1
|
Chen H, Kunimatsu J, Oya T, Imaizumi Y, Hori Y, Matsumoto M, Tsubo Y, Hikosaka O, Minamimoto T, Naya Y, Yamada H. Formation of brain-wide neural geometry during visual item recognition in monkeys. iScience 2025; 28:111936. [PMID: 40034850 PMCID: PMC11875189 DOI: 10.1016/j.isci.2025.111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/31/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Neural dynamics are thought to reflect computations that relay and transform information in the brain. Previous studies have identified the neural population dynamics in many individual brain regions as a trajectory geometry, preserving a common computational motif. However, whether these populations share particular geometric patterns across brain-wide neural populations remains unclear. Here, by mapping neural dynamics widely across temporal/frontal/limbic regions in the cortical and subcortical structures of monkeys, we show that 10 neural populations, including 2,500 neurons, propagate visual item information in a stochastic manner. We found that visual inputs predominantly evoked rotational dynamics in the higher-order visual area, TE, and its downstream striatum tail, while curvy/straight dynamics appeared frequently downstream in the orbitofrontal/hippocampal network. These geometric changes were not deterministic but rather stochastic according to their respective emergence rates. Our meta-analysis results indicate that visual information propagates as a heterogeneous mixture of stochastic neural population signals in the brain.
Collapse
Affiliation(s)
- He Chen
- School of Psychological and Cognitive Sciences, Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jun Kunimatsu
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomomichi Oya
- Western Institute for Neuroscience, University of Western Ontario, London, ON N6A3K7, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London N6A 3K7, Canada
| | - Yuri Imaizumi
- College of Medical Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Matsumoto
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuhiro Tsubo
- College of Information Science and Engineering, Ritsumeikan University, 2-150 Iwakura-cho, Ibaraki, Osaka 567-8570, Japan
| | - Okihide Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China
- IDG/McGovern Institute for Brain Research at Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China
| | - Hiroshi Yamada
- Division of Biomedical Science, Institute of Medicine, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
2
|
Cai H, Melo D, Des Marais DL. Disentangling variational bias: the roles of development, mutation, and selection. Trends Genet 2025; 41:23-32. [PMID: 39443198 DOI: 10.1016/j.tig.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
The extraordinary diversity and adaptive fit of organisms to their environment depends fundamentally on the availability of variation. While most population genetic frameworks assume that random mutations produce isotropic phenotypic variation, the distribution of variation available to natural selection is more restricted, as the distribution of phenotypic variation is affected by a range of factors in developmental systems. Here, we revisit the concept of developmental bias - the observation that the generation of phenotypic variation is biased due to the structure, character, composition, or dynamics of the developmental system - and argue that a more rigorous investigation into the role of developmental bias in the genotype-to-phenotype map will produce fundamental insights into evolutionary processes, with potentially important consequences on the relation between micro- and macro-evolution. We discuss the hierarchical relationships between different types of variational biases, including mutation bias and developmental bias, and their roles in shaping the realized phenotypic space. Furthermore, we highlight the challenges in studying variational bias and propose potential approaches to identify developmental bias using modern tools.
Collapse
Affiliation(s)
- Haoran Cai
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
3
|
Li T, Zhang RS, True JR. Genetic variation for sexual dimorphism in developmental traits in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae010. [PMID: 38427952 PMCID: PMC10989870 DOI: 10.1093/g3journal/jkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 03/03/2024]
Abstract
Sexual dimorphism in traits of insects during the developmental stages could potentially be the direct or indirect result of sex-specific selection provided that genetic variation for sexual dimorphism is present. We investigated genetic variation in sexual dimorphism in a set of Drosophila melanogaster inbred lines for 2 traits: egg to adult development time and pupation site preference. We observed considerable genetic variation in sexual dimorphism among lines in both traits. The sexual dimorphic patterns remained relatively consistent across multiple trials, despite both traits being sensitive to environmental conditions. Additionally, we measured 2 sexually dimorphic adult morphological traits in 6 sampled lines and investigated correlations in the sexual dimorphism patterns with the 2 developmental traits. The abundance of genetic variation in sexual dimorphism for D. melanogaster developmental traits demonstrated in this study provides evidence for a high degree of evolvability of sex differences in preadult traits in natural populations.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rebecca S Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John R True
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Uchida Y, Tsutsumi M, Ichii S, Irie N, Furusawa C. Deciphering the origin of developmental stability: The role of intracellular expression variability in evolutionary conservation. Evol Dev 2024; 26:e12473. [PMID: 38414112 DOI: 10.1111/ede.12473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/01/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Progress in evolutionary developmental biology (evo-devo) has deepened our understanding of how intrinsic properties of embryogenesis, along with natural selection and population genetics, shape phenotypic diversity. A focal point of recent empirical and theoretical research is the idea that highly developmentally stable phenotypes are more conserved in evolution. Previously, we demonstrated that in Japanese medaka (Oryzias latipes), embryonic stages and genes with high stability, estimated through whole-embryo RNA-seq, are highly conserved in subsequent generations. However, the precise origin of the stability of gene expression levels evaluated at the whole-embryo level remained unclear. Such stability could be attributed to two distinct sources: stable intracellular expression levels or spatially stable expression patterns. Here we demonstrate that stability observed in whole-embryo RNA-seq can be attributed to stability at the cellular level (low variability in gene expression at the cellular levels). We quantified the intercellular variations in expression levels and spatial gene expression patterns for seven key genes involved in patterning dorsoventral and rostrocaudal regions during early development in medaka. We evaluated intracellular variability by counting transcripts and found its significant correlation with variation observed in whole-embryo RNA-seq data. Conversely, variation in spatial gene expression patterns, assessed through intraindividual left-right asymmetry, showed no correlation. Given the previously reported correlation between stability and conservation of expression levels throughout embryogenesis, our findings suggest a potential general trend: the stability or instability of developmental systems-and the consequent evolutionary diversity-may be primarily anchored in intrinsic fundamental elements such as the variability of intracellular states.
Collapse
Affiliation(s)
- Yui Uchida
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
| | - Masato Tsutsumi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Ichii
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, SOKENDAI, Kanagawa, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research, RIKEN, Osaka, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
López‐Martínez AM, Magallón S, von Balthazar M, Schönenberger J, Sauquet H, Chartier M. Angiosperm flowers reached their highest morphological diversity early in their evolutionary history. THE NEW PHYTOLOGIST 2024; 241:1348-1360. [PMID: 38029781 PMCID: PMC10952840 DOI: 10.1111/nph.19389] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
Flowers are the complex and highly diverse reproductive structures of angiosperms. Because of their role in sexual reproduction, the evolution of flowers is tightly linked to angiosperm speciation and diversification. Accordingly, the quantification of floral morphological diversity (disparity) among angiosperm subgroups and through time may give important insights into the evolutionary history of angiosperms as a whole. Based on a comprehensive dataset focusing on 30 characters describing floral structure across angiosperms, we used 1201 extant and 121 fossil flowers to measure floral disparity and explore patterns of floral evolution through time and across lineages. We found that angiosperms reached their highest floral disparity in the Early Cretaceous. However, decreasing disparity toward the present likely has not precluded the innovation of other complex traits at other morphological levels, which likely played a key role in the outstanding angiosperm species richness. Angiosperms occupy specific regions of the theoretical morphospace, indicating that only a portion of the possible floral trait combinations is observed in nature. The ANA grade, the magnoliids, and the early-eudicot grade occupy large areas of the morphospace (higher disparity), whereas nested groups occupy narrower regions (lower disparity).
