1
|
Perla E, Abbas F, Rossi L, Magnani M, Biagiotti S. Red blood cells could protect miRNAs from degradation or loss thanks to Argonaute 2 binding. FEBS Open Bio 2025. [PMID: 40235152 DOI: 10.1002/2211-5463.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 04/17/2025] Open
Abstract
Red blood cells (RBCs) have emerged as reservoirs of microRNAs (miRNAs) in the circulatory system, challenging the traditional view of their nucleic acid absence. This study investigates the miRNA profiles and stability of both native and engineered RBCs. We demonstrate that RBCs are rich in miRNAs, which remain stable under physiological conditions, likely due to their association with Ago2, a key RNA-binding protein. The stability and retention of miRNAs persist even after hypotonic dialysis used for RBC engineering. These findings underline the potential of RBCs as miRNA carriers for therapeutic applications and as a foundation for RNA-based delivery systems. Such advancements could redefine their role in transfusion medicine and advanced RNA therapies.
Collapse
Affiliation(s)
- Elena Perla
- Department of Biomolecular Sciences, University of Urbino, Italy
| | - Faiza Abbas
- Department of Biomolecular Sciences, University of Urbino, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Italy
| | - Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino, Italy
| |
Collapse
|
2
|
Hong G, Huo Y, Gao Y, Ma L, Li S, Tian T, Zhong H, Li H. Integration of miRNA expression analysis of purified leukocytes and whole blood reveals blood-borne candidate biomarkers for lung cancer. Epigenetics 2024; 19:2393948. [PMID: 39164937 PMCID: PMC11340745 DOI: 10.1080/15592294.2024.2393948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Changes in leukocyte populations may confound the disease-associated miRNA signals in the blood of cancer patients. We aimed to develop a method to detect differentially expressed miRNAs from lung cancer whole blood samples that are not influenced by variations in leukocyte proportions. The Ref-miREO method identifies differential miRNAs unaffected by changes in leukocyte populations by comparing the within-sample relative expression orderings (REOs) of miRNAs from healthy leukocyte subtypes and those from lung cancer blood samples. Over 77% of the differential miRNAs observed between lung cancer and healthy blood samples overlapped with those between myeloid-derived and lymphoid-derived leukocytes, suggesting the potential impact of changes in leukocyte populations on miRNA profile. Ref-miREO identified 16 differential miRNAs that target 19 lung adenocarcinoma-related genes previously linked to leukocytes. These miRNAs showed enrichment in cancer-related pathways and demonstrated high potential as diagnostic biomarkers, with the LASSO regression models effectively distinguishing between healthy and lung cancer blood or serum samples (all AUC > 0.85). Additionally, 12 of these miRNAs exhibited significant prognostic correlations. The Ref-miREO method offers valuable candidates for circulating biomarker detection in cancer that are not affected by changes in leukocyte populations.
Collapse
Affiliation(s)
- Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Yue Huo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yaru Gao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Liyuan Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Shuang Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Tian Tian
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Haijian Zhong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Anfossi S, Darbaniyan F, Quinlan J, Calin S, Shimizu M, Chen M, Rausseo P, Winters M, Bogatenkova E, Do KA, Martinez I, Li Z, Antal L, Olariu TR, Wistuba I, Calin GA. MicroRNAs are enriched at COVID-19 genomic risk regions, and their blood levels correlate with the COVID-19 prognosis of cancer patients infected by SARS-CoV-2. Mol Cancer 2024; 23:235. [PMID: 39434078 PMCID: PMC11492698 DOI: 10.1186/s12943-024-02094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/18/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Cancer patients are more susceptible to an aggressive course of COVID-19. Developing biomarkers identifying cancer patients at high risk of COVID-19-related death could help determine who needs early clinical intervention. The miRNAs hosted in the genomic regions associated with the risk of aggressive COVID-19 could represent potential biomarkers for clinical outcomes. PATIENTS AND METHODS Plasma samples were collected at The University of Texas MD Anderson Cancer Center from cancer patients (N = 128) affected by COVID-19. Serum samples were collected from vaccinated healthy individuals (n = 23) at the Municipal Clinical Emergency Teaching Hospital in Timisoara, Romania. An in silico positional cloning approach was used to identify the presence of miRNAs at COVID-19 risk-associated genomic regions: CORSAIRs (COvid-19 RiSk AssocIated genomic Regions). The miRNA levels were measured by RT-qPCR. RESULTS We found that miRNAs were enriched in CORSAIR. Low plasma levels of hsa-miR-150-5p and hsa-miR-93-5p were associated with higher COVID-19-related death. The levels of hsa-miR-92b-3p were associated with SARS-CoV-2 test positivity. Peripheral blood mononuclear cells (PBMC) increased secretion of hsa-miR-150-5p, hsa-miR-93-5p, and hsa-miR-92b-3p after in vitro TLR7/8- and T cell receptor (TCR)-mediated activation. Increased levels of these three miRNAs were measured in the serum samples of healthy individuals between one and nine months after the second dose of the Pfizer-BioNTech COVID-19 vaccine. SARS-CoV-2 infection of human airway epithelial cells influenced the miRNA levels inside their secreted extracellular vesicles. CONCLUSIONS MiRNAs are enriched at CORSAIR. Plasma miRNA levels can represent a potential blood biomarker for predicting COVID-19-related death in cancer patients.
Collapse
Affiliation(s)
- Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - Faezeh Darbaniyan
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Joseph Quinlan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Steliana Calin
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Paola Rausseo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Michael Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Cancer Institute, Morgantown, USA
| | - Elena Bogatenkova
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Cancer Institute, Morgantown, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Loredana Antal
- Clinical Laboratory, Municipal Clinical Emergency Hospital, Timisoara, Romania
| | - Tudor Rares Olariu
- Clinical Laboratory, Municipal Clinical Emergency Hospital, Timisoara, Romania
- Department of Infectious Diseases, Center for Diagnosis and Study of Parasitic Diseases, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
- The Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
4
|
Pavelka L, Rauschenberger A, Hemedan A, Ostaszewski M, Glaab E, Krüger R. Converging peripheral blood microRNA profiles in Parkinson's disease and progressive supranuclear palsy. Brain Commun 2024; 6:fcae187. [PMID: 38863572 PMCID: PMC11166179 DOI: 10.1093/braincomms/fcae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
MicroRNAs act via targeted suppression of messenger RNA translation in the DNA-RNA-protein axis. The dysregulation of microRNA(s) reflects the epigenetic changes affecting the cellular processes in multiple disorders. To understand the complex effect of dysregulated microRNAs linked to neurodegeneration, we performed a cross-sectional microRNA expression analysis in idiopathic Parkinson's disease (n = 367), progressive supranuclear palsy (n = 35) and healthy controls (n = 416) from the Luxembourg Parkinson's Study, followed by prediction modelling, enriched pathway analysis and target simulation of dysregulated microRNAs using probabilistic Boolean modelling. Forty-six microRNAs were identified to be dysregulated in Parkinson's disease versus controls and 16 in progressive supranuclear palsy versus controls with 4 overlapping significantly dysregulated microRNAs between the comparisons. Predictive power of microRNA subsets (including up to 100 microRNAs) was modest for differentiating Parkinson's disease or progressive supranuclear palsy from controls (maximal cross-validated area under the receiver operating characteristic curve 0.76 and 0.86, respectively) and low for progressive supranuclear palsy versus Parkinson's disease (maximal cross-validated area under the receiver operating characteristic curve 0.63). The enriched pathway analysis revealed natural killer cell pathway to be dysregulated in both, Parkinson's disease and progressive supranuclear palsy versus controls, indicating that the immune system might play an important role in both diseases. Probabilistic Boolean modelling of pathway dynamics affected by dysregulated microRNAs in Parkinson's disease and progressive supranuclear palsy revealed partially overlapping dysregulation in activity of the transcription factor EB, endoplasmic reticulum stress signalling, calcium signalling pathway, dopaminergic transcription and peroxisome proliferator-activated receptor gamma coactivator-1α activity, though involving different mechanisms. These findings indicated a partially convergent (sub)cellular end-point dysfunction at multiple levels in Parkinson's disease and progressive supranuclear palsy, but with distinctive underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
- Competence Centre for Methodology and Statistics, Translational Medicine Operations Hub, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
| | - Ahmed Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| |
Collapse
|
5
|
Kroeze S, Kootstra NA, van Nuenen AC, Rossouw TM, Kityo CM, Siwale M, Akanmu S, Mandaliya K, de Jager M, Ondoa P, Wit FW, Reiss P, Rinke de Wit TF, Hamers RL. Specific plasma microRNAs are associated with CD4 + T-cell recovery during suppressive antiretroviral therapy for HIV-1. AIDS 2024; 38:791-801. [PMID: 38300257 PMCID: PMC10994156 DOI: 10.1097/qad.0000000000003853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
OBJECTIVE This study investigated the association of plasma microRNAs before and during antiretroviral therapy (ART) with poor CD4 + T-cell recovery during the first year of ART. DESIGN MicroRNAs were retrospectively measured in stored plasma samples from people with HIV (PWH) in sub-Saharan Africa who were enrolled in a longitudinal multicountry cohort and who had plasma viral-load less than 50 copies/ml after 12 months of ART. METHODS First, the levels of 179 microRNAs were screened in a subset of participants from the lowest and highest tertiles of CD4 + T-cell recovery (ΔCD4) ( N = 12 each). Next, 11 discordant microRNAs, were validated in 113 participants (lowest tertile ΔCD4: n = 61, highest tertile ΔCD4: n = 52). For discordant microRNAs in the validation, a pathway analysis was conducted. Lastly, we compared microRNA levels of PWH to HIV-negative controls. RESULTS Poor CD4 + T-cell recovery was associated with higher levels of hsa-miR-199a-3p and hsa-miR-200c-3p before ART, and of hsa-miR-17-5p and hsa-miR-501-3p during ART. Signaling by VEGF and MET, and RNA polymerase II transcription pathways were identified as possible targets of hsa-miR-199a-3p, hsa-200c-3p, and hsa-miR-17-5p. Compared with HIV-negative controls, we observed lower hsa-miR-326, hsa-miR-497-5p, and hsa-miR-501-3p levels before and during ART in all PWH, and higher hsa-miR-199a-3p and hsa-miR-200c-3p levels before ART in all PWH, and during ART in PWH with poor CD4 + T-cell recovery only. CONCLUSION These findings add to the understanding of pathways involved in persistent HIV-induced immune dysregulation during suppressive ART.
Collapse
Affiliation(s)
- Stefanie Kroeze
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Immunology, Meibergdreef 9
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Immunology, Meibergdreef 9
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Ad C. van Nuenen
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Theresa M. Rossouw
- Department of Immunology, University of Pretoria, Pretoria, South Africa
| | | | | | - Sulaimon Akanmu
- Department of Haematology and Blood Transfusion, College of Medicine of the University of Lagos and the Lagos University Teaching Hospital, Lagos, Nigeria
| | | | | | - Pascale Ondoa
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- African Society for Laboratory Medicine, Addis Ababa, Ethiopia
| | - Ferdinand W. Wit
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Stichting HIV Monitoring
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, The Netherlands
| | - Peter Reiss
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, The Netherlands
| | - Tobias F. Rinke de Wit
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Raph L. Hamers
- Amsterdam Institute for Global Health and Development
- Amsterdam UMC location University of Amsterdam, Department of Global Health
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Division of Infectious Diseases, Meibergdreef 9, Amsterdam, The Netherlands
- Oxford University Clinical Research Unit Indonesia, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Tan S, Wu W, Ge X, Zhang Y, Han J, Guo X, Zhou L, Yang H. A novel strategy to attenuate porcine reproductive and respiratory syndrome virus by inhibiting viral replication in the target pulmonary alveolar macrophages via hematopoietic-specific miR-142. ONE HEALTH ADVANCES 2023; 1:3. [PMID: 37521530 PMCID: PMC10060136 DOI: 10.1186/s44280-023-00002-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 08/01/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically important pathogen for the global pork industry. Although modified live virus (MLV) vaccines are commonly used for PRRSV prevention and control, they still carry a risk of infecting the host and replicating in target cells, thereby increasing the likehood of virus recombination and reversion to virulence. In this study, we inserted the target sequence of miR-142 into the nsp2 hypervariable region of PRRSV to inhibit viral replication in its host cells of pigs, with the aim of achieving virus attenuation. The chimeric virus RvJX-miR-142t was successfully rescued and retained its growth characteristics in MARC-145 cells. Furthermore, it did not replicate in MARC-145 cells transfected with miRNA-142 mimic. We also observed limited replication ability of RvJX-miR-142t in pulmonary alveolar macrophages, which are the main cell types that PRRSV infects. Our animal inoculation study showed that pigs infected with RvJX-miR-142t displayed less severe clinical symptoms, lower viremia titers, lighter lung lesions, and significantly lower mortality rates during the first 7 days post-inoculation, in comparison to pigs infected with the backbone virus RvJXwn. We detected a partially deletion of the miR-142 target sequence in the RvJX-miR-142t genome at 14 dpi. It is highly possible that the reversion of viral virulence observed in the later timepoints of our animal experiment was caused by that. Our study provided a new strategy for attenuating PRRSV and confirmed its effectiveness. However, further studies are necessary to increase the stability of this virus under host selection pressure.
