1
|
Chakraborty R, Dutta A, Mukhopadhyay R. TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds. Clin Transl Oncol 2025:10.1007/s12094-024-03841-6. [PMID: 39797946 DOI: 10.1007/s12094-024-03841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression. Missense mutations, null mutations, transversions, transitions, and point mutations occurring in the TP53 gene can cause an increase in metastatic activity. This review discusses mutations occurring in exon regions of TP53, polymorphisms in MDM2 and their interaction with large ribosomal subunit protein (RPL) leading to cancer development. We also highlight the potential of small molecules e.g. p53 activators like XI-011, Tenovin-1, and Nutlin-3a for the treatment of breast and ovarian cancers. The therapeutic efficacy of natural compounds in amelioration of these two types of cancers is also discussed.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Anupam Dutta
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Rupak Mukhopadhyay
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
2
|
Anjorin AO, Olaofe OO, Anjorin AO, Omoniyi-Esan GO, Komolafe AO. P53 marker expression in epithelial ovarian tumours in a centre in Nigeria - a descriptive study. BMC Womens Health 2024; 24:639. [PMID: 39639267 PMCID: PMC11619170 DOI: 10.1186/s12905-024-03487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND p53 is a tumor suppressor gene. p53 expression in epithelial ovarian tumors (EOTs) is correlated with their biological behavior and predicts patient overall survival. However, there is a dearth of knowledge regarding p53 expression in these tumors among women from southwest Nigeria. Our study aimed to determine the patterns of p53 expression in various types of epithelial ovarian tumours. METHODS We conducted a retrospective study of epithelial ovarian tumours. We retrieved formalin-fixed, paraffin-embedded (FFPE) tissue blocks of previously diagnosed epithelial tumors from the departmental archive. We performed immunohistochemical analysis using p53 antibodies. We scored the expression and staining intensity of p53 as follows: negative (0), focal/weakly positive (1 +), and diffuse/strongly positive (2 +) on the basis of the recommended Cytomation scoring system. RESULTS The spectrum of p53 expression in the 51 histologically diagnosed cases revealed that 29 cases had no expression, consisting of 21 benign EOTs, two borderline EOTs, and six malignant EOTs. Nine cases exhibited wild-type expression, including six serous carcinomas, two mucinous carcinomas, and one signet ring cell carcinoma. p53 overexpression was observed in 13 patients overall, with 12 having serous carcinomas and one having endometrioid carcinoma. Among the 21 serous carcinoma patients, 28.6% (6 patients) presented with wild-type p53 expression, 57.1% (12 patients) presented with p53 overexpression, and 14.3% (three patients) presented negative p53 expression. There was a significant association between p53 expression and the histological grade of serous carcinoma. CONCLUSION Most epithelial ovarian carcinomas in our hospital are high grade, with many serous carcinomas showing either p53 overexpression or loss of expression. This may contribute to the poor patient survival rate.
Collapse
Affiliation(s)
- Andrew Olushola Anjorin
- Department of Anatomic Pathology & Forensic Medicine, Osun State University, Osogbo, Nigeria
| | - Olaejirinde Olaniyi Olaofe
- Department of Morbid Anatomy & Forensic Medicine, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| | - Atinuke Olu Anjorin
- Department of Family Medicine, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | | | - Akinwumi Oluwole Komolafe
- Department of Morbid Anatomy & Forensic Medicine, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
3
|
Kfoury M, Bonnet C, Delanoy N, Howarth K, Marzac C, Rouleau E, Micol JB, Leary A. Dynamic changes in TP53 mutated circulating tumor DNA predicts outcome of patients with high-grade ovarian carcinomas. Int J Gynecol Cancer 2024; 34:1836-1839. [PMID: 39313297 DOI: 10.1136/ijgc-2024-005581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
There is a lack of biomarkers to predict outcome following initial treatment in patients with high-grade ovarian cancer. We hypothesized that monitoring TP53 mutation (TP53m) in circulating tumor DNA (ctDNA) could be a tumor-specific biomarker. Patients enrolled in a prospective study (NCT03010124) consented to analysis of biological samples through the disease course. ctDNA was extracted and analyzed to detect the presence of TP53m Next-generation sequencing was performed on tumor tissue to detect TP53m and on whole blood to detect clonal hematopoiesis of indeterminate potential (CHIP).A total of 102 samples were sequentially collected from 26 patients. ctDNA was detected in all patients at diagnosis. The same TP53m was found in ctDNA and tumor tissue in 77% of patients. TP53m in ctDNA was not CHIP related. During neoadjuvant chemotherapy, increasing ctDNA was associated with failure to achieve complete interval cytoreductive surgery in 60% of patients. Rising ctDNA or de novo TP53m seemed to be associated with a trend for worst survival compared with decrease or complete clearance: progression-free survival 10 versus 26.5 months, HR 3.2. Despite macroscopically complete surgery, 30% of patients had detectable ctDNA post-operatively and had worse survival than those with undetectable ctDNA. Monitoring TP53m in ctDNA during chemotherapy or after surgery could help guide the best adjuvant therapy.
Collapse
Affiliation(s)
- Maria Kfoury
- Medical Oncology Department, Institut Gustave-Roussy, Villejuif, Île-de-France, France
- Medical Oncology Department, Institut Paoli-Calmettes, Marseille, France
| | - Clément Bonnet
- Medical Oncology Department, Institut Curie, Paris, France
| | - Nicolas Delanoy
- Medical Oncology Department, Université de Paris, Paris, France
| | | | | | - Etienne Rouleau
- Medical Biology and Pathology Department, Institut Gustave-Roussy, Villejuif, Île-de-France, France
| | - Jean-Baptiste Micol
- Université Paris-Saclay, Gif-sur-Yvette, France
- Hematology Department, Institut Gustave-Roussy, Villejuif, Île-de-France, France
| | - Alexandra Leary
- Medical Oncology Department, Institut Gustave-Roussy, Villejuif, Île-de-France, France
| |
Collapse
|
4
|
K AR, Arumugam S, Muninathan N, Baskar K, S D, D DR. P53 Gene as a Promising Biomarker and Potential Target for the Early Diagnosis of Reproductive Cancers. Cureus 2024; 16:e60125. [PMID: 38864057 PMCID: PMC11165294 DOI: 10.7759/cureus.60125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
One of the crucial aspects of cancer research is diagnosis with specificity and accuracy. Early cancer detection mostly helps make appropriate decisions regarding treatment and metastasis. The well-studied transcription factor tumor suppressor protein p53 is essential for maintaining genetic integrity. p53 is a key tumor suppressor that recognizes the carcinogenic biological pathways and eradicates them by apoptosis. A wide range of carcinomas, especially gynecological such as ovarian, cervical, and endometrial cancers, frequently undergo TP53 gene mutations. This study evaluates the potential of the p53 gene as a biological marker for the diagnosis of reproductive system neoplasms. Immunohistochemistry of p53 is rapid, easy to accomplish, cost-effective, and preferred by pathologists as a surrogate for the analysis of TP53 mutation. Thus, this review lays a groundwork for future efforts to develop techniques using p53 for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Aswathi R K
- Medical Biochemistry, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Suresh Arumugam
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Natrajan Muninathan
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Kuppusamy Baskar
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Deepthi S
- Research and Development, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Dinesh Roy D
- Centre for Advanced Genetic Studies, Genetika, Thiruvananthapuram, IND
| |
Collapse
|
5
|
Raab M, Kostova I, Peña‐Llopis S, Fietz D, Kressin M, Aberoumandi SM, Ullrich E, Becker S, Sanhaji M, Strebhardt K. Rescue of p53 functions by in vitro-transcribed mRNA impedes the growth of high-grade serous ovarian cancer. Cancer Commun (Lond) 2024; 44:101-126. [PMID: 38140698 PMCID: PMC10794014 DOI: 10.1002/cac2.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The cellular tumor protein p53 (TP53) is a tumor suppressor gene that is frequently mutated in human cancers. Among various cancer types, the very aggressive high-grade serous ovarian carcinoma (HGSOC) exhibits the highest prevalence of TP53 mutations, present in >96% of cases. Despite intensive efforts to reactivate p53, no clinical drug has been approved to rescue p53 function. In this study, our primary objective was to administer in vitro-transcribed (IVT) wild-type (WT) p53-mRNA to HGSOC cell lines, primary cells, and orthotopic mouse models, with the aim of exploring its impact on inhibiting tumor growth and dissemination, both in vitro and in vivo. METHODS To restore the activity of p53, WT p53 was exogenously expressed in HGSOC cell lines using a mammalian vector system. Moreover, IVT WT p53 mRNA was delivered into different HGSOC model systems (primary cells and patient-derived organoids) using liposomes and studied for proliferation, cell cycle progression, apoptosis, colony formation, and chromosomal instability. Transcriptomic alterations induced by p53 mRNA were analyzed using RNA sequencing in OVCAR-8 and primary HGSOC cells, followed by ingenuity pathway analysis. In vivo effects on tumor growth and metastasis were studied using orthotopic xenografts and metastatic intraperitoneal mouse models. RESULTS Reactivation of the TP53 tumor suppressor gene was explored in different HGSOC model systems using newly designed IVT mRNA-based methods. The introduction of WT p53 mRNA triggered dose-dependent apoptosis, cell cycle arrest, and potent long-lasting inhibition of HGSOC cell proliferation. Transcriptome analysis of OVCAR-8 cells upon mRNA-based p53 reactivation revealed significant alterations in gene expression related to p53 signaling, such as apoptosis, cell cycle regulation, and DNA damage. Restoring p53 function concurrently reduces chromosomal instability within the HGSOC cells, underscoring its crucial contribution in safeguarding genomic integrity by moderating the baseline occurrence of double-strand breaks arising from replication stress. Furthermore, in various mouse models, treatment with p53 mRNA reduced tumor growth and inhibited tumor cell dissemination in the peritoneal cavity in a dose-dependent manner. CONCLUSIONS The IVT mRNA-based reactivation of p53 holds promise as a potential therapeutic strategy for HGSOC, providing valuable insights into the molecular mechanisms underlying p53 function and its relevance in ovarian cancer treatment.
