1
|
Wang L, Chen B, Ma B, Wang Y, Wang H, Sun X, Tan BC. Maize Dek51 encodes a DEAD-box RNA helicase essential for pre-rRNA processing and seed development. Cell Rep 2024; 43:114673. [PMID: 39196780 DOI: 10.1016/j.celrep.2024.114673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/30/2024] Open
Abstract
Pre-rRNA processing is essential to ribosome biosynthesis. However, the processing mechanism is not fully understood in plants. Here, we report a DEAD-box RNA helicase DEK51 that mediates the 3' end processing of 18S and 5.8S pre-rRNA in maize (Zea mays L.). DEK51 is localized in the nucleolus, and loss of DEK51 arrests maize seed development and blocks the 3' end processing of 18S and 5.8S pre-rRNA. DEK51 interacts with putative key factors in nuclear RNA exosome-mediated pre-rRNA processing, including ZmMTR4, ZmSMO4, ZmRRP44A, and ZmRRP6L2. This suggests that DEK51 facilitates pre-rRNA processing by interacting with the exosome. Loss of ZmMTR4 function arrests seed development and blocks the 3' end processing of 18S and 5.8S pre-rRNA, similar to dek51. DEK51 also interacts with endonucleases ZmUTP24 and ZmRCL1, suggesting that it may also be involved in the cleavage at site A2. These results show the critical role of DEK51 in promoting 3' end processing of pre-rRNA.
Collapse
Affiliation(s)
- Le Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Baoyin Chen
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bing Ma
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Hongqiu Wang
- National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaotong Sun
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Valero-Rubira I, Castillo AM, Burrell MÁ, Vallés MP. Microspore embryogenesis induction by mannitol and TSA results in a complex regulation of epigenetic dynamics and gene expression in bread wheat. FRONTIERS IN PLANT SCIENCE 2023; 13:1058421. [PMID: 36699843 PMCID: PMC9868772 DOI: 10.3389/fpls.2022.1058421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Reprogramming of microspores development towards embryogenesis mediated by stress treatment constitutes the basis of doubled haploid production. Recently, compounds that alter histone post-translational modifications (PTMs) have been reported to enhance microspore embryogenesis (ME), by altering histones acetylation or methylation. However, epigenetic mechanisms underlying ME induction efficiency are poorly understood. In this study, the epigenetic dynamics and the expression of genes associated with histone PTMs and ME induction were studied in two bread wheat cultivars with different ME response. Microspores isolated at 0, 3 and 5 days, treated with 0.7M mannitol (MAN) and 0.7M mannitol plus 0.4µM trichostatin A (TSA), which induced ME more efficiently, were analyzed. An additional control of gametophytic development was included. Microspores epigenetic state at the onset of ME induction was distinctive between cultivars by the ratio of H3 variants and their acetylated forms, the localization and percentage of labeled microspores with H3K9ac, H4K5ac, H4K16ac, H3K9me2 and H3K27me3, and the expression of genes related to pollen development. These results indicated that microspores of the high responding cultivar could be at a less advanced stage in pollen development. MAN and TSA resulted in a hyperacetylation of H3.2, with a greater effect of TSA. Histone PTMs were differentially affected by both treatments, with acetylation being most concerned. The effect of TSA was observed in the H4K5ac localization pattern at 3dT in the mid-low responding cultivar. Three gene networks linked to ME response were identified. TaHDT1, TaHAG2, TaYAO, TaNFD6-A, TabZIPF1 and TaAGO802-B, associated with pollen development, were down-regulated. TaHDA15, TaHAG3, TaHAM, TaYUC11D, Ta-2B-LBD16 TaMS1 and TaDRM3 constituted a network implicated in morphological changes by auxin signaling and cell wall modification up-regulated at 3dT. The last network included TaHDA18, TaHAC1, TaHAC4, TaABI5, TaATG18fD, TaSDG1a-7A and was related to ABA and ethylene hormone signaling pathways, DNA methylation and autophagy processes, reaching the highest expression at 5dT. The results indicated that TSA mainly modified the regulation of genes related to pollen and auxin signaling. This study represents a breakthrough in identifying the epigenetic dynamics and the molecular mechanisms governing ME induction efficiency, with relevance to recalcitrant wheat genotypes and other crops.
Collapse
Affiliation(s)
- Isabel Valero-Rubira
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - Ana María Castillo
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | - María Ángela Burrell
- Departamento de Patología, Anatomía y Fisiología, Facultad de Ciencias, Universidad de Navarra, Pamplona, Spain
| | - Maria Pilar Vallés
- Departamento de Genética y Producción Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| |
Collapse
|
3
|
Liu S, Wang X, Li Q, Peng W, Zhang Z, Chu P, Guo S, Fan Y, Lyu S. AtGCS promoter-driven clustered regularly interspaced short palindromic repeats/Cas9 highly efficiently generates homozygous/biallelic mutations in the transformed roots by Agrobacterium rhizogenes-mediated transformation. FRONTIERS IN PLANT SCIENCE 2022; 13:952428. [PMID: 36330262 PMCID: PMC9623429 DOI: 10.3389/fpls.2022.952428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Agrobacterium rhizogenes-mediated (ARM) transformation is an efficient and powerful tool to generate transgenic roots to study root-related biology. For loss-of-function studies, transgenic-root-induced indel mutations by CRISPR/Cas9 only with homozygous/biallelic mutagenesis can exhibit mutant phenotype(s) (excluding recessive traits). However, a low frequency of homozygous mutants was produced by a constitutive promoter to drive Cas9 expression. Here, we identified a highly efficient Arabidopsis thaliana gamma-glutamylcysteine synthetase promoter, termed AtGCSpro, with strong activity in the region where the root meristem will initiate and in the whole roots in broad eudicots species. AtGCSpro achieved higher homozygous/biallelic mutation efficiency than the most widely used CaMV 35S promoter in driving Cas9 expression in soybean, Lotus japonicus, and tomato roots. Using the pAtGCSpro-Cas9 system, the average homozygous/biallelic mutation frequency is 1.7-fold and 8.3-fold higher than the p2 × 35Spro-Cas9 system for single and two target site(s) in the genome, respectively. Our results demonstrate the advantage of the pAtGCSpro-Cas9 system used in ARM transformation, especially its great potential in diploids with multiple-copy genes targeted mutations and polyploid plants with multiplex genome editing. AtGCSpro is conservatively active in various eudicots species, suggesting that AtGCSpro might be applied in a wide range of dicots species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yinglun Fan
- *Correspondence: Yinglun Fan, ; Shanhua Lyu, ;
| | - Shanhua Lyu
- *Correspondence: Yinglun Fan, ; Shanhua Lyu, ;
| |
Collapse
|
4
|
Das D, Singha DL, Paswan RR, Chowdhury N, Sharma M, Reddy PS, Chikkaputtaiah C. Recent advancements in CRISPR/Cas technology for accelerated crop improvement. PLANTA 2022; 255:109. [PMID: 35460444 DOI: 10.1007/s00425-022-03894-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Precise genome engineering approaches could be perceived as a second paradigm for targeted trait improvement in crop plants, with the potential to overcome the constraints imposed by conventional CRISPR/Cas technology. The likelihood of reduced agricultural production due to highly turbulent climatic conditions increases as the global population expands. The second paradigm of stress-resilient crops with enhanced tolerance and increased productivity against various stresses is paramount to support global production and consumption equilibrium. Although traditional breeding approaches have substantially increased crop production and yield, effective strategies are anticipated to restore crop productivity even further in meeting the world's increasing food demands. CRISPR/Cas, which originated in prokaryotes, has surfaced as a coveted genome editing tool in recent decades, reshaping plant molecular biology in unprecedented ways and paving the way for engineering stress-tolerant crops. CRISPR/Cas is distinguished by its efficiency, high target specificity, and modularity, enables precise genetic modification of crop plants, allowing for the creation of allelic variations in the germplasm and the development of novel and more productive agricultural practices. Additionally, a slew of advanced biotechnologies premised on the CRISPR/Cas methodologies have augmented fundamental research and plant synthetic biology toolkits. Here, we describe gene editing tools, including CRISPR/Cas and its imitative tools, such as base and prime editing, multiplex genome editing, chromosome engineering followed by their implications in crop genetic improvement. Further, we comprehensively discuss the latest developments of CRISPR/Cas technology including CRISPR-mediated gene drive, tissue-specific genome editing, dCas9 mediated epigenetic modification and programmed self-elimination of transgenes in plants. Finally, we highlight the applicability and scope of advanced CRISPR-based techniques in crop genetic improvement.