Collapse
Affiliation(s)
- Shaoyuan Tan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Weixin Wu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Hong M, Li X, Li Y, Zhou Y, Li Y, Chi S, Cao G, Li S, Tang S. Hirschsprung's disease: key microRNAs and target genes. Pediatr Res 2022; 92:737-747. [PMID: 34880446 DOI: 10.1038/s41390-021-01872-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study aimed to identify key microRNAs (miRNAs), pathways, and target genes mediating Hirschsprung's disease (HSCR) pathogenesis and identify the diagnostic potential of miRNAs. METHODS The Gene Expression Omnibus database and reverse transcription-quantitative PCR were used to compare miRNA expression between ganglionic and aganglionic colon tissues of children with HSCR, and the TAM 2.0 database was used to identify colon tissue-specific miRNAs. The StarBase database, TargetScan database, luciferase reporter, and western blot assays were used to analyze miRNA-messenger RNA interactions. OmicShare was used to perform functional and pathway enrichment analyses of the target genes. Migration assays were performed to validate the functions of the miRNAs. RESULTS The TAM 2.0 database analysis and reverse transcription-quantitative PCR showed that hsa-miR-192-5p, hsa-miR-200a-3p, and hsa-miR-200b-3p were colon tissue-specific and upregulated in aganglionic colon tissue compared to paired ganglionic colon tissue. These three miRNAs effectively reduced cell viability and migration. Luciferase reporter and western blot assays verified the direct interaction between these three miRNAs and the target genes of ZEB2 and FNDC3B. Furthermore, the plasma levels of these miRNAs were higher in HSCR patients than in non-HSCR patients. CONCLUSIONS Three plasma miRNAs (hsa-miR-192-5p, hsa-miR-200a-3p, and hsa-miR-200b-3p) are potential peripheral HSCR biomarkers. IMPACT The molecular mechanisms underlying HSCR are unclear. HSCR is most accurately diagnosed using rectal biopsy samples, and no consensus has been reached on the use of blood-based tests for HSCR diagnosis. Circulating miRNAs may be candidate diagnostic HSCR biomarkers because they are typically easily detectable, stable, and tissue-specific. Three plasma miRNAs (miR-200a-3p, miR-192-5p, and miR-200b-3p) are potential peripheral HSCR biomarkers.
Collapse
Affiliation(s)
- Mei Hong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyang Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhou
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuiqing Chi
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoqing Cao
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaotao Tang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Kos MZ, Puppala S, Cruz D, Neary JL, Kumar A, Dalan E, Li C, Nathanielsz P, Carless MA. Blood-Based miRNA Biomarkers as Correlates of Brain-Based miRNA Expression. Front Mol Neurosci 2022; 15:817290. [PMID: 35392269 PMCID: PMC8981579 DOI: 10.3389/fnmol.2022.817290] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/18/2022] [Indexed: 01/08/2023] Open
Abstract
The use of easily accessible peripheral samples, such as blood or saliva, to investigate neurological and neuropsychiatric disorders is well-established in genetic and epigenetic research, but the pathological implications of such biomarkers are not easily discerned. To better understand the relationship between peripheral blood- and brain-based epigenetic activity, we conducted a pilot study on captive baboons (Papio hamadryas) to investigate correlations between miRNA expression in peripheral blood mononuclear cells (PBMCs) and 14 different cortical and subcortical brain regions, represented by two study groups comprised of 4 and 6 animals. Using next-generation sequencing, we identified 362 miRNAs expressed at ≥ 10 read counts in 80% or more of the brain samples analyzed. Nominally significant pairwise correlations (one-sided P < 0.05) between peripheral blood and mean brain expression levels of individual miRNAs were observed for 39 and 44 miRNAs in each group. When miRNA expression levels were averaged for tissue type across animals within the groups, Spearman's rank correlations between PBMCs and the brain regions are all highly significant (r s = 0.47-0.57; P < 2.2 × 10-16), although pairwise correlations among the brain regions are markedly stronger (r s = 0.86-0.99). Principal component analysis revealed differentiation in miRNA expression between peripheral blood and the brain regions for the first component (accounting for ∼75% of variance). Linear mixed effects modeling attributed most of the variance in expression to differences between miRNAs (>70%), with non-significant 7.5% and 13.1% assigned to differences between blood and brain-based samples in the two study groups. Hierarchical UPGMA clustering revealed a major co-expression branch in both study groups, comprised of miRNAs globally upregulated in blood relative to the brain samples, exhibiting an enrichment of miRNAs expressed in immune cells (CD14+, CD15+, CD19+, CD3+, and CD56 + leukocytes) among the top blood-brain correlates, with the gene MYC, encoding a master transcription factor that regulates angiogenesis and neural stem cell activation, representing the most prevalent miRNA target. Although some differentiation was observed between tissue types, these preliminary findings reveal wider correlated patterns between blood- and brain-expressed miRNAs, suggesting the potential utility of blood-based miRNA profiling for investigating by proxy certain miRNA activity in the brain, with implications for neuroinflammatory and c-Myc-mediated processes.
Collapse
Affiliation(s)
- Mark Z. Kos
- Department of Human Genetics, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, United States
| | - Sobha Puppala
- Department of Internal Medicine-Section of Molecular Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Dianne Cruz
- Duke University School of Medicine, Durham, NC, United States
| | - Jennifer L. Neary
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashish Kumar
- Department of Internal Medicine-Section of Molecular Medicine, Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Emma Dalan
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Cun Li
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States,Department of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Peter Nathanielsz
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States,Department of Animal Science, University of Wyoming, Laramie, WY, United States
| | - Melanie A. Carless
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, United States,Population Health, Texas Biomedical Research Institute, San Antonio, TX, United States,*Correspondence: Melanie A. Carless,
| |
Collapse
|
9
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
10
|
MicroRNA in dried blood spots from patients with Aagenaes syndrome and evaluation of pre-analytical and analytical factors. Pediatr Res 2021; 89:1780-1787. [PMID: 32932426 DOI: 10.1038/s41390-020-01153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/07/2020] [Accepted: 08/31/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Circulatory miRNAs are promising biomarkers. The feasibility of using miRNA from dried blood spots (DBS) was investigated using newborn screening cards from patients with cholestasis-lymphedema syndrome (Aagenaes syndrome) and controls. METHODS Total amount of miRNA and specific miRNAs from DBS were analyzed. miRNA was also obtained from newborn screening cards in patients with cholestasis-lymphedema syndrome/Aagenaes syndrome and in healthy newborns. RESULTS No differences in miRNA concentrations were found between multispotted samples and samples with one single drop of blood and between central and peripheral punches. Ten repeated freeze-thaw cycles did not significantly change miRNA levels from controls. miR-299 (1.73-fold change, p = 0.034) and miR-365 (1.46-fold change, p = 0.011) were upregulated and miR-30c (0.72-fold change, p = 0.0037), miR-652 (0.85-fold change, p = 0.025), and miR-744 (0.72-fold change, p = 0.0069) were downregulated in patients with Aagenaes syndrome at birth compared to controls. CONCLUSIONS miRNAs were not affected by multispotting or punch location and were stable throughout repeated freeze-thaw cycles. miRNA in dried blood spots could be used to detect differential expression of miRNA in newborns with Aagenaes syndrome and healthy controls in newborn screening cards. Dried blood spots may be a useful source to explore circulating miRNA as biomarkers. IMPACT Circulating miRNAs can be useful biomarkers. miRNAs from dried blood spots were not affected by multispotting or punch location and were stable throughout repeated freeze-thaw cycles. Discrimination between patients and controls are allowed even with few individuals. Early after birth, patients with cholestasis-lymphedema syndrome exhibit miRNA profiles associated with liver fibrosis. This study demonstrated that newborn screening cards may be a useful source for studying miRNA as the technical variability is smaller than biological variation.
Collapse
|
11
|
Heinicke F, Zhong X, Flåm ST, Breidenbach J, Leithaug M, Mæhlen MT, Lillegraven S, Aga AB, Norli ES, Mjaavatten MD, Haavardsholm EA, Zucknick M, Rayner S, Lie BA. MicroRNA Expression Differences in Blood-Derived CD19+ B Cells of Methotrexate Treated Rheumatoid Arthritis Patients. Front Immunol 2021; 12:663736. [PMID: 33897713 PMCID: PMC8062711 DOI: 10.3389/fimmu.2021.663736] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a complex disease with a wide range of underlying susceptibility factors. Recently, dysregulation of microRNAs (miRNAs) in RA have been reported in several immune cell types from blood. However, B cells have not been studied in detail yet. Given the autoimmune nature of RA with the presence of autoantibodies, CD19+ B cells are a key cell type in RA pathogenesis and alterations in CD19+ B cell subpopulations have been observed in patient blood. Therefore, we aimed to reveal the global miRNA repertoire and to analyze miRNA expression profile differences in homogenous RA patient phenotypes in blood-derived CD19+ B cells. Small RNA sequencing was performed on CD19+ B cells of newly diagnosed untreated RA patients (n=10), successfully methotrexate (MTX) treated RA patients in remission (MTX treated RA patients, n=18) and healthy controls (n=9). The majority of miRNAs was detected across all phenotypes. However, significant expression differences between MTX treated RA patients and controls were observed for 27 miRNAs, while no significant differences were seen between the newly diagnosed patients and controls. Several of the differentially expressed miRNAs were previously found to be dysregulated in RA including miR-223-3p, miR-486-3p and miR-23a-3p. MiRNA target enrichment analysis, using the differentially expressed miRNAs and miRNA-target interactions from miRTarBase as input, revealed enriched target genes known to play important roles in B cell activation, differentiation and B cell receptor signaling, such as STAT3, PRDM1 and PTEN. Interestingly, many of those genes showed a high degree of correlated expression in CD19+ B cells in contrast to other immune cell types. Our results suggest important regulatory functions of miRNAs in blood-derived CD19+ B cells of MTX treated RA patients and motivate for future studies investigating the interactive mechanisms between miRNA and gene targets, as well as the possible predictive power of miRNAs for RA treatment response.