Collapse
Affiliation(s)
- Monika Raab
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Izabela Kostova
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Samuel Peña‐Llopis
- Translational Genomics in Solid TumorsWest German Cancer CenterUniversity HospitalEssenGermany
- German Cancer Consortium (DKTK)EssenGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniela Fietz
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
| | - Monika Kressin
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
| | - Seyed Mohsen Aberoumandi
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
- Franfurt Cancer Institute (FCI)Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital FrankfurtFrankfurt am MainGermany
| | - Evelyn Ullrich
- Franfurt Cancer Institute (FCI)Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital FrankfurtFrankfurt am MainGermany
- Experimental ImmunologyDepartment for Children and Adolescents MedicineUniversity Hospital FrankfurtGoethe UniversityFrankfurt am MainGermany
| | - Sven Becker
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Mourad Sanhaji
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Klaus Strebhardt
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
6
|
Liu S, Yan Y, Cui Z, Feng H, Zhong F, Liu Z, Li Y, Ou X, Li W. Relationship between PIWIL1 gene polymorphisms and epithelial ovarian cancer susceptibility among southern Chinese woman: a three-center case-control study. BMC Cancer 2023; 23:1149. [PMID: 38012622 PMCID: PMC10680212 DOI: 10.1186/s12885-023-11651-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE To investigate the potential correlation between piwi-like RNA-mediated gene silencing 1 (PIWIL1) polymorphisms and susceptibility to epithelial ovarian cancer (EOC). METHODS A case-control study was conducted to evaluate the susceptibility of EOC using multinomial logistic regression analysis. The study analyzed the relationship between five functional single nucleotide polymorphisms (SNPs) in the PIWIL1 gene and EOC risk. Genotyping of 288 cases and 361 healthy samples from South China was identified using a TaqMan assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the relationship between the five selected SNPs and EOC susceptibility. RESULTS Among the five SNPs analyzed, the rs10848087 G > A and rs7957349 G > C variants significantly increased the susceptibility of EOC, rs10773771 C > T was associated with a decreased risk of EOC, while the rs35997018 and rs1106042 variants were not in Hardy-Weinberg equilibrium (p < 0.05). The rs10848087 G > A was significantly associated with increased risk of EOC in individuals with metastasis, FIGO stage I and III, low and high pathological grade, tumor numbers ≤ 3 and > 3, tumor size > 3 cm and ≤ 3 cm, pregnant more than 3 times, pre-menopausal status, and strong positive expression of ER (estrogen receptor), PR (progesterone receptor), PAX8 (paired-box 8), wild-type p53 (tumor protein 53), WT1 (Wilm's tumor gene), P16 (cyclin-dependent kinase inhibitor 2A). In addition, rs10848087 G > A enhanced the EOC risk of cases with negative/mild positive expression of wild p53 and Ki67, and with or without mutant p53 expression. The rs7957349 G > C variant was linked to an increased risk of EOC in subgroups with certain characteristics, including age equal or less than 53 years, metastasis, clinical stage I, low pathological grade, tumor number, tumor size, pregnant times, post-menopause, pre-menopause, and strong positive expression of wild p53 and Ki67 (Antigen identified by monoclonal antibody Ki-67), as well as without mutant p53 expression. The rs10773771 CT/TT alleles were identified to have a protective effect on EOC in women aged 53 years or older, as well as in cases with metastasis, advanced clinical stage, high pathological grade, multiple tumors, tumor size equal to or less than 3 cm, history of pregnancy, post-menopausal status, and strong positive expression of ER, PR, wild-type p53, PAX8, WT1, P16, and Ki67. Furthermore, rs10773771 CT/TT also showed a protective effect in patients with negative or mildly positive expression of PR, PAX8, wild-type p53, WT1, and P16, as well as positive expression of mutant p53. Compared to the reference haplotype GCG, individuals harboring haplotypes GTG were found to have a significantly decreased susceptibility to EOC. PIWIL1 was significantly expressed in the thyroid, pituitary, and adrenal glands with rs7957349 CC alleles. CONCLUSIONS PIWIL1 rs10848087 and rs7957349 were associated with increased risk of EOC, while rs10773771 may have a protective effect against EOC. These genetic variants may serve as potential biomarkers for EOC susceptibility in the South China population.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yaping Yan
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Zhizhong Cui
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong Province, China
| | - Haipeng Feng
- Department of Pathology, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China
| | - Fengmei Zhong
- Department of Pathology, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China
| | - Ziguang Liu
- Department of Pathology, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China
| | - Yan Li
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China
| | - Xiang Ou
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
| | - Wenjuan Li
- Medical Research Center, Shunde Hospital, Southern Medical University, Foshan, 528000, Guangdong, China.
| |
Collapse
|
7
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
8
|
Ho CH, Huang YJ, Lai YJ, Mukherjee R, Hsiao CK. The misuse of distributional assumptions in functional class scoring gene-set and pathway analysis. G3-GENES GENOMES GENETICS 2021; 12:6409857. [PMID: 34791175 PMCID: PMC8728032 DOI: 10.1093/g3journal/jkab365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022]
Abstract
Gene-set analysis (GSA) is a standard procedure for exploring potential biological functions of a group of genes. The development of its methodology has been an active research topic in recent decades. Many GSA methods, when newly proposed, rely on simulation studies to evaluate their performance with an implicit assumption that the multivariate expression values are normally distributed. This assumption is commonly adopted in GSAs, particularly those in the group of functional class scoring (FCS) methods. The validity of the normality assumption, however, has been disputed in several studies, yet no systematic analysis has been carried out to assess the effect of this distributional assumption. Our goal in this study is not to propose a new GSA method but to first examine if the multi-dimensional gene expression data in gene sets follow a multivariate normal (MVN) distribution. Six statistical methods in three categories of MVN tests were considered and applied to a total of 24 RNA data sets. These RNA values were collected from cancer patients as well as normal subjects, and the values were derived from microarray experiments, RNA sequencing, and single-cell RNA sequencing. Our first finding suggests that the MVN assumption is not always satisfied. This assumption does not hold true in many applications tested here. In the second part of this research, we evaluated the influence of non-normality on the statistical power of current FCS methods, both parametric and nonparametric ones. Specifically, the scenario of mixture distributions representing more than one population for the RNA values was considered. This second investigation demonstrates that the non-normality distribution of the RNA values causes a loss in the statistical power of these GSA tests, especially when subtypes exist. Among the FCS GSA tools examined here and among the scenarios studied in this research, the N-statistics outperform the others. Based on the results from these two investigations, we conclude that the assumption of MVN should be used with caution when evaluating new GSA tools, since this assumption cannot be guaranteed and violation may lead to spurious results, loss of power, and incorrect comparison between methods. If a newly proposed GSA tool is to be evaluated, we recommend the incorporation of a wide range of multivariate non-normal distributions or sampling from large databases if available.
Collapse
Affiliation(s)
- Chi-Hsuan Ho
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Yu-Jyun Huang
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | - Ying-Ju Lai
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan
| | | | - Chuhsing Kate Hsiao
- Division of Biostatistics and Data Science, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei 10055, Taiwan.,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei 10055, Taiwan
| |
Collapse
|
9
|
Russo A, Colina JA, Moy J, Baligod S, Czarnecki AA, Varughese P, Lantvit DD, Dean MJ, Burdette JE. Silencing PTEN in the fallopian tube promotes enrichment of cancer stem cell-like function through loss of PAX2. Cell Death Dis 2021; 12:375. [PMID: 33828085 PMCID: PMC8027874 DOI: 10.1038/s41419-021-03663-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy that is primarily detected at the metastatic stage. Most HGSOC originates from the fallopian tube epithelium (FTE) and metastasizes to the ovary before invading the peritoneum; therefore, it is crucial to study disease initiation and progression using FTE-derived models. We previously demonstrated that loss of PTEN from the FTE leads to ovarian cancer. In the present study, loss of PTEN in FTE led to the enrichment of cancer stem cell markers such as LGR5, WNT4, ALDH1, CD44. Interestingly, loss of the transcription factor PAX2, which is a common and early alteration in HGSOC, played a pivotal role in the expression of cancer stem-like cells (CSC) markers and cell function. In addition, loss of PTEN led to the generation of two distinct subpopulations of cells with different CSC marker expression, tumorigenicity, and chemoresistance profiles. Taken together, these data suggest that loss of PTEN induces reprogramming of the FTE cells into a more stem-like phenotype due to loss of PAX2 and provides a model to study early events during the FTE-driven ovarian cancer tumor formation.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Jose A Colina
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Junlone Moy
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Seth Baligod
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Austin A Czarnecki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Peter Varughese
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Daniel D Lantvit
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Matthew J Dean
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| |
Collapse
|
10
|
Molica M, Mazzone C, Niscola P, de Fabritiis P. TP53 Mutations in Acute Myeloid Leukemia: Still a Daunting Challenge? Front Oncol 2021; 10:610820. [PMID: 33628731 PMCID: PMC7897660 DOI: 10.3389/fonc.2020.610820] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
TP53 is a key tumor suppressor gene with protean functions associated with preservation of genomic balance, including regulation of cellular senescence, apoptotic pathways, metabolism functions, and DNA repair. The vast majority of de novo acute myeloid leukemia (AML) present unaltered TP53 alleles. However, TP53 mutations are frequently detected in AML related to an increased genomic instability, such as therapy‐related (t-AML) or AML with myelodysplasia-related changes. Of note, TP53 mutations are associated with complex cytogenetic abnormalities, advanced age, chemoresistance, and poor outcomes. Recent breakthroughs in AML research and the development of targeted drugs directed at specific mutations have led to an explosion of novel treatments with different mechanisms. However, optimal treatment strategy for patients harboring TP53 mutations remains a critical area of unmet need. In this review, we focus on the incidence and clinical significance of TP53 mutations in de novo and t-AML. The influence of these alterations on response and clinical outcomes as well as the current and future therapeutic perspectives for this hardly treatable setting are discussed.
