling systems in drug discovery. Biochim Biophys Acta Rev Cancer 2020; 1875:188459. [PMID: 33129865 DOI: 10.1016/j.bbcan.2020.188459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023]
Abstract
For a drug candidate to be fully developed takes years and investment of hundreds of millions of dollars. There is no doubt that drug development is difficult and risky, but vital to protecting against devastating disease. This difficulty is clearly evident in BRCA1 and BRCA2 related breast cancer, with current treatment options largely confined to invasive surgical procedures, as well as chemotherapy and radiotherapy regimes which damage healthy tissue and can leave remnant disease. Consequently, patient survival and relapse rates are far from ideal, and new candidate treatments are needed. The preclinical stages of drug discovery are crucial to get right for translation to hospital beds. Disease models must take advantage of current technologies and be accurate for rapid and translatable treatments. Careful selection of cell lines must be coupled with high throughput techniques, with promising results trialled further in highly accurate humanised patient derived xenograft models. Traditional adherent drug screening should transition to 3D culture systems amenable to high throughput techniques if the gap between in vitro and in vivo studies is to be partially bridged. The possibility of organoid, induced pluripotent stem cell, and conditionally reprogrammed in vitro models is tantalising, however protocols are yet to be fully established. This review of BRCA1 and BRCA2 cancer biology and current modelling systems will hopefully guide the design of future drug discovery endeavours and highlight areas requiring improvement.
Collapse
Affiliation(s)
- Oliver Trusler
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Jacob Goodwin
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | - Andrew L Laslett
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia.
| |
Collapse
|
35
|
Mezzavilla M, Cocca M, Guidolin F, Gasparini P. A population-based approach for gene prioritization in understanding complex traits. Hum Genet 2020; 139:647-655. [DOI: 10.1007/s00439-020-02152-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
|
36
|
Thomas F, Giraudeau M, Renaud F, Ujvari B, Roche B, Pujol P, Raymond M, Lemaitre JF, Alvergne A. Can postfertile life stages evolve as an anticancer mechanism? PLoS Biol 2019; 17:e3000565. [PMID: 31805037 PMCID: PMC6917346 DOI: 10.1371/journal.pbio.3000565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Why a postfertile stage has evolved in females of some species has puzzled evolutionary biologists for over 50 years. We propose that existing adaptive explanations have underestimated in their formulation an important parameter operating both at the specific and the individual levels: the balance between cancer risks and cancer defenses. During their life, most multicellular organisms naturally accumulate oncogenic processes in their body. In parallel, reproduction, notably the pregnancy process in mammals, exacerbates the progression of existing tumors in females. When, for various ecological or evolutionary reasons, anticancer defenses are too weak, given cancer risk, older females could not pursue their reproduction without triggering fatal metastatic cancers, nor even maintain a normal reproductive physiology if the latter also promotes the growth of existing oncogenic processes, e.g., hormone-dependent malignancies. At least until stronger anticancer defenses are selected for in these species, females could achieve higher inclusive fitness by ceasing their reproduction and/or going through menopause (assuming that these traits are easier to select than anticancer defenses), thereby limiting the risk of premature death due to metastatic cancers. Because relatively few species experience such an evolutionary mismatch between anticancer defenses and cancer risks, the evolution of prolonged life after reproduction could also be a rare, potentially transient, anticancer adaptation in the animal kingdom.