Collapse
Affiliation(s)
- Fatima Heinicke
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Xiangfu Zhong
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Siri T Flåm
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Johannes Breidenbach
- Norwegian Institute for Bioeconomy Research, National Forest Inventory, Ås, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marthe T Mæhlen
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Siri Lillegraven
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Anna-Birgitte Aga
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ellen S Norli
- Department of Rheumatology, Martina Hansens Hospital, Bærum, Norway
| | - Maria D Mjaavatten
- Division of Rheumatology and Research, Diakonhjemmet Hospital, Oslo, Norway
| | | | - Manuela Zucknick
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Simon Rayner
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Benedicte A Lie
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Transfer RNA fragments replace microRNA regulators of the cholinergic poststroke immune blockade. Proc Natl Acad Sci U S A 2020; 117:32606-32616. [PMID: 33288717 PMCID: PMC7768686 DOI: 10.1073/pnas.2013542117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke triggers peripheral immunosuppression, increasing the susceptibility to poststroke pneumonia that is linked with poor survival. The poststroke brain initiates intensive communication with the immune system, and acetylcholine contributes to these messages; but the responsible molecules are yet unknown. We discovered a “changing of the guards,” where microRNA levels decreased but small transfer RNA fragments increased in poststroke blood. This molecular switch may rebalance acetylcholine signaling in CD14+ monocytes by regulating their gene expression and modulating poststroke immunity. Our observations point to transfer RNA fragments as molecular regulators of poststroke immune responses that may be potential therapeutic targets. Stroke is a leading cause of death and disability. Recovery depends on a delicate balance between inflammatory responses and immune suppression, tipping the scale between brain protection and susceptibility to infection. Peripheral cholinergic blockade of immune reactions fine-tunes this immune response, but its molecular regulators are unknown. Here, we report a regulatory shift in small RNA types in patient blood sequenced 2 d after ischemic stroke, comprising massive decreases of microRNA levels and concomitant increases of transfer RNA fragments (tRFs) targeting cholinergic transcripts. Electrophoresis-based size-selection followed by qRT-PCR validated the top six up-regulated tRFs in a separate cohort of stroke patients, and independent datasets of small and long RNA sequencing pinpointed immune cell subsets pivotal to these responses, implicating CD14+ monocytes in the cholinergic inflammatory reflex. In-depth small RNA targeting analyses revealed the most-perturbed pathways following stroke and implied a structural dichotomy between microRNA and tRF target sets. Furthermore, lipopolysaccharide stimulation of murine RAW 264.7 cells and human CD14+ monocytes up-regulated the top six stroke-perturbed tRFs, and overexpression of stroke-inducible tRF-22-WE8SPOX52 using a single-stranded RNA mimic induced down-regulation of immune regulator Z-DNA binding protein 1. In summary, we identified a “changing of the guards” between small RNA types that may systemically affect homeostasis in poststroke immune responses, and pinpointed multiple affected pathways, which opens new venues for establishing therapeutics and biomarkers at the protein and RNA level.
Collapse
|
13
|
Min JW, Lee J, Mun HJ, Kim DH, Park BG, Yoon B, Ryu JH, Cho HJ. Diagnostic and therapeutic biomarkers for Alzheimer's disease in human-derived platelets. Genes Genomics 2020; 42:1467-1475. [PMID: 33180258 DOI: 10.1007/s13258-020-01015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/29/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Diagnosis of current Alzheimer's disease (AD) is difficult even for medical specialists, and there is no clear biomarker. Also, aging is highly related to the onset of AD. OBJECTIVES The purpose of this study is to screen miRNA as an aging-considered biomarker for AD treatment and diagnosis. METHODS The patient group for this study was divided into a young normal, old normal, or AD group. We developed a method of discovering sequentially expressed miRNAs to distinguish miRNAs that were sequentially expressed in the three groups. RESULTS Sequentially expressed miRNAs correlated highly with the patient's age, and most showed expression patterns that distinguished young, old, and AD. Specifically, the miRNA expression we found showed similar patterns in the brains of patients with AD. Among the selected miRNAs, one set derived from the same precursor: The expression of miR-150 was a disease- and age-specific downregulation in both 3p and 5p forms, and the precursor also had the same pattern. We named that triple matching. Also, the found miR-150 precursor had AD-specific miRNA-imbalance characteristics. CONCLUSIONS We developed a novel AD diagnostic method using triple matching and miRNA-imbalance. The triple matching and miRNA imbalance-based relative ratio diagnosis method we developed will be very powerful in resolving the challenges of absolute diagnostic quantification based on biomarker expression. Also, our research results suggest the possibility of a treatment target for AD.
Collapse
Affiliation(s)
- Jae-Woong Min
- Biorchestra Co. Ltd., Techno4-ro 17, Daejeon, 34013, South Korea
| | - Jina Lee
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, 35365, South Korea
| | - Hui-Jin Mun
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, 35365, South Korea
| | - Dae Hoon Kim
- Biorchestra Co. Ltd., Techno4-ro 17, Daejeon, 34013, South Korea
| | - Byeong-Gyu Park
- Biorchestra Co. Ltd., Techno4-ro 17, Daejeon, 34013, South Korea
| | - Bora Yoon
- Department of Neurology, College of Medicine, Konyang University Hospital, Konyang University, Daejeon, 35365, South Korea
| | - Jin-Hyeob Ryu
- Biorchestra Co. Ltd., Techno4-ro 17, Daejeon, 34013, South Korea.
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, 35365, South Korea.
| |
Collapse
|
14
|
Casey S, Goasdoue K, Miller SM, Brennan GP, Cowin G, O'Mahony AG, Burke C, Hallberg B, Boylan GB, Sullivan AM, Henshall DC, O'Keeffe GW, Mooney C, Bjorkman T, Murray DM. Temporally Altered miRNA Expression in a Piglet Model of Hypoxic Ischemic Brain Injury. Mol Neurobiol 2020; 57:4322-4344. [PMID: 32720074 PMCID: PMC7383124 DOI: 10.1007/s12035-020-02018-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
Hypoxic ischemic encephalopathy (HIE) is the most frequent cause of acquired infant brain injury. Early, clinically relevant biomarkers are required to allow timely application of therapeutic interventions. We previously reported early alterations in several microRNAs (miRNA) in umbilical cord blood at birth in infants with HIE. However, the exact timing of these alterations is unknown. Here, we report serial changes in six circulating, cross-species/bridging biomarkers in a clinically relevant porcine model of neonatal HIE with functional analysis. Six miRNAs—miR-374a, miR-181b, miR-181a, miR-151a, miR-148a and miR-128—were significantly and rapidly upregulated 1-h post-HI. Changes in miR-374a, miR-181b and miR-181a appeared specific to moderate-severe HI. Histopathological injury and five miRNAs displayed positive correlations and were predictive of MRS Lac/Cr ratios. Bioinformatic analysis identified that components of the bone morphogenic protein (BMP) family may be targets of miR-181a. Inhibition of miR-181a increased neurite length in both SH-SY5Y cells at 1 DIV (days in vitro) and in primary cultures of rat neuronal midbrain at 3 DIV. In agreement, inhibition of miR-181a increased expression of BMPR2 in differentiating SH-SY5Y cells. These miRNAs may therefore act as early biomarkers of HIE, thereby allowing for rapid diagnosis and timely therapeutic intervention and may regulate expression of signalling pathways vital to neuronal survival.
Collapse
Affiliation(s)
- Sophie Casey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland. .,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. .,Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland.
| | - Kate Goasdoue
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Stephanie M Miller
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Adam G O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - Christopher Burke
- Department of Pathology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Boubou Hallberg
- Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Geraldine B Boylan
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
| | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gerard W O'Keeffe
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Room 2.33, Western Gateway Building, Cork, Ireland
| | - Catherine Mooney
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Computer Science, University College Dublin, Dublin, Ireland
| | - Tracey Bjorkman
- Perinatal Research Centre, UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia
| | - Deirdre M Murray
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Orr C, Myers R, Li B, Jiang Z, Flaherty J, Gaggar A, Meissner EG. Longitudinal analysis of serum microRNAs as predictors of cirrhosis regression during treatment of hepatitis B virus infection. Liver Int 2020; 40:1693-1700. [PMID: 32301252 PMCID: PMC7681260 DOI: 10.1111/liv.14474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 01/27/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Most patients with cirrhosis induced by chronic HBV infection experience fibrosis regression after long-term antiviral treatment, while some remain cirrhotic. Fibrosis regression is associated with lower odds of developing hepatic decompensation and hepatocellular carcinoma, but mechanisms impacting differential fibrosis regression between individuals are unclear. We asked whether soluble molecules, including serum microRNAs, could serve as biomarkers of fibrosis regression. METHODS We analysed cryopreserved sera from clinical trials in which cirrhotic HBV-infected patients (baseline Ishak fibrosis score of 5-6) received 240 weeks of nucleotide analogue treatment. Liver biopsies at week 240 in these trials showed 71/96 patients (74%) had fibrosis regression (Ishak ≤ 4) while 25/96 (26%) remained cirrhotic (Ishak 5-6). We quantified inflammatory markers (CXCL10, soluble CD163) and miRNAs (n = 179) from serum at baseline, week 48 and week 240 of treatment in a sub-cohort of patients with (n = 14) or without (n = 14) fibrosis regression. RESULTS CXCL10, sCD163 and miRNAs previously associated with HBV replication and inflammation decreased during treatment but did not differ based on fibrosis regression. Two miRNAs (miR-421 and miR-454-3p) had lower baseline expression in patients with subsequent fibrosis regression. In all, 27 miRNAs differed at week 240 and had higher expression in patients with fibrosis regression (eg miR-199a-3p, miR-423-3p, miR-142-3p, miR-let-7d-5p). Several miRNAs (miR-141-3p, let-7d-5p) that correlated with regression have previously been implicated in the pathophysiology of non-alcoholic steatohepatitis. CONCLUSIONS In cirrhotic patients with chronic HBV infection treated with antiviral therapy, serum miRNAs have differential expression based on fibrosis regression, suggesting potential utility as biomarkers.
Collapse
Affiliation(s)
- Cody Orr
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| | | | - Biao Li
- Gilead Sciences, Foster City, CA
| | | | | | | | - Eric G. Meissner
- Division of Infectious Diseases, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
16
|
O'Sullivan MP, Looney AM, Moloney GM, Finder M, Hallberg B, Clarke G, Boylan GB, Murray DM. Validation of Altered Umbilical Cord Blood MicroRNA Expression in Neonatal Hypoxic-Ischemic Encephalopathy. JAMA Neurol 2020; 76:333-341. [PMID: 30592487 DOI: 10.1001/jamaneurol.2018.4182] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Neonatal hypoxic-ischemic encephalopathy (HIE) remains a significant cause of neurologic disability. Identifying infants suitable for therapeutic hypothermia (TH) within a narrow therapeutic time is difficult. No single robust biochemical marker is available to clinicians. Objective To assess the ability of a panel of candidate microRNA (miRNA) to evaluate the development and severity of encephalopathy following perinatal asphyxia (PA). Design, Setting, and Participants This validation study included 2 cohorts. For the discovery cohort, full-term infants with PA were enrolled at birth to the Biomarkers in Hypoxic-Ischemic Encephalopathy (BiHiVE1) study (2009-2011) in Cork, Ireland. Encephalopathy grade was defined using early electroencephalogram and Sarnat score (n = 68). The BiHiVE1 cohort also enrolled healthy control infants (n = 22). For the validation cohort, the BiHiVE2 multicenter study (2013-2015), based in Cork, Ireland (7500 live births per annum), and Karolinska Huddinge, Sweden (4400 live births per annum), recruited infants with PA along with healthy control infants to validate findings from BiHiVE1 using identical recruitment criteria (n = 80). The experimental design was formulated prior to recruitment, and analysis was conducted from June 2016 to March 2017. Main Outcomes and Measures Alterations in umbilical cord whole-blood miRNA expression. Results From 170 neonates, 160 were included in the final analysis. The BiHiVE1 cohort included 87 infants (21 control infants, 39 infants with PA, and 27 infants with HIE), and BiHiVE2 included 73 infants (control [n = 22], PA [n = 26], and HIE [n = 25]). The BiHiVE1 and BiHiVE2 had a median age of 40 weeks (interquartile range [IQR], 39-41 weeks) and 40 weeks (IQR, 39-41 weeks), respectively, and included 56 boys and 31 girls and 45 boys and 28 girls, respectively. In BiHiVE1, 12 candidate miRNAs were identified, and 7 of these miRNAs were chosen for validation in BiHiVE2. The BiHiVE2 cohort showed consistent alteration of 3 miRNAs; miR-374a-5p was decreased in infants diagnosed as having HIE compared with healthy control infants (median relative quantification, 0.38; IQR, 0.17-0.77 vs 0.95; IQR, 0.68-1.19; P = .009), miR-376c-3p was decreased in infants with PA compared with healthy control infants (median, 0.42; IQR, 0.21-0.61 vs 0.90; IQR, 0.70-1.30; P = .004), and mir-181b-5p was decreased in infants eligible for TH (median, 0.27; IQR, 0.14-1.41) vs 1.18; IQR, 0.70-2.05; P = .02). Conclusions and Relevance Altered miRNA expression was detected in umbilical cord blood of neonates with PA and HIE. These miRNA could assist diagnostic markers for early detection of HIE and PA at birth.