Collapse
Affiliation(s)
- Matteo Molica
- Haematology Unit, S. Eugenio Hospital, ASL Roma 2, Rome, Italy
| | - Carla Mazzone
- Haematology Unit, S. Eugenio Hospital, ASL Roma 2, Rome, Italy
| | | | - Paolo de Fabritiis
- Haematology Unit, S. Eugenio Hospital, ASL Roma 2, Rome, Italy.,Department of Biomedicina and Prevenzione, Tor Vergata University, Rome, Italy
| |
Collapse
|
11
|
Kim Y, Park JB, Fukuda J, Watanabe M, Chun YS. The Effect of Neddylation Blockade on Slug-Dependent Cancer Cell Migration Is Regulated by p53 Mutation Status. Cancers (Basel) 2021; 13:cancers13030531. [PMID: 33573293 PMCID: PMC7866814 DOI: 10.3390/cancers13030531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Neddylation is a process in which the small ubiquitin-like molecule NEDD8 is covalently conjugated to target proteins by sequential enzymatic reactions. Because neddylation plays critical roles in regulating cancer growth and migration, it is emerging as an effective therapeutic target. The major tumor suppressor protein p53 reduces cancer cell migration and is inhibited by neddylation. As p53 is lost or mutated in 50% of various cancer types, this study attempted to investigate how neddylation affects cancer cell migration according to p53 status. Neddylation blockade reduced or caused no change in migration of wild type or mutant p53 cancer cell lines. In contrast, neddylation blockade induced migration of p53-null cancer cell lines. These results were mediated by the differential effect of neddylation blockade on the epithelial–mesenchymal transition activator Slug according to p53 status. Thus, the p53 status of cancer cells should be considered when developing neddylation-targeted anticancer drugs. Abstract The tumor suppressor protein p53 is frequently inactivated in human malignancies, in which it is associated with cancer aggressiveness and metastasis. Because p53 is heavily involved in epithelial–mesenchymal transition (EMT), a primary step in cell migration, p53 regulation is important for preventing cancer metastasis. p53 function can be modulated by diverse post-translational modifications including neddylation, a reversible process that conjugates NEDD8 to target proteins and inhibits the transcriptional activity of p53. However, the role of p53 in cancer migration by neddylation has not been fully elucidated. In this study, we reported that neddylation blockade induces cell migration depending on p53 status, specifically via the EMT-promoting transcription factor Slug. In cancer cell lines expressing wild type p53, neddylation blockade increased the transcriptional activity of p53 and expression of its downstream genes p21 and MDM2, eventually promoting proteasomal degradation of Slug. In the absence of p53, neddylation blockade increased cell migration by activating the PI3K/Akt/mTOR/Slug signaling axis. Because mutant p53 was transcriptionally inactivated but maintained the ability to bind to Slug, neddylation blockade did not affect the migration of cells expressing mutant p53. Our findings highlight how the p53 expression status influences neddylation-mediated cell migration in multiple cancer cell lines via Slug.
Collapse
Affiliation(s)
- Yelee Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.K.); (J.B.P.)
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun Bum Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.K.); (J.B.P.)
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Junji Fukuda
- Faculty of Engineering, Yokohama National University, Yokohama 240-8501, Japan;
| | - Masatoshi Watanabe
- Oncologic Pathology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Japan;
| | - Yang-Sook Chun
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Korea; (Y.K.); (J.B.P.)
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: ; Tel.: +82-2-740-8909
| |
Collapse
|
12
|
Feeney L, Harley IJG, McCluggage WG, Mullan PB, Beirne JP. Liquid biopsy in ovarian cancer: Catching the silent killer before it strikes. World J Clin Oncol 2020; 11:868-889. [PMID: 33312883 PMCID: PMC7701910 DOI: 10.5306/wjco.v11.i11.868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/29/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy in the western world. The majority of women presenting with the disease are asymptomatic and it has been dubbed the "silent killer". To date there is no effective minimally invasive method of stratifying those with the disease or screening for the disease in the general population. Recent molecular and pathological discoveries, along with the advancement of scientific technology, means there is a real possibility of having disease-specific liquid biopsies available within the clinical environment in the near future. In this review we discuss these discoveries, particularly in relation to the most common and aggressive form of EOC, and their role in making this possibility a reality.
Collapse
Affiliation(s)
- Laura Feeney
- Patrick G Johnston Centre for Cancer Research, Queens University, Belfast BT9 7AE, United Kingdom
| | - Ian JG Harley
- Northern Ireland Gynaecological Cancer Centre, Belfast Health and Social Care Trust, Belfast BT9 7AB, United Kingdom
| | - W Glenn McCluggage
- Department of Pathology, Belfast Health and Social Care Trust, Belfast BT12 6BL, United Kingdom
| | - Paul B Mullan
- Patrick G Johnston Centre for Cancer Research, Queens University, Belfast BT9 7AE, United Kingdom
| | - James P Beirne
- Trinity St James Cancer Institute, St. James’ Hospital, Dublin 8, Ireland
| |
Collapse
|
13
|
Yokoi A, Matsumoto T, Oguri Y, Hasegawa Y, Tochimoto M, Nakagawa M, Saegusa M. Upregulation of fibronectin following loss of p53 function is a poor prognostic factor in ovarian carcinoma with a unique immunophenotype. Cell Commun Signal 2020; 18:103. [PMID: 32635925 PMCID: PMC7341596 DOI: 10.1186/s12964-020-00580-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
Background We previously demonstrated that ovarian high grade serous carcinomas (OHGSeCa) and ovarian clear cell carcinomas (OCCCa) with an HNF-1β+/p53+/ARID1A+ immunophenotype were associated with the worst unfavorable prognosis. To clarify the molecular mechanisms underlying this finding, we focused on alterations in the p53 signaling pathway in these tumors. Methods Changes in cell phenotype and function following knockdown of wild-type p53 (p53-KD) were assessed using OCCCa cells expressing endogenous HNF-1β and ARID1A. The prognostic significance of molecules that were deregulated following p53-KD was also examined using 129 OCCCa/OHGSeCa cases. Results p53-KD cells had increased expression of Snail, phospho-Akt (pAkt), and pGSK3β, and decreased E-cadherin expression, leading to epithelial-mesenchymal transition (EMT)/cancer stem cell (CSC) features. The cells also exhibited acceleration of cell motility and inhibition of cell proliferation and apoptosis. Next generation sequencing revealed that fibronectin (FN) expression was significantly increased in the p53 KD-cells, in line with our observation that wild-type p53 (but not mutant p53) repressed FN1 promoter activity. In addition, treatment of OCCCa cells with FN significantly increased cell migration capacity and decreased cell proliferation rate, independent of induction of EMT features. In clinical samples, FN/p53 scores were significantly higher in OCCCa/OHGSeCa with the HNF-1β+/p53+/ARID1A+ immunophenotype when compared to others. Moreover, high FN/high p53 expression was associated with the worst overall survival and progression-free survival in OCCCa/OHGSeCa patients. Conclusion These findings suggest that upregulation of FN following loss of p53 function may impact the biological behavior of OCCCa/OHGSeCa, particularly in tumors with an HNF-1β+/p53+/ARID1A+ immunophenotype, through alterations in cell mobility and cell proliferation. The accompanying induction of EMT/CSC properties and inhibition of apoptosis due to p53 abnormalities also contribute to the establishment and maintenance of tumor phenotypic characteristics. Video Abstract
Collapse
Affiliation(s)
- Ako Yokoi
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Toshihide Matsumoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Laboratory of Clinical Omics Research, 2-6-7 Kazusakamatari, Kisaratsu, Chiba, 292-0818, Japan
| | - Masataka Tochimoto
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Mayu Nakagawa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| |
Collapse
|
14
|
Benefield HC, Zabor EC, Shan Y, Allott EH, Begg CB, Troester MA. Evidence for Etiologic Subtypes of Breast Cancer in the Carolina Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 2019; 28:1784-1791. [PMID: 31395590 PMCID: PMC6825567 DOI: 10.1158/1055-9965.epi-19-0365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/12/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Distinctions in the etiology of triple-negative versus luminal breast cancer have become well established using immunohistochemical surrogates [notably estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)]. However, it is unclear whether established immunohistochemical subtypes are the sole or definitive means of etiologically subdividing breast cancers. METHODS We evaluated clinical biomarkers and tumor suppressor p53 with risk factor data from cases and controls in the Carolina Breast Cancer Study, a population-based study of incident breast cancers. For each individual marker and combinations of markers, we calculated an aggregate measure to distinguish the etiologic heterogeneity of different classification schema. To compare schema, we estimated subtype-specific case-control odds ratios for individual risk factors and fit age-at-incidence curves with two-component mixture models. We also evaluated subtype concordance of metachronous contralateral breast tumors in the California Cancer Registry. RESULTS ER was the biomarker that individually explained the greatest variability in risk factor profiles. However, further subdivision by p53 significantly increased the degree of etiologic heterogeneity. Age at diagnosis, nulliparity, and race were heterogeneously associated with ER/p53 subtypes. The ER-/p53+ subtype exhibited a similar risk factor profile and age-at-incidence distribution to the triple-negative subtype. CONCLUSIONS Clinical marker-based intrinsic subtypes have established value, yet other schema may also yield important etiologic insights. IMPACT Novel environmental or genetic risk factors may be identifiable by considering different etiologic schema, including cross-classification based on ER/p53.