Collapse
Affiliation(s)
- Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Ricky Raj Paswan
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Monica Sharma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India
| | - Palakolanu Sudhakar Reddy
- International Crop Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad, 502 324, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
5
|
Genome Wide Identification and Characterization of Apple WD40 Proteins and Expression Analysis in Response to ABA, Drought, and Low Temperature. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Basic WD40 proteins, which are characterized by a conserved WD40 domain, comprise a superfamily of regulatory proteins in plants and play important roles in plant growth and development. However, WD40 genes have been rarely studied in apple (Malus × domestica Borkh.). In this study, 346 WD40 genes classified in 12 subfamilies, were identified in the apple genome. Evolutionary analysis of WD40 proteins in apple and Arabidopsis revealed that the genes were classifiable into 14 groups, and the exon/intron structure of each group showed a similar structure. Analysis of collinearity showed that the large-scale amplification of WD40 genes in apple was largely attributable to recent whole-genome replication events. Nineteen candidate stress-related genes, selected by GO annotation and comparison with Arabidopsis homologs, showed different expression profiles in six organs at different developmental stages in response to exogenous abscisic acid (ABA), drought, and low temperature. Eight genes (MdWD40-17, 24, 70, 74, 219, 256, 283, and 307) showed a distinct response to one or more treatments (ABA, drought, and low temperature) as indicated by quantitative real-time PCR analysis. Taken together, these data provide rich resources for further study of MdWD40 genes and their potential roles in stress responses in apple.
Collapse
|
6
|
Tang X, Chen S, Yu H, Zheng X, Zhang F, Deng X, Xu Q. Development of a gRNA-tRNA array of CRISPR/Cas9 in combination with grafting technique to improve gene-editing efficiency of sweet orange. PLANT CELL REPORTS 2021; 40:2453-2456. [PMID: 34554293 DOI: 10.1007/s00299-021-02781-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Here, we developed a reliable protocol for the fast and efficient gene-edited Anliu sweet orange plants production. The application of in vitro shoot grafting technology significantly reduced the growth cycle of transgenic seedlings, and the survival rate of cleft grafting was more than 90%. In addition, the mutation efficiency of the grafted geneedited sweet orange was significantly improved by short-term heat stress treatments. Thus, the combination strategy of grafting and heat stress treatments provided a reference for the fast and efficient multiplex gene editing of sweet orange.
Collapse
Affiliation(s)
- Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Shulin Chen
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huiwen Yu
- Key Laboratory of Landscape Plants With Fujian and Taiwan Characteristics of Fujian Colleges and Universities, Minnan Normal University, Zhangzhou, 363000, China
| | - Xiongjie Zheng
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
- Division of Biological and Environmental Science and Engineering, Center for Desert Agriculture, the BioActives Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Fei Zhang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
7
|
Luo Y, Shi DQ, Jia PF, Bao Y, Li HJ, Yang WC. Nucleolar histone deacetylases HDT1, HDT2 and HDT3 regulate plant reproductive development. J Genet Genomics 2021; 49:30-39. [PMID: 34699991 DOI: 10.1016/j.jgg.2021.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Nucleolus is a membrane-less organelle where ribosomes are assembled and rRNAs transcribed and processed. The assembled ribosomes composed of ribosomal proteins and rRNAs synthesize proteins for cell survival. In plants, the loss of nucleolar ribosomal proteins often causes gametophytically or embryonically lethality. The amount of rRNAs are under stringent regulation according to demand and partially switched off by epigenetic modifications. However, the molecular mechanism for the selective activation or silencing is still unclear, and the transcriptional coordination of rRNAs and ribosomal proteins is also unknown. Here we report the critical role of three Arabidopsis nucleolar protein HDT1, HDT2 and HDT3 in fertility and transcription of rDNAs and rRNA processing-related genes through histone acetylation. This study highlights the important roles of transcriptional repression of ribosome biogenesis-related genes for plant reproductive development.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Hou XL, Chen WQ, Hou Y, Gong HQ, Sun J, Wang Z, Zhao H, Cao X, Song XF, Liu CM. DEAD-BOX RNA HELICASE 27 regulates microRNA biogenesis, zygote division, and stem cell homeostasis. THE PLANT CELL 2021; 33:66-84. [PMID: 33751089 PMCID: PMC8136522 DOI: 10.1093/plcell/koaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
After double fertilization, zygotic embryogenesis initiates a new life cycle, and stem cell homeostasis in the shoot apical meristem (SAM) and root apical meristem (RAM) allows plants to produce new tissues and organs continuously. Here, we report that mutations in DEAD-BOX RNA HELICASE 27 (RH27) affect zygote division and stem cell homeostasis in Arabidopsis (Arabidopsis thaliana). The strong mutant allele rh27-1 caused a zygote-lethal phenotype, while the weak mutant allele rh27-2 led to minor defects in embryogenesis and severely compromised stem cell homeostasis in the SAM and RAM. RH27 is expressed in embryos from the zygote stage, and in both the SAM and RAM, and RH27 is a nucleus-localized protein. The expression levels of genes related to stem cell homeostasis were elevated in rh27-2 plants, alongside down-regulation of their regulatory microRNAs (miRNAs). Further analyses of rh27-2 plants revealed reduced levels of a large subset of miRNAs and their pri-miRNAs in shoot apices and root tips. In addition, biochemical studies showed that RH27 associates with pri-miRNAs and interacts with miRNA-biogenesis components, including DAWDLE, HYPONASTIC LEAVES 1, and SERRATE. Therefore, we propose that RH27 is a component of the microprocessor complex and is critical for zygote division and stem cell homeostasis.
Collapse
Affiliation(s)
- Xiu-Li Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Qiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua-Qin Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Cao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Cui Q, Xie L, Dong C, Gao L, Shang Q. Stage-specific events in tomato graft formation and the regulatory effects of auxin and cytokinin. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110803. [PMID: 33568302 DOI: 10.1016/j.plantsci.2020.110803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 05/02/2023]
Abstract
Grafting is widely used worldwide because of its obvious advantages, especially in solanaceous vegetable crops. However, the molecular mechanisms underlying graft formation are unknown. In this study, internode tissues from above and below the graft junction were harvested, and we performed weighted gene co-expression network analysis (WGCNA) to describe the temporal and spatial transcriptional dynamics that occur during graft formation in tomato. The wounding stress response involved in JA, ETH, and oxylipins mainly occurred at 1 h after grafting (HAG). From 3 to 12 HAG, the biological processes of snRNA and snoRNA modification and the gibberellin-mediated signaling pathway functioned both above and below the graft junction. However, auxin transport and signaling, DNA replication, and xylem and phloem pattern formation were restricted to the scion, whereas the cytokinin-activated signaling pathway and the cellular response to sucrose starvation was restricted to the rootstock. At 24-72 HAG, cell division occurred above the graft junction, and photosynthesis-related pathways were activated below the graft junction. The levels of auxin and cytokinin reached their maxima above and below the graft junction at 12 HAG, respectively. Exogenous application of certain concentrations of IAA and 6-BA will promote xylem and phloem transport capacity. The current work has analyzed the stage-specific events and hub genes during the developmental progression of tomato grafting. We found that auxin and cytokinin levels respond to grafting, above and below the graft junction, respectively, to promote the formation of xylem and phloem patterning. In addition, the accumulation of auxin above the graft junction induced cells to prepare for mitosis and promoted the formation of callus. In short, our work provides an important reference for theoretical research and production application of tomato grafting in the future.