Collapse
Affiliation(s)
- Marc Paul O'Sullivan
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Ann Marie Looney
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Mikael Finder
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Boubou Hallberg
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Gerard Clarke
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Geraldine B Boylan
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
17
|
Almenar-Pérez E, Sarría L, Nathanson L, Oltra E. Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci Rep 2020; 10:2064. [PMID: 32034172 PMCID: PMC7005890 DOI: 10.1038/s41598-020-58506-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 02/08/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multisystemic disease of unknown etiology, affecting thousands of individuals worldwide. Its diagnosis still relies on ruling out medical problems leading to unexplained fatigue due to a complete lack of disease-specific biomarkers. Our group and others have explored the potential value of microRNA profiles (miRNomes) as diagnostic tools for this disease. However, heterogeneity of participants, low numbers, the variety of samples assayed, and other pre-analytical variables, have hampered the identification of disease-associated miRNomes. In this study, our team has evaluated, for the first time, ME/CFS miRNomes in peripheral blood mononuclear cells (PBMCs) and extracellular vesicles (EVs) from severely ill patients recruited at the monographic UK ME biobank to assess, using standard operating procedures (SOPs), blood fractions with optimal diagnostic power for a rapid translation of a miR-based diagnostic method into the clinic. Our results show that routine creatine kinase (CK) blood values, plasma EVs physical characteristics (including counts, size and zeta-potential), and a limited number of differentially expressed PBMC and EV miRNAs appear significantly associated with severe ME/CFS (p < 0.05). Gene enrichment analysis points to epigenetic and neuroimmune dysregulated pathways, in agreement with previous reports. Population validation by a cost-effective approach limited to these few potentially discriminating variables is granted.
Collapse
Affiliation(s)
- Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Leonor Sarría
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
18
|
McCullough S, Dweep H, McGill MR, Bhattacharyya S, James L, Frankowski S, Woodall A, Kearns G, Gill P. Granzyme B and miR-378a Interaction in Acetaminophen Toxicity in Children. Microrna 2020; 9:121-132. [PMID: 31393259 PMCID: PMC10507677 DOI: 10.2174/2211536608666190808144456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Hepatic phase I drug-metabolizing enzymes CYP2E1, CYP1A2 and CYP3A4 catalyze the biotransformation of Acetaminophen (APAP) and are important in the mediation of toxicity. The potential role of other hepatic and non-hepatic Phase I enzymes in APAP toxicity has not been established. METHODS PCR array containing 84 genes involved in phase I drug metabolism was examined in subgroups of hospitalized children for APAP overdose, categorized as no toxicity (ALT ≤ 45 IU/L, n=5) and moderate toxicity (ALT ≥ 500 IU/L, n=5). RESULTS Significant downregulation was observed for ALDH6A1, CYP4F12 and GZMB in the no toxicity subgroup and ALDH1A1, CYP27A1 and GZMB in the moderate toxicity subgroup. qRTPCR confirmed significant downregulation for ALDH1A1, CYP4F12, and GZMB. In-silico analysis identified GZMB 3'UTR to be a target of miR-378a-5p. Overexpression of miR-378a-5p reduced the luciferase activity of GZMB 3'UTR reporter plasmid reportedly by 50%. NK-92 cells transfected with the miR-378a-5p mimic extended the effect of APAP on GZMB protein expression compared to mimic controls. In addition, miR-378a-5p was significantly upregulated in blood samples of children with APAP overdose undergoing NAC treatment. CONCLUSION Overall, our study suggests the presence of a novel signaling pathway, whereby miR- 378a-5p inhibits GZMB expression in children with APAP overdose.
Collapse
Affiliation(s)
- Sandra McCullough
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Harsh Dweep
- The Wistar Institute, 3601 Spruce St, Philadelphia, PA, 19104, USA
| | - Mitchell R. McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sudeepa Bhattacharyya
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Laura James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Sara Frankowski
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Aaron Woodall
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Gregory Kearns
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Pritmohinder Gill
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| |
Collapse
|
19
|
Rzepiel A, Kutszegi N, Gézsi A, Sági JC, Egyed B, Péter G, Butz H, Nyírő G, Müller J, Kovács GT, Szalai C, Semsei ÁF, Erdélyi DJ. Circulating microRNAs as minimal residual disease biomarkers in childhood acute lymphoblastic leukemia. J Transl Med 2019; 17:372. [PMID: 31727091 PMCID: PMC6854698 DOI: 10.1186/s12967-019-2114-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/26/2019] [Indexed: 12/21/2022] Open
Abstract
Background Treatment stratification based on bone marrow minimal residual disease (MRD) at set time points has resulted in considerably improved survival in pediatric acute lymphoblastic leukemia (ALL). Treatment response is assessed using bone marrow samples. MicroRNAs (miRs) easily traffic among fluid spaces and are more stable than most other RNA classes. We examined the role of circulating miRs as putative less invasive MRD biomarkers. Methods In an exploratory experiment, expression of 46 preselected miRs was studied in platelet-free blood plasma samples of 15 de novo, 5 relapsed ALL patients and 10 controls by Custom TaqMan Array Advanced MicroRNA Card. Based on their high expression in ALL compared to controls, and on the reduction observed along the induction therapy, four miRs were selected for further analyses: miR-128-3p, -181a-5p, -181b-5p and 222-3p. Their expression was measured by qPCR at 4 time points in 27 de novo ALL patients treated in the ALL IC-BFM 2009 study. Results The expression of all 4 miRs significantly decreased over the first week of therapy (miR-128-3p: log2 fold change − 2.86; adjusted p 3.6 × 10−7; miR-181b-5p: log2 fold change − 1.75; adjusted p 1.48 × 10−2; miR-181a-5p: log2 fold change -1.33; adjusted p 3.12 × 10−2; miR-222-3p: log2 fold change − 1.25; adjusted p 1.66 × 10−2). However, no significant further reduction in miR expression was found after the 8th day of therapy. Measured drop in expression of 2 miRs at day 8 strongly correlated with day 15 bone marrow flow cytometry MRD results (miR-128-3p: Pearson’s r = 0.88, adjusted p = 2.71 × 10−4; miR-222-3p: r = 0.81, adjusted p = 2.99 × 10−3). Conclusion In conclusion, these circulating miRs might act as biomarkers of residual leukemia. MiR-128-3p and miR-222-3p in blood predict day 15 flow cytometry MRD results 7 days earlier. Although, their sensitivity falls behind that of bone marrow flow cytometry MRD at day 15.
Collapse
Affiliation(s)
- Andrea Rzepiel
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Nóra Kutszegi
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - András Gézsi
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary.,Department of Measurement and Information Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Nyírő
- MTA-SE Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Judit Müller
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor T Kovács
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,Heim Pál Children's Hospital, Budapest, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- 2nd Department of Paediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Hirschberger S, Hübner M, Strauß G, Effinger D, Bauer M, Weis S, Giamarellos-Bourboulis EJ, Kreth S. Identification of suitable controls for miRNA quantification in T-cells and whole blood cells in sepsis. Sci Rep 2019; 9:15735. [PMID: 31672997 PMCID: PMC6823537 DOI: 10.1038/s41598-019-51782-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022] Open
Abstract
Complex immune dysregulation is a hallmark of sepsis. The occurring phases of immunosuppression and hyperinflammation require rapid detection and close monitoring. Reliable tools to monitor patient’s immune status are yet missing. Currently, microRNAs are being discussed as promising new biomarkers in sepsis. However, no suitable internal control for normalization of miRNA expression by qPCR has been validated so far, thus hampering their potential benefit. We here present the first evaluation of endogenous controls for miRNA analysis in human sepsis. Novel candidate reference miRNAs were identified via miRNA microArray. TaqMan qPCR assays were performed to evaluate these microRNAs in T-cells and whole blood cells of sepsis patients and healthy controls in two independent cohorts. In T-cells, U48 and miR-320 proved suitable as endogenous controls, while in whole blood cells, U44 and miR-942 provided best stability values for normalization of miRNA quantification. Commonly used snRNA U6 exhibited worst stability in all sample groups. The identified internal controls have been prospectively validated in independent cohorts. The critical importance of housekeeping gene selection is emphasized by exemplary quantification of imuno-miR-150 in sepsis patients. Use of appropriate internal controls could facilitate research on miRNA-based biomarker-use and might even improve treatment strategies in the future.
Collapse
Affiliation(s)
- Simon Hirschberger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Max Hübner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Gabriele Strauß
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - David Effinger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian Weis
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Institute for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | | | - Simone Kreth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany. .,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
21
|
van den Esker MH, Koets AP. Application of Transcriptomics to Enhance Early Diagnostics of Mycobacterial Infections, with an Emphasis on Mycobacterium avium ssp. paratuberculosis. Vet Sci 2019; 6:vetsci6030059. [PMID: 31247942 PMCID: PMC6789504 DOI: 10.3390/vetsci6030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Mycobacteria cause a wide variety of disease in human and animals. Species that infect ruminants include M. bovis and M. avium ssp. paratuberculosis (MAP). MAP is the causative agent of Johne’s disease in ruminants, which is a chronic granulomatous enteric infection that leads to severe economic losses worldwide. Characteristic of MAP infection is the long, latent phase in which intermittent shedding can take place, while diagnostic tests are unable to reliably detect an infection in this stage. This leads to unnoticed dissemination within herds and the presence of many undetected, silent carriers, which makes the eradication of Johne’s disease difficult. To improve the control of MAP infection, research is aimed at improving early diagnosis. Transcriptomic approaches can be applied to characterize host-pathogen interactions during infection, and to develop novel biomarkers using transcriptional profiles. Studies have focused on the identification of specific RNAs that are expressed in different infection stages, which will assist in the development and clinical implementation of early diagnostic tests.