Collapse
Affiliation(s)
- Halei C Benefield
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Emily C Zabor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emma H Allott
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Colin B Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Parmakhtiar B, Burger RA, Kim JH, Fruehauf JP. HIF Inactivation of p53 in Ovarian Cancer Can Be Reversed by Topotecan, Restoring Cisplatin and Paclitaxel Sensitivity. Mol Cancer Res 2019; 17:1675-1686. [PMID: 31088908 DOI: 10.1158/1541-7786.mcr-18-1109] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/04/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
Abstract
Ovarian cancer growth under hypoxic conditions results in hypoxia-inducible factor-1α (HIF1α) stabilization. HIF1α is an adverse prognostic factor that may contribute to worse outcomes via its capacity to bind to p53, potentially blocking p53-mediated apoptosis. We determined whether HIF1α-p53 binding occurred in hypoxic ovarian cancer cell lines, and if this blocked p53 transcriptional activity. Topotecan (TPT), used in the treatment of ovarian cancer, inhibits HIF1α translation via a topoisomerase-1 (TOPO1)-dependent mechanism. We examined if TPT knockdown of HIF1α restored p53 transcriptional function. TPT effects on HIF1α and p53-related transcriptional targets were assessed by PCR. Associations between TPT effects and TOPO1 expression levels were examined by Western blots and knockdown by siRNA. RNA-binding protein immunoprecipitation was used to assess if TOPO1 was resident on HIF1α mRNA. We determined if sublethal doses of TPT, used to knockdown HIF1α, reversed hypoxia-related cisplatin and paclitaxel resistance (XTT assay). Flow cytometry was used to assess HIF1α-mediated upregulation of ABCB1 and ABCB5 efflux pump expression. We found that HIF1α binding to, and inhibition of, p53 transcriptional activity in hypoxic ovarian cancer cells was associated with drug resistance. TPT-mediated downregulation of HIF1α in hypoxic cells required TOPO1 resident on HIF1α mRNA, restored p53 transcriptional activity, downregulated ABCB1/ABCB5 cell surface expression, and reversed hypoxia-related cisplatin and paclitaxel resistance. IMPLICATIONS: TPT-mediated reduction of HIF1α accumulation in hypoxic ovarian cancer cell lines restores p53 tumor-suppressor function, offering a novel approach to reverse chemoresistance. Further clinical investigation is warranted.
Collapse
Affiliation(s)
- Basmina Parmakhtiar
- Department of Biological Chemistry, University of California Irvine, Irvine, California
| | - Robert A Burger
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jai-Hyun Kim
- Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, California
| | - John P Fruehauf
- Department of Biological Chemistry, University of California Irvine, Irvine, California. .,Chao Family Comprehensive Cancer Center, University of California Irvine, Orange, California
| |
Collapse
|
16
|
Kotcherlakota R, Vydiam K, Jeyalakshmi Srinivasan D, Mukherjee S, Roy A, Kuncha M, Rao TN, Sistla R, Gopal V, Patra CR. Restoration of p53 Function in Ovarian Cancer Mediated by Gold Nanoparticle-Based EGFR Targeted Gene Delivery System. ACS Biomater Sci Eng 2019; 5:3631-3644. [PMID: 33405744 DOI: 10.1021/acsbiomaterials.9b00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted gene delivery of wild type tumor suppressor gene p53 is a promising approach to inhibit the progression of ovarian cancer. Although several gene delivery vehicles have been reported earlier, there is paucity for targeted delivery of wild type p53 to ovarian cancer using gold nanoparticles. As it is well-known that EGFR (epidermal growth factor receptor) is overexpressed in ovarian cancer, in this study we hypothesized that the FDA approved monoclonal antibody C225 (cetuximab) that targets EGFR could be used for targeted delivery of wild type p53 gene. With this impetus, we devised an approach wherein cationic gold nanoparticles (AuNPs) were employed to generate gold nanoparticle-based drug delivery system (DDS, Au-C225-p53DNA where p53DNA is pCMVp53 plasmid) that was formulated and characterized by biochemical and biophysical methods. The nanoconjugate complexed with DNA (Au-C225-p53DNA) is serum-stable and protects the bound DNA from digestion by DNase-I. Additionally, in vitro reporter gene expression assays demonstrated efficient and specific gene transfection in EGFR overexpressing SK-OV-3 cells. Further, the intraperitoneal administration of Au-C225-p53DNA in SK-OV-3 xenograft mouse model displayed significant tumor targeting and tumor regression. Altogether, these studies indicated a promising nanoparticle-based approach for targeting ovarian cancers caused by mutated p53.
Collapse
Affiliation(s)
- Rajesh Kotcherlakota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kalyan Vydiam
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India
| | - Durga Jeyalakshmi Srinivasan
- CSIR-Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, Telangana India
| | - Sudip Mukherjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arpita Roy
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India
| | - Madhusudana Kuncha
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India
| | - T Nageswara Rao
- Mass and Analytical Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijaya Gopal
- CSIR-Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
17
|
Mandilaras V, Garg S, Cabanero M, Tan Q, Pastrello C, Burnier J, Karakasis K, Wang L, Dhani NC, Butler MO, Bedard PL, Siu LL, Clarke B, Shaw PA, Stockley T, Jurisica I, Oza AM, Lheureux S. TP53 mutations in high grade serous ovarian cancer and impact on clinical outcomes: a comparison of next generation sequencing and bioinformatics analyses. Int J Gynecol Cancer 2019; 29:346-352. [PMID: 30659026 DOI: 10.1136/ijgc-2018-000087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Mutations in TP53 are found in the majority of high grade serous ovarian cancers, leading to gain of function or loss of function of its protein product, p53, involved in oncogenesis. There have been conflicting reports as to the impact of the type of these on prognosis. We aim to further elucidate this relationship in our cohort of patients. METHODS 229 patients with high grade serous ovarian cancer underwent tumor profiling through an institutional molecular screening program with targeted next generation sequencing. TP53 mutations were classified using methods previously described in the literature. Immunohistochemistry on formalin-fixed paraffin embedded tissue was used to assess for TP53 mutation. Using divisive hierarchal clustering, we generated patient clusters with similar clinicopathologic characteristics to investigate differences in outcomes. RESULTS Six different classification schemes of TP53 mutations were studied. These did not show an association with first platinum-free interval or overall survival. Next generation sequencing reliably predicted mutation in 80% of cases, similar to the proportion detected by immunohistochemistry. Divisive hierarchical clustering generated four main clusters, with cluster 3 having a significantly worse prognosis (p<0.0001; log-rank test). This cluster had a higher concentration of gain of function mutations and these patients were less likely to have undergone optimal debulking surgery. CONCLUSIONS Different classifications of TP53 mutations did not show an impact on outcomes in this study. Immunohistochemistry was a good predictor for TP53 mutation. Cluster analysis showed that a subgroup of patients with gain of function mutations (cluster 3) had a worse prognosis.
Collapse
Affiliation(s)
- Victoria Mandilaras
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Swati Garg
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michael Cabanero
- Department of Laboratory Medicine and Pathology, University Health Network, Toronto, Ontario, Canada
| | - Qian Tan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julia Burnier
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Katherine Karakasis
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Lisa Wang
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Neesha C Dhani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Marcus O Butler
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Philippe L Bedard
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Lillian L Siu
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Blaise Clarke
- Department of Laboratory Medicine and Pathology, University Health Network, Toronto, Ontario, Canada
| | - Patricia Ann Shaw
- Department of Laboratory Medicine and Pathology, University Health Network, Toronto, Ontario, Canada
| | - Tracy Stockley
- Advanced Molecular Diagnostics Laboratory, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Carter JH, Deddens JA, Mueller G, Lewis TG, Dooley MK, Robillard MC, Frydl M, Duvall L, Pemberton JO, Douglass LE. Transcription factors WT1 and p53 combined: a prognostic biomarker in ovarian cancer. Br J Cancer 2018; 119:462-470. [PMID: 30057405 PMCID: PMC6134086 DOI: 10.1038/s41416-018-0191-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/25/2023] Open
Abstract
Background New approaches to ovarian cancer are needed to improve survival. Wilms’ tumour 1 (WT1) is a tumour-associated antigen expressed in many ovarian cancers. P53 is also often altered. The clinical significance of the combined expression of these two transcription factors has not been studied. Methods One hundred ninety-six ovarian tumours were classified histopathologically. Tumours were stained for WT1 and p53 immunohistochemically. Stains were analysed according to tumour type, grade and FIGO stage. Kaplan–Meier analyses on 96 invasive carcinomas determined whether categorical variables were related to survival. Results WT1 and p53 were related to ovarian tumour type, grade, FIGO stage and patient survival. Uniform nuclear p53 expression was associated with invasion and WT1 expression was associated with advanced grade, FIGO stage and poor survival. When WT1 and p53 were both in the age-adjusted Cox model, WT1 was significant while p53 was not. When we combined tumours expressing WT1 and p53, then adjusted for age and tumour subtype, the hazard ratio compared to tumours without WT1 and with normal p53 was 2.70; when adjusted for age and FIGO stage, the hazard ratio was 2.40. Conclusions WT1, an antigen target, is a biomarker for poor prognosis, particularly when combined with altered p53.