Collapse
Affiliation(s)
- Qingqing Cui
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Lulu Xie
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunjuan Dong
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Qingmao Shang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Hang R, Wang Z, Yang C, Luo L, Mo B, Chen X, Sun J, Liu C, Cao X. Protein arginine methyltransferase 3 fine-tunes the assembly/disassembly of pre-ribosomes to repress nucleolar stress by interacting with RPS2B in arabidopsis. MOLECULAR PLANT 2021; 14:223-236. [PMID: 33069875 DOI: 10.1016/j.molp.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Ribosome biogenesis, which takes place mainly in the nucleolus, involves coordinated expression of pre-ribosomal RNAs (pre-rRNAs) and ribosomal proteins, pre-rRNA processing, and subunit assembly with the aid of numerous assembly factors. Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing; however, the underlying molecular mechanism remains unknown. Here, we report that AtPRMT3 interacts with Ribosomal Protein S2 (RPS2), facilitating processing of the 90S/Small Subunit (SSU) processome and repressing nucleolar stress. We isolated an intragenic suppressor of atprmt3-2, which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain We further identified RPS2 as an interacting partner of AtPRMT3, and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3, showing pleiotropic developmental defects and aberrant pre-rRNA processing. RPS2B binds directly to pre-rRNAs in the nucleus, and such binding is enhanced in atprmt3-2. Consistently, multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2, which accounts for early pre-rRNA processing defects and results in nucleolar stress. Collectively, our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.
Collapse
Affiliation(s)
- Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chao Yang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lilan Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Chen D, Wang Y, Zhang W, Li N, Dai B, Xie F, Sun Y, Sun M, Peng X. Gametophyte-specific DEAD-box RNA helicase 29 is required for functional maturation of male and female gametophytes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4083-4092. [PMID: 32280991 DOI: 10.1093/jxb/eraa190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
The maturation of male and female gametophytes together with its impact on plant sexual reproduction has not received much attention, and the molecular mechanisms underlying the process are largely unknown. Here, we show that Arabidopsis DEAD-box RNA helicase 29 (RH29) is critical for the functional maturation of both male and female gametophytes. Homozygous rh29 mutants could not be obtained, and heterozygous mutant plants were semi-sterile. Progression of the cell cycle in rh29 female gametophytes was delayed. Delayed pollination experiments showed that rh29 female gametophytes underwent cell-fate specification but were unable to develop into functional gametophytes. Functional specification but not morphogenesis was also disrupted in rh29 male gametophytes, causing defective pollen tube growth in the pistil. RH29 was highly and specifically expressed in gametophytic cells. RH29 shares high amino acid sequence identity with yeast Dbp10p, which partially rescues the aborted-ovules phenotype of rh29/RH29 plants. RH29 is essential for the synthesis of REGULATORY PARTICLE TRIPLE A ATPase 5a (RPT5a), a subunit of the regulatory particle of the 26S proteasome. Our results suggest that gametophyte functional maturation is a necessary process for successful fertilization and that RH29 is essential for the functional maturation of both male and female gametophytes.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yameng Wang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Na Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Dai
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Fan Y, Wang X, Li H, Liu S, Jin L, Lyu Y, Shi M, Liu S, Yang X, Lyu S. Anthocyanin, a novel and user-friendly reporter for convenient, non-destructive, low cost, directly visual selection of transgenic hairy roots in the study of rhizobia-legume symbiosis. PLANT METHODS 2020; 16:94. [PMID: 32647533 PMCID: PMC7339386 DOI: 10.1186/s13007-020-00638-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/03/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Agrobacterium rhizogenes-mediated hairy root transformation provides a powerful tool for investigating the functions of plant genes involved in rhizobia-legume symbiosis. However, in the traditional identification methods of transgenic hairy roots based on reporter genes, an expensive chemical substrate or equipment is required. RESULTS Here, we report a novel, low cost, and robust reporter for convenient, non-destructive, and directly visual selection of transgenic hairy roots by naked eye, which can be used in the study of rhizobia-legume symbiosis. The reporter gene AtMyb75 in Arabidopsis, encoding an R2R3 type MYB transcription factor, was ectopically expressed in hairy roots-mediated by A. rhizogenes, which induced purple/red colored anthocyanin accumulation in crop species like soybean (Glycine max (L.) Merr.) and two model legume species, Lotus japonicas and Medicago truncatula. Transgenic hairy roots of legumes containing anthocyanin can establish effective symbiosis with rhizobia. We also demonstrated the reliability of AtMyb75 as a reporter gene by CRISPR/Cas9-targeted mutagenesis of the soybean resistance to nodulation Rfg1 gene in the soybean PI377578 (Nod-) inoculated with Sinorhizobium fredii USDA193. Without exception, mature nitrogen-fixation nodules, were formed on purple transgenic hairy roots containing anthocyanin. CONCLUSIONS Anthocyanin is a reliable, user-friendly, convenient, non-destructive, low cost, directly visual reporter for studying symbiotic nitrogen-fixing nodule development and could be widely applied in broad leguminous plants.
Collapse
Affiliation(s)
- Yinglun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xiuyuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Haiyun Li
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shuang Liu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Liangshen Jin
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Yanyan Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Mengdi Shi
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Sirui Liu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xinyue Yang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shanhua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
13
|
Fan YL, Zhang XH, Zhong LJ, Wang XY, Jin LS, Lyu SH. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC PLANT BIOLOGY 2020; 20:208. [PMID: 32397958 PMCID: PMC7333419 DOI: 10.1186/s12870-020-02421-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Agrobacterium rhizogenes-mediated (ARM) transformation is a highly efficient technique for generating composite plants composed of transgenic roots and wild-type shoot, providing a powerful tool for studying root biology. The ARM transformation has been established in many plant species, including soybean. However, traditional transformation of soybean, transformation efficiency is low. Additionally, the hairy roots were induced in a medium, and then the generated composite plants were transplanted into another medium for growth. This two-step operation is not only time-consuming, but aggravates contamination risk in the study of plant-microbe interactions. RESULTS Here, we report a one-step ARM transformation method with higher transformation efficiency for generating composite soybean plants. Both the induction of hairy roots and continuous growth of the composite plants were conducted in a single growth medium. The primary root of a 7-day-old seedling was decapitated with a slanted cut, the residual hypocotyl (maintained 0.7-1 cm apical portion) was inoculated with A. rhizogenes harboring the gene construct of interest. Subsequently, the infected seedling was planted into a pot with wet sterile vermiculite. Almost 100% of the infected seedlings could produce transgenic positive roots 16 days post-inoculation in 7 tested genotypes. Importantly, the transgenic hairy roots in each composite plant are about three times more than those of the traditional ARM transformation, indicating that the one-step method is simpler in operation and higher efficiency in transformation. The reliability of the one-step method was verified by CRISPR/Cas9 system to knockout the soybean Rfg1, which restricts nodulation in Williams 82 (Nod-) by Sinorhizobium fredii USDA193. Furthermore, we applied this method to analyze the function of Arabidopsis YAO promoter in soybean. The activity of YAO promoter was detected in whole roots and stronger in the root tips. We also extended the protocol to tomato. CONCLUSIONS We established a one-step ARM transformation method, which is more convenient in operation and higher efficiency (almost 100%) in transformation for generating composite soybean plants. This method has been validated in promoter functional analysis and rhizobia-legume interactions. We anticipate a broad application of this method to analyze root-related events in tomato and other plant species besides soybean.