Collapse
Affiliation(s)
- Marielle H van den Esker
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
22
|
Sahami-Fard MH, Kheirandish S, Sheikhha MH. Expression levels of miR-143-3p and -424-5p in colorectal cancer and their clinical significance. Cancer Biomark 2019; 24:291-297. [DOI: 10.3233/cbm-182171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Shahnaz Kheirandish
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
23
|
Ahmad M, Shah AA. Functional polymorphism within miR-23a∼27a∼24-2 cluster confers clinical outcome of breast cancer in Pakistani cohort. Per Med 2019; 16:107-114. [PMID: 30767608 DOI: 10.2217/pme-2018-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AIM MicroRNAs (miRNAs) are small regulatory RNA molecules that control gene activity by base pairing with target messenger RNA leading to their cleavage or translational repression. Previous studies show an involvement of miRNAs in various diseases including cancer. Members of the Mir-23a cluster (MIR23A, MIR24-2 and MIR27A) are involved in breast cancer (BC). METHODS In the present study, miR-23a/24-2/27a cluster was screened for genetic mutation in BC patients. RESULTS Heterozygous (A/G allele) as well as homozygous (G/G allele) variants were found in mir-27a gene in screened BC patients. RNA structural analysis revealed that the single nucleotide polymorphism (SNP) effects the size of the terminal loop in the precursor miRNA (pre-miRNA). CONCLUSION The altered (G allele) hairpin structure observed was two bases longer than the reference (A allele) hairpin.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Aftab A Shah
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
24
|
Fehlmann T, Laufer T, Backes C, Kahramann M, Alles J, Fischer U, Minet M, Ludwig N, Kern F, Kehl T, Galata V, Düsterloh A, Schrörs H, Kohlhaas J, Bals R, Huwer H, Geffers L, Krüger R, Balling R, Lenhof HP, Meese E, Keller A. Large-scale validation of miRNAs by disease association, evolutionary conservation and pathway activity. RNA Biol 2018; 16:93-103. [PMID: 30567465 DOI: 10.1080/15476286.2018.1559689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The validation of microRNAs (miRNAs) identified by next generation sequencing involves amplification-free and hybridization-based detection of transcripts as criteria for confirming valid miRNAs. Since respective validation is frequently not performed, miRNA repositories likely still contain a substantial fraction of false positive candidates while true miRNAs are not stored in the repositories yet. Especially if downstream analyses are performed with these candidates (e.g. target or pathway prediction), the results may be misleading. In the present study, we evaluated 558 mature miRNAs from miRBase and 1,709 miRNA candidates from next generation sequencing experiments by amplification-free hybridization and investigated their distributions in patients with various disease conditions. Notably, the most significant miRNAs in diseases are often not contained in the miRBase. However, these candidates are evolutionary highly conserved. From the expression patterns, target gene and pathway analyses and evolutionary conservation analyses, we were able to shed light on the complexity of miRNAs in humans. Our data also highlight that a more thorough validation of miRNAs identified by next generation sequencing is required. The results are available in miRCarta ( https://mircarta.cs.uni-saarland.de ).
Collapse
Affiliation(s)
- Tobias Fehlmann
- a Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany
| | - Thomas Laufer
- b Department of Human Genetics , Saarland University , Homburg , Germany.,c Hummingbird Diagnostics GmbH , Heidelberg , Germany
| | - Christina Backes
- a Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany
| | - Mustafa Kahramann
- a Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany.,c Hummingbird Diagnostics GmbH , Heidelberg , Germany
| | - Julia Alles
- b Department of Human Genetics , Saarland University , Homburg , Germany
| | - Ulrike Fischer
- b Department of Human Genetics , Saarland University , Homburg , Germany
| | - Marie Minet
- a Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany.,b Department of Human Genetics , Saarland University , Homburg , Germany
| | - Nicole Ludwig
- b Department of Human Genetics , Saarland University , Homburg , Germany
| | - Fabian Kern
- a Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany
| | - Tim Kehl
- d Center for Bioinformatics , Saarland Informatics Campus , Saarbrücken , Germany
| | - Valentina Galata
- a Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany
| | | | | | | | - Robert Bals
- e Department of Internal Medicine V - Pulmonology, Allergology, Intensive Care Medicine , Saarland University Hospital , Homburg , Germany
| | - Hanno Huwer
- f Department of Thoracic Surgery , SHG Clinics , Völklingen , Germany
| | - Lars Geffers
- g LCSB, Luxembourg Centre for Systems Biomedicine , University of Luxembourg , Esch-Sur-Alzette , Luxembourg
| | - Rejko Krüger
- g LCSB, Luxembourg Centre for Systems Biomedicine , University of Luxembourg , Esch-Sur-Alzette , Luxembourg
| | - Rudi Balling
- g LCSB, Luxembourg Centre for Systems Biomedicine , University of Luxembourg , Esch-Sur-Alzette , Luxembourg
| | - Hans-Peter Lenhof
- d Center for Bioinformatics , Saarland Informatics Campus , Saarbrücken , Germany
| | - Eckart Meese
- b Department of Human Genetics , Saarland University , Homburg , Germany
| | - Andreas Keller
- a Chair for Clinical Bioinformatics , Saarland University , Saarbrücken , Germany.,d Center for Bioinformatics , Saarland Informatics Campus , Saarbrücken , Germany
| |
Collapse
|
25
|
Unger L, Gerber V, Pacholewska A, Leeb T, Jagannathan V. MicroRNA fingerprints in serum and whole blood of sarcoid‐affected horses as potential non‐invasive diagnostic biomarkers. Vet Comp Oncol 2018; 17:107-117. [DOI: 10.1111/vco.12451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Lucia Unger
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of Bern, and Agroscope Bern Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of Bern, and Agroscope Bern Switzerland
| | - Alicja Pacholewska
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse FacultyUniversity of Bern Bern Switzerland
| |
Collapse
|
26
|
Hu G, Fang W, Liu N, Li C. Effects of mir-128a on the invasion and proliferation of glioma U251 cells. Oncol Lett 2018; 17:891-896. [PMID: 30655844 PMCID: PMC6312962 DOI: 10.3892/ol.2018.9651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022] Open
Abstract
Effects of mir-128a on the proliferation and migration of human glioma U251 cells were explored. The constructed mir-128a-shRNA lentivirus vector (infection group) and scramble shRNA (interference group) were transfected into glioma U251 cells, and uninfected U251 cells as control group. The expression level of mir-128a, the ability of proliferation, invasion, apoptosis and migration of cells in each group were detected by RT-qPCR, MTT assay, Transwell migration in vitro, cell wound scratch assay and TUNEL cell apoptosis assay. The expression level of mir-128a in U251 cells of infection group was significantly higher than that in U251 cells of interference group (P<0.05). Τhe expression level of mir-128a in U251 cells of control group was significantly lower than that in U251 cells of infection group (P<0.05). The OD values of infection and control group were lower than that of interference group at 6, 12, 24, 48 and 72 h, and the OD values of infection were lower than that of control group at 6, 12, 24, 48 and 72 h (P<0.05). Compared with infection and control group, the number of membrane-penetrating cells in U251 cells of interference group increased significantly (P<0.05). The apoptosis rate of U251 cells of infection and control group was significantly higher than that of interference group, and the apoptosis rate of infection was significantly higher than that of control group (P<0.05). The migration distance of U251 cells of infection and interference group was significantly larger than that of control group (P<0.05). Τhe migration distance of U251 cells of interference group was significantly larger than that of infection group (P<0.05). mir-128a may play a role similar to anti-oncogene in glioma, inhibiting the ability of proliferation, invasion and migration of glioma cells, and promoting the apoptosis of glioma cells.
Collapse
Affiliation(s)
- Guozhang Hu
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Wei Fang
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Naijie Liu
- Ward 1, Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chang Li
- Special Care Ward, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
27
|
Möhnle P, Hirschberger S, Hinske LC, Briegel J, Hübner M, Weis S, Dimopoulos G, Bauer M, Giamarellos-Bourboulis EJ, Kreth S. MicroRNAs 143 and 150 in whole blood enable detection of T-cell immunoparalysis in sepsis. Mol Med 2018; 24:54. [PMID: 30332984 PMCID: PMC6191918 DOI: 10.1186/s10020-018-0056-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/04/2018] [Indexed: 12/25/2022] Open
Abstract
Background Currently, no suitable clinical marker for detection of septic immunosuppression is available. We aimed at identifying microRNAs that could serve as biomarkers of T-cell mediated immunoparalysis in sepsis. Methods RNA was isolated from purified T-cells or from whole blood cells obtained from septic patients and healthy volunteers. Differentially regulated miRNAs were identified by miRNA Microarray (n = 7). Validation was performed via qPCR (n = 31). Results T-cells of septic patients revealed characteristics of immunosuppression: Pro-inflammatory miR-150 and miR-342 were downregulated, whereas anti-inflammatory miR-15a, miR-16, miR-93, miR-143, miR-223 and miR-424 were upregulated. Assessment of T-cell effector status showed significantly reduced mRNA-levels of IL2, IL7R and ICOS, and increased levels of IL4, IL10 and TGF-β. The individual extent of immunosuppression differed markedly. MicroRNA-143, − 150 and − 223 independently indicated T-cell immunoparalysis and significantly correlated with patient’s IL7R-/ICOS-expression and SOFA-scores. In whole blood, composed of innate and adaptive immune cells, both traits of immunosuppression and hyperinflammation were detected. Importantly, miR-143 and miR-150 – both predominantly expressed in T-cells – retained strong power of discrimination also in whole blood samples. Conclusions These findings suggest miR-143 and miR-150 as promising markers for detection of T-cell immunosuppression in whole blood and may help to develop new approaches for miRNA-based diagnostic in sepsis. Electronic supplementary material The online version of this article (10.1186/s10020-018-0056-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P Möhnle
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - S Hirschberger
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - L C Hinske
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - J Briegel
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany
| | - M Hübner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany.,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - S Weis
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.,Center for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - G Dimopoulos
- 2nd Department of Critical Care Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - M Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Friedrich-Schiller University, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - E J Giamarellos-Bourboulis
- 4th Department of Internal Medicine, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - S Kreth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital, Ludwig Maximilian University (LMU), Marchioninistraße 15, 81377, Munich, Germany. .,Walter-Brendel-Center of Experimental Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
28
|
MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci Rep 2018; 8:11584. [PMID: 30072748 PMCID: PMC6072710 DOI: 10.1038/s41598-018-29917-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/09/2018] [Indexed: 11/12/2022] Open
Abstract
Breast cancer is a heterogeneous disease with distinct molecular subtypes including the aggressive subtype triple-negative breast cancer (TNBC). We compared blood-borne miRNA signatures of early-stage basal-like (cytokeratin-CK5-positive) TNBC patients to age-matched controls. The miRNAs of TNBC patients were assessed prior to and following platinum-based neoadjuvant chemotherapy (NCT). After an exploratory genome-wide study on 21 cases and 21 controls using microarrays, the identified signatures were verified independently in two laboratories on the same and a new cohort by RT-qPCR. We differentiated the blood of TNBC patients before NCT from controls with 84% sensitivity. The most significant miRNA for this diagnostic classification was miR-126-5p (two tailed t-test p-value of 1.4 × 10−5). Validation confirmed the microarray results for all tested miRNAs. Comparing cancer patients prior to and post NCT highlighted 321 significant miRNAs (among them miR-34a, p-value of 1.2 × 10−23). Our results also suggest that changes in miRNA expression during NCT may have predictive potential to predict pathological complete response (pCR). In conclusion we report that miRNA expression measured from blood facilitates early and minimally-invasive diagnosis of basal-like TNBC. We also demonstrate that NCT has a significant influence on miRNA expression. Finally, we show that blood-borne miRNA profiles monitored over time have potential to predict pCR.
Collapse
|
29
|
Denk J, Oberhauser F, Kornhuber J, Wiltfang J, Fassbender K, Schroeter ML, Volk AE, Diehl-Schmid J, Prudlo J, Danek A, Landwehrmeyer B, Lauer M, Otto M, Jahn H. Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls. PLoS One 2018; 13:e0197329. [PMID: 29746584 PMCID: PMC5945001 DOI: 10.1371/journal.pone.0197329] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/29/2018] [Indexed: 12/12/2022] Open
Abstract
Information on circulating miRNAs in frontotemporal lobar degeneration is very limited and conflicting results have complicated an interpretation in Alzheimer's disease thus far. In the present study we I) collected samples from multiple clinical centers across Germany, II) defined 3 homogenous patient groups with high sample sizes (bvFTD n = 48, AD n = 48 and cognitively healthy controls n = 44), III) compared expression levels in both CSF and serum samples and IV) detected a limited set of miRNAs by using a MIQE compliant protocol based on SYBR-green miRCURY assays that have proven reliable to generate reproducible results. We included several quality controls that identified and reduced technical variation to increase the reliability of our data. We showed that the expression levels of circulating miRNAs measured in CSF did not correlate with levels in serum. Using cluster analysis we found expression pattern in serum that, in part, reflects the genomic organization and affiliation to a specific miRNA family and that were specifically altered in bvFTD, AD, and control groups. Applying factor analysis we identified a 3-factor model characterized by a miRNA signature that explained 80% of the variance classifying healthy controls with 97%, bvFTD with 77% and AD with 72% accuracy. MANOVA confirmed signals like miR-320a and miR-26b-5p at BH corrected significance that contributed most to discriminate bvFTD cases with 96% sensitivity and 90% specificity and AD cases with 89% sensitivity and specificity compared to healthy controls, respectively. Correlation analysis revealed that miRNAs from the 3-factor model also correlated with levels of protein biomarker amyloid-beta1-42 and phosphorylated neurofilament heavy chain, indicating their potential role in the monitoring of progressive neuronal degeneration. Our data show that miRNAs can be reproducibly measured in serum and CSF without pre-amplification and that serum includes higher expressed signals that demonstrate an overall better ability to classify bvFTD, AD and healthy controls compared to signals detected in CSF.