Collapse
Affiliation(s)
- Julia H Carter
- Wood Hudson Cancer Research Laboratory, Newport, KY, 41071, USA.
| | - James A Deddens
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, 45202, USA
| | | | - Thomas G Lewis
- Wood Hudson Cancer Research Laboratory, Newport, KY, 41071, USA
| | - Mariah K Dooley
- Wood Hudson Cancer Research Laboratory, Newport, KY, 41071, USA
| | | | - Molly Frydl
- Wood Hudson Cancer Research Laboratory, Newport, KY, 41071, USA
| | - Lydia Duvall
- Wood Hudson Cancer Research Laboratory, Newport, KY, 41071, USA
| | | | | |
Collapse
|
19
|
Wang X, Sun Q. TP53 mutations, expression and interaction networks in human cancers. Oncotarget 2018; 8:624-643. [PMID: 27880943 PMCID: PMC5352183 DOI: 10.18632/oncotarget.13483] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022] Open
Abstract
Although the associations of p53 dysfunction, p53 interaction networks and oncogenesis have been widely explored, a systematic analysis of TP53 mutations and its related interaction networks in various types of human cancers is lacking. Our study explored the associations of TP53 mutations, gene expression, clinical outcomes, and TP53 interaction networks across 33 cancer types using data from The Cancer Genome Atlas (TCGA). We show that TP53 is the most frequently mutated gene in a number of cancers, and its mutations appear to be early events in cancer initiation. We identified genes potentially repressed by p53, and genes whose expression correlates significantly with TP53 expression. These gene products may be especially important nodes in p53 interaction networks in human cancers. This study shows that while TP53-truncating mutations often result in decreased TP53 expression, other non-truncating TP53 mutations result in increased TP53 expression in some cancers. Survival analyses in a number of cancers show that patients with TP53 mutations are more likely to have worse prognoses than TP53-wildtype patients, and that elevated TP53 expression often leads to poor clinical outcomes. We identified a set of candidate synthetic lethal (SL) genes for TP53, and validated some of these SL interactions using data from the Cancer Cell Line Project. These predicted SL genes are promising candidates for experimental validation and the development of personalized therapeutics for patients with TP53-mutated cancers.
Collapse
Affiliation(s)
- Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
20
|
Antoun S, Atallah D, Tahtouh R, Alaaeddine N, Moubarak M, Khaddage A, Ayoub EN, Chahine G, Hilal G. Different TP53 mutants in p53 overexpressed epithelial ovarian carcinoma can be associated both with altered and unaltered glycolytic and apoptotic profiles. Cancer Cell Int 2018; 18:14. [PMID: 29422776 PMCID: PMC5791177 DOI: 10.1186/s12935-018-0514-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 01/09/2023] Open
Abstract
Background p53 is a tumor suppressor and key regulator of glycolysis in cancer cells, however highly mutated in tumors. In ovarian cancer, studies concerning p53 mutations focus on the DNA binding domain since the majority of hotspot mutations affects this region. Yet, mutations in other regions such as the proline rich domain may also affect the protein’s expression and activity. The aim of this study is to investigate the effect of various positions of mutations in TP53 gene on glycolysis, apoptosis and transcription of p53 target genes. Methods Mutations frequency and their effect on p53 expression were assessed by PCR-SSCP, sequencing and immunohistochemistry on 30 ovarian cancer biopsies. Six tumors were cultured, as well as SK-OV-3, OVCAR-3 and Igrov-1. SK-OV-3 cells were transfected with 2 TP53 mutants. p53 transcriptional activity was assayed by qPCR, apoptosis by flow cytometry and glycolysis by glucose and lactate measurements, with quantification of glycolytic enzymes expression. Results Our results showed a high frequency of the P72R mutant, associated with p53 overexpression in the ovarian biopsies. However, P72R mutant cells showed similar apoptosis and glycolysis as WT cells. DNA binding domain mutations decreased the transcriptional activity of the protein and increased glucose consumption and lactate production. Conclusion Despite the overexpression of the P72R mutated protein in the biopsies, it showed a similar apoptotic activity and glucose regulation ability as WT p53. Knowing that p53 expression status is used for chemotherapeutic approaches and prognosis in ovarian cancer, the results obtained highlight the importance of locating TP53 mutations. Electronic supplementary material The online version of this article (10.1186/s12935-018-0514-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Antoun
- 1Cancer and Metabolism Laboratory, Faculty of Medicine, Saint Joseph University, Damascus Road, Riad el Solh, Beirut, 1107 2180 Lebanon
| | - David Atallah
- 2Obstetrics and Gynecology Department, Hotel-Dieu De France Hospital, Beirut, Lebanon
| | - Roula Tahtouh
- 1Cancer and Metabolism Laboratory, Faculty of Medicine, Saint Joseph University, Damascus Road, Riad el Solh, Beirut, 1107 2180 Lebanon
| | - Nada Alaaeddine
- 3Regenerative Medicine and Inflammation Laboratory, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Malak Moubarak
- 2Obstetrics and Gynecology Department, Hotel-Dieu De France Hospital, Beirut, Lebanon
| | - Abir Khaddage
- 4Anatomy and Pathology Department, Hotel-Dieu De France Hospital, Beirut, Lebanon
| | - Eliane Nasr Ayoub
- 5Anesthesiology Department, Hotel-Dieu De France Hospital, Beirut, Lebanon
| | - George Chahine
- 6Oncology Department, Hotel-Dieu De France Hospital, Beirut, Lebanon
| | - George Hilal
- 1Cancer and Metabolism Laboratory, Faculty of Medicine, Saint Joseph University, Damascus Road, Riad el Solh, Beirut, 1107 2180 Lebanon
| |
Collapse
|
21
|
van Haaften C, van Eendenburg J, Boot A, Corver WE, Haans L, van Wezel T, Trimbos JB. Chemosensitivity of BRCA1-Mutated Ovarian Cancer Cells and Established Cytotoxic Agents. Int J Gynecol Cancer 2017; 27:1571-1578. [PMID: 28604461 DOI: 10.1097/igc.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE Serous adenocarcinomas that arise in patients with inherited mutations in the tumor suppressor genes BRCA1 and BRCA2 are initially well treatable with platinum/paclitaxel. For recurrent disease in patients with BRCA1 or BRCA2 mutations, olaparib treatment is available. To study additional therapeutic regimens, a better understanding of the cellular and molecular mechanisms of the tumors in in vitro models is important. METHODS/MATERIALS From a high-grade serous ovarian tumor of a BRCA1 mutation carrier, we established 3 distinct cell line subclones, OVCA-TR3.1, -2, and -3. Immunohistochemical characterization, flow cytometric analyses, chemosensitivity, and somatic mutation profiling were performed. RESULTS The cell lines expressed AE1/AE3, Pax8, WT-1, OC125, estrogen receptor (ER), and p53, comparable to the primary tumor. Synergism could be shown in the combination treatment eremophila-1-(10)-11(13)-dien-12,8β-olide (EPD), with cisplatin, whereas combination with olaparib did not show synergism. Eremophila-1-(10)-11(13)-dien-12,8β-olide, a sesquiterpene lactone, is a novel chemotherapeutic agent. The inherited BRCA1 c.2989_2990dupAA mutation was confirmed in the cell lines. Loss of heterozygosity of BRCA1 was detected in each cell line, as well as a homozygous TP53 c.722C>A mutation. Flow cytometry showed that all cell lines had a distinct DNA index. CONCLUSIONS Three new isogenic ovarian cancer cell lines were developed from a patient with a germ line BRCA1 mutation. Chemosensitivity profiling of the cell lines showed high tolerance for olaparib. Treatment with EPD proved synergistic with cisplatin. The effects of EPD will be further investigated for future clinical efficacy.
Collapse
Affiliation(s)
- Caroline van Haaften
- *Department of Gynecology, †Department of Pathology, Leiden University Medical Center; and ‡Department of Gynecology, Medical Center Haaglanden, The Hague, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Comprehensive analyses of somatic TP53 mutation in tumors with variable mutant allele frequency. Sci Data 2017; 4:170120. [PMID: 28872635 PMCID: PMC5584393 DOI: 10.1038/sdata.2017.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
Somatic mutation of the tumor suppressor gene TP53 is reported in at least 50% of human malignancies. Most high-grade serous ovarian cancers (HGSC) have a mutant TP53 allele. Accurate detection of these mutants in heterogeneous tumor tissue is paramount as therapies emerge to target mutant p53. We used a Fluidigm Access Array™ System with Massively Parallel Sequencing (MPS) to analyze DNA extracted from 76 serous ovarian tumors. This dataset has been made available to researchers through the European Genome-phenome Archive (EGA; EGAS00001002200). Herein, we present analyses of this dataset using HaplotypeCaller and MuTect2 through the Broad Institute's Genome Analysis Toolkit (GATK). We anticipate that this TP53 mutation dataset will be useful to researchers developing and testing new software to accurately determine high and low frequency variant alleles in heterogeneous aneuploid tumor tissue. Furthermore, the analysis pipeline we present provides a valuable framework for determining somatic variants more broadly in tumor tissue.