Collapse
Affiliation(s)
- Ying-lun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xing-hui Zhang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Li-jing Zhong
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xiu-yuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Liang-shen Jin
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shan-hua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
14
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
15
|
Pearson GA, Martins N, Madeira P, Serrão EA, Bartsch I. Sex-dependent and -independent transcriptional changes during haploid phase gametogenesis in the sugar kelp Saccharina latissima. PLoS One 2019; 14:e0219723. [PMID: 31513596 PMCID: PMC6742357 DOI: 10.1371/journal.pone.0219723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
In haplodiplontic lineages, sexual reproduction occurs in haploid parents without meiosis. Although widespread in multicellular lineages such as brown algae (Phaeophyceae), haplodiplontic gametogenesis has been little studied at the molecular level. We addressed this by generating an annotated reference transcriptome for the gametophytic phase of the sugar kelp, Saccharina latissima. Transcriptional profiles of microscopic male and female gametophytes were analysed at four time points during the transition from vegetative growth to gametogenesis. Gametogenic signals resulting from a switch in culture irradiance from red to white light activated a core set of genes in a sex-independent manner, involving rapid activation of ribosome biogenesis, transcription and translation related pathways, with several acting at the post-transcriptional or post-translational level. Additional genes regulating nutrient acquisition and key carbohydrate-energy pathways were also identified. Candidate sex-biased genes under gametogenic conditions had potentially key roles in controlling female- and male-specific gametogenesis. Among these were several sex-biased or -specific E3 ubiquitin-protein ligases that may have important regulatory roles. Females specifically expressed several genes that coordinate gene expression and/or protein degradation, and the synthesis of inositol-containing compounds. Other female-biased genes supported parallels with oogenesis in divergent multicellular lineages, in particular reactive oxygen signalling via an NADPH-oxidase. Males specifically expressed the hypothesised brown algal sex-determining factor. Male-biased expression mainly involved upregulation of genes that control mitotic cell proliferation and spermatogenesis in other systems, as well as multiple flagella-related genes. Our data and results enhance genome-level understanding of gametogenesis in this ecologically and economically important multicellular lineage.
Collapse
Affiliation(s)
- Gareth A. Pearson
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Neusa Martins
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Pedro Madeira
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Ester A. Serrão
- Centre for Marine Sciences (CCMAR)-CIMAR, University of Algarve, Portugal
| | - Inka Bartsch
- Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Am Handelshafen, Germany
| |
Collapse
|
16
|
Zhang Y, Malzahn AA, Sretenovic S, Qi Y. The emerging and uncultivated potential of CRISPR technology in plant science. NATURE PLANTS 2019; 5:778-794. [PMID: 31308503 DOI: 10.1038/s41477-019-0461-5] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/24/2019] [Indexed: 05/18/2023]
Abstract
The application of clustered regularly interspaced short palindromic repeats (CRISPR) for genetic manipulation has revolutionized life science over the past few years. CRISPR was first discovered as an adaptive immune system in bacteria and archaea, and then engineered to generate targeted DNA breaks in living cells and organisms. During the cellular DNA repair process, various DNA changes can be introduced. The diverse and expanding CRISPR toolbox allows programmable genome editing, epigenome editing and transcriptome regulation in plants. However, challenges in plant genome editing need to be fully appreciated and solutions explored. This Review intends to provide an informative summary of the latest developments and breakthroughs of CRISPR technology, with a focus on achievements and potential utility in plant biology. Ultimately, CRISPR will not only facilitate basic research, but also accelerate plant breeding and germplasm development. The application of CRISPR to improve germplasm is particularly important in the context of global climate change as well as in the face of current agricultural, environmental and ecological challenges.
Collapse
Affiliation(s)
- Yingxiao Zhang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Aimee A Malzahn
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
17
|
Wang S, Quan L, Li S, You C, Zhang Y, Gao L, Zeng L, Liu L, Qi Y, Mo B, Chen X. The PROTEIN PHOSPHATASE4 Complex Promotes Transcription and Processing of Primary microRNAs in Arabidopsis. THE PLANT CELL 2019; 31:486-501. [PMID: 30674692 PMCID: PMC6447022 DOI: 10.1105/tpc.18.00556] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/28/2018] [Accepted: 01/16/2019] [Indexed: 05/02/2023]
Abstract
PROTEIN PHOSPHATASE4 (PP4) is a highly conserved Ser/Thr protein phosphatase found in yeast, plants, and animals. The composition and functions of PP4 in plants are poorly understood. Here, we uncovered the complexity of PP4 composition and function in Arabidopsis (Arabidopsis thaliana) and identified the composition of one form of PP4 containing the regulatory subunit PP4R3A. We show that PP4R3A, together with one of two redundant catalytic subunit genes, PROTEIN PHOSPHATASE X (PPX)1 and PPX2, promotes the biogenesis of microRNAs (miRNAs). PP4R3A is a chromatin-associated protein that interacts with RNA polymerase II and recruits it to the promoters of miRNA-encoding (MIR) genes to promote their transcription. PP4R3A likely also promotes the cotranscriptional processing of miRNA precursors, because it recruits the microprocessor component HYPONASTIC LEAVES1 to MIR genes and to nuclear dicing bodies. Finally, we show that hundreds of introns exhibit splicing defects in pp4r3a mutants. Together, this study reveals roles for Arabidopsis PP4 in transcription and nuclear RNA metabolism.
Collapse
Affiliation(s)
- Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Li Quan
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shanxi 712100, China
| | - Shaofang Li
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chenjiang You
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Yong Zhang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Liping Zeng
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yanhua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
18
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Fonseca S, Rubio V. Arabidopsis CRL4 Complexes: Surveying Chromatin States and Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1095. [PMID: 31608079 PMCID: PMC6761389 DOI: 10.3389/fpls.2019.01095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/09/2019] [Indexed: 05/10/2023]
Abstract
CULLIN4 (CUL4) RING ligase (CRL4) complexes contain a CUL4 scaffold protein, associated to RBX1 and to DDB1 proteins and have traditionally been associated to protein degradation events. Through DDB1, these complexes can associate with numerous DCAF proteins, which directly interact with specific targets promoting their ubiquitination and subsequent degradation by the proteasome. A characteristic feature of the majority of DCAF proteins that associate with DDB1 is the presence of the DWD motif. DWD-containing proteins sum up to 85 in the plant model species Arabidopsis. In the last decade, numerous Arabidopsis DWD proteins have been studied and their molecular functions uncovered. Independently of whether their association with CRL4 has been confirmed or not, DWD proteins are often found as components of additional multimeric protein complexes that play key roles in essential nuclear events. For most of them, the significance of their complex partnership is still unexplored. Here, we summarize recent findings involving both confirmed and putative CRL4-associated DCAF proteins in regulating nuclei architecture remodelling, DNA damage repair, histone post-translational modification, mRNA processing and export, and ribosome biogenesis, that definitely have an impact in gene expression and de novo protein synthesis. We hypothesized that, by maintaining accurate levels of regulatory proteins through targeted degradation and transcriptional control, CRL4 complexes help to surveil nuclear processes essential for plant development and survival.
Collapse
|
20
|
A Highly Efficient Cell Division-Specific CRISPR/Cas9 System Generates Homozygous Mutants for Multiple Genes in Arabidopsis. Int J Mol Sci 2018; 19:ijms19123925. [PMID: 30544514 PMCID: PMC6321140 DOI: 10.3390/ijms19123925] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/02/2022] Open
Abstract
The CRISPR/Cas9 system has been widely used for targeted genome editing in numerous plant species. In Arabidopsis, constitutive promoters usually result in a low efficiency of heritable mutation in the T1 generation. In this work, CRISPR/Cas9 gene editing efficiencies using different promoters to drive Cas9 expression were evaluated. Expression of Cas9 under the constitutive CaMV 35S promoter resulted in a 2.3% mutation rate in T1 plants and failed to produce homozygous mutations in the T1 and T2 generations. In contrast, expression of Cas9 under two cell division-specific promoters, YAO and CDC45, produced mutation rates of 80.9% to 100% in the T1 generation with nonchimeric mutations in the T1 (4.4–10%) and T2 (32.5–46.1%) generations. The pCDC45 promoter was used to modify a previously reported multiplex CRISPR/Cas9 system, replacing the original constitutive ubiquitin promoter. The multi-pCDC45-Cas9 system produced higher mutation efficiencies than the multi-pUBQ-Cas9 system in the T1 generation (60.17% vs. 43.71%) as well as higher efficiency of heritable mutations (11.30% vs. 4.31%). Sextuple T2 homozygous mutants were identified from a construct targeting seven individual loci. Our results demonstrate the advantage of using cell division promoters for CRISPR/Cas9 gene editing applications in Arabidopsis, especially in multiplex applications.