Collapse
Affiliation(s)
- Frédéric Thomas
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - Mathieu Giraudeau
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - François Renaud
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Benjamin Roche
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
- Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes, Unité Mixte de Recherches, Institut de Recherches pour le développement/Sorbonne Université, France
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Pascal Pujol
- Centre de Recherches Ecologiques et Evolutives sur le Cancer/Centre de Recherches en Ecologie et Evolution de la Santé, Unité Mixte de Recherches, Institut de Recherches pour le Développement 224-Centre National de la Recherche Scientifique 5290-Université de Montpellier, Montpellier, France
- CHU Arnaud de Villeneuve, Montpellier, France
| | - Michel Raymond
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jean-François Lemaitre
- Centre National de la Recherche Scientifique, Unité mixte de recherche 5558, Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1 Villeurbanne, France
| | - Alexandra Alvergne
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom
| |
Collapse
|
37
|
HUANG Y, LUO M, HUANG J, HUANG S, WEI L, ZHANG Y, ZHANG Z. The Expression Level of BRCA2 and Its Changes during Chemotherapy in Patients with Different Pathological Types of Mammary Cancer. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:1654-1662. [PMID: 31700821 PMCID: PMC6825661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND We aimed to investigate the expression level of breast cancer susceptibility gene 2 (BRCA2) and its changes during chemotherapy in patients with different pathological types of mammary cancer (MC). METHODS Overall, 102 patients treated in Affiliated Tumor Hospital of Guangxi Medical University, China from April 2013 to August 2017 were enrolled as experimental group, including 58 patients with noninvasive MC (group A) and 44 with invasive MC (group B). Fifty healthy volunteers at the same time were enrolled as control group. The relative expression of BRCA2 in the blood of MC patients was detected by real-time fluorescence quantitative PCR (FQ-PCR). RESULTS In the experimental group, the expression level of BRCA2 in group A was higher than that in group B before chemotherapy (P<0.001); the expression level in group A and group B 1 month after chemotherapy was higher than that before chemotherapy (P<0.001); the expression level in the both groups 3 months after chemotherapy was higher than that 1 month after chemotherapy (P<0.001); the expression level of BRCA2 in blood of group A increased gradually before, 1 month and 3 months after chemotherapy (P<0.001). The expression level of BRCA2 in blood of group B increased gradually at the same time points (P<0.001). CONCLUSION BRCA2 is over-expressed in noninvasive MC patient and under-expressed in invasive MC patient. And it can be used as an index for monitoring the condition of MC patients with different pathological types during chemotherapy.
Collapse
|
38
|
Al Hannan F, Keogh MB, Taha S, Al Buainain L. Characterization of BRCA1 and BRCA2 genetic variants in a cohort of Bahraini breast cancer patients using next-generation sequencing. Mol Genet Genomic Med 2019; 7:e00771. [PMID: 31131559 PMCID: PMC6625152 DOI: 10.1002/mgg3.771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/16/2019] [Accepted: 04/18/2019] [Indexed: 12/29/2022] Open
Abstract
Background Breast cancer is the most common malignancy in women worldwide. About 5%–10% are due to hereditary predisposition. The contribution of BRCA1/2 mutations to familial breast cancer in Bahrain has not been explored. The objective of this study was to investigate the spectrum of BRCA1/2 genetic variants and estimate their frequencies in familial breast cancer. We also aim to test the efficiency of the next‐generation sequencing (NGS) as a powerful tool for detecting genetic variation within BRCA1/2 genes. Methods Twenty‐five unrelated female patients diagnosed with familial breast cancer were screened for BRCA1/2 variants. All targeted coding exons and exon–intron boundaries of BRCA1/2 genes were amplified with 167 pairs of primers by NGS. Results We have identified two deleterious BRCA1/2 variants in two patients, one in BRCA1 gene (c.4850C>A) and other in BRCA2 gene (c.67+2T>C). In addition to the deleterious variants, we identified 24 distinct missense variants of uncertain significance, 10 of them are seen to confer minor but cumulatively significant risk of breast cancer. Conclusion Our data suggest that BRCA1/2 variants may contribute to the pathogenesis of familial breast cancer in Bahrain. It also shows that NGS is useful tool for screening BRCA1/2 genetic variants of probands and unaffected relatives.