Collapse
Affiliation(s)
- Andrea M. López‐Martínez
- Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
| | - Susana Magallón
- Departamento de Botánica, Instituto de BiologíaUniversidad Nacional Autónoma de México, 3er Circuito de Ciudad UniversitariaCoyoacánCiudad de México04510Mexico
| | - Maria von Balthazar
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Jürg Schönenberger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| | - Hervé Sauquet
- National Herbarium of New South Wales (NSW)Royal Botanic Gardens and Domain TrustSydneyNSW2000Australia
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences North (D26)SydneyNSW2052Australia
| | - Marion Chartier
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 14ViennaA‐1030Austria
| |
Collapse
|
6
|
Mateus ARA, Beldade P. Developmental Plasticity in Butterfly Eyespot Mutants: Variation in Thermal Reaction Norms Across Genotypes and Pigmentation Traits. INSECTS 2022; 13:1000. [PMID: 36354827 PMCID: PMC9699518 DOI: 10.3390/insects13111000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Developmental plasticity refers to the property by which a genotype corresponds to distinct phenotypes depending on the environmental conditions experienced during development. This dependence of phenotype expression on environment is graphically represented by reaction norms, which can differ between traits and between genotypes. Even though genetic variation for reaction norms provides the basis for the evolution of plasticity, we know little about the genes that contribute to that variation. This includes understanding to what extent those are the same genes that contribute to inter-individual variation in a fixed environment. Here, we quantified thermal plasticity in butterfly lines that differ in pigmentation phenotype to test the hypothesis that alleles affecting pigmentation also affect plasticity therein. We characterized thermal reaction norms for eyespot color rings of distinct Bicyclus anynana genetic backgrounds, corresponding to allelic variants affecting eyespot size and color composition. Our results reveal genetic variation for the slope and curvature of reaction norms, with differences between eyespots and between eyespot color rings, as well as between sexes. Our report of prevalent temperature-dependent and compartment-specific allelic effects underscores the complexity of genotype-by-environment interactions and their consequence for the evolution of developmental plasticity.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência (IGC), 2780-156 Oeiras, Portugal
- CNRS—UMR 5174, Evolution et Diversité Biologique (EDB), Université Paul Sabatier (UPS), 31077 Toulouse, France
- Center for Ecology, Evolution and Environmental Changes (cE3c) & Global Change and Sustainability Institute (CHANGE), Faculty of Sciences, University of Lisbon (FCUL), 1749-016 Lisbon, Portugal
| |
Collapse
|
7
|
Riederer JM, Tiso S, van Eldijk TJ, Weissing FJ. Capturing the facets of evolvability in a mechanistic framework. Trends Ecol Evol 2022; 37:430-439. [DOI: 10.1016/j.tree.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
|
8
|
Lafuente E, Alves F, King JG, Peralta CM, Beldade P. Many ways to make darker flies: Intra- and interspecific variation in Drosophila body pigmentation components. Ecol Evol 2021; 11:8136-8155. [PMID: 34188876 PMCID: PMC8216949 DOI: 10.1002/ece3.7646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/13/2022] Open
Abstract
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco-evo-devo model, into distinct measurable traits related to color and color pattern. We investigate intra- and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.
Collapse
Affiliation(s)
- Elvira Lafuente
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Swiss Federal Institute of Aquatic Science and TechnologyDepartment of Aquatic EcologyDübendorfSwitzerland
| | | | - Jessica G. King
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Institute of Evolutionary BiologySchool of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Carolina M. Peralta
- Instituto Gulbenkian de CiênciaOeirasPortugal
- Present address:
Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Patrícia Beldade
- Instituto Gulbenkian de CiênciaOeirasPortugal
- CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of SciencesUniversity of LisbonLisbonPortugal
| |
Collapse
|
9
|
Liukkonen M, Kronholm I, Ketola T. Evolutionary rescue at different rates of environmental change is affected by trade-offs between short-term performance and long-term survival. J Evol Biol 2021; 34:1177-1184. [PMID: 33963623 DOI: 10.1111/jeb.13797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
As climate change accelerates and habitats free from anthropogenic impacts diminish, populations are forced to migrate or to adapt quickly. Evolutionary rescue (ER) is a phenomenon, in which a population is able to avoid extinction through adaptation. ER is considered to be more likely at slower rates of environmental change. However, the effects of correlated characters on evolutionary rescue are seldom explored yet correlated characters could play a major role in ER. We tested how evolutionary background in different fluctuating environments and the rate of environmental change affect the probability of ER by exposing populations of the bacteria Serratia marcescens to two different rates of steady temperature increase. As suggested by theory, slower environmental change allowed populations to grow more effectively even at extreme temperatures, but at the expense of long-term survival at extreme conditions due to correlated selection. Our results indicate important gap of knowledge on the effects of correlated selection during the environmental change and on evolutionary rescue at differently changing environments.
Collapse
Affiliation(s)
- Martta Liukkonen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ilkka Kronholm
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Tarmo Ketola
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
10
|
Beldade P, Monteiro A. Eco-evo-devo advances with butterfly eyespots. Curr Opin Genet Dev 2021; 69:6-13. [PMID: 33434722 DOI: 10.1016/j.gde.2020.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023]
Abstract
Eyespots on the wings of different nymphalid butterflies have become valued models in eco-evo-devo. They are ecologically significant, evolutionarily diverse, and developmentally tractable. Their study has provided valuable insight about the genetic and developmental basis of inter-specific diversity and intra-specific variation, as well as into other key themes in evo-evo-devo: evolutionary novelty, developmental constraints, and phenotypic plasticity. Here we provide an overview of eco-evo-devo studies of butterfly eyespots, highlighting previous reviews, and focusing on both the most recent advances and the open questions expected to be solved in the future.
Collapse
Affiliation(s)
- Patrícia Beldade
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; CE3C: Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Campo Grande C2, 1749-016 Lisboa, Portugal.
| | - Antónia Monteiro
- Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Science Division, Yale-NUS College, Singapore 138614, Singapore.
| |
Collapse
|
11
|
A release from developmental bias accelerates morphological diversification in butterfly eyespots. Proc Natl Acad Sci U S A 2020; 117:27474-27480. [PMID: 33093195 DOI: 10.1073/pnas.2008253117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Development can bias the independent evolution of traits sharing ontogenetic pathways, making certain evolutionary changes less likely. The eyespots commonly found on butterfly wings each have concentric rings of differing colors, and these serially repeated pattern elements have been a focus for evo-devo research. In the butterfly family Nymphalidae, eyespots have been shown to function in startling or deflecting predators and to be involved in sexual selection. Previous work on a model species of Mycalesina butterfly, Bicyclus anynana, has provided insights into the developmental control of the size and color composition of individual eyespots. Experimental evolution has also shown that the relative size of a pair of eyespots on the same wing surface is highly flexible, whereas they are resistant to diverging in color composition, presumably due to the underlying shared developmental process. This fixed color composition has been considered as a prime example of developmental bias with significant consequences for wing pattern evolution. Here, we test this proposal by surveying eyespots across the whole subtribe of Mycalesina butterflies and demonstrate that developmental bias shapes evolutionary diversification except in the genus Heteropsis which has gained independent control of eyespot color composition. Experimental manipulations of pupal wings reveal that the bias has been released through a novel regional response of the wing tissue to a conserved patterning signal. Our study demonstrates that development can bias the evolutionary independence of traits, but it also shows how bias can be released through developmental innovations, thus, allowing rapid morphological change, facilitating evolutionary diversification.