Collapse
|
21
|
Maekawa S, Ueda Y, Yanagisawa S. Overexpression of a Brix Domain-Containing Ribosome Biogenesis Factor ARPF2 and its Interactor ARRS1 Causes Morphological Changes and Lifespan Extension in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1177. [PMID: 30210511 PMCID: PMC6120060 DOI: 10.3389/fpls.2018.01177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 05/23/2023]
Abstract
The Brix domain is a conserved domain in several proteins involved in ribosome biogenesis in yeast and animals. In the Arabidopsis genome, six Brix domain-containing proteins are encoded; however, their molecular functions have not been fully characterized, as yet. Here we report the functional analysis of a Brix domain-containing protein, ARPF2, which is homologous to yeast Rpf2 that plays an essential role in ribosome biogenesis as a component of the 5S ribonucleoprotein particle. By phenotypic characterization of arpf2 mutants, histochemical GUS staining, and analysis using green fluorescence protein, we show that ARPF2 is an essential and ubiquitously expressed gene encoding a nucleolar protein. Co-immunoprecipitation and split-GFP-based bimolecular fluorescence complementation assays revealed that ARPF2 interacts with a protein named ARRS1, which is homologous to yeast Rrs1 that forms a complex with Rpf2 in yeast. Furthermore, the result of RNA immunoprecipitation assay indicated that ARPF2 interacts with 5S ribosomal RNA (rRNA) or the precursor of 5S rRNA, as well as with the internal transcribed spacer 2 in the precursors of 25S rRNA. Most intriguingly, we found that the overexpression of ARPF2 and ARRS1 leads to characteristic phenotypes, including short stem, abnormal leaf morphology, and long lifespan, in Arabidopsis. These results suggest that the function of Brix domain-containing ARPF2 protein in ribosome biogenesis is intimately associated with the growth and development in plants.
Collapse
|
22
|
Li C, Chen C, Chen H, Wang S, Chen X, Cui Y. Verification of DNA motifs in Arabidopsis using CRISPR/Cas9-mediated mutagenesis. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1446-1451. [PMID: 29331085 PMCID: PMC6041440 DOI: 10.1111/pbi.12886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/10/2017] [Accepted: 01/08/2018] [Indexed: 05/20/2023]
Abstract
Transcription factors (TFs) and chromatin-modifying factors (CMFs) access chromatin by recognizing specific DNA motifs in their target genes. Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) has been widely used to discover the potential DNA-binding motifs for both TFs and CMFs. Yet, an in vivo method for verifying DNA motifs captured by ChIP-seq is lacking in plants. Here, we describe the use of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) to verify DNA motifs in their native genomic context in Arabidopsis. Using a single-guide RNA (sgRNA) targeting the DNA motif bound by REF6, a DNA sequence-specific H3K27 demethylase in plants, we generated stable transgenic plants where the motif was disrupted in a REF6 target gene. We also deleted a cluster of multiple motifs from another REF6 target gene using a pair of sgRNAs, targeting upstream and downstream regions of the cluster, respectively. We demonstrated that endogenous genes with motifs disrupted and/or deleted become inaccessible to REF6. This strategy should be widely applicable for in vivo verification of DNA motifs identified by ChIP-seq in plants.
Collapse
Affiliation(s)
- Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- London Research and Development CenterAgriculture and Agri‐Food CanadaLondonONCanada
| | - Chen Chen
- London Research and Development CenterAgriculture and Agri‐Food CanadaLondonONCanada
- Department of BiologyWestern UniversityLondonONCanada
| | - Huhui Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Suikang Wang
- Department of Botany and Plant SciencesInstitute of Integrative Genome BiologyUniversity of California RiversideRiversideCAUSA
| | - Xuemei Chen
- Department of Botany and Plant SciencesInstitute of Integrative Genome BiologyUniversity of California RiversideRiversideCAUSA
- Howard Hughes Medical InstituteUniversity of California RiversideRiversideCAUSA
| | - Yuhai Cui
- London Research and Development CenterAgriculture and Agri‐Food CanadaLondonONCanada
- Department of BiologyWestern UniversityLondonONCanada
| |
Collapse
|
23
|
LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, Irish VF, Jacob Y. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:377-386. [PMID: 29161464 DOI: 10.1111/tpj.13782] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 05/20/2023]
Abstract
The CRISPR/Cas9 system has greatly improved our ability to engineer targeted mutations in eukaryotic genomes. While CRISPR/Cas9 appears to work universally, the efficiency of targeted mutagenesis and the adverse generation of off-target mutations vary greatly between different organisms. In this study, we report that Arabidopsis plants subjected to heat stress at 37°C show much higher frequencies of CRISPR-induced mutations compared to plants grown continuously at the standard temperature (22°C). Using quantitative assays relying on green fluorescent protein (GFP) reporter genes, we found that targeted mutagenesis by CRISPR/Cas9 in Arabidopsis is increased by approximately 5-fold in somatic tissues and up to 100-fold in the germline upon heat treatment. This effect of temperature on the mutation rate is not limited to Arabidopsis, as we observed a similar increase in targeted mutations by CRISPR/Cas9 in Citrus plants exposed to heat stress at 37°C. In vitro assays demonstrate that Cas9 from Streptococcus pyogenes (SpCas9) is more active in creating double-stranded DNA breaks at 37°C than at 22°C, thus indicating a potential contributing mechanism for the in vivo effect of temperature on CRISPR/Cas9. This study reveals the importance of temperature in modulating SpCas9 activity in eukaryotes, and provides a simple method to increase on-target mutagenesis in plants using CRISPR/Cas9.
Collapse
Affiliation(s)
- Chantal LeBlanc
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
| | - Fei Zhang
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
| | - Josefina Mendez
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
| | - Yamile Lozano
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
| | - Krishna Chatpar
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
| |
Collapse
|
24
|
Shanmugam T, Abbasi N, Kim HS, Kim HB, Park NI, Park GT, Oh SA, Park SK, Muench DG, Choi Y, Park YI, Choi SB. An Arabidopsis divergent pumilio protein, APUM24, is essential for embryogenesis and required for faithful pre-rRNA processing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1092-1105. [PMID: 29031033 DOI: 10.1111/tpj.13745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 05/06/2023]
Abstract
Pumilio RNA-binding proteins are largely involved in mRNA degradation and translation repression. However, a few evolutionarily divergent Pumilios are also responsible for proper pre-rRNA processing in human and yeast. Here, we describe an essential Arabidopsis nucleolar Pumilio, APUM24, that is expressed in tissues undergoing rapid proliferation and cell division. A T-DNA insertion for APUM24 did not affect the male and female gametogenesis, but instead resulted in a negative female gametophytic effect on zygotic cell division immediately after fertilization. Additionally, the mutant embryos displayed defects in cell patterning from pro-embryo through globular stages. The mutant embryos were marked by altered auxin maxima, which were substantiated by the mislocalization of PIN1 and PIN7 transporters in the defective embryos. Homozygous apum24 callus accumulates rRNA processing intermediates, including uridylated and adenylated 5.8S and 25S rRNA precursors. An RNA-protein interaction assay showed that the histidine-tagged recombinant APUM24 binds RNAin vitro with no apparent specificity. Overall, our results demonstrated that APUM24 is required for rRNA processing and early embryogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Thiruvenkadam Shanmugam
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nazia Abbasi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Hyung-Sae Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Ho Bang Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Nam-Il Park
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| | - Guen Tae Park
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, 151-747, South Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, 305-764, South Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Kyunggi-do, 449-728, South Korea
| |
Collapse
|
25
|
Yang KJ, Guo L, Hou XL, Gong HQ, Liu CM. ZYGOTE-ARREST 3 that encodes the tRNA ligase is essential for zygote division in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:680-692. [PMID: 28631407 DOI: 10.1111/jipb.12561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/16/2017] [Indexed: 05/28/2023]
Abstract
In sexual organisms, division of the zygote initiates a new life cycle. Although several genes involved in zygote division are known in plants, how the zygote is activated to start embryogenesis has remained elusive. Here, we showed that a mutation in ZYGOTE-ARREST 3 (ZYG3) in Arabidopsis led to a tight zygote-lethal phenotype. Map-based cloning revealed that ZYG3 encodes the transfer RNA (tRNA) ligase AtRNL, which is a single-copy gene in the Arabidopsis genome. Expression analyses showed that AtRNL is expressed throughout zygotic embryogenesis, and in meristematic tissues. Using pAtRNL::cAtRNL-sYFP-complemented zyg3/zyg3 plants, we showed that AtRNL is localized exclusively in the cytoplasm, suggesting that tRNA splicing occurs primarily in the cytoplasm. Analyses using partially rescued embryos showed that mutation in AtRNL compromised splicing of intron-containing tRNA. Mutations of two tRNA endonuclease genes, SEN1 and SEN2, also led to a zygote-lethal phenotype. These results together suggest that tRNA splicing is critical for initiating zygote division in Arabidopsis.