Collapse
Affiliation(s)
- Fatima Al Hannan
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Busaiteen, Bahrain
| | - Michael B Keogh
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Busaiteen, Bahrain
| | - Safa Taha
- Al Jawhara Centre for Molecular Medicine & Inherited Disorders, Arabian Gulf University, Manama, Bahrain
| | | |
Collapse
|
39
|
A glycan shield on chimpanzee CD4 protects against infection by primate lentiviruses (HIV/SIV). Proc Natl Acad Sci U S A 2019; 116:11460-11469. [PMID: 31113887 DOI: 10.1073/pnas.1813909116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Pandemic HIV-1 (group M) emerged following the cross-species transmission of a simian immunodeficiency virus from chimpanzees (SIVcpz) to humans. Primate lentiviruses (HIV/SIV) require the T cell receptor CD4 to enter into target cells. By surveying the sequence and function of CD4 in 50 chimpanzee individuals, we find that all chimpanzee CD4 alleles encode a fixed, chimpanzee-specific substitution (34T) that creates a glycosylation site on the virus binding surface of the CD4 receptor. Additionally, a single nucleotide polymorphism (SNP) has arisen in chimpanzee CD4 (68T) that creates a second glycosylation site on the same virus-binding interface. This substitution is not yet fixed, but instead alleles containing this SNP are still circulating within chimpanzee populations. Thus, all allelic versions of chimpanzee CD4 are singly glycosylated at the virus binding surface, and some allelic versions are doubly glycosylated. Doubly glycosylated forms of chimpanzee CD4 reduce HIV-1 and SIVcpz infection by as much as two orders of magnitude. Full restoration of virus infection in cells bearing chimpanzee CD4 requires reversion of both threonines at sites 34 and 68, destroying both of the glycosylation sites, suggesting that the effects of the glycans are additive. Differentially glycosylated CD4 receptors were biochemically purified and used in neutralization assays and microscale thermophoresis to show that the glycans on chimpanzee CD4 reduce binding affinity with the lentiviral surface glycoprotein, Env. These glycans create a shield that protects CD4 from being engaged by viruses, demonstrating a powerful form of host resistance against deadly primate lentiviruses.
Collapse
|
40
|
Bhaskaran SP, Chandratre K, Gupta H, Zhang L, Wang X, Cui J, Kim YC, Sinha S, Jiang L, Lu B, Wu X, Qin Z, Huang T, Wang SM. Germline variation in BRCA1/2 is highly ethnic-specific: Evidence from over 30,000 Chinese hereditary breast and ovarian cancer patients. Int J Cancer 2019; 145:962-973. [PMID: 30702160 PMCID: PMC6617753 DOI: 10.1002/ijc.32176] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 01/04/2023]
Abstract
BRCA1 and BRCA2 play essential roles in maintaining the genome stability. Pathogenic germline mutations in these two genes disrupt their function, lead to genome instability and increase the risk of developing breast and ovarian cancers. BRCA mutations have been extensively screened in Caucasian populations, and the resulting information are used globally as the standard reference in clinical diagnosis, treatment and prevention of BRCA-related cancers. Recent studies suggest that BRCA mutations can be ethnic-specific, raising the question whether a Caucasian-based BRCA mutation information can be used as a universal standard worldwide, or whether an ethnicity-based BRCA mutation information system need to be developed for the corresponding ethnic populations. In this study, we used Chinese population as a model to test ethnicity-specific BRCA mutations considering that China has one of the latest numbers of breast cancer patients therefore BRCA mutation carriers. Through comprehensive data mining, standardization and annotation, we collected 1,088 distinct BRCA variants derived from over 30,000 Chinese individuals, one of the largest BRCA data set from a non-Caucasian population covering nearly all known BRCA variants in the Chinese population (https://dbBRCA-Chinese.fhs.umac.mo). Using this data, we performed multi-layered analyses to determine the similarities and differences of BRCA variation between Chinese and non-Chinese ethnic populations. The results show the substantial differences of BRCA data between Chinese and non-Chinese ethnicities. Our study indicates that the current Caucasian population-based BRCA data is not adequate to represent the BRCA status in non-Caucasian populations. Therefore, ethnic-based BRCA standards need to be established to serve for the non-Caucasian populations.