Collapse
|
12
|
McKenna KZ, Kudla AM, Nijhout HF. Anterior–Posterior Patterning in Lepidopteran Wings. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
13
|
Ito HC, Sasaki A. Evolutionary branching in distorted trait spaces. J Theor Biol 2020; 489:110152. [PMID: 31926206 DOI: 10.1016/j.jtbi.2020.110152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 11/19/2022]
Abstract
Biological communities are thought to have been evolving in trait spaces that are not only multi-dimensional, but also distorted in a sense that mutational covariance matrices among traits depend on the parental phenotypes of mutants. Such a distortion may affect diversifying evolution as well as directional evolution. In adaptive dynamics theory, diversifying evolution through ecological interaction is called evolutionary branching. This study analytically develops conditions for evolutionary branching in distorted trait spaces of arbitrary dimensions, by a local nonlinear coordinate transformation so that the mutational covariance matrix becomes locally constant in the neighborhood of a focal point. The developed evolutionary branching conditions can be affected by the distortion when mutational step sizes have significant magnitude difference among directions, i.e., the eigenvalues of the mutational covariance matrix have significant magnitude difference.
Collapse
Affiliation(s)
- Hiroshi C Ito
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan.
| | - Akira Sasaki
- Department of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan; Evolution and Ecology Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| |
Collapse
|
14
|
Milocco L, Salazar‐Ciudad I. Is evolution predictable? Quantitative genetics under complex genotype‐phenotype maps. Evolution 2020; 74:230-244. [DOI: 10.1111/evo.13907] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Lisandro Milocco
- Institute of BiotechnologyUniversity of Helsinki 00014 Helsinki Finland
| | - Isaac Salazar‐Ciudad
- Institute of BiotechnologyUniversity of Helsinki 00014 Helsinki Finland
- Centre de Recerca Matemàtica 08193 Barcelona Spain
- Genomics, Bioinformatics and Evolution. Departament de Genètica i MicrobiologiaUniversitat Autònoma de Barcelona 08193 Barcelona Spain
| |
Collapse
|
15
|
Chan IZW, Rafi FZ, Monteiro A. Interacting Effects of Eyespot Number and Ultraviolet Reflectivity on Predation Risk in Bicyclus anynana (Lepidoptera: Nymphalidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:19. [PMID: 31830273 PMCID: PMC6907000 DOI: 10.1093/jisesa/iez123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Small marginal eyespots on lepidopteran wings are conspicuous elements that attract a predator's attention to deflect attacks away from the body, but the role of ultraviolet (UV) reflectivity at the center of these patterns and variation in eyespot number in altering the function of eyespots remains unclear. Here, we performed a field-based predation experiment with artificial prey items based on the appearance of squinting bush brown butterflies Bicyclus anynana (Butler, 1879). We tested how two visual properties of the wing pattern affect predation risk: i) the number of eyespots on the ventral forewing surface-two or four; and ii) the UV reflectivity of eyespot centers-normal (where the UV reflectivity of the centers contrasts strongly with that of the darker surrounding ring) or blocked (where this contrast is reduced). In total, 807 prey items were deployed at two sites. We found a significant interaction between the number of ventral forewing eyespots and UV reflectivity in the eyespot centers: in items with fewer eyespots, blocking UV resulted in increased predation risk whereas in items with more eyespots, blocking UV resulted in decreased predation risk. If higher predation of paper models can be equated with higher levels of wing margin/eyespot conspicuity, these results demonstrate that UV reflectivity is an important factor in making eyespots more conspicuous to predators and suggest that the fitness of particular butterfly eyespot number variants may depend on the presence or absence of UV in their centers and on the ability of local predator guilds to detect UV.
Collapse
Affiliation(s)
- Ian Z W Chan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fathima Zohara Rafi
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore
- Yale-NUS College, Singapore
| |
Collapse
|
16
|
Kauranen H, Kinnunen J, Hopkins D, Hoikkala A. Direct and correlated responses to bi-directional selection on pre-adult development time in Drosophila montana. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:77-89. [PMID: 31004669 DOI: 10.1016/j.jinsphys.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Selection experiments offer an efficient way to study the evolvability of traits that play an important role in insects' reproduction and/or survival and to trace correlations and trade-offs between them. We have exercised bi-directional selection on Drosophila montana flies' pre-adult development time under constant light and temperature conditions for 10 generations and traced the indirect effects of this selection on females' diapause induction under different day lengths, as well as on the body weight and cold tolerance of both sexes. Overall, selection was successful towards slow, but not towards fast development. However, all fast selection line replicates showed at the end of selection increased variance in females' photoperiodic diapause response and about one hour increase in the critical day (CDL), where more than 50% of emerging females enter diapause. Indirect effects of selection on flies' body weight and cold-tolerance were less clear, as the flies of the slow selection line were significantly heavier and less cold-tolerant than the control line flies after five generations of selection, but lighter and more cold-tolerant at the end of selection. Changes in females' diapause induction resulting from selection for fast development could be due to common metabolic pathways underlying these traits, collaboration of circadian clock and photoperiodic timer and/or by the interaction between the endocrine and circadian systems.
Collapse
Affiliation(s)
- Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | - Johanna Kinnunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - David Hopkins
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
17
|
Sheftel H, Szekely P, Mayo A, Sella G, Alon U. Evolutionary trade-offs and the structure of polymorphisms. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0105. [PMID: 29632259 DOI: 10.1098/rstb.2017.0105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2017] [Indexed: 12/15/2022] Open
Abstract
Populations of organisms show genetic differences called polymorphisms. Understanding the effects of polymorphisms is important for biology and medicine. Here, we ask which polymorphisms occur at high frequency when organisms evolve under trade-offs between multiple tasks. Multiple tasks present a problem, because it is not possible to be optimal at all tasks simultaneously and hence compromises are necessary. Recent work indicates that trade-offs lead to a simple geometry of phenotypes in the space of traits: phenotypes fall on the Pareto front, which is shaped as a polytope: a line, triangle, tetrahedron etc. The vertices of these polytopes are the optimal phenotypes for a single task. Up to now, work on this Pareto approach has not considered its genetic underpinnings. Here, we address this by asking how the polymorphism structure of a population is affected by evolution under trade-offs. We simulate a multi-task selection scenario, in which the population evolves to the Pareto front: the line segment between two archetypes or the triangle between three archetypes. We find that polymorphisms that become prevalent in the population have pleiotropic phenotypic effects that align with the Pareto front. Similarly, epistatic effects between prevalent polymorphisms are parallel to the front. Alignment with the front occurs also for asexual mating. Alignment is reduced when drift or linkage is strong, and is replaced by a more complex structure in which many perpendicular allele effects cancel out. Aligned polymorphism structure allows mating to produce offspring that stand a good chance of being optimal multi-taskers in at least one of the locales available to the species.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Hila Sheftel
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Pablo Szekely
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Mayo
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Guy Sella
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Uri Alon
- Department Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
18
|
Developmental Bias and Evolution: A Regulatory Network Perspective. Genetics 2018; 209:949-966. [PMID: 30049818 DOI: 10.1534/genetics.118.300995] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/19/2018] [Indexed: 01/12/2023] Open
Abstract
Phenotypic variation is generated by the processes of development, with some variants arising more readily than others-a phenomenon known as "developmental bias." Developmental bias and natural selection have often been portrayed as alternative explanations, but this is a false dichotomy: developmental bias can evolve through natural selection, and bias and selection jointly influence phenotypic evolution. Here, we briefly review the evidence for developmental bias and illustrate how it is studied empirically. We describe recent theory on regulatory networks that explains why the influence of genetic and environmental perturbation on phenotypes is typically not uniform, and may even be biased toward adaptive phenotypic variation. We show how bias produced by developmental processes constitutes an evolving property able to impose direction on adaptive evolution and influence patterns of taxonomic and phenotypic diversity. Taking these considerations together, we argue that it is not sufficient to accommodate developmental bias into evolutionary theory merely as a constraint on evolutionary adaptation. The influence of natural selection in shaping developmental bias, and conversely, the influence of developmental bias in shaping subsequent opportunities for adaptation, requires mechanistic models of development to be expanded and incorporated into evolutionary theory. A regulatory network perspective on phenotypic evolution thus helps to integrate the generation of phenotypic variation with natural selection, leaving evolutionary biology better placed to explain how organisms adapt and diversify.