Collapse
Affiliation(s)
- Ke-Jin Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
| | - Lei Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Li Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Qin Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Hao L, Wei X, Zhu J, Shi J, Liu J, Gu H, Tsuge T, Qu LJ. SNAIL1 is essential for female gametogenesis in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:629-641. [PMID: 28776932 DOI: 10.1111/jipb.12572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Two yeast Brix family members Ssf1 and Ssf2, involved in large ribosomal subunit synthesis, are essential for yeast cell viability and mating efficiency. Their putative homologs exist in the Arabidopsis genome; however, their role in plant development is unknown. Here, we show that Arabidopsis thaliana SNAIL1 (AtSNAIL1), a protein sharing high sequence identity with yeast Ssf1 and Ssf2, is critical to mitosis progression of female gametophyte development. The snail1 homozygous mutant was nonviable and its heterozygous mutant was semi-sterile with shorter siliques. The mutation in SNAIL1 led to absence of female transmission and reduced male transmission. Further phenotypic analysis showed that the synchronic development of female gametophyte in the snail1 heterozygous mutant was greatly impaired and the snail1 pollen tube growth, in vivo, was also compromised. Furthermore, SNAIL1 was a nucleolar-localized protein with a putative role in protein synthesis. Our data suggest that SNAIL1 may function in ribosome biogenesis like Ssf1 and Ssf2 and plays an important role during megagametogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Lihong Hao
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolin Wei
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiulei Zhu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jiao Shi
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jingjing Liu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
- National Plant Gene Research Center (Beijing), Beijing 100101, China
| |
Collapse
|
27
|
Mao Y, Botella JR, Zhu JK. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems. Cell Mol Life Sci 2017; 74:1075-1093. [PMID: 27677493 PMCID: PMC11107718 DOI: 10.1007/s00018-016-2380-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.
Collapse
Affiliation(s)
- Yanfei Mao
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
28
|
Wang L, Tan H, Wu M, Jimenez-Gongora T, Tan L, Lozano-Duran R. Dynamic Virus-Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus. FRONTIERS IN PLANT SCIENCE 2017; 8:2165. [PMID: 29312406 PMCID: PMC5744400 DOI: 10.3389/fpls.2017.02165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/08/2017] [Indexed: 05/13/2023]
Abstract
Viruses are intracellular parasites with a nucleic acid genome and a proteinaceous capsid. Viral capsids are formed of at least one virus-encoded capsid protein (CP), which is often multifunctional, playing additional non-structural roles during the infection cycle. In animal viruses, there are examples of differential localization of CPs associated to the progression of the infection and/or enabled by other viral proteins; these changes in the distribution of CPs may ultimately regulate the involvement of these proteins in different viral functions. In this work, we analyze the subcellular localization of a GFP- or RFP-fused CP from the plant virus Tomato yellow leaf curl virus (TYLCV; Fam. Geminiviridae) in the presence or absence of the virus upon transient expression in the host plants Nicotiana benthamiana and tomato. Our findings show that, in agreement with previous reports, when the CP is expressed alone it localizes mainly in the nucleolus and weakly in the nucleoplasm. Interestingly, the presence of the virus causes the sequential re-localization of the CP outside of the nucleolus and into discrete nuclear foci and, eventually, into an uneven distribution in the nucleoplasm. Expression of the viral replication-associated protein, Rep, is sufficient to exclude the CP from the nucleolus, but the localization of the CP in the characteristic patterns induced by the virus cannot be recapitulated by co-expression with any individual viral protein. Our results demonstrate that the subcellular distribution of the CP is a dynamic process, temporally regulated throughout the progression of the infection. The regulation of the localization of the CP is determined by the presence of other viral components or changes in the cellular environment induced by the virus, and is likely to contribute to the multifunctionality of this protein. Bearing in mind these observations, we suggest that viral proteins should be studied in the context of the infection and considering the temporal dimension in order to comprehensively understand their roles and effects in the interaction between virus and host.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tamara Jimenez-Gongora
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Li Tan
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Rosa Lozano-Duran,
| |
Collapse
|
29
|
Zhu DZ, Zhao XF, Liu CZ, Ma FF, Wang F, Gao XQ, Zhang XS. Interaction between RNA helicase ROOT INITIATION DEFECTIVE 1 and GAMETOPHYTIC FACTOR 1 is involved in female gametophyte development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5757-5768. [PMID: 27683728 PMCID: PMC5066494 DOI: 10.1093/jxb/erw341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
ROOT INITIATION DEFECTIVE 1 (RID1) is an Arabidopsis DEAH/RHA RNA helicase. It functions in hypocotyl de-differentiation, de novo meristem formation, and cell specification of the mature female gametophyte (FG). However, it is unclear how RID1 regulates FG development. In this study, we observed that mutations to RID1 disrupted the developmental synchrony and retarded the progression of FG development. RID1 exhibited RNA helicase activity, with a preference for unwinding double-stranded RNA in the 3' to 5' direction. Furthermore, we found that RID1 interacts with GAMETOPHYTIC FACTOR 1 (GFA1), which is an integral protein of the spliceosome component U5 small nuclear ribonucleoprotein (snRNP) particle. Substitution of specific RID1 amino acids (Y266F and T267I) inhibited the interaction with GFA1. In addition, the mutated RID1 could not complement the seed-abortion phenotype of the rid1 mutant. The rid1 and gfa1 mutants exhibited similar abnormalities in pre-mRNA splicing and down-regulated expression of some genes involved in FG development. Our results suggest that an interaction between RID1 and the U5 snRNP complex regulates essential pre-mRNA splicing of the genes required for FG development. This study provides new information regarding the mechanism underlying the FG developmental process.
Collapse
Affiliation(s)
- Dong Zi Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xue Fang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Chang Zhen Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Fang Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xin-Qi Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
30
|
Guo L, Jiang L, Zhang Y, Lu XL, Xie Q, Weijers D, Liu CM. The anaphase-promoting complex initiates zygote division in Arabidopsis through degradation of cyclin B1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:161-74. [PMID: 26952278 DOI: 10.1111/tpj.13158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 05/03/2023]
Abstract
As the start of a new life cycle, activation of the first division of the zygote is a critical event in both plants and animals. Because the zygote in plants is difficult to access, our understanding of how this process is achieved remains poor. Here we report genetic and cell biological analyses of the zygote-arrest 1 (zyg1) mutant in Arabidopsis, which showed zygote-lethal and over-accumulation of cyclin B1 D-box-GUS in ovules. Map-based cloning showed that ZYG1 encodes the anaphase-promoting complex/cyclosome (APC/C) subunit 11 (APC11). Live-cell imaging studies showed that APC11 is expressed in both egg and sperm cells, in zygotes and during early embryogenesis. Using a GFP-APC11 fusion construct that fully complements zyg1, we showed that GFP-APC11 expression persisted throughout the mitotic cell cycle, and localized to cell plates during cytokinesis. Expression of non-degradable cyclin B1 in the zygote, or mutations of either APC1 or APC4, also led to a zyg1-like phenotype. Biochemical studies showed that APC11 has self-ubiquitination activity and is able to ubiquitinate cyclin B1 and promote degradation of cyclin B1. These results together suggest that APC/C-mediated degradation of cyclin B1 in Arabidopsis is critical for initiating the first division of the zygote.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ying Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xiu-Li Lu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
31
|
Yan L, Wei S, Wu Y, Hu R, Li H, Yang W, Xie Q. High-Efficiency Genome Editing in Arabidopsis Using YAO Promoter-Driven CRISPR/Cas9 System. MOLECULAR PLANT 2015; 8:1820-3. [PMID: 26524930 DOI: 10.1016/j.molp.2015.10.004] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 05/18/2023]
Affiliation(s)
- Liuhua Yan
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, P.R. China
| | - Shaowei Wei
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, P.R. China
| | - Ruolan Hu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Hongju Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, P.R. China
| | - Weicai Yang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, P.R. China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, P.R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China.