Collapse
Affiliation(s)
- Shanmuga Priya Bhaskaran
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Khyati Chandratre
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Hemant Gupta
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaoyu Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jian Cui
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE
| | - Yeong C Kim
- Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Luhan Jiang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Boya Lu
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaobing Wu
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zixin Qin
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Teng Huang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
41
|
Abstract
Identifying genomic locations of natural selection from sequence data is an ongoing challenge in population genetics. Current methods utilizing information combined from several summary statistics typically assume no correlation of summary statistics regardless of the genomic location from which they are calculated. However, due to linkage disequilibrium, summary statistics calculated at nearby genomic positions are highly correlated. We introduce an approach termed Trendsetter that accounts for the similarity of statistics calculated from adjacent genomic regions through trend filtering, while reducing the effects of multicollinearity through regularization. Our penalized regression framework has high power to detect sweeps, is capable of classifying sweep regions as either hard or soft, and can be applied to other selection scenarios as well. We find that Trendsetter is robust to both extensive missing data and strong background selection, and has comparable power to similar current approaches. Moreover, the model learned by Trendsetter can be viewed as a set of curves modeling the spatial distribution of summary statistics in the genome. Application to human genomic data revealed positively selected regions previously discovered such as LCT in Europeans and EDAR in East Asians. We also identified a number of novel candidates and show that populations with greater relatedness share more sweep signals.
Collapse
Affiliation(s)
- Mehreen R Mughal
- Bioinformatics and Genomics at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Michael DeGiorgio
- Departments of Biology and Statistics, Pennsylvania State University,University Park, PA
- Institute for CyberScience, Pennsylvania State University, University Park, PA
| |
Collapse
|
42
|
van den Tempel N, Zelensky AN, Odijk H, Laffeber C, Schmidt CK, Brandsma I, Demmers J, Krawczyk PM, Kanaar R. On the Mechanism of Hyperthermia-Induced BRCA2 Protein Degradation. Cancers (Basel) 2019; 11:cancers11010097. [PMID: 30650591 PMCID: PMC6356811 DOI: 10.3390/cancers11010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is a designation for a number of pathways that protects our DNA from various damaging agents. In normal cells, the DDR is extremely important for maintaining genome integrity, but in cancer cells these mechanisms counteract therapy-induced DNA damage. Inhibition of the DDR could therefore be used to increase the efficacy of anti-cancer treatments. Hyperthermia is an example of such a treatment—it inhibits a sub-pathway of the DDR, called homologous recombination (HR). It does so by inducing proteasomal degradation of BRCA2 —one of the key HR factors. Understanding the precise mechanism that mediates this degradation is important for our understanding of how hyperthermia affects therapy and how homologous recombination and BRCA2 itself function. In addition, mechanistic insight into the process of hyperthermia-induced BRCA2 degradation can yield new therapeutic strategies to enhance the effects of local hyperthermia or to inhibit HR. Here, we investigate the mechanisms driving hyperthermia-induced BRCA2 degradation. We find that BRCA2 degradation is evolutionarily conserved, that BRCA2 stability is dependent on HSP90, that ubiquitin might not be involved in directly targeting BRCA2 for protein degradation via the proteasome, and that BRCA2 degradation might be modulated by oxidative stress and radical scavengers.
Collapse
Affiliation(s)
- Nathalie van den Tempel
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Charlie Laffeber
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Christine K Schmidt
- Department of Biochemistry, The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK.
| | - Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Jeroen Demmers
- Department of Biochemistry, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Michalak P, Kang L. Unique divergence of the breast cancer 2 ( BRCA2) gene in Neanderthals. Hereditas 2018; 155:34. [PMID: 30410429 PMCID: PMC6215347 DOI: 10.1186/s41065-018-0073-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
Unique divergence of the BRCA2, a tumor suppressor gene, in Neanderthals relative to other primates, including modern humans, is highlighted. This divergence with potentially pathogenic consequences raises a question about cancer susceptibility in the archaic species that was replaced by modern humans about 40,000 years ago.