Collapse
Affiliation(s)
- Johannes Denk
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Oberhauser
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
| | | | - Matthias L. Schroeter
- Clinic for Cognitive Neurology, University Clinic Leipzig and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alexander E. Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Johannes Prudlo
- Department of Neurology, University of Rostock, Rostock, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Martin Lauer
- Department of Psychiatry and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Holger Jahn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- AMEOS Klinikum, Heiligenhafen, Heiligenhafen, Germany
| | | |
Collapse
|
30
|
Zhou X, Jiao Z, Ji J, Li S, Huang X, Lu X, Zhao H, Peng J, Chen X, Ji Q, Ji Y. Characterization of mouse serum exosomal small RNA content: The origins and their roles in modulating inflammatory response. Oncotarget 2018; 8:42712-42727. [PMID: 28514744 PMCID: PMC5522100 DOI: 10.18632/oncotarget.17448] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
In the last decade, although studies on exosomal microRNAs (miRNAs) derived from serum and other body fluids have increased dramatically; the contents and biological significance of serum exosomes under normal conditions remain unclear. In the present study, we profiled the small RNA content of mouse serum exosomes (mSEs) using small RNAseq and found that fragments of transfer RNAs (tRNAs) and miRNAs were the two predominant exosomal RNA species, accounting for approximately 60% and 10% of mapped reads, respectively. Moreover, 466 known and 5 novel miRNAs were identified from two independent experiments, among which the five most abundant miRNAs (miR-486a-5p, miR-22-3p, miR-16-5p, miR-10b-5p and miR-27b-3p) accounted for approximately 60% of all the aligned miRNA sequences. As inferred from the identities of the well known cell- or tissue-specific miRNAs, mSEs were primarily released by RBCs, liver and intestinal cells. Bioinformatics analysis revealed over half of the top 20 miRNAs by abundance were involved in inflammatory responses and further in vitro experiments demonstrated that mSEs potently primed macrophages towards the M2 phenotype. To the best of our knowledge, this is the first study to profile small RNAs from mSEs. In addition to providing a reference for future biomarker studies and extrapolating their origins, our data also suggest the roles of mSEs in maintaining internal homeostasis under normal conditions.
Collapse
Affiliation(s)
- Xin Zhou
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Zinan Jiao
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Shuyuan Li
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Xiaodi Huang
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Xiaoshuang Lu
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China
| | - Heng Zhao
- Stanford University School of Medicine, Stanford, California, USA
| | - Jingwen Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| | - Xinya Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiuhong Ji
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhua Ji
- Institute of Immunology, College of Life science and Technology, Jinan University, Guangdong, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
31
|
de Almeida RC, Chagas VS, Castro MAA, Petzl-Erler ML. Integrative Analysis Identifies Genetic Variants Associated With Autoimmune Diseases Affecting Putative MicroRNA Binding Sites. Front Genet 2018; 9:139. [PMID: 29755505 PMCID: PMC5932181 DOI: 10.3389/fgene.2018.00139] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide and fine mapping studies have shown that more than 90% of genetic variants associated with autoimmune diseases (AID) are located in non-coding regions of the human genome and especially in regulatory sequences, including microRNAs (miRNA) target sites. MiRNAs are small endogenous noncoding RNAs that modulate gene expression at the post-transcriptional level. Single nucleotide polymorphisms (SNPs) located within the 3' untranslated region of their target mRNAs (miRSNP) can alter miRNA binding sites. Yet, little is known about their effect on regulation by miRNA and the consequences for AID. Conversely, it is well known that two or more AID may share part of their genetic background. Here, we hypothesized that miRSNPs could be associated with more than one AID. To identify miRSNPs associated with AID, we integrated results from three different prediction tools (Polymirts, miRSNP, and miRSNPscore) using a naïve Bayes classifier approach to identify miRSNPs predicted to affect binding sites of miRNAs. Further, to detect miRSNPs associated with two or more AID, we integrated predictions with summary statistics from 12 AID studies. In addition, to prioritize miRSNPs, miRNAs and AID-associated target genes, we used public expression quantitative trait locus (eQTL) data and mRNA-seq and small RNA-seq data. We identified 34 miRNSPs associated with at least two AID. Furthermore, we found 86 miRNAs predicted to target 18 of the associated gene's mRNAs. Our integrative approach revealed new insights into miRNAs and AID associated target genes. Thus, it helped to prioritize AID noncoding risk SNPs that might be involved in the causal mechanisms, providing valuable information for further functional studies.
Collapse
Affiliation(s)
- Rodrigo C. de Almeida
- Human Molecular Genetics Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Vinícius S. Chagas
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | - Mauro A. A. Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | - Maria L. Petzl-Erler
- Human Molecular Genetics Laboratory, Department of Genetics, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
32
|
Profiling and identification of pregnancy-associated circulating microRNAs in dairy cattle. Genes Genomics 2018; 40:1111-1117. [DOI: 10.1007/s13258-018-0668-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/04/2018] [Indexed: 01/27/2023]
|
33
|
Juzenas S, Venkatesh G, Hübenthal M, Hoeppner MP, Du ZG, Paulsen M, Rosenstiel P, Senger P, Hofmann-Apitius M, Keller A, Kupcinskas L, Franke A, Hemmrich-Stanisak G. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res 2017; 45:9290-9301. [PMID: 28934507 PMCID: PMC5766192 DOI: 10.1093/nar/gkx706] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022] Open
Abstract
With this study, we provide a comprehensive reference dataset of detailed miRNA expression profiles from seven types of human peripheral blood cells (NK cells, B lymphocytes, cytotoxic T lymphocytes, T helper cells, monocytes, neutrophils and erythrocytes), serum, exosomes and whole blood. The peripheral blood cells from buffy coats were typed and sorted using FACS/MACS. The overall dataset was generated from 450 small RNA libraries using high-throughput sequencing. By employing a comprehensive bioinformatics and statistical analysis, we show that 3′ trimming modifications as well as composition of 3′ added non-templated nucleotides are distributed in a lineage-specific manner—the closer the hematopoietic progenitors are, the higher their similarities in sequence variation of the 3′ end. Furthermore, we define the blood cell-specific miRNA and isomiR expression patterns and identify novel cell type specific miRNA candidates. The study provides the most comprehensive contribution to date towards a complete miRNA catalogue of human peripheral blood, which can be used as a reference for future studies. The dataset has been deposited in GEO and also can be explored interactively following this link: http://134.245.63.235/ikmb-tools/bloodmiRs.
Collapse
Affiliation(s)
- Simonas Juzenas
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany.,Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 44307, Lithuania
| | - Geetha Venkatesh
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Zhipei Gracie Du
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Maren Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Philipp Senger
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), 53754 Sankt Augustin, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66125 Saarbrücken, Germany
| | - Limas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 44307, Lithuania.,Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Kaunas LT 50161, Lithuania
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| |
Collapse
|
34
|
Cirnigliaro M, Barbagallo C, Gulisano M, Domini CN, Barone R, Barbagallo D, Ragusa M, Di Pietro C, Rizzo R, Purrello M. Expression and Regulatory Network Analysis of miR-140-3p, a New Potential Serum Biomarker for Autism Spectrum Disorder. Front Mol Neurosci 2017; 10:250. [PMID: 28848387 PMCID: PMC5554380 DOI: 10.3389/fnmol.2017.00250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Given its prevalence and social impact, Autism Spectrum Disorder (ASD) is drawing much interest. Molecular basis of ASD is heterogeneous and only partially known. Many factors, including disorders comorbid with ASD, like TS (Tourette Syndrome), complicate ASD behavior-based diagnosis and make it vulnerable to bias. To further investigate ASD etiology and to identify potential biomarkers to support its precise diagnosis, we used TaqMan Low Density Array technology to profile serum miRNAs from ASD, TS, and TS+ASD patients, and unaffected controls (NCs). Through validation assays in 30 ASD, 24 TS, and 25 TS+ASD patients and 25 NCs, we demonstrated that miR-140-3p is upregulated in ASD vs.: NC, TS, and TS+ASD (Tukey's test, p-values = 0.03, = 0.01, < 0.0001, respectively). ΔCt values for miR-140-3p and YGTSS (Yale Global Tic Severity Scale) scores are positively correlated (Spearman r = 0.33; Benjamini-Hochberg p = 0.008) and show a linear relationship (p = 0.002). Network functional analysis showed that nodes controlled by miR-140-3p, especially CD38 and NRIP1 which are its validated targets, are involved in processes convergingly dysregulated in ASD, such as synaptic plasticity, immune response, and chromatin binding. Biomarker analysis proved that serum miR-140-3p can discriminate among: (1) ASD and NC (Area under the ROC curve, AUC: 0.70; sensitivity: 63.33%; specificity: 68%); (2) ASD and TS (AUC: 0.72; sensitivity: 66.66%; specificity: 70.83%); (3) ASD and TS+ASD (AUC: 0.78; sensitivity: 73.33%; specificity: 76%). Characterization of miR-140-3p network would contribute to further clarify ASD etiology. Serum miR-140-3p could represent a potential non-invasive biomarker for ASD, easy to test through liquid biopsy.
Collapse
Affiliation(s)
- Matilde Cirnigliaro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Mariangela Gulisano
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Carla N Domini
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Rita Barone
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Davide Barbagallo
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy.,Associazione Oasi Maria SS. Onlus (IRCCS), Institute for Research on Mental Retardation and Brain AgingTroina, Italy
| | - Cinzia Di Pietro
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| | - Renata Rizzo
- Section of Child and Adolescent Psychiatry, Department of Clinical and Experimental Medicine, University of CataniaCatania, Italy
| | - Michele Purrello
- Section of Biology and Genetics Giovanni Sichel, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy
| |
Collapse
|
35
|
Kappel A, Keller A. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clin Chem Lab Med 2017; 55:636-647. [PMID: 27987355 DOI: 10.1515/cclm-2016-0467] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
microRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression in eukaryotes. Their differential abundance is indicative or even causative for a variety of pathological processes including cancer or cardiovascular disorders. Due to their important biological function, miRNAs represent a promising class of novel biomarkers that may be used to diagnose life-threatening diseases, and to monitor disease progression. Further, they may guide treatment selection or dosage of drugs. miRNAs from blood or derived fractions are particularly interesting candidates for routine laboratory applications, as they can be measured in most clinical laboratories already today. This assures a good accessibility of respective tests. Albeit their great potential, miRNA-based diagnostic tests have not made their way yet into the clinical routine, and hence no standardized workflows have been established to measure miRNAs for patients' benefit. In this review we summarize the detection technologies and workflow options that exist to measure miRNAs, and we describe the advantages and disadvantages of each of these options. Moreover, we also provide a perspective on data analysis aspects that are vital for translation of raw data into actionable diagnostic test results.