| |
Collapse
|
32
|
Li HJ, Zhu SS, Zhang MX, Wang T, Liang L, Xue Y, Shi DQ, Liu J, Yang WC. Arabidopsis CBP1 Is a Novel Regulator of Transcription Initiation in Central Cell-Mediated Pollen Tube Guidance. THE PLANT CELL 2015; 27:2880-93. [PMID: 26462908 PMCID: PMC4682316 DOI: 10.1105/tpc.15.00370] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/22/2015] [Indexed: 05/04/2023]
Abstract
In flowering plants, sperm cells are delivered to the embryo sac by a pollen tube guided by female signals. Both the gametic and synergid cells contribute to pollen tube attraction. Synergids secrete peptide signals that lure the tube, while the role of the gametic cells is unknown. Previously, we showed that CENTRAL CELL GUIDANCE (CCG) is essential for pollen tube attraction in Arabidopsis thaliana, but the molecular mechanism is unclear. Here, we identified CCG BINDING PROTEIN1 (CBP1) and demonstrated that it interacts with CCG, Mediator subunits, RNA polymerase II (Pol II), and central cell-specific AGAMOUS-like transcription factors. In addition, CCG interacts with TATA-box Binding Protein 1 and Pol II as a TFIIB-like transcription factor. CBP1-knockdown ovules are defective in pollen tube attraction. Expression profiling revealed that cysteine-rich peptide (CRP) transcripts were downregulated in ccg ovules. CCG and CBP1 coregulate a subset of CRPs in the central cell and the synergids, including the attractant LURE1. CBP1 is extensively expressed in multiple vegetative tissues and specifically in the central cell in reproductive growth. We propose that CBP1, via interaction with CCG and the Mediator complex, connects transcription factors and the Pol II machinery to regulate pollen tube attraction.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shan-Shan Zhu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Xia Zhang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Wang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Liang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xue
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Khan A, Garbelli A, Grossi S, Florentin A, Batelli G, Acuna T, Zolla G, Kaye Y, Paul LK, Zhu JK, Maga G, Grafi G, Barak S. The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:28-43. [PMID: 24724701 DOI: 10.1111/tpj.12533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 05/03/2023]
Abstract
DEAD-box RNA helicases are involved in many aspects of RNA metabolism and in diverse biological processes in plants. Arabidopsis thaliana mutants of two DEAD-box RNA helicases, STRESS RESPONSE SUPPRESSOR1 (STRS1) and STRS2 were previously shown to exhibit tolerance to abiotic stresses and up-regulated stress-responsive gene expression. Here, we show that Arabidopsis STRS-overexpressing lines displayed a less tolerant phenotype and reduced expression of stress-induced genes confirming the STRSs as attenuators of Arabidopsis stress responses. GFP-STRS fusion proteins exhibited localization to the nucleolus, nucleoplasm and chromocenters and exhibited relocalization in response to abscisic acid (ABA) treatment and various stresses. This relocalization was reversed when stress treatments were removed. The STRS proteins displayed mis-localization in specific gene-silencing mutants and exhibited RNA-dependent ATPase and RNA-unwinding activities. In particular, STRS2 showed mis-localization in three out of four mutants of the RNA-directed DNA methylation (RdDM) pathway while STRS1 was mis-localized in the hd2c mutant that is defective in histone deacetylase activity. Furthermore, heterochromatic RdDM target loci displayed reduced DNA methylation and increased expression in the strs mutants. Taken together, our findings suggest that the STRS proteins are involved in epigenetic silencing of gene expression to bring about suppression of the Arabidopsis stress response.
Collapse
Affiliation(s)
- Asif Khan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zsögön A, Szakonyi D, Shi X, Byrne ME. Ribosomal Protein RPL27a Promotes Female Gametophyte Development in a Dose-Dependent Manner. PLANT PHYSIOLOGY 2014; 165:1133-1143. [PMID: 24872379 PMCID: PMC4081327 DOI: 10.1104/pp.114.241778] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ribosomal protein mutations in Arabidopsis (Arabidopsis thaliana) result in a range of specific developmental phenotypes. Why ribosomal protein mutants have specific phenotypes is not fully known, but such defects potentially result from ribosome insufficiency, ribosome heterogeneity, or extraribosomal functions of ribosomal proteins. Here, we report that ovule development is sensitive to the level of Ribosomal Protein L27a (RPL27a) and is disrupted by mutations in the two paralogs RPL27aC and RPL27aB. Mutations in RPL27aC result in high levels of female sterility, whereas mutations in RPL27aB have a significant but lesser effect on fertility. Progressive reduction in RPL27a function results in increasing sterility, indicating a dose-dependent relationship between RPL27a and female fertility. RPL27a levels in both the sporophyte and gametophyte affect female gametogenesis, with different developmental outcomes determined by the dose of RPL27a. These results demonstrate that RPL27aC and RPL27aB act redundantly and reveal a function for RPL27a in coordinating complex interactions between sporophyte and gametophyte during ovule development.
Collapse
Affiliation(s)
- Agustin Zsögön
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dóra Szakonyi
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiuling Shi
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Mary E Byrne
- School of Biological Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
35
|
Li Q, Zhao P, Li J, Zhang C, Wang L, Ren Z. Genome-wide analysis of the WD-repeat protein family in cucumber and Arabidopsis. Mol Genet Genomics 2013; 289:103-24. [DOI: 10.1007/s00438-013-0789-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
|
36
|
Armenta-Medina A, Huanca-Mamani W, Sanchez-León N, Rodríguez-Arévalo I, Vielle-Calzada JP. Functional analysis of sporophytic transcripts repressed by the female gametophyte in the ovule of Arabidopsis thaliana. PLoS One 2013; 8:e76977. [PMID: 24194852 PMCID: PMC3806734 DOI: 10.1371/journal.pone.0076977] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023] Open
Abstract
To investigate the genetic and molecular regulation that the female gametophyte could exert over neighboring sporophytic regions of the ovule, we performed a quantitative comparison of global expression in wild-type and nozzle/sporocyteless (spl) ovules of Arabidopsis thaliana (Arabidopsis), using Massively Parallel Signature Sequencing (MPSS). This comparison resulted in 1517 genes showing at least 3-fold increased expression in ovules lacking a female gametophyte, including those encoding 89 transcription factors, 50 kinases, 25 proteins containing a RNA-recognition motif (RRM), and 20 WD40 repeat proteins. We confirmed that eleven of these genes are either preferentially expressed or exclusive of spl ovules lacking a female gametophyte as compared to wild-type, and showed that six are also upregulated in determinant infertile1 (dif1), a meiotic mutant affected in a REC8-like cohesin that is also devoided of female gametophytes. The sporophytic misexpression of IOREMPTE, a WD40/transducin repeat gene that is preferentially expressed in the L1 layer of spl ovules, caused the arrest of female gametogenesis after differentiation of a functional megaspore. Our results show that in Arabidopsis, the sporophytic-gametophytic cross talk includes a negative regulation of the female gametophyte over specific genes that are detrimental for its growth and development, demonstrating its potential to exert a repressive control over neighboring regions in the ovule.