Collapse
Affiliation(s)
- Pawel Michalak
- 1One Health Research Center, Virginia-Maryland College of Veterinary Medicine, 1410 Prices Fork Rd, Blacksburg, VA 24060 USA.,2Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060 USA.,3Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838 Haifa, Israel
| | - Lin Kang
- 2Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060 USA
| |
Collapse
|
44
|
Pfeffer CM, Ho BN, Singh ATK. The Evolution, Functions and Applications of the Breast Cancer Genes BRCA1 and BRCA2. Cancer Genomics Proteomics 2018; 14:293-298. [PMID: 28870997 DOI: 10.21873/cgp.20040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
BRCA1 and BRCA2 are both tumor suppressors whose mutations are the cause of most hereditary breast cancers. Both genes are highly involved in ensuring genome stability. BRCA1 homologs are found in the plant and animal kingdoms while BRCA2 homologs are additionally found in the fungi kingdom. The initial origin of both genes remains unknown, however it is expected that the common ancestors originated around 1.6 billion years ago prior to the kingdoms diverging. There has been a great amount of divergence between homologs that is not observed in other tumor suppressors with only functionally important domains conserved. This divergence continues today with evidence of primate BRCA1/2 evolution. Cancer-associated mutations have been found to occur at conserved sites, indicating that conserved sites are important for function. In this study, we present a review on the phylogenesis of BRCA1 and BRCA2.
Collapse
Affiliation(s)
- Claire M Pfeffer
- Department of Biology, Division of Natural and Social Sciences, Carthage College, Kenosha, WI, U.S.A
| | - Benjamin N Ho
- Department of Biology, Division of Natural and Social Sciences, Carthage College, Kenosha, WI, U.S.A
| | - Amareshwar T K Singh
- Department of Biology, Division of Natural and Social Sciences, Carthage College, Kenosha, WI, U.S.A.
| |
Collapse
|
45
|
Smith SD, Kawash JK, Karaiskos S, Biluck I, Grigoriev A. Evolutionary adaptation revealed by comparative genome analysis of woolly mammoths and elephants. DNA Res 2017; 24:359-369. [PMID: 28369217 PMCID: PMC5737375 DOI: 10.1093/dnares/dsx007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Comparative genomics studies typically limit their focus to single nucleotide variants (SNVs) and that was the case for previous comparisons of woolly mammoth genomes. We extended the analysis to systematically identify not only SNVs but also larger structural variants (SVs) and indels and found multiple mammoth-specific deletions and duplications affecting exons or even complete genes. The most prominent SV found was an amplification of RNase L (with different copy numbers in different mammoth genomes, up to 9-fold), involved in antiviral defense and inflammasome function. This amplification was accompanied by mutations affecting several domains of the protein including the active site and produced different sets of RNase L paralogs in four mammoth genomes likely contributing to adaptations to environmental threats. In addition to immunity and defense, we found many other unique genetic changes in woolly mammoths that suggest adaptations to life in harsh Arctic conditions, including variants involving lipid metabolism, circadian rhythms, and skeletal and body features. Together, these variants paint a complex picture of evolution of the mammoth species and may be relevant in the studies of their population history and extinction.