Collapse
|
19
|
Schaerli Y, Jiménez A, Duarte JM, Mihajlovic L, Renggli J, Isalan M, Sharpe J, Wagner A. Synthetic circuits reveal how mechanisms of gene regulatory networks constrain evolution. Mol Syst Biol 2018; 14:e8102. [PMID: 30201776 PMCID: PMC6129954 DOI: 10.15252/msb.20178102] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 08/15/2018] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
Phenotypic variation is the raw material of adaptive Darwinian evolution. The phenotypic variation found in organismal development is biased towards certain phenotypes, but the molecular mechanisms behind such biases are still poorly understood. Gene regulatory networks have been proposed as one cause of constrained phenotypic variation. However, most pertinent evidence is theoretical rather than experimental. Here, we study evolutionary biases in two synthetic gene regulatory circuits expressed in Escherichia coli that produce a gene expression stripe-a pivotal pattern in embryonic development. The two parental circuits produce the same phenotype, but create it through different regulatory mechanisms. We show that mutations cause distinct novel phenotypes in the two networks and use a combination of experimental measurements, mathematical modelling and DNA sequencing to understand why mutations bring forth only some but not other novel gene expression phenotypes. Our results reveal that the regulatory mechanisms of networks restrict the possible phenotypic variation upon mutation. Consequently, seemingly equivalent networks can indeed be distinct in how they constrain the outcome of further evolution.
Collapse
Affiliation(s)
- Yolanda Schaerli
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Alba Jiménez
- Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
| | - José M Duarte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Ljiljana Mihajlovic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | | | - Mark Isalan
- Department of Life Sciences, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - James Sharpe
- Systems Biology Program, Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
- EMBL Barcelona European Molecular Biology Laboratory, Barcelona, Spain
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
20
|
Liefting M, Hoedjes KM, Le Lann C, Smid HM, Ellers J. Selection for associative learning of color stimuli reveals correlated evolution of this learning ability across multiple stimuli and rewards. Evolution 2018; 72:1449-1459. [PMID: 29768649 PMCID: PMC6099215 DOI: 10.1111/evo.13498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/15/2018] [Indexed: 01/19/2023]
Abstract
We are only starting to understand how variation in cognitive ability can result from local adaptations to environmental conditions. A major question in this regard is to what extent selection on cognitive ability in a specific context affects that ability in general through correlated evolution. To address this question, we performed artificial selection on visual associative learning in female Nasonia vitripennis wasps. Using appetitive conditioning in which a visual stimulus was offered in association with a host reward, the ability to learn visual associations was enhanced within 10 generations of selection. To test for correlated evolution affecting this form of learning, the ability to readily form learned associations in females was also tested using an olfactory instead of a visual stimulus in the appetitive conditioning. Additionally, we assessed whether the improved associative learning ability was expressed across sexes by color-conditioning males with a mating reward. Both females and males from the selected lines consistently demonstrated an increased associative learning ability compared to the control lines, independent of learning context or conditioned stimulus. No difference in relative volume of brain neuropils was detected between the selected and control lines.
Collapse
Affiliation(s)
- Maartje Liefting
- Animal EcologyVrije Universiteit AmsterdamAmsterdam1081 HVthe Netherlands
- Applied Zoology/Animal EcologyFreie Universität BerlinBerlinD‐12163Germany
| | - Katja M. Hoedjes
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
- Department of Ecology and EvolutionUniversity of LausanneLausanneCH‐1015Switzerland
| | - Cécile Le Lann
- Animal EcologyVrije Universiteit AmsterdamAmsterdam1081 HVthe Netherlands
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution)UMR 6553, Université de RennesRennesF‐35000France
| | - Hans M. Smid
- Laboratory of EntomologyWageningen UniversityWageningen6700 AAthe Netherlands
| | - Jacintha Ellers
- Animal EcologyVrije Universiteit AmsterdamAmsterdam1081 HVthe Netherlands
| |
Collapse
|
21
|
Lucas LK, Nice CC, Gompert Z. Genetic constraints on wing pattern variation in
Lycaeides
butterflies: A case study on mapping complex, multifaceted traits in structured populations. Mol Ecol Resour 2018. [DOI: 10.1111/1755-0998.12777] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Chris C. Nice
- Department of Biology Texas State University San Marcos TX USA
| | - Zachariah Gompert
- Department of Biology Utah State University Logan UT USA
- Ecology Center Utah State University Logan UT USA
| |
Collapse
|
22
|
Pigmentation pattern and developmental constraints: flight muscle attachment sites delimit the thoracic trident of Drosophila melanogaster. Sci Rep 2018; 8:5328. [PMID: 29593305 PMCID: PMC5871777 DOI: 10.1038/s41598-018-23741-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
In their seminal paper published in 1979, Gould and Lewontin argued that some traits arise as by-products of the development of other structures and not for direct utility in themselves. We show here that this applies to the trident, a pigmentation pattern observed on the thorax of Drosophila melanogaster. Using reporter constructs, we show that the expression domain of several genes encoding pigmentation enzymes follows the trident shape. This domain is complementary to the expression pattern of stripe (sr), which encodes an essential transcription factor specifying flight muscle attachment sites. We demonstrate that sr limits the expression of these pigmentation enzyme genes to the trident by repressing them in its own expression domain, i.e. at the flight muscle attachment sites. We give evidence that repression of not only yellow but also other pigmentation genes, notably tan, is involved in the trident shape. The flight muscle attachment sites and sr expression patterns are remarkably conserved in dipterans reflecting the essential role of sr. Our data suggest that the trident is a by-product of flight muscle attachment site patterning that arose when sr was co-opted for the regulation of pigmentation enzyme coding genes.