Collapse
Affiliation(s)
- Alma Armenta-Medina
- Grupo de Desarrollo Reproductivo y Apomixis, Laboratorio Nacional de Genómica para la Biodiversidad y Departamento de Ingeniería Genética de Plantas, CINVESTAV Irapuato, Irapuato, Mexico
| | | | | | | | | |
Collapse
|
37
|
Kumar S, Jordan MC, Datla R, Cloutier S. The LuWD40-1 gene encoding WD repeat protein regulates growth and pollen viability in flax (Linum Usitatissimum L.). PLoS One 2013; 8:e69124. [PMID: 23935935 PMCID: PMC3728291 DOI: 10.1371/journal.pone.0069124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/11/2013] [Indexed: 01/22/2023] Open
Abstract
As a crop, flax holds significant commercial value for its omega-3 rich oilseeds and stem fibres. Canada is the largest producer of linseed but there exists scope for significant yield improvements. Implementation of mechanisms such as male sterility can permit the development of hybrids to assist in achieving this goal. Temperature sensitive male sterility has been reported in flax but the leakiness of this system in field conditions limits the production of quality hybrid seeds. Here, we characterized a 2,588 bp transcript differentially expressed in male sterile lines of flax. The twelve intron gene predicted to encode a 368 amino acid protein has five WD40 repeats which, in silico, form a propeller structure with putative nucleic acid and histone binding capabilities. The LuWD40-1 protein localized to the nucleus and its expression increased during the transition and continued through the vegetative stages (seed, etiolated seedling, stem) while the transcript levels declined during reproductive development (ovary, anthers) and embryonic morphogenesis of male fertile plants. Knockout lines for LuWD40-1 in flax failed to develop shoots while overexpression lines showed delayed growth phenotype and were male sterile. The non-viable flowers failed to open and the pollen grains from these flowers were empty. Three independent transgenic lines overexpressing the LuWD40-1 gene had ∼80% non-viable pollen, reduced branching, delayed flowering and maturity compared to male fertile genotypes. The present study provides new insights into a male sterility mechanism present in flax.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Mark C. Jordan
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Raju Datla
- National Research Council, Saskatoon, Saskatchewan, Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
- Cereal Research Centre, Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
38
|
Grant-Downton R, Rodriguez-Enriquez J. Emerging Roles for Non-Coding RNAs in Male Reproductive Development in Flowering Plants. Biomolecules 2012; 2:608-21. [PMID: 24970151 PMCID: PMC4030863 DOI: 10.3390/biom2040608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/19/2012] [Accepted: 11/23/2012] [Indexed: 01/07/2023] Open
Abstract
Knowledge of sexual reproduction systems in flowering plants is essential to humankind, with crop fertility vitally important for food security. Here, we review rapidly emerging new evidence for the key importance of non-coding RNAs in male reproductive development in flowering plants. From the commitment of somatic cells to initiating reproductive development through to meiosis and the development of pollen—containing the male gametes (sperm cells)—in the anther, there is now overwhelming data for a diversity of non-coding RNAs and emerging evidence for crucial roles for them in regulating cellular events at these developmental stages. A particularly exciting development has been the association of one example of cytoplasmic male sterility, which has become an unparalleled breeding tool for producing new crop hybrids, with a non-coding RNA locus.
Collapse
Affiliation(s)
- Robert Grant-Downton
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Josefina Rodriguez-Enriquez
- Instituto de Bioorgánica Antonio González (IUBO) University of La Laguna, Avenida Astrofísico Francisco Sánchez, 38206 La Laguna Tenerife, Spain.
| |
Collapse
|
39
|
Mishra AK, Puranik S, Bahadur RP, Prasad M. The DNA-binding activity of an AP2 protein is involved in transcriptional regulation of a stress-responsive gene, SiWD40, in foxtail millet. Genomics 2012; 100:252-63. [PMID: 22771384 DOI: 10.1016/j.ygeno.2012.06.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/12/2012] [Accepted: 06/25/2012] [Indexed: 11/20/2022]
Abstract
A differentially expressed transcript, encoding a putative WD protein (Setaria italica WD40; SiWD40), was identified in foxtail millet. Tertiary structure modeling revealed that its C-terminus possesses eight blade β-propeller architecture. Its N-terminal has three α-helices and two 3(10)-helices and was highly induced by different abiotic stresses. The SiWD40:GFP fusion protein was nuclear localized. Promoter analysis showed the presence of many cis-acting elements, including two dehydration responsive elements (DRE). A stress-responsive SiAP2 domain containing protein could specifically bind to these elements in the SiWD40 promoter. Thus, for the first time, we report that DREs probably regulate expression of SiWD40 during environmental stress. Molecular docking analysis revealed that the circumference of the β-propeller structure was involved in an interaction with a SiCullin4 protein, supporting the adaptability of SiWD40 to act as a scaffold. Our study thus provides a vital clue for near future research on the stress-regulation of WD proteins.
Collapse
Affiliation(s)
- Awdhesh Kumar Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | |
Collapse
|
40
|
Yu D, Jiang L, Gong H, Liu CM. EMBRYONIC FACTOR 19 encodes a pentatricopeptide repeat protein that is essential for the initiation of zygotic embryogenesis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:55-64. [PMID: 22099059 DOI: 10.1111/j.1744-7909.2011.01089.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Early embryogenesis is the most fundamental developmental process in biology. Screening of ethyl methanesulfonate (EMS)-mutagenized populations of Arabidopsis thaliana led to the identification of a zygote-lethal mutant embryonic factor 19 (fac19) in which embryo development was arrested at the elongated zygote to octant stage. The number of endosperm nuclei decreased significantly in fac19 embryos. Genetic analysis showed fac19 was caused by a single recessive mutation with typical mendelian segregation, suggesting equal maternal and paternal contributions of FAC19 towards zygotic embryogenesis. Positional cloning showed that FAC19 encodes a putative mitochondrial protein with 16 conserved pentatricopeptide repeat (PPR) motifs. The fac19 mutation caused a conversion from hydrophilic serine located in a previously unknown domain to hydrophobic leucine. Crosses between FAC19/fac19 and the T-DNA insertion mutants in the same gene failed to complement the fac19 defects, confirming the identity of the gene. This study revealed the critical importance of a PPR protein-mediated mitochondrial function in early embryogenesis.
Collapse
Affiliation(s)
- Dali Yu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | |
Collapse
|
41
|
Li HJ, Xue Y, Jia DJ, Wang T, hi DQ, Liu J, Cui F, Xie Q, Ye D, Yang WC. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. THE PLANT CELL 2011; 23:3288-302. [PMID: 21954464 PMCID: PMC3203432 DOI: 10.1105/tpc.111.088914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The pollen tube germinates from pollen and, during its migration, it perceives and responds to guidance cues from maternal tissue and from the female gametophyte. The putative female cues have recently been identified, but how the pollen tube responds to these signals remains to be unveiled. In a genetic screen for male determinants of the pollen tube response, we identified the pollen defective in guidance1 (pod1) mutant, in which the pollen tubes fail to target the female gametophyte. POD1 encodes a conserved protein of unknown function and is essential for positioning and orienting the cell division plane during early embryo development. Here, we demonstrate that POD1 is an endoplasmic reticulum (ER) luminal protein involved in ER protein retention. Further analysis shows that POD1 interacts with the Ca(2+) binding ER chaperone CALRETICULIN3 (CRT3), a protein in charge of folding of membrane receptors. We propose that POD1 modulates the activity of CRT3 or other ER resident factors to control the folding of proteins, such as membrane proteins in the ER. By this mechanism, POD1 may regulate the pollen tube response to signals from the female tissues during pollen tube guidance and early embryo patterning in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xue
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Jie Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Tong Wang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao hi
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
42
|
Jeong S, Bayer M, Lukowitz W. Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1687-97. [PMID: 21172809 DOI: 10.1093/jxb/erq398] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Arabidopsis embryos follow a predictable sequence of cell divisions, facilitating a genetic analysis of their early development. Both asymmetric divisions and cell-to-cell communication are probably involved in generating specific gene expression domains along the main axis within the first few division cycles. The function of these domains is not always understood, but recent work suggests that they may serve as a basis for organizing polar auxin flux. Auxin acts as systemic signal throughout the life cycle and, in the embryo, has been demonstrated to direct formation of the main axis and root initiation at the globular stage. At about the same time, root versus shoot fates are imposed on the incipient meristems by the expression of antagonistic regulators at opposite poles of the embryo. Some of the key features of the embryonic patterning process have emerged over the past few years and may provide the elements of a coherent conceptual framework.
Collapse
Affiliation(s)
- Sangho Jeong
- Department of Plant Biology, University of Georgia, Athens, GA 30602-7271, USA
| | | | | |
Collapse
|
43
|
Zhao P, Shi DQ, Yang WC. Patterning the embryo in higher plants: Emerging pathways and challenges. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1119-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|