Collapse
Affiliation(s)
- Sean D Smith
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Joseph K Kawash
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Spyros Karaiskos
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Ian Biluck
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
46
|
Mozzi A, Forni D, Cagliani R, Pozzoli U, Clerici M, Sironi M. Distinct selective forces and Neanderthal introgression shaped genetic diversity at genes involved in neurodevelopmental disorders. Sci Rep 2017; 7:6116. [PMID: 28733602 PMCID: PMC5522412 DOI: 10.1038/s41598-017-06440-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/13/2017] [Indexed: 01/11/2023] Open
Abstract
In addition to high intelligence, humans evolved specialized social-cognitive skills, which are specifically affected in children with autism spectrum disorder (ASD). Genes affected in ASD represent suitable candidates to study the evolution of human social cognition. We performed an evolutionary analysis on 68 genes associated to neurodevelopmental disorders; our data indicate that genetic diversity was shaped by distinct selective forces, including natural selection and introgression from archaic hominins. We discuss the possibility that segregation distortion during spermatogenesis accounts for a subset of ASD mutations. Finally, we detected modern-human-specific alleles in DYRK1A and TCF4. These variants are located within regions that display chromatin features typical of transcriptional enhancers in several brain areas, strongly suggesting a regulatory role. These SNPs thus represent candidates for association with neurodevelopmental disorders, and await experimental validation in future studies.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy.
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20100, Milan, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842, Bosisio Parini, Italy
| |
Collapse
|
47
|
Prevalence and spectrum of BRCA germline variants in mainland Chinese familial breast and ovarian cancer patients. Oncotarget 2017; 7:9600-12. [PMID: 26848529 PMCID: PMC4891063 DOI: 10.18632/oncotarget.7144] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 are the most penetrating genetic predispositions for breast and ovarian cancer, and their presence is largely ethnic-specific. Comprehensive information about the prevalence and spectrum of BRCA mutations has been collected in European and North American populations. However, similar information is lacking in other populations, including the mainland Chinese population despite its large size of 1.4 billion accounting for one fifth of the world's population. Herein, we performed an extensive literature analysis to collect BRCA variants identified from mainland Chinese familial breast and ovarian cancer patients. We observed 137 distinct BRCA1 variants in 409 of 3,844 and 80 distinct BRCA2 variants in 157 of 3,024 mainland Chinese patients, with an estimated prevalence of 10.6% for BRCA1 and 5.2% for BRCA2. Of these variants, only 40.3% in BRCA1 and 42.5% in BRCA2 are listed in current Breast Cancer Information Core database. We observed higher frequent variation in BRCA1 exons 11A, 11C, 11D, and 24 and BRCA2 exon 10 in Chinese patients than in the patients of other populations. The most common pathogenic variant in BRCA1 wasc.981_982delAT in exon 11A, and in BRCA2 c.3195_3198delTAAT in exon 11B and c.5576_5579delTTAA in exon 11E; the most common novel variant in BRCA1 was c.919A>G in exon 10A, and in BRCA2 c.7142delC in exon 14. None of the variants overlap with the founder mutations in other populations. Our analysis indicates that the prevalence of BRCA variation in mainland Chinese familial breast and ovarian cancer patients is at a level similar to but the spectrum is substantially different from the ones of other populations.
Collapse
|
48
|
Mogilyansky E, Clark P, Quann K, Zhou H, Londin E, Jing Y, Rigoutsos I. Post-transcriptional Regulation of BRCA2 through Interactions with miR-19a and miR-19b. Front Genet 2016; 7:143. [PMID: 27630665 PMCID: PMC5005319 DOI: 10.3389/fgene.2016.00143] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/21/2016] [Indexed: 12/31/2022] Open
Abstract
Breast cancer type 2, early onset susceptibility gene (BRCA2) is a major component of the homologous recombination DNA repair pathway. It acts as a tumor suppressor whose function is often lost in cancers. Patients with specific mutations in the BRCA2 gene often display discrete clinical, histopathological, and molecular features. However, a subset of sporadic cancers has wild type BRCA2 and display defects in the homology-directed repair pathway, which is the hallmark of ‘BRCAness.’ The mechanisms by which BRCAness arises are not well understood but post-transcriptional regulation of BRCA2 gene expression by microRNAs (miRNAs) may contribute to this phenotype. Here, we examine the post-transcriptional effects that some members of the six-miRNA cluster known as the miR-17/92 cluster have on the abundance of BRCA2’s messenger RNA (mRNA) and protein. We discuss two interactions involving the miR-19a and miR-19b members of the cluster and the 3′UTR of BRCA2’s mRNA. We investigated these miRNA:mRNA interactions in 15 cell lines derived from pancreatic, breast, colon, and kidney tissue. We show that over-expression of these two miRNAs results in a concomitant decrease of BRCA2’s mRNA and protein expression in a subset of the tested cell lines. Additionally, using luciferase reporter assays we identified direct interactions between miR-19a/miR-19b and a miRNA response element (MRE) in BRCA2’s 3′UTR. Our results suggest that BRCA2 is subject to a complex post-transcriptional regulatory program that has specific dependencies on the genetic and phenotypic background of cell types.