Collapse
|
23
|
Abstract
Evolutionary theory has been extended almost continually since the evolutionary synthesis (ES), but except for the much greater importance afforded genetic drift, the principal tenets of the ES have been strongly supported. Adaptations are attributable to the sorting of genetic variation by natural selection, which remains the only known cause of increase in fitness. Mutations are not adaptively directed, but as principal authors of the ES recognized, the material (structural) bases of biochemistry and development affect the variety of phenotypic variations that arise by mutation and recombination. Against this historical background, I analyse major propositions in the movement for an 'extended evolutionary synthesis'. 'Niche construction' is a new label for a wide variety of well-known phenomena, many of which have been extensively studied, but (as with every topic in evolutionary biology) some aspects may have been understudied. There is no reason to consider it a neglected 'process' of evolution. The proposition that phenotypic plasticity may engender new adaptive phenotypes that are later genetically assimilated or accommodated is theoretically plausible; it may be most likely when the new phenotype is not truly novel, but is instead a slight extension of a reaction norm already shaped by natural selection in similar environments. However, evolution in new environments often compensates for maladaptive plastic phenotypic responses. The union of population genetic theory with mechanistic understanding of developmental processes enables more complete understanding by joining ultimate and proximate causation; but the latter does not replace or invalidate the former. Newly discovered molecular phenomena have been easily accommodated in the past by elaborating orthodox evolutionary theory, and it appears that the same holds today for phenomena such as epigenetic inheritance. In several of these areas, empirical evidence is needed to evaluate enthusiastic speculation. Evolutionary theory will continue to be extended, but there is no sign that it requires emendation.
Collapse
Affiliation(s)
- Douglas J. Futuyma
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
24
|
Cuthill IC, Allen WL, Arbuckle K, Caspers B, Chaplin G, Hauber ME, Hill GE, Jablonski NG, Jiggins CD, Kelber A, Mappes J, Marshall J, Merrill R, Osorio D, Prum R, Roberts NW, Roulin A, Rowland HM, Sherratt TN, Skelhorn J, Speed MP, Stevens M, Stoddard MC, Stuart-Fox D, Talas L, Tibbetts E, Caro T. The biology of color. Science 2017; 357:357/6350/eaan0221. [DOI: 10.1126/science.aan0221] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
25
|
Thompson JN, Schwind C, Friberg M. Diversification of Trait Combinations in Coevolving Plant and Insect Lineages. Am Nat 2017; 190:171-184. [PMID: 28731801 DOI: 10.1086/692164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Closely related species often have similar traits and sometimes interact with the same species. A crucial problem in evolutionary ecology is therefore to understand how coevolving species diverge when they interact with a set of closely related species from another lineage rather than with a single species. We evaluated geographic differences in the floral morphology of all woodland star plant species (Lithophragma, Saxifragaceae) that are pollinated by Greya (Prodoxidae) moths. Flowers of each woodland star species differed depending on whether plants interact locally with one, two, or no pollinating moth species. Plants of one species grown in six different environments showed few differences in floral traits, suggesting that the geographic differences are not due significantly to trait plasticity. Greya moth populations also showed significant geographic divergence in morphology, depending on the local host and on whether the moth species co-occurred locally. Divergence in the plants and the moths involved shifts in combinations of partially correlated traits, rather than any one trait. The results indicate that the geographic mosaic of coevolution can be amplified as coevolving lineages diversify into separate species and come together in different combinations in different ecosystems.
Collapse
|
26
|
Beldade P, Peralta CM. Developmental and evolutionary mechanisms shaping butterfly eyespots. CURRENT OPINION IN INSECT SCIENCE 2017; 19:22-29. [PMID: 28521939 DOI: 10.1016/j.cois.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/07/2023]
Abstract
Butterfly eyespots are visually compelling models to study the reciprocal interactions between evolutionary and developmental processes that shape phenotypic variation. They are evolutionarily diversified, ecologically relevant, and developmentally tractable, and have made key contributions to linking genotype, development, phenotype and fitness. Advances in the availability of analytical tools (e.g. gene editing and visualization techniques) and resources (e.g. genomic and transcriptomic data) are boosting the detailed dissection of the mechanisms underlying eyespot development and evolution. Here, we review current knowledge on the ecology, development, and evolution of butterfly eyespots, with focus on recent advances. We also highlight a number of unsolved mysteries in our understanding of the patterns and processes underlying the diversification of these structures.
Collapse
Affiliation(s)
- Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; UMR5174, University of Toulouse, France.
| | | |
Collapse
|
27
|
Ito H, Sasaki A. Evolutionary branching under multi-dimensional evolutionary constraints. J Theor Biol 2016; 407:409-428. [DOI: 10.1016/j.jtbi.2016.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 10/21/2022]
|
28
|
Abstract
DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis.
Collapse
Affiliation(s)
- M-A Félix
- Institut de Biologie Ecole Normale Supérieure, CNRS, Paris, France.
| |
Collapse
|
29
|
Oyston JW, Hughes M, Gerber S, Wills MA. Why should we investigate the morphological disparity of plant clades? ANNALS OF BOTANY 2016; 117:859-79. [PMID: 26658292 PMCID: PMC4845799 DOI: 10.1093/aob/mcv135] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/28/2015] [Accepted: 07/08/2015] [Indexed: 05/10/2023]
Abstract
BACKGROUND Disparity refers to the morphological variation in a sample of taxa, and is distinct from diversity or taxonomic richness. Diversity and disparity are fundamentally decoupled; many groups attain high levels of disparity early in their evolution, while diversity is still comparatively low. Diversity may subsequently increase even in the face of static or declining disparity by increasingly fine sub-division of morphological 'design' space (morphospace). Many animal clades reached high levels of disparity early in their evolution, but there have been few comparable studies of plant clades, despite their profound ecological and evolutionary importance. This study offers a prospective and some preliminary macroevolutionary analyses. METHODS Classical morphometric methods are most suitable when there is reasonable conservation of form, but lose traction where morphological differences become greater (e.g. in comparisons across higher taxa). Discrete character matrices offer one means to compare a greater diversity of forms. This study explores morphospaces derived from eight discrete data sets for major plant clades, and discusses their macroevolutionary implications. KEY RESULTS Most of the plant clades in this study show initial, high levels of disparity that approach or attain the maximum levels reached subsequently. These plant clades are characterized by an initial phase of evolution during which most regions of their empirical morphospaces are colonized. Angiosperms, palms, pines and ferns show remarkably little variation in disparity through time. Conifers furnish the most marked exception, appearing at relatively low disparity in the latest Carboniferous, before expanding incrementally with the radiation of successive, tightly clustered constituent sub-clades. CONCLUSIONS Many cladistic data sets can be repurposed for investigating the morphological disparity of plant clades through time, and offer insights that are complementary to more focused morphometric studies. The unique structural and ecological features of plants make them ideally suited to investigating intrinsic and extrinsic constraints on disparity.
Collapse
Affiliation(s)
- Jack W Oyston
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK
| | - Martin Hughes
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK and
| | - Sylvain Gerber
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Matthew A Wills
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK,
| |
Collapse
|
30
|
Chazot N, Panara S, Zilbermann N, Blandin P, Le Poul Y, Cornette R, Elias M, Debat V. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape inMorphobutterflies. Evolution 2016; 70:181-94. [DOI: 10.1111/evo.12842] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/18/2015] [Accepted: 11/27/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Nicolas Chazot
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier, CP50, F-75005 Paris France
| | - Stephen Panara
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier, CP50, F-75005 Paris France
| | - Nicolas Zilbermann
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier, CP50, F-75005 Paris France
| | - Patrick Blandin
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier, CP50, F-75005 Paris France
| | - Yann Le Poul
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier, CP50, F-75005 Paris France
| | - Raphaël Cornette
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier, CP50, F-75005 Paris France
| | - Marianne Elias
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier, CP50, F-75005 Paris France
| | - Vincent Debat
- Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle; Sorbonne Universités; 57 rue Cuvier, CP50, F-75005 Paris France
| |
Collapse
|
31
|
Abstract
This article reviews the latest developments in our understanding of the origin, development, and evolution of nymphalid butterfly eyespots. Recent contributions to this field include insights into the evolutionary and developmental origin of eyespots and their ancestral deployment on the wing, the evolution of eyespot number and eyespot sexual dimorphism, and the identification of genes affecting eyespot development and black pigmentation. I also compare features of old and more recently proposed models of eyespot development and propose a schematic for the genetic regulatory architecture of eyespots. Using this schematic I propose two hypotheses for why we observe limits to morphological diversity across these serially homologous traits.