Collapse
Affiliation(s)
- Andreas Kappel
- Siemens Healthcare GmbH, Guenther-Scharowsky-Str.1, Erlangen
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbruecken
| |
Collapse
|
36
|
Redox Regulating Enzymes and Connected MicroRNA Regulators Have Prognostic Value in Classical Hodgkin Lymphomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2696071. [PMID: 28377796 PMCID: PMC5362709 DOI: 10.1155/2017/2696071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 12/28/2022]
Abstract
There are no previous studies assessing the microRNAs that regulate antioxidant enzymes in Hodgkin lymphomas (HLs). We determined the mRNA levels of redox regulating enzymes peroxiredoxins (PRDXs) I–III, manganese superoxide dismutase (MnSOD), nuclear factor erythroid-derived 2-like 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) from a carefully collected set of 41 classical HL patients before receiving any treatments. The levels of redoxmiRs, miRNAs known to regulate the above-mentioned enzymes, were also assessed, along with CD3, CD20, and CD30 protein expression. RNAs were isolated from freshly frozen lymph node samples and the expression levels were analyzed by qPCR. mir23b correlated inversely with CD3 and CD20 expressions (p = 0.00076; r = −0.523 and p = 0.0012; r = −0.507) and miR144 with CD3, CD20, and CD30 (p = 0.030; r = −0.352, p = 0.041; r = −0.333 and p = 0.0032; r = −0.47, resp.). High MnSOD mRNA levels associated with poor HL-specific outcome in the patients with advanced disease (p = 0.045) and high miR-122 levels associated with worse HL-specific survival in the whole patient population (p = 0.015). When standardized according to the CD30 expression, high miR212 and miR510 predicted worse relapse-free survival (p = 0.049 and p = 0.0058, resp.). In conclusion, several redoxmiRs and redox regulating enzyme mRNA levels associate with aggressive disease outcome and may also produce prognostic information in classical HL.
Collapse
|
37
|
Raitoharju E, Seppälä I, Lyytikäinen LP, Viikari J, Ala-Korpela M, Soininen P, Kangas AJ, Waldenberger M, Klopp N, Illig T, Leiviskä J, Loo BM, Oksala N, Kähönen M, Hutri-Kähönen N, Laaksonen R, Raitakari O, Lehtimäki T. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism-The Young Finns Study. Sci Rep 2016; 6:38262. [PMID: 27917915 PMCID: PMC5137183 DOI: 10.1038/srep38262] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are involved in disease development and may be utilized as biomarkers. We investigated the association of blood miRNA levels and a) fatty liver (FL), b) lipoprotein and lipid pathways involved in liver lipid accumulation and c) levels of predicted mRNA targets in general population based cohort. Blood microRNA profiling (TaqMan OpenArray), genome-wide gene expression arrays and nuclear magnetic resonance metabolomics were performed for Young Finns Study participants aged 34–49 years (n = 871). Liver fat status was assessed ultrasonographically. Levels of hsa-miR-122-5p and -885-5p were up-regulated in individuals with FL (fold change (FC) = 1.55, p = 1.36 * 10−14 and FC = 1.25, p = 4.86 * 10−4, respectively). In regression model adjusted with age, sex and BMI, hsa-miR-122-5p and -885-5p predicted FL (OR = 2.07, p = 1.29 * 10−8 and OR = 1.41, p = 0.002, respectively). Together hsa-miR-122-5p and -885-5p slightly improved the detection of FL beyond established risk factors. These miRNAs may be associated with FL formation through the regulation of lipoprotein metabolism as hsa-miR-122-5p levels associated with small VLDL, IDL, and large LDL lipoprotein subclass components, while hsa-miR-885-5p levels associated inversely with XL HDL cholesterol levels. Hsa-miR-885-5p levels correlated inversely with oxysterol-binding protein 2 (OSBPL2) expression (r = −0.143, p = 1.00 * 10−4) and suppressing the expression of this lipid receptor and sterol transporter could link hsa-miR-885-5p with HDL cholesterol levels.
Collapse
Affiliation(s)
- Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Jorma Viikari
- Division of Medicine Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, School of Social and Community Medicine and the Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Jaana Leiviskä
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Britt-Marie Loo
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland.,Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and School of Medicine, University of Tampere, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Reijo Laaksonen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Olli Raitakari
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| |
Collapse
|
38
|
Abstract
AbstractmicroRNAs are promising biomarkers for diverse cardiovascular diseases. While quantification of the small non-coding RNAs is routinely performed in the research laboratory, clinical-grade assessment of microRNAs in central laboratory environments or point-of-care testing is still in its infancy. In this review, we provide an overview on microRNAs as biomarkers for acute coronary syndromes and highlight promising technical approaches for microRNA-based assays systems.
Collapse
|
39
|
Fehlmann T, Ludwig N, Backes C, Meese E, Keller A. Distribution of microRNA biomarker candidates in solid tissues and body fluids. RNA Biol 2016; 13:1084-1088. [PMID: 27687236 DOI: 10.1080/15476286.2016.1234658] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Small non-coding RNAs, especially microRNAs, are discussed as promising biomarkers for a substantial number of human pathologies. A broad understanding in which solid tissues, cell types or body fluids a microRNA is expressed helps also to understand and to improve the suitability of miRNAs as non- or minimally-invasive disease markers. We recently reported the Human miRNA Tissue Atlas ( http://www.ccb.uni-saarland.de/tissueatlas ) containing 105 miRNA profiles of 31 organs from 2 corpses. We subsequently added miRNA profiles measured by others and us using the same array technology as for the first version of the Human miRNA Tissue Atlas. The latter profiles stem from 163 solid organs including lung, prostate and gastric tissue, from 253 whole blood samples and 66 fractioned blood cell isolates, from body fluids including 72 serum samples, 278 plasma samples, 29 urine samples, and 16 saliva samples and from different collection and storage conditions. While most miRNAs are ubiquitous abundant in solid tissues and whole blood, we also identified miRNAs that are rather specific for tissues. Our web-based repository now hosting 982 full miRNomes all of which are measured by the same microarray technology. The knowledge of these variant abundances of miRNAs in solid tissues, in whole blood and in other body fluids is essential to judge the value of miRNAs as biomarker.
Collapse
Affiliation(s)
- Tobias Fehlmann
- a Chair for Clinical Bioinformatics, Saarland University , Germany
| | - Nicole Ludwig
- b Department of Human Genetics , Saarland University , Germany
| | - Christina Backes
- a Chair for Clinical Bioinformatics, Saarland University , Germany
| | - Eckart Meese
- b Department of Human Genetics , Saarland University , Germany
| | - Andreas Keller
- a Chair for Clinical Bioinformatics, Saarland University , Germany
| |
Collapse
|
40
|
Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases? Mol Cell Endocrinol 2016; 432:83-95. [PMID: 26525415 DOI: 10.1016/j.mce.2015.10.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023]
Abstract
Biomarkers are essential tools in clinical research and practice. Useful biomarkers must combine good measurability, validated association with biological processes or outcomes, and should support clinical decision making if used in clinical practice. Several types of validated biomarkers have been reported in the context of bone diseases. However, because these biomarkers face certain limitations there is an interest in the identification of novel biomarkers for bone diseases, specifically in those that are tightly linked to the disease pathology leading to increased fracture-risk. MicroRNAs (miRNAs) are the most abundant RNA species to be found in cell-free blood. Encapsulated within microvesicles or bound to proteins, circulating miRNAs are remarkably stable analytes that can be measured using gold-standard technologies such as quantitative polymerase-chain-reaction (qPCR). Nevertheless, the analysis of circulating miRNAs faces several pre-analytical as well as analytical challenges. From a biological view, there is accumulating evidence that miRNAs play essential roles in the regulation of various biological processes including bone homeostasis. Moreover, specific changes in miRNA transcription levels or miRNA secretory levels have been linked to the development and progression of certain bone diseases. Only recently, results from circulating miRNAs analysis in patients with osteopenia, osteoporosis and fragility fractures have been reported. By comparing these findings to studies on circulating miRNAs in cellular senescence and aging or muscle physiology and sarcopenia, several overlaps were observed. This suggests that signatures observed during osteoporosis might not be specific to the pathophysiology in bone, but rather integrate information from several tissue types. Despite these promising first data, more work remains to be done until circulating miRNAs can serve as established and robust diagnostic tools for bone diseases in clinical research, clinical routine and in personalized medicine.
Collapse
Affiliation(s)
| | - Ursula Heilmeier
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | | | - Johannes Grillari
- Evercyte GmbH, 1190 Vienna, Austria; Christian Doppler Laboratory for Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, 1190 Vienna, Austria.
| |
Collapse
|
41
|
Zhao K, Liang G, Sun X, Guan LL. Comparative miRNAome analysis revealed different miRNA expression profiles in bovine sera and exosomes. BMC Genomics 2016; 17:630. [PMID: 27519500 PMCID: PMC4983018 DOI: 10.1186/s12864-016-2962-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/21/2016] [Indexed: 02/08/2023] Open
Abstract
Background Extra-cellular components, such as serum and exosome, have drawn great attention as a readily accessible source of biomarkers for mammalian health. However, the contribution of different blood components to the signature of respective microRNAs (miRNAs) remains unknown, especially in cattle. In this study we aimed to investigate the miRNAs from bovine sera and exosomes, and to provide insights into their future applications. Results Blood collected from four healthy dairy cows were used for this study. The serum and exosomal RNAs were extracted using two commonly used commercial kits (Norgen and Invitrogen total RNA isolation kit), respectively. The miRNA profiles were then generated using RNA-seq. Sera had higher complexity of miRNAome consisting of 328 ± 17 miRNAs, while less number of miRNAs (260 ± 15, P = 0.001) was detected in exosomes. The profile of total detected miRNAs in sera and exosomes was different, while exosomes represented about 78 % of total miRNAs expressed in sera, suggesting that exosomes are the major miRNAs carriers in bovine sera. A total of 24 and 3 miRNAs (RPM > 5) were exclusively expressed in sera and exosomes, respectively. In addition, 12 miRNAs were differentially expressed between sera and exosomes (FDR < 0.05), with the expression of four of them being further validated by stem-loop RT-qPCR. Moreover, functional analysis showed that uniquely and highly expressed miRNAs in sera were mainly related to diseases and disorders, while the predicted functions of those in exosomes were enriched in tissue development and lipid metabolism. Conclusion Our results provide evidence that bovine sera and exosomes miRNAomes are different with regarding to the miRNA numbers, types and expressions. Based on their distinct profiles, miRNAs from sera and exosomes may reflect different aspects of physiological and pathological conditions in cattle. The functional analysis suggest that sera may be preferable for the purpose of detecting inflammation in cattle, while exosomes may be a better choice for monitoring the status of muscle development and lipid metabolism. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2962-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, T6G2P5, Canada.,College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guanxiang Liang
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Xu Sun
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, T6G2P5, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, T6G2P5, Canada.
| |
Collapse
|
42
|
Schwarz EC, Backes C, Knörck A, Ludwig N, Leidinger P, Hoxha C, Schwär G, Grossmann T, Müller SC, Hart M, Haas J, Galata V, Müller I, Fehlmann T, Eichler H, Franke A, Meder B, Meese E, Hoth M, Keller A. Deep characterization of blood cell miRNomes by NGS. Cell Mol Life Sci 2016; 73:3169-81. [PMID: 26874686 PMCID: PMC11108270 DOI: 10.1007/s00018-016-2154-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 12/31/2022]
Abstract
A systematic understanding of different factors influencing cell type specific microRNA profiles is essential for state-of-the art biomarker research. We carried out a comprehensive analysis of the biological variability and changes in cell type pattern over time for different cell types and different isolation approaches in technical replicates. All combinations of the parameters mentioned above have been measured, resulting in 108 miRNA profiles that were evaluated by next-generation-sequencing. The largest miRNA variability was due to inter-individual differences (34 %), followed by the cell types (23.4 %) and the isolation technique (17.2 %). The change over time in cell miRNA composition was moderate (<3 %) being close to the technical variations (<1 %). Largest variability (including technical and biological variance) was observed for CD8 cells while CD3 and CD4 cells showed significantly lower variations. ANOVA highlighted that 51.5 % of all miRNAs were significantly influenced by the purification technique. While CD4 cells were least affected, especially miRNA profiles of CD8 cells were fluctuating depending on the cell purification approach. To provide researchers access to the profiles and to allow further analyses of the tested conditions we implemented a dynamic web resource.
Collapse
Affiliation(s)
- Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Christina Backes
- Saarland University, Building E2.1, 66123, Saarbrücken, Germany.