Collapse
Affiliation(s)
- Elena Mogilyansky
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Peter Clark
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia PA, USA
| | - Kevin Quann
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Honglei Zhou
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Eric Londin
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Yi Jing
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| | - Isidore Rigoutsos
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia PA, USA
| |
Collapse
|
49
|
Functions of DNA damage machinery in the innate immune response to DNA virus infection. Curr Opin Virol 2015; 15:56-62. [PMID: 26318640 DOI: 10.1016/j.coviro.2015.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/01/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
DNA is potently immunostimulatory, and self-DNA is packaged in the nucleus or mitochondria allowing it to remain silent to cell-intrinsic sensors. However, damaged or mislocalised self-DNA is sensed by our innate immune systems, resulting in the production of type I interferons (IFNI), chemokines and inflammatory cytokines. During DNA virus infection the detection of viral DNA genomes by pattern recognition receptors (PRRs) is essential for the initiation of IFNI responses and host defence against these pathogens. It is intriguing that a number of molecular mechanisms have been found to be common to both of these DNA-induced stress responses and this has potentially important consequences for both sides of the host/pathogen arms race.
Collapse
|
50
|
Tromer E, Snel B, Kops GJPL. Widespread Recurrent Patterns of Rapid Repeat Evolution in the Kinetochore Scaffold KNL1. Genome Biol Evol 2015; 7:2383-93. [PMID: 26254484 PMCID: PMC4558858 DOI: 10.1093/gbe/evv140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The outer kinetochore protein scaffold KNL1 is essential for error-free chromosome segregation during mitosis and meiosis. A critical feature of KNL1 is an array of repeats containing MELT-like motifs. When phosphorylated, these motifs form docking sites for the BUB1–BUB3 dimer that regulates chromosome biorientation and the spindle assembly checkpoint. KNL1 homologs are strikingly different in both the amount and sequence of repeats they harbor. We used sensitive repeat discovery and evolutionary reconstruction to show that the KNL1 repeat arrays have undergone extensive, often species-specific array reorganization through iterative cycles of higher order multiplication in conjunction with rapid sequence diversification. The number of repeats per array ranges from none in flowering plants up to approximately 35–40 in drosophilids. Remarkably, closely related drosophilid species have independently expanded specific repeats, indicating near complete array replacement after only approximately 25–40 Myr of evolution. We further show that repeat sequences were altered by the parallel emergence/loss of various short linear motifs, including phosphosites, which supplement the MELT-like motif, signifying modular repeat evolution. These observations point to widespread recurrent episodes of concerted KNL1 repeat evolution in all eukaryotic supergroups. We discuss our findings in the light of the conserved function of KNL1 repeats in localizing the BUB1–BUB3 dimer and its role in chromosome segregation.
Collapse
Affiliation(s)
- Eelco Tromer
- Molecular Cancer Research, University Medical Center Utrecht, The Netherlands Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, The Netherlands
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, The Netherlands
| | - Geert J P L Kops
- Molecular Cancer Research, University Medical Center Utrecht, The Netherlands Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands Cancer Genomics Netherlands, University Medical Center Utrecht, The Netherlands
| |
Collapse
|