Collapse
Affiliation(s)
- Antónia Monteiro
- Biological Sciences, National University of Singapore, and Yale-NUS-College, Singapore;
| |
Collapse
|
32
|
Futuyma DJ. Can Modern Evolutionary Theory Explain Macroevolution? INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-15045-1_2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Marchini M, Sparrow LM, Cosman MN, Dowhanik A, Krueger CB, Hallgrimsson B, Rolian C. Impacts of genetic correlation on the independent evolution of body mass and skeletal size in mammals. BMC Evol Biol 2014; 14:258. [PMID: 25496561 PMCID: PMC4269856 DOI: 10.1186/s12862-014-0258-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/02/2014] [Indexed: 11/26/2022] Open
Abstract
Background Mammals show a predictable scaling relationship between limb bone size and body mass. This relationship has a genetic basis which likely evolved via natural selection, but it is unclear how much the genetic correlation between these traits in turn impacts their capacity to evolve independently. We selectively bred laboratory mice for increases in tibia length independent of body mass, to test the hypothesis that a genetic correlation with body mass constrains evolutionary change in tibia length. Results Over 14 generations, we produced mean tibia length increases of 9-13%, while mean body mass was unchanged, in selectively bred mice and random-bred controls. Using evolutionary scenarios with different selection and quantitative genetic parameters, we also found that this genetic correlation impedes the rate of evolutionary change in both traits, slowing increases in tibia length while preventing decreases in body mass, despite the latter’s negative effect on fitness. Conclusions Overall, results from this ongoing selection experiment suggest that parallel evolution of relatively longer hind limbs among rodents, for example in the context of strong competition for resources and niche partitioning in heterogeneous environments, may have occurred very rapidly on geological timescales, in spite of a moderately strong genetic correlation between tibia length and body mass. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0258-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Marchini
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| | - Leah M Sparrow
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| | - Miranda N Cosman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| | - Alexandra Dowhanik
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| | - Carsten B Krueger
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| | - Benedikt Hallgrimsson
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| | - Campbell Rolian
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
34
|
Chartier M, Jabbour F, Gerber S, Mitteroecker P, Sauquet H, von Balthazar M, Staedler Y, Crane PR, Schönenberger J. The floral morphospace--a modern comparative approach to study angiosperm evolution. THE NEW PHYTOLOGIST 2014; 204:841-53. [PMID: 25539005 PMCID: PMC5526441 DOI: 10.1111/nph.12969] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Morphospaces are mathematical representations used for studying the evolution of morphological diversity and for the evaluation of evolved shapes among theoretically possible ones. Although widely used in zoology, they--with few exceptions--have been disregarded in plant science and in particular in the study of broad-scale patterns of floral structure and evolution. Here we provide basic information on the morphospace approach; we review earlier morphospace applications in plant science; and as a practical example, we construct and analyze a floral morphospace. Morphospaces are usually visualized with the help of ordination methods such as principal component analysis (PCA) or nonmetric multidimensional scaling (NMDS). The results of these analyses are then coupled with disparity indices that describe the spread of taxa in the space. We discuss these methods and apply modern statistical tools to the first and only angiosperm-wide floral morphospace published by Stebbins in 1951. Despite the incompleteness of Stebbins’ original dataset, our analyses highlight major, angiosperm-wide trends in the diversity of flower morphology and thereby demonstrate the power of this previously neglected approach in plant science.
Collapse
Affiliation(s)
- Marion Chartier
- Department of Botany and Biodiversity Research, University of
Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Florian Jabbour
- Institute of Systematics, Evolution and Biodiversity, National
Museum of Natural History, 57 rue Cuvier – CP 39, 75231 Paris Cedex 05,
France
| | - Sylvain Gerber
- Department of Earth Sciences, University of Cambridge, Downing
Street, Cambridge, CB2 3EQ, UK
| | - Philipp Mitteroecker
- Department of Theoretical Biology, Vienna University, Althanstrasse
14, 1090 Vienna, Austria
| | - Hervé Sauquet
- Laboratoire Écologie, Systématique, Évolution,
Université Paris-Sud, CNRS UMR 8079, 91405 Orsay, France
| | - Maria von Balthazar
- Department of Botany and Biodiversity Research, University of
Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Yannick Staedler
- Department of Botany and Biodiversity Research, University of
Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Peter R. Crane
- Yale School of Forestry and Environmental Studies, 195 Prospect
Street, New Haven, CT 06511, USA
| | - Jürg Schönenberger
- Department of Botany and Biodiversity Research, University of
Vienna, Rennweg 14, 1030 Vienna, Austria
| |
Collapse
|
35
|
Mateus ARA, Marques-Pita M, Oostra V, Lafuente E, Brakefield PM, Zwaan BJ, Beldade P. Adaptive developmental plasticity: compartmentalized responses to environmental cues and to corresponding internal signals provide phenotypic flexibility. BMC Biol 2014; 12:97. [PMID: 25413287 PMCID: PMC4275937 DOI: 10.1186/s12915-014-0097-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/04/2014] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND The environmental regulation of development can result in the production of distinct phenotypes from the same genotype and provide the means for organisms to cope with environmental heterogeneity. The effect of the environment on developmental outcomes is typically mediated by hormonal signals which convey information about external cues to the developing tissues. While such plasticity is a wide-spread property of development, not all developing tissues are equally plastic. To understand how organisms integrate environmental input into coherent adult phenotypes, we must know how different body parts respond, independently or in concert, to external cues and to the corresponding internal signals. RESULTS We quantified the effect of temperature and ecdysone hormone manipulations on post-growth tissue patterning in an experimental model of adaptive developmental plasticity, the butterfly Bicyclus anynana. Following a suite of traits evolving by natural or sexual selection, we found that different groups of cells within the same tissue have sensitivities and patterns of response that are surprisingly distinct for the external environmental cue and for the internal hormonal signal. All but those wing traits presumably involved in mate choice responded to developmental temperature and, of those, all but the wing traits not exposed to predators responded to hormone manipulations. On the other hand, while patterns of significant response to temperature contrasted traits on autonomously-developing wings, significant response to hormone manipulations contrasted neighboring groups of cells with distinct color fates. We also showed that the spatial compartmentalization of these responses cannot be explained by the spatial or temporal compartmentalization of the hormone receptor protein. CONCLUSIONS Our results unravel the integration of different aspects of the adult phenotype into developmental and functional units which both reflect and impact evolutionary change. Importantly, our findings underscore the complexity of the interactions between environment and physiology in shaping the development of different body parts.
Collapse
Affiliation(s)
- Ana Rita A Mateus
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780, Oeiras, Portugal.
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE Leiden, The Netherlands.
| | - Manuel Marques-Pita
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780, Oeiras, Portugal.
- School of Informatics and Computing, Indiana University, 919 East Tenth Street, Bloomington, IN, 47408, USA.
| | - Vicencio Oostra
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE Leiden, The Netherlands.
- Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Elvira Lafuente
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780, Oeiras, Portugal.
| | - Paul M Brakefield
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE Leiden, The Netherlands.