Collapse
|
23
|
The Prognostic 97 Chemoresponse Gene Signature in Ovarian Cancer. Sci Rep 2017; 7:9689. [PMID: 28851888 PMCID: PMC5575202 DOI: 10.1038/s41598-017-08766-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Patient diagnosis and care would be significantly improved by understanding the mechanisms underlying platinum and taxane resistance in ovarian cancer. Here, we aim to establish a gene signature that can identify molecular pathways/transcription factors involved in ovarian cancer progression, poor clinical outcome, and chemotherapy resistance. To validate the robustness of the gene signature, a meta-analysis approach was applied to 1,020 patients from 7 datasets. A 97-gene signature was identified as an independent predictor of patient survival in association with other clinicopathological factors in univariate [hazard ratio (HR): 3.0, 95% Confidence Interval (CI) 1.66–5.44, p = 2.7E-4] and multivariate [HR: 2.88, 95% CI 1.57–5.2, p = 0.001] analyses. Subset analyses demonstrated that the signature could predict patients who would attain complete or partial remission or no-response to first-line chemotherapy. Pathway analyses revealed that the signature was regulated by HIF1α and TP53 and included nine HIF1α-regulated genes, which were highly expressed in non-responders and partial remission patients than in complete remission patients. We present the 97-gene signature as an accurate prognostic predictor of overall survival and chemoresponse. Our signature also provides information on potential candidate target genes for future treatment efforts in ovarian cancer.
Collapse
|
24
|
Peterson LE, Kovyrshina T. Progression inference for somatic mutations in cancer. Heliyon 2017; 3:e00277. [PMID: 28492066 PMCID: PMC5415494 DOI: 10.1016/j.heliyon.2017.e00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/08/2017] [Accepted: 03/23/2017] [Indexed: 01/05/2023] Open
Abstract
Computational methods were employed to determine progression inference of genomic alterations in commonly occurring cancers. Using cross-sectional TCGA data, we computed evolutionary trajectories involving selectivity relationships among pairs of gene-specific genomic alterations such as somatic mutations, deletions, amplifications, downregulation, and upregulation among the top 20 driver genes associated with each cancer. Results indicate that the majority of hierarchies involved TP53, PIK3CA, ERBB2, APC, KRAS, EGFR, IDH1, VHL, etc. Research into the order and accumulation of genomic alterations among cancer driver genes will ever-increase as the costs of nextgen sequencing subside, and personalized/precision medicine incorporates whole-genome scans into the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Leif E. Peterson
- Center for Biostatistics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Dept. of Healthcare Policy and Research, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Dept. of Biostatistics, School of Public Health, University of Texas – Health Science Center, Houston, TX 77030, USA
- Dept. of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dept. of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tatiana Kovyrshina
- Center for Biostatistics, Houston Methodist Research Institute, Houston, TX 77030, USA
- Dept. of Mathematics and Statistics, University of Houston – Downtown, Houston, TX 77002, USA
| |
Collapse
|
25
|
Abstract
Genomic sequencing analyses of a variety of human cancers have revealed that massive mutations of cancer-relevant genes are the major alterations in cancerous cells, and their mutation frequencies or rates are highly associated with the development, progression, metastasis, and drug resistance of cancers as well as their clinical outcomes and prognosis. One predominant genetic alternation in human epithelial ovarian cancer (EOC) is the mutation of TP53 that encodes the tumor suppressor p53 protein. This essay will review the most recent progress in understanding the role of TP53 mutations in development, progression, and metastasis of EOC, and discuss the potential of TP53 mutations as diagnostic and prognostic biomarkers as well as therapeutic targets for EOC.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Gynecology and Obstetrics, Xiang-Ya Hospital, Central South University, Changsha 410008, China
| | - Lan Cao
- Department of Gynecology and Obstetrics, Xiang-Ya Hospital, Central South University, Changsha 410008, China
| | - Daniel Nguyen
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
26
|
Leijen S, van Geel RMJM, Sonke GS, de Jong D, Rosenberg EH, Marchetti S, Pluim D, van Werkhoven E, Rose S, Lee MA, Freshwater T, Beijnen JH, Schellens JHM. Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months. J Clin Oncol 2016; 34:4354-4361. [PMID: 27998224 DOI: 10.1200/jco.2016.67.5942] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose AZD1775 is a first-in-class, potent, and selective inhibitor of WEE1 with proof of chemopotentiation in p53-deficient tumors in preclinical models. In a phase I study, the maximum tolerated dose of AZD1775 in combination with carboplatin demonstrated target engagement. We conducted a proof-of-principle phase II study in patients with p53 tumor suppressor gene ( TP53)-mutated ovarian cancer refractory or resistant (< 3 months) to first-line platinum-based therapy to determine overall response rate, progression-free and overall survival, pharmacokinetics, and modulation of phosphorylated cyclin-dependent kinase (CDK1) in skin biopsies. Patients and Methods Patients were treated with carboplatin (area under the curve, 5 mg/mL⋅min) combined with AZD1775 225 mg orally twice daily over 2.5 days every 21-day cycle until disease progression. Results AZD1775 plus carboplatin demonstrated manageable toxicity; fatigue (87%), nausea (78%), thrombocytopenia (70%), diarrhea (70%), and vomiting (48%) were the most common adverse events. The most frequent grade 3 or 4 adverse events were thrombocytopenia (48%) and neutropenia (37%). Of 24 patients enrolled, 21 patients were evaluable for efficacy end points. The overall response rate was 43% (95% CI, 22% to 66%), including one patient (5%) with a prolonged complete response. Median progression-free and overall survival times were 5.3 months (95% CI, 2.3 to 9.0 months) and 12.6 months (95% CI, 4.9 to 19.7), respectively, with two patients with ongoing response for more than 31 and 42 months at data cutoff. Conclusion To our knowledge, this is the first report providing clinical proof that AZD1775 enhances carboplatin efficacy in TP53-mutated tumors. The encouraging antitumor activity observed in patients with TP53-mutated ovarian cancer who were refractory or resistant (< 3 months) to first-line therapy warrants further development.
Collapse
Affiliation(s)
- Suzanne Leijen
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Robin M J M van Geel
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Gabe S Sonke
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Daphne de Jong
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Efraim H Rosenberg
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Serena Marchetti
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Dick Pluim
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Erik van Werkhoven
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Shelonitda Rose
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Mark A Lee
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Tomoko Freshwater
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Jos H Beijnen
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| | - Jan H M Schellens
- Suzanne Leijen, Robin M.J.M. van Geel, Gabe S. Sonke, Daphne de Jong, Efraim H. Rosenberg, Serena Marchetti, Dick Pluim, Erik van Werkhoven, Jos H. Beijnen, and Jan H.M. Schellens, The Netherlands Cancer Institute, Amsterdam; Jos H. Beijnen and Jan H.M. Schellens, Utrecht University, Utrecht, the Netherlands; and Shelonitda Rose, Mark A. Lee, and Tomoko Freshwater, Merck, Kenilworth, NJ
| |
Collapse
|
27
|
Cole AJ, Dwight T, Gill AJ, Dickson KA, Zhu Y, Clarkson A, Gard GB, Maidens J, Valmadre S, Clifton-Bligh R, Marsh DJ. Assessing mutant p53 in primary high-grade serous ovarian cancer using immunohistochemistry and massively parallel sequencing. Sci Rep 2016; 6:26191. [PMID: 27189670 PMCID: PMC4870633 DOI: 10.1038/srep26191] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
The tumour suppressor p53 is mutated in cancer, including over 96% of high-grade serous ovarian cancer (HGSOC). Mutations cause loss of wild-type p53 function due to either gain of abnormal function of mutant p53 (mutp53), or absent to low mutp53. Massively parallel sequencing (MPS) enables increased accuracy of detection of somatic variants in heterogeneous tumours. We used MPS and immunohistochemistry (IHC) to characterise HGSOCs for TP53 mutation and p53 expression. TP53 mutation was identified in 94% (68/72) of HGSOCs, 62% of which were missense. Missense mutations demonstrated high p53 by IHC, as did 35% (9/26) of non-missense mutations. Low p53 was seen by IHC in 62% of HGSOC associated with non-missense mutations. Most wild-type TP53 tumours (75%, 6/8) displayed intermediate p53 levels. The overall sensitivity of detecting a TP53 mutation based on classification as ‘Low’, ‘Intermediate’ or ‘High’ for p53 IHC was 99%, with a specificity of 75%. We suggest p53 IHC can be used as a surrogate marker of TP53 mutation in HGSOC; however, this will result in misclassification of a proportion of TP53 wild-type and mutant tumours. Therapeutic targeting of mutp53 will require knowledge of both TP53 mutations and mutp53 expression.
Collapse
Affiliation(s)
- Alexander J Cole
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065 Australia
| | - Trisha Dwight
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065 Australia
| | - Anthony J Gill
- Department of Anatomical Pathology, Royal North Shore Hospital and University of Sydney, NSW 2065 Australia
| | - Kristie-Ann Dickson
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065 Australia
| | - Ying Zhu
- Hunter New England Local Health District, Royal North Shore Hospital, University of Sydney, Australia
| | - Adele Clarkson
- Department of Anatomical Pathology, Royal North Shore Hospital and University of Sydney, NSW 2065 Australia
| | - Gregory B Gard
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St Leonards, Australia
| | - Jayne Maidens
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St Leonards, Australia
| | - Susan Valmadre
- Mater Private and Royal North Shore Hospitals, Sydney, NSW, Australia
| | - Roderick Clifton-Bligh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065 Australia
| | - Deborah J Marsh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, NSW 2065 Australia
| |
Collapse
|
28
|
Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS One 2016; 11:e0154323. [PMID: 27144941 PMCID: PMC4856367 DOI: 10.1371/journal.pone.0154323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 04/12/2016] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of cadherins and catenins plays pivotal roles in ovarian cancer development and progression. Plakoglobin (PG, γ-catenin) is a paralog of β-catenin with dual adhesive and signaling functions. While β-catenin has known oncogenic function, PG generally acts as a tumor/metastasis suppressor. We recently showed that PG interacted with p53 and that its growth/metastasis inhibitory function may be mediated by this interaction. Very little is known about the role of PG in ovarian cancer. Here, we investigated the in vitro tumor/metastasis suppressor effects of PG in ovarian cancer cell lines with mutant p53 expression and different cadherin profiles. We showed that the N-cadherin expressing and E-cadherin and PG deficient ES-2 cells were highly migratory and invasive, whereas OV-90 cells that express E-cadherin, PG and very little/no N-cadherin were not. Exogenous expression of PG or E-cadherin or N-cadherin knockdown in ES-2 cells (ES-2-E-cad, ES-2-PG and ES-2-shN-cad) significantly reduced their migration and invasion. Also, PG expression or N-cadherin knockdown significantly decreased ES-2 cells growth. Furthermore, PG interacted with both cadherins and with wild type and mutant p53 in normal ovarian and ES-2-PG cell lines, respectively.