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Petra Leidinger
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Cora Hoxha
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | | | - Sabine C Müller
- Saarland University, Building E2.1, 66123, Saarbrücken, Germany
| | - Martin Hart
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Jan Haas
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
- Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
| | | | - Isabelle Müller
- Clinical Hemostaseology and Transfusion Medicine, Saarland University, Homburg, Germany
| | - Tobias Fehlmann
- Saarland University, Building E2.1, 66123, Saarbrücken, Germany
| | - Hermann Eichler
- Clinical Hemostaseology and Transfusion Medicine, Saarland University, Homburg, Germany
| | | | - Benjamin Meder
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
- Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Markus Hoth
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Andreas Keller
- Saarland University, Building E2.1, 66123, Saarbrücken, Germany
| |
Collapse
|
43
|
Vaknin-Dembinsky A, Charbit H, Brill L, Abramsky O, Gur-Wahnon D, Ben-Dov IZ, Lavon I. Circulating microRNAs as biomarkers for rituximab therapy, in neuromyelitis optica (NMO). J Neuroinflammation 2016; 13:179. [PMID: 27393339 PMCID: PMC4939003 DOI: 10.1186/s12974-016-0648-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/29/2016] [Indexed: 12/23/2022] Open
Abstract
Background Neuromyelitis optica (NMO) is a chronic autoimmune disease of the central nervous system (CNS). The main immunological feature of the disease is the presence of autoantibodies to Aquaporin 4 (AQP4+), identified in about 82 % of cases. Currently, there are no reliable biomarkers for monitoring treatment response in patients with NMO. In an effort to identify biomarkers, we analyzed microRNAs (miRNAs) in the blood of rituximab-treated NMO patients before and after therapy. Methods Total RNA extracted from whole blood of nine rituximab-responsive NMO patients before and 6 months following treatment was subjected to small RNAseq analysis. The study included an additional group of seven untreated AQP4+ seropositive NMO patients and 15 healthy controls (HCs). Results Fourteen miRNAs were up regulated and 32 were downregulated significantly in the blood of NMO patients following effective therapy with rituximab (all p < 0.05). Furthermore, we show that expression of 17 miRNAs was significantly higher and of 25 miRNAs was significantly lower in untreated NMO patients compared with HCs (all p < 0.05). Following rituximab treatment, the expression levels of 10 of the 17 miRNAs that show increased expression in NMO reverted to the levels seen in HCs. Six of these “normalized” miRNAs are known as brain-specific/enriched miRNAs. Conclusions Specific miRNA signatures in whole blood of patients with NMO might serve as biomarkers for therapy response. Furthermore, monitoring the levels of brain-specific/enriched miRNAs in the blood might reflect the degree of disease activity in the CNS of inflammatory demyelinating disorders. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0648-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adi Vaknin-Dembinsky
- Department of Neurology, Multiple Sclerosis Center and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah Hebrew University Medical Center, Ein-Karem, Jerusalem, 91120, Israel.
| | - Hanna Charbit
- Department of Neurology, Multiple Sclerosis Center and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah Hebrew University Medical Center, Ein-Karem, Jerusalem, 91120, Israel
| | - Livnat Brill
- Department of Neurology, Multiple Sclerosis Center and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah Hebrew University Medical Center, Ein-Karem, Jerusalem, 91120, Israel
| | - Oded Abramsky
- Department of Neurology, Multiple Sclerosis Center and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah Hebrew University Medical Center, Ein-Karem, Jerusalem, 91120, Israel
| | - Devorah Gur-Wahnon
- Nephrology and Hypertension Services, Internal Medicine Wing, Hadassah Hebrew University Medical Center, Ein-Karem, Jerusalem, 91120, Israel
| | - Iddo Z Ben-Dov
- Nephrology and Hypertension Services, Internal Medicine Wing, Hadassah Hebrew University Medical Center, Ein-Karem, Jerusalem, 91120, Israel
| | - Iris Lavon
- Department of Neurology, Multiple Sclerosis Center and Laboratory of Neuroimmunology, and the Agnes-Ginges Center for Neurogenetics, Hadassah Hebrew University Medical Center, Ein-Karem, Jerusalem, 91120, Israel.,Department of Neurology, the Agnes-Ginges Center for Neurogenetics and Leslie and Michel Gaffin Center for Neuro-Oncology, Hadassah Hebrew University Medical Center, Ein-Karem, Jerusalem, 91120, Israel
| |
Collapse
|
44
|
Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol Diagn Ther 2016; 20:509-518. [DOI: 10.1007/s40291-016-0221-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Stanković A, Kolaković A, Živković M, Djurić T, Bundalo M, Končar I, Davidović L, Alavantić D. Angiotensin receptor type 1 polymorphism A1166C is associated with altered AT1R and miR-155 expression in carotid plaque tissue and development of hypoechoic carotid plaques. Atherosclerosis 2016; 248:132-9. [DOI: 10.1016/j.atherosclerosis.2016.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 02/20/2016] [Accepted: 02/25/2016] [Indexed: 11/17/2022]
|
46
|
Backes C, Khaleeq QT, Meese E, Keller A. miEAA: microRNA enrichment analysis and annotation. Nucleic Acids Res 2016; 44:W110-6. [PMID: 27131362 PMCID: PMC4987907 DOI: 10.1093/nar/gkw345] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/18/2016] [Indexed: 12/29/2022] Open
Abstract
Similar to the development of gene set enrichment and gene regulatory network analysis tools over a decade ago, microRNA enrichment tools are currently gaining importance. Building on our experience with the gene set analysis toolkit GeneTrail, we implemented the miRNA Enrichment Analysis and Annotation tool (miEAA). MiEAA is a web-based application that offers a variety of commonly applied statistical tests such as over-representation analysis and miRNA set enrichment analysis, which is similar to Gene Set Enrichment Analysis. Besides the different statistical tests, miEAA also provides rich functionality in terms of miRNA categories. Altogether, over 14 000 miRNA sets have been added, including pathways, diseases, organs and target genes. Importantly, our tool can be applied for miRNA precursors as well as mature miRNAs. To make the tool as useful as possible we additionally implemented supporting tools such as converters between different miRBase versions and converters from miRNA names to precursor names. We evaluated the performance of miEAA on two sets of miRNAs that are affected in lung adenocarcinomas and have been detected by array analysis. The web-based application is freely accessible at: http://www.ccb.uni-saarland.de/mieaa_tool/.
Collapse
Affiliation(s)
- Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Building E 2.1, 66123 Saarbrücken, Germany
| | - Qurratulain T Khaleeq
- Chair for Clinical Bioinformatics, Saarland University, Building E 2.1, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Medical School, 66421 Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Building E 2.1, 66123 Saarbrücken, Germany
| |
Collapse
|
47
|
Moen ST, Hatcher CL, Singh AK. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections. PLoS One 2016; 11:e0153137. [PMID: 27054764 PMCID: PMC4824354 DOI: 10.1371/journal.pone.0153137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. This platform has great potential in both medical diagnostics and research applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing.
Collapse
Affiliation(s)
- Scott T. Moen
- Sandia National Laboratories, Livermore, California, United States of America
- University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| | | | - Anup K. Singh
- Sandia National Laboratories, Livermore, California, United States of America
- University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
48
|
Rubio M, Bassat Q, Estivill X, Mayor A. Tying malaria and microRNAs: from the biology to future diagnostic perspectives. Malar J 2016; 15:167. [PMID: 26979504 PMCID: PMC4793504 DOI: 10.1186/s12936-016-1222-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Symptoms caused by bacterial, viral and malarial infections usually overlap and aetiologic diagnosis is difficult. Patient management in low-resource countries with limited laboratory services has been based predominantly on clinical evaluation and syndromic approaches. However, such clinical assessment has limited accuracy both for identifying the likely aetiological cause and for the early recognition of patients who will progress to serious or fatal disease. Plasma-detectable biomarkers that rapidly and accurately diagnose severe infectious diseases could reduce morbidity and decrease the unnecessary use of usually scarce therapeutic drugs. The discovery of microRNAs (miRNAs) has opened exciting new avenues to identify blood biomarkers of organ-specific injury. This review assesses current knowledge on the relationship between malaria disease and miRNAs, and evaluates how future research might lead to the use of these small molecules for identifying patients with severe malaria disease and facilitate treatment decisions.
Collapse
Affiliation(s)
- Mercedes Rubio
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Xavier Estivill
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology; CIBER in Epidemiology and Public Health (CIBERESP), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Experimental Genetics, Sidra Medical and Research Centre, Doha, Qatar
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK building), 08036, Barcelona, Spain. .,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique.
| |
Collapse
|
49
|
Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stähler C, Meese E, Keller A. Distribution of miRNA expression across human tissues. Nucleic Acids Res 2016; 44:3865-77. [PMID: 26921406 PMCID: PMC4856985 DOI: 10.1093/nar/gkw116] [Citation(s) in RCA: 728] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022] Open
Abstract
We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI < 0.5). Nonetheless, we observed many different miRNAs and miRNA families that were predominantly expressed in certain tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10−8) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas).
Collapse
Affiliation(s)
- Nicole Ludwig
- Institute of Human Genetics, Saarland University, Medical School, Homburg, Germany
| | - Petra Leidinger
- Institute of Human Genetics, Saarland University, Medical School, Homburg, Germany
| | - Kurt Becker
- Institute of Anatomy and Cell Biology, Saarland University, Medical School, Homburg, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Christian Pallasch
- Department I of Internal Medicine and Center of Integrated Oncology, University Hospital of Cologne, Cologne, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Steffi Rheinheimer
- Institute of Human Genetics, Saarland University, Medical School, Homburg, Germany
| | - Benjamin Meder
- Department of Internal Medicine III, University Hospital Heidelberg, 69120 Heidelberg, Germany German Center for Cardiovascular Research (DZHK), 69120 Heidelberg, Germany Klaus Tschira Institute for Integrative Computational Cardiology, D-69118 Heidelberg, Germany
| | - Cord Stähler
- Siemens Healthcare, Hartmannstrasse 16, 91052 Erlangen, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Medical School, Homburg, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| |
Collapse
|
50
|
What is normal? Next generation sequencing-driven analysis of the human circulating miRNAOme. BMC Mol Biol 2016; 17:4. [PMID: 26860190 PMCID: PMC4748454 DOI: 10.1186/s12867-016-0057-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
Background
MicroRNAs (miRNAs) are short non-protein-coding RNA species that have a regulatory function in modulating protein translation and degradation of specific mRNAs. MicroRNAs are estimated to target approximately 60 % of all human mRNAs and are associated with the regulation of all physiological processes. Similar to many messenger RNAs (mRNA), miRNAs exhibit marked tissue specificity, and appear to be dysregulated in response to specific pathological conditions. Perhaps, one of the most significant findings is that miRNAs are detectable in various biological fluids and are stable during routine clinical processing, paving the way for their use as novel biomarkers. Despite an increasing number of publications reporting individual miRNAs or miRNA signatures to be diagnostic of disease or indicative of response to therapy, there is still a paucity of baseline data necessary for their validation. To this end, we utilised state of the art sequencing technologies to determine the global expression of all circulating miRNAs within the plasma of 18 disease-free human subjects. Results In excess of 500 miRNAs were detected in our study population with expression levels across several orders of magnitude. Ten highly expressed miRNAs accounted for 90 % of the total reads that mapped showing that despite the range of miRNAs present, the total miRNA load of the plasma was predominated by just these few species (50 % of which are blood cell associated). Ranges of expression were determined for all miRNA detected (>500) and a set of highly stable miRNAs identified. Finally, the effects of gender, smoking status and body mass index on miRNA expression were determined. Conclusions The data contained within will be of particular use to researchers performing miRNA-based biomarker screening in plasma and allow shortlisting of candidates a priori to expedite discovery or reduce costs as required. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0057-9) contains supplementary material, which is available to authorized users.
Collapse
|