- Department of Zoology, Cambridge University, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, The Netherlands.
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780, Oeiras, Portugal.
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE Leiden, The Netherlands.
| |
Collapse
|
36
|
Sears KE. Quantifying the impact of development on phenotypic variation and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 322:643-53. [PMID: 25393554 DOI: 10.1002/jez.b.22592] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023]
Abstract
A primary goal of evolutionary biology is to identify the factors that shape phenotypic evolution. According to the theory of natural selection, phenotypic evolution occurs through the differential survival and reproduction of individuals whose traits are selectively advantageous relative to other individuals in the population. This implies that evolution by natural selection is contingent upon the distribution and magnitude of phenotypic variation among individuals, which are in turn the products of developmental processes. Development therefore has the potential to affect the trajectory and rate of phenotypic evolution. Recent research in diverse systems (e.g., mammalian teeth, cichlid skulls, butterfly wings, and marsupial limbs) supports the hypothesis that development biases phenotypic variation and evolution, but suggests that these biases might be system-specific.
Collapse
Affiliation(s)
- Karen E Sears
- School of Integrative Biology, University of Illinois, Urbana, Illinois; Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| |
Collapse
|
37
|
Evolution of Drosophila sex comb length illustrates the inextricable interplay between selection and variation. Proc Natl Acad Sci U S A 2014; 111:E4103-9. [PMID: 25197080 DOI: 10.1073/pnas.1322342111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In spite of the diversity of possible biological forms observed in nature, a limited range of morphospace is frequently occupied for a given trait. Several mechanisms have been proposed to explain this bias in the distribution of phenotypes including selection, drift, and developmental constraints. Despite extensive work on phenotypic bias, the underlying developmental mechanisms explaining why particular regions of morphological space remain unoccupied are poorly understood. To address this issue, we studied the sex comb, a group of modified bristles used in courtship that shows marked morphological diversity among Drosophila species. In many Drosophila species including Drosophila melanogaster, the sex comb rotates 90° to a vertical position during development. Here we analyze the effect of changing D. melanogaster sex comb length on the process of rotation. We find that artificial selection changes the number of bristles per comb without a proportional change in the space available for rotation. As a result, when increasing sex comb length, rather than displaying a similar straight vertical shape observed in other Drosophila species, long sex combs bend because rotation is blocked by a neighboring row of bristles. Our results show ways in which morphologies that would be favored by natural selection are apparently impossible to achieve developmentally. These findings highlight the potential role of development in modifying selectable variation in the evolution of Drosophila sex comb length.
Collapse
|
38
|
Artificial selection for structural color on butterfly wings and comparison with natural evolution. Proc Natl Acad Sci U S A 2014; 111:12109-14. [PMID: 25092295 DOI: 10.1073/pnas.1402770111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color. We used artificial selection on a laboratory model butterfly, B. anynana, to evolve violet scales from UV brown scales and compared the mechanism of violet color production with that of two other Bicyclus species, Bicyclus sambulos and Bicyclus medontias, which have evolved violet/blue scales independently via natural selection. The UV reflectance peak of B. anynana brown scales shifted to violet over six generations of artificial selection (i.e., in less than 1 y) as the result of an increase in the thickness of the lower lamina in ground scales. Similar scale structures and the same mechanism for producing violet/blue structural colors were found in the other Bicyclus species. This work shows that populations harbor large amounts of standing genetic variation that can lead to rapid evolution of scales' structural color via slight modifications to the scales' physical dimensions.
Collapse
|
39
|
Laland KN. On evolutionary causes and evolutionary processes. Behav Processes 2014; 117:97-104. [PMID: 24932898 DOI: 10.1016/j.beproc.2014.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 01/07/2023]
Abstract
In this essay I consider how biologists understand 'causation' and 'evolutionary process', drawing attention to some idiosyncrasies in the use of these terms. I suggest that research within the evolutionary sciences has been channeled in certain directions and not others by scientific conventions, many of which have now become counterproductive. These include the views (i) that evolutionary processes are restricted to those phenomena that directly change gene frequencies, (ii) that understanding the causes of both ecological change and ontogeny is beyond the remit of evolutionary biology, and (iii) that biological causation can be understood by a dichotomous proximate-ultimate distinction, with developmental processes perceived as solely relevant to proximate causation. I argue that the notion of evolutionary process needs to be broadened to accommodate phenomena such as developmental bias and niche construction that bias the course of evolution, but do not directly change gene frequencies, and that causation in biological systems is fundamentally reciprocal in nature. This article is part of a Special Issue entitled: In Honor of Jerry Hogan.
Collapse
Affiliation(s)
- Kevin N Laland
- School of Biology, University of St Andrews, United Kingdom.
| |
Collapse
|
40
|
Welch AM, Smith MJ, Gerhardt HC. A multivariate analysis of genetic variation in the advertisement call of the gray treefrog, Hyla versicolor. Evolution 2014; 68:1629-39. [PMID: 24621402 DOI: 10.1111/evo.12397] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 02/20/2014] [Indexed: 11/26/2022]
Abstract
Genetic variation in sexual displays is crucial for an evolutionary response to sexual selection, but can be eroded by strong selection. Identifying the magnitude and sources of additive genetic variance underlying sexually selected traits is thus an important issue in evolutionary biology. We conducted a quantitative genetics experiment with gray treefrogs (Hyla versicolor) to investigate genetic variances and covariances among features of the male advertisement call. Two energetically expensive traits showed significant genetic variation: call duration, expressed as number of pulses per call, and call rate, represented by its inverse, call period. These two properties also showed significant genetic covariance, consistent with an energetic constraint to call production. Combining the genetic variance-covariance matrix with previous estimates of directional sexual selection imposed by female preferences predicts a limited increase in call duration but no change in call rate despite significant selection on both traits. In addition to constraints imposed by the genetic covariance structure, an evolutionary response to sexual selection may also be limited by high energetic costs of long-duration calls and by preferences that act most strongly against very short-duration calls. Meanwhile, the persistence of these preferences could be explained by costs of mating with males with especially unattractive calls.
Collapse
Affiliation(s)
- Allison M Welch
- Department of Biology, College of Charleston, South Carolina, 29424.
| | | | | |
Collapse
|
41
|
Facultative paedomorphosis and the pattern of intra- and interspecific variation in cranial skeleton: lessons from European newts (Ichthyosaura alpestris and Lissotriton vulgaris). ZOOMORPHOLOGY 2013. [DOI: 10.1007/s00435-013-0202-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Irwin KK, Carter PA. Constraints on the evolution of function-valued traits: a study of growth in Tribolium castaneum. J Evol Biol 2013; 26:2633-43. [PMID: 24118320 DOI: 10.1111/jeb.12257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
Abstract
Growth trajectories often impact individual fitness. They are continuous by nature and so are amenable to analysis using a function-valued (FV) trait framework to reveal their underlying genetic architecture. Previous studies have found high levels of standing additive genetic (co)variance for growth trajectories despite the expectation that growth should be responding to frequent strong directional selection. In this study, the FV framework is used to estimate the additive genetic covariance function for growth trajectories in larval Tribolium castaneum to address questions about standing additive genetic (co)variance and possible evolutionary constraints on growth and to predict responses to four plausible selection regimes. Results show that additive genetic (co)variance is high at the early ages, but decreases towards later ages in the larval period. A selection gradient function of the same size and in the same direction of the first eigenfunction of the G-function should give the maximal response. However, evolutionary constraints may be acting to keep this maximal response from being realized, through either conflicting effects on survivability and fecundity of larger body size, few evolutionary directions having sufficient additive variance for a response, genetic trade-offs with other traits or physiological regulatory mechanisms. More light may be shed on these constraints through the development of more sophisticated statistical approaches and implementation of additional empirical studies to explicitly test for specific types of constraints.