Collapse
Affiliation(s)
- Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Ghazal Danesh
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, AB, T6G1Z2, Canada
- * E-mail:
| |
Collapse
|
29
|
Shalabi A, Inoue M, Watkins J, De Rinaldis E, Coolen AC. Bayesian clinical classification from high-dimensional data: Signatures versus variability. Stat Methods Med Res 2016; 27:336-351. [PMID: 26984907 DOI: 10.1177/0962280216628901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When data exhibit imbalance between a large number d of covariates and a small number n of samples, clinical outcome prediction is impaired by overfitting and prohibitive computation demands. Here we study two simple Bayesian prediction protocols that can be applied to data of any dimension and any number of outcome classes. Calculating Bayesian integrals and optimal hyperparameters analytically leaves only a small number of numerical integrations, and CPU demands scale as O(nd). We compare their performance on synthetic and genomic data to the mclustDA method of Fraley and Raftery. For small d they perform as well as mclustDA or better. For d = 10,000 or more mclustDA breaks down computationally, while the Bayesian methods remain efficient. This allows us to explore phenomena typical of classification in high-dimensional spaces, such as overfitting and the reduced discriminative effectiveness of signatures compared to intra-class variability.
Collapse
Affiliation(s)
- Akram Shalabi
- 1 Institute for Mathematical and Molecular Biomedicine, King's College London, London, UK
| | - Masato Inoue
- 2 Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Johnathan Watkins
- 3 Breakthrough Breast Cancer Research Unit, Department of Research Oncology, Guy's Hospital, London, UK
| | | | - Anthony Cc Coolen
- 1 Institute for Mathematical and Molecular Biomedicine, King's College London, London, UK
| |
Collapse
|
30
|
Zhou M, Wang X, Shi H, Cheng L, Wang Z, Zhao H, Yang L, Sun J. Characterization of long non-coding RNA-associated ceRNA network to reveal potential prognostic lncRNA biomarkers in human ovarian cancer. Oncotarget 2016; 7:12598-611. [PMID: 26863568 PMCID: PMC4914307 DOI: 10.18632/oncotarget.7181] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/24/2016] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has underscored the important roles of long non-coding RNAs (lncRNAs) acting as competing endogenous RNAs (ceRNAs) in cancer initiation and progression. In this study, we used an integrative computational method to identify miRNA-mediated ceRNA crosstalk between lncRNAs and mRNAs, and constructed global and progression-related lncRNA-associated ceRNA networks (LCeNETs) in ovarian cancer (OvCa) based on "ceRNA hypothesis". The constructed LCeNETs exhibited small world, modular architecture and high functional specificity for OvCa. Known OvCa-related genes tended to be hubs and occurred preferentially in the functional modules. Ten lncRNA ceRNAs were identified as potential candidates associated with stage progression in OvCa using ceRNA-network driven method. Finally, we developed a ten-lncRNA signature which classified patients into high- and low-risk subgroups with significantly different survival outcomes. Our study will provide novel insight for better understanding of ceRNA-mediated gene regulation in progression of OvCa and facilitate the identification of novel diagnostic and therapeutic lncRNA ceRNAs for OvCa.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Xiaojun Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Zhenzhen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Hengqiang Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| | - Jie Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, PR China
| |
Collapse
|
31
|
Intact PTEN Expression by Immunohistochemistry is Associated With Decreased Survival in Advanced Stage Ovarian/Primary Peritoneal High-grade Serous Carcinoma. Int J Gynecol Pathol 2015; 34:497-506. [DOI: 10.1097/pgp.0000000000000205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Miyake T, Pradeep S, Wu SY, Rupaimoole R, Zand B, Wen Y, Gharpure KM, Nagaraja AS, Hu W, Cho MS, Dalton HJ, Previs RA, Taylor ML, Hisamatsu T, Kang Y, Liu T, Shacham S, McCauley D, Hawke DH, Wiktorowicz JE, Coleman RL, Sood AK. XPO1/CRM1 Inhibition Causes Antitumor Effects by Mitochondrial Accumulation of eIF5A. Clin Cancer Res 2015; 21:3286-97. [PMID: 25878333 PMCID: PMC4506247 DOI: 10.1158/1078-0432.ccr-14-1953] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/26/2015] [Indexed: 12/18/2022]
Abstract
PURPOSE XPO1 inhibitors have shown promise for cancer treatment, and yet the underlying mechanisms for the antitumor effects are not well understood. In this study, we explored the usefulness of selective inhibitors of nuclear export (SINE) compounds that are specific inhibitors of XPO1. EXPERIMENTAL DESIGN We used proteomic analysis in XPO1 inhibitor-treated ovarian cancer cell lines and examined antitumor effects in ovarian and breast cancer mouse models. We also studied the effects of XPO1 inhibitor in combination with chemotherapeutic agents. RESULTS XPO1 inhibitor treatment substantially increased the percentage of apoptotic cells (60%) after 72 hours of incubation. XPO1 inhibitor promoted the accumulation of eIF5A in mitochondria, leading to cancer cell death. Topotecan showed the greatest synergistic effect with XPO1 inhibitor. XPO1 inhibitors prevented the translocation of IGF2BP1 from the nucleus to the cytoplasm, thereby permitting the localization of eIF5A in the mitochondria. This process was p53, RB, and FOXO independent. Significant antitumor effects were observed with XPO1 inhibitor monotherapy in orthotopic ovarian (P < 0.001) and breast (P < 0.001) cancer mouse models, with a further decrease in tumor burden observed in combination with topotecan or paclitaxel (P < 0.05). This mitochondrial accumulation of eIF5A was highly dependent on the cytoplasmic IGF2BP1 levels. CONCLUSIONS We have unveiled a new understanding of the role of eIF5A and IGF2BP1 in XPO1 inhibitor-mediated cell death and support their clinical development for the treatment of ovarian and other cancers. Our data also ascertain the combinations of XPO1 inhibitors with specific chemotherapy drugs for therapeutic trials.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Chromatography, Liquid
- Electrophoresis, Gel, Two-Dimensional
- Enzyme Inhibitors/pharmacology
- Female
- Fluorescent Antibody Technique
- Humans
- Immunohistochemistry
- Karyopherins/antagonists & inhibitors
- Mammary Neoplasms, Experimental/metabolism
- Mice
- Mice, Nude
- Mitochondria/metabolism
- Ovarian Neoplasms/metabolism
- Peptide Initiation Factors/metabolism
- Proteomics
- RNA, Small Interfering
- RNA-Binding Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Signal Transduction/drug effects
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tandem Mass Spectrometry
- Transfection
- Xenograft Model Antitumor Assays
- Eukaryotic Translation Initiation Factor 5A
- Exportin 1 Protein
Collapse
Affiliation(s)
- Takahito Miyake
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Y Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Behrouz Zand
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kshipra M Gharpure
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Archana S Nagaraja
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Soon Cho
- Department of Benign Hematology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather J Dalton
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca A Previs
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Morgan L Taylor
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takeshi Hisamatsu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yu Kang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Liu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - David H Hawke
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John E Wiktorowicz
- Department of Biochemistry and Molecular Biology, NHLBI Proteomics Center, The University of Texas Medical Branch, Galveston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
33
|
Hayano T, Yokota Y, Hosomichi K, Nakaoka H, Yoshihara K, Adachi S, Kashima K, Tsuda H, Moriya T, Tanaka K, Enomoto T, Inoue I. Molecular characterization of an intact p53 pathway subtype in high-grade serous ovarian cancer. PLoS One 2014; 9:e114491. [PMID: 25460179 PMCID: PMC4252108 DOI: 10.1371/journal.pone.0114491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. We performed exome analyses of tumors and matched normal tissues of 34 Japanese patients with HGSOC and observed a substantial number of patients without TP53 mutation (24%, 8/34). Combined with the results of copy number variation analyses, we subdivided the 34 patients with HGSOC into subtypes designated ST1 and ST2. ST1 showed intact p53 pathway and was characterized by fewer somatic mutations and copy number alterations. In contrast, the p53 pathway was impaired in ST2, which is characterized by abundant somatic mutations and copy number alterations. Gene expression profiles combined with analyses using the Gene Ontology resource indicate the involvement of specific biological processes (mitosis and DNA helicase) that are relevant to genomic stability and cancer etiology. In particular we demonstrate the presence of a novel subtype of patients with HGSOC that is characterized by an intact p53 pathway, with limited genomic alterations and specific gene expression profiles.
Collapse
Affiliation(s)
- Takahide Hayano
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Yuki Yokota
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Kashima
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki, Japan
| | - Kenichi Tanaka
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Niigata Medical Center Hospital, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
34
|
Khandakar B, Mathur SR, Kumar L, Kumar S, Datta Gupta S, Iyer VK, Kalaivani M. Tissue biomarkers in prognostication of serous ovarian cancer following neoadjuvant chemotherapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:401245. [PMID: 24864239 PMCID: PMC4016870 DOI: 10.1155/2014/401245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/31/2014] [Indexed: 01/10/2023]
Abstract
Serous ovarian cancer (SOC) is a significant cause of morbidity and mortality in females with poor prognosis because of advanced stage at presentation. Recently, neoadjuvant chemotherapy (NACT) is being used for management of advanced SOC, but role of tissue biomarkers in prognostication following NACT is not well established. The study was conducted on advanced stage SOC patients (n = 100) that were treated either conventionally (n = 50) or with NACT (n = 50), followed by surgery. In order to evaluate the expression of tissue biomarkers (p53, MIB1, estrogen and progesterone receptors, Her-2/neu, E-cadherin, and Bcl2), immunohistochemistry and semiquantitative scoring were done following morphological examination. Following NACT, significant differences in tumor histomorphology were observed as compared to the native neoplasms. MIB 1 was significantly lower in cases treated with NACT and survival outcome was significantly better in cases with low MIB 1. ER expression was associated with poor overall survival. No other marker displayed any significant difference in expression or correlation with survival between the two groups. Immunophenotype of SOC does not differ significantly in samples from cases treated with NACT, compared to upfront surgically treated cases. The proliferating capacity of the residual tumor cells is less, depicted by low mean MIB1 LI. MIB 1 and ER inversely correlate with survival.
Collapse
MESH Headings
- Biomarkers, Tumor/metabolism
- Cell Shape
- Female
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Middle Aged
- Neoadjuvant Therapy
- Neoplasm Proteins/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/metabolism
- Neoplasms, Cystic, Mucinous, and Serous/pathology
- Neoplasms, Cystic, Mucinous, and Serous/therapy
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Prognosis
Collapse
Affiliation(s)
- Binny Khandakar
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sandeep R. Mathur
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, Dr. B.R. Ambedkar Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sunesh Kumar
- Department of Gynecology and Obstetrics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Siddhartha Datta Gupta
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Venkateswaran K. Iyer
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M. Kalaivani
- Department of Biostatistics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
35
|
Alvarez Secord A, Bernardini MQ, Broadwater G, Grace LA, Huang Z, Baba T, Kondoh E, Sfakianos G, Havrilesky LJ, Murphy SK. TP53 Status is Associated with Thrombospondin1 Expression In vitro. Front Oncol 2013; 3:269. [PMID: 24195060 PMCID: PMC3810652 DOI: 10.3389/fonc.2013.00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/14/2013] [Indexed: 12/26/2022] Open
Abstract
Objectives: To elucidate the association between thrombospondin1 (THBS1) expression and TP53 status and THBS1 promoter methylation in epithelial ovarian cancer (EOC). Methods: Epithelial ovarian cancer cell lines with known TP53 status were analyzed for THBS1 gene expression using Affymetrix U133 microarrays and promoter methylation by pyrosequencing. THBS1 mRNA expression was obtained pre- and post-exposure to radiation and hypoxia treatment in A2780 parent wild-type (wt) and mutant (m)TP53 cells. THBS1 expression was compared to tumor growth properties. Results:THBS1 gene expression was higher in cells containing a wtTP53 gene or null TP53 mutation (p = 0.005) and low or absent p53 protein expression (p = 0.008) compared to those harboring a missense TP53 gene mutation and exhibiting high p53 protein expression. Following exposure to radiation, there was a 3.4-fold increase in THBS1 mRNA levels in the mTP53 versus wtTP53 A2780 cells. After exposure to hypoxia, THBS1 mRNA levels increased approximately fourfold in both wtTP53 and mTP53 A2780 cells. Promoter methylation levels were low (median = 8.6%; range = 3.5–88.8%). There was a non-significant inverse correlation between THBS1 methylation and transcript levels. There was no association between THBS1 expression and population doubling time, invasive capacity, or anchorage-independent growth. Conclusion:THBS1 expression may be regulated via the TP53 pathway, and induced by hypoxic tumor microenvironment conditions. Overall low levels of THBS1 promoter methylation imply that methylation is not the primary driver of THBS1 expression in EOC.
Collapse
Affiliation(s)
- Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke Cancer Institute, Duke University Medical Center , Durham, NC , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hoffman Y, Bublik DR, Pilpel Y, Oren M. miR-661 downregulates both Mdm2 and Mdm4 to activate p53. Cell Death Differ 2013; 21:302-9. [PMID: 24141721 DOI: 10.1038/cdd.2013.146] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 01/25/2023] Open
Abstract
The p53 pathway is pivotal in tumor suppression. Cellular p53 activity is subject to tight regulation, in which the two related proteins Mdm2 and Mdm4 have major roles. The delicate interplay between the levels of Mdm2, Mdm4 and p53 is crucial for maintaining proper cellular homeostasis. microRNAs (miRNAs) are short non-coding RNAs that downregulate the level and translatability of specific target mRNAs. We report that miR-661, a primate-specific miRNA, can target both Mdm2 and Mdm4 mRNA in a cell type-dependent manner. miR-661 interacts with Mdm2 and Mdm4 RNA within living cells. The inhibitory effect of miR-661 is more prevalent on Mdm2 than on Mdm4. Interestingly, the predicted miR-661 targets in both mRNAs reside mainly within Alu elements, suggesting a primate-specific mechanism for regulatory diversification during evolution. Downregulation of Mdm2 and Mdm4 by miR-661 augments p53 activity and inhibits cell cycle progression in p53-proficient cells. Correspondingly, low miR-661 expression correlates with bad outcome in breast cancers that typically express wild-type p53. In contrast, the miR-661 locus tends to be amplified in tumors harboring p53 mutations, and miR-661 promotes migration of cells derived from such tumors. Thus, miR-661 may either suppress or promote cancer aggressiveness, depending on p53 status.
Collapse
Affiliation(s)
- Y Hoffman
- 1] Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel [2] Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - D R Bublik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Y Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - M Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
37
|
Lanara Z, Giannopoulou E, Fullen M, Kostantinopoulos E, Nebel JC, Kalofonos HP, Patrinos GP, Pavlidis C. Comparative study and meta-analysis of meta-analysis studies for the correlation of genomic markers with early cancer detection. Hum Genomics 2013; 7:14. [PMID: 23738773 PMCID: PMC3686617 DOI: 10.1186/1479-7364-7-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022] Open
Abstract
A large number of common disorders, including cancer, have complex genetic traits, with multiple genetic and environmental components contributing to susceptibility. A literature search revealed that even among several meta-analyses, there were ambiguous results and conclusions. In the current study, we conducted a thorough meta-analysis gathering the published meta-analysis studies previously reported to correlate any random effect or predictive value of genome variations in certain genes for various types of cancer. The overall analysis was initially aimed to result in associations (1) among genes which when mutated lead to different types of cancer (e.g. common metabolic pathways) and (2) between groups of genes and types of cancer. We have meta-analysed 150 meta-analysis articles which included 4,474 studies, 2,452,510 cases and 3,091,626 controls (5,544,136 individuals in total) including various racial groups and other population groups (native Americans, Latinos, Aborigines, etc.). Our results were not only consistent with previously published literature but also depicted novel correlations of genes with new cancer types. Our analysis revealed a total of 17 gene-disease pairs that are affected and generated gene/disease clusters, many of which proved to be independent of the criteria used, which suggests that these clusters are biologically meaningful.
Collapse
Affiliation(s)
- Zoi Lanara
- Faculty of Mathematical, Physical and Natural Sciences, Department of Biological Sciences, University of Trieste, Trieste, 34128, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
The molecular fingerprint of high grade serous ovarian cancer reflects its fallopian tube origin. Int J Mol Sci 2013; 14:6571-96. [PMID: 23528888 PMCID: PMC3645655 DOI: 10.3390/ijms14046571] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023] Open
Abstract
High grade serous ovarian cancer (HGSC), the most lethal and frequent type of epithelial ovarian cancer (EOC), has poor long term prognosis due to a combination of factors: late detection, great metastatic potential and the capacity to develop resistance to available therapeutic drugs. Furthermore, there has been considerable controversy concerning the etiology of this malignancy. New studies, both clinical and molecular, strongly suggest that HGSC originates not from the surface of the ovary, but from the epithelial layer of the neighboring fallopian tube fimbriae. In this paper we summarize data supporting the central role of fallopian tube epithelium in the development of HGSC. Specifically, we address cellular pathways and regulatory mechanisms which are modulated in the process of transformation, but also genetic changes which accumulate during disease progression. Similarities between fallopian tube mucosa and the malignant tissue of HGSC warrant a closer analysis of homeostatic mechanisms in healthy epithelium in order to elucidate key steps in disease development. Finally, we highlight the importance of the cancer stem cell (CSC) identification and understanding of its niche regulation for improvement of therapeutic strategies.
Collapse
|
39
|
King SM, Modi DA, Eddie SL, Burdette JE. Insulin and insulin-like growth factor signaling increases proliferation and hyperplasia of the ovarian surface epithelium and decreases follicular integrity through upregulation of the PI3-kinase pathway. J Ovarian Res 2013; 6:12. [PMID: 23388061 PMCID: PMC3724505 DOI: 10.1186/1757-2215-6-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/01/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development. METHODS Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV. RESULTS Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling. CONCLUSIONS While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.
Collapse
Affiliation(s)
- Shelby M King
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois, 900 S, Ashland Room 3202, Chicago, IL, 60607, USA.
| | | | | | | |
Collapse
|
40
|
Wojnarowicz PM, Oros KK, Quinn MCJ, Arcand SL, Gambaro K