Collapse
Affiliation(s)
- K K Irwin
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
43
|
|
44
|
Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Alon U. Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space. Science 2012; 336:1157-60. [DOI: 10.1126/science.1217405] [Citation(s) in RCA: 417] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Otaki JM. Generation of butterfly wing eyespot patterns: a model for morphological determination of eyespot and parafocal element. Zoolog Sci 2012; 28:817-27. [PMID: 22035304 DOI: 10.2108/zsj.28.817] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The determination of color patterns of butterfly wing eyespots has been explained by the morphogen concentration gradient model. The induction model has been proposed recently as a more realistic alternative, in which the eyespot-specifying signal does not depend entirely on focal activity. However, this model requires further elaboration and supporting evidence to be validated. Here, I examined various color patterns of nymphalid butterflies to propose the mechanics of the induction model. Based on cases in which an eyespot light ring is identical to the background in color, I propose that eyespots are fundamentally composed of dark rings and non-dark "background" spaces between them. In the induction model, the dark-ring-inducing signal that is released from a prospective eyespot focus (the primary organizing center) as a slow-moving wave effects both selfenhancement and peripheral induction of the dark-ring-inhibitory signal at the secondary organizing centers, resulting in an eyespot that has alternate dark and light rings. Moreover, there are cases in which an unseen "imaginary light ring" surrounds an eyespot proper and in which PFEs are integrated into the eyespot. It appears that PFEs constitute a periodic continuum of eyespot dark rings; thus, a background space between the eyespot and a PFE is mechanistically equivalent to eyespot light rings. The eyespot dark-ring-inducing signals and PFE-inducing signal are likely to be identical in quality, but released at different times from the same organizing center. Computer simulations based on the reaction-diffusion system support the feasibility of the induction model.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
46
|
Shirai LT, Saenko SV, Keller RA, Jerónimo MA, Brakefield PM, Descimon H, Wahlberg N, Beldade P. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait. BMC Evol Biol 2012; 12:21. [PMID: 22335999 PMCID: PMC3361465 DOI: 10.1186/1471-2148-12-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/15/2012] [Indexed: 12/31/2022] Open
Abstract
Background The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. Results We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eye)spot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-)recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. Conclusions The evolutionary history of gene (co-)recruitment is consistent with both divergence from a recruited putative ancestral network, and with independent co-option of individual genes. The diversity in the combinations of genes expressed in association with eyespot formation does not parallel diversity in characteristics of the adult phenotype. We discuss these results in the context of inferring homology. Our study underscores the importance of widening the representation of phylogenetic, morphological, and genetic diversity in order to establish general principles about the mechanisms behind the evolution of novel traits.
Collapse
Affiliation(s)
- Leila T Shirai
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, P-2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Olson ME. The developmental renaissance in adaptationism. Trends Ecol Evol 2012; 27:278-87. [PMID: 22326724 DOI: 10.1016/j.tree.2011.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/01/2011] [Accepted: 12/31/2011] [Indexed: 11/16/2022]
Abstract
From an adaptation perspective, unoccupied patches of morphological space are inferred to be empty because they are of low fitness and selected against. These inferences hinge on venturesome assumptions, because emptiness is explained by low fitness and low fitness is inferred from emptiness. Moreover, non-adaptive factors, such as developmental constraint, could also plausibly account for empty morphospace. In response, biologists increasingly study ontogeny to test the assumption that unobserved phenotypes could be produced if selection were to favor them; finding that empty space morphologies can be readily produced in development helps reject constraint and lends support to adaptive hypotheses. This developmental approach to adaptation calls on manifold techniques, including embryology, artificial selection and comparative methods. Belying their diversity, all of these methods examine the causes of empty morphospace and mark a return of development, long excluded from traditional evolutionary biology, to adaptationist practice.
Collapse
Affiliation(s)
- Mark E Olson
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito de Ciudad Universitaria, México DF 04510, Mexico.
| |
Collapse
|
48
|
Saenko SV, Jerónimo MA, Beldade P. Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation. Heredity (Edinb) 2012; 108:594-601. [PMID: 22234245 DOI: 10.1038/hdy.2011.127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Melanism, the overall darkening of the body, is a widespread form of animal adaptation to particular environments, and includes bookcase examples of evolution by natural selection, such as industrial melanism in the peppered moth. The major components of the melanin biosynthesis pathway have been characterized in model insects, but little is known about the genetic basis of life-stage specific melanism such as cases described in some lepidopteran species. Here, we investigate two melanic mutations of Bicyclus anynana butterflies, called Chocolate and melanine, that exclusively affect pigmentation of the larval and adult stages, respectively. Our analysis of Mendelian segregation patterns reveals that the larval and adult melanic phenotypes are due to alleles at different, independently segregating loci. Our linkage mapping analysis excludes the pigmentation candidate gene black as the melanine locus, and implicates a gene encoding a putative pyridoxal phosphate-dependant cysteine sulfinic acid decarboxylase as the Chocolate locus. We show variation in coding sequence and in expression levels for this candidate larval melanism locus. This is the first study that suggests a biological function for this gene in insects. Our findings open up exciting opportunities to study the role of this locus in the evolution of adaptive variation in pigmentation, and the uncoupling of regulation of pigment biosynthesis across developmental stages with different ecologies and pressures on body coloration.
Collapse
Affiliation(s)
- S V Saenko
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | |
Collapse
|
49
|
Brakefield PM. Evo-devo and accounting for Darwin's endless forms. Philos Trans R Soc Lond B Biol Sci 2011; 366:2069-75. [PMID: 21690125 DOI: 10.1098/rstb.2011.0007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Evo-devo has led to dramatic advances in our understanding of how the processes of development can contribute to explaining patterns of evolutionary diversification that underlie the endless forms of animal life on the Earth. This is increasingly the case not only for the origins of evolutionary novelties that permit new functions and open up new adaptive zones, but also for the processes of evolutionary tinkering that occur within the subsequent radiations of related species. Evo-devo has time and again yielded spectacular examples of Darwin's notions of common ancestry and of descent with modification. It has also shown that the evolution of endless forms is more about the evolution of the regulatory machinery of ancient genes than the origin and elaboration of new genes. Evolvability, especially with respect to the capacity of a developmental system to evolve and to generate the variation in form for natural selection to screen, has become a pivotal focus of evo-devo. As a consequence, a balancing of the concept of endless forms in morphospace with a greater awareness of the potential for developmental constraints and bias is becoming more general. The prospect of parallel horizons opening up for the evolution of behaviour is exciting; in particular, does Sean Carroll's phrase referring to old genes learning new tricks in the evolution of endless forms apply equally as well to patterns of diversity and disparity in behavioural trait-space?
Collapse
Affiliation(s)
- Paul M Brakefield
- Department of Zoology, University Museum of Zoology Cambridge, , University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
50
|
Conner JK, Karoly K, Stewart C, Koelling VA, Sahli HF, Shaw FH. Rapid Independent Trait Evolution despite a Strong Pleiotropic Genetic Correlation. Am Nat 2011; 178:429-41. [DOI: 10.1086/661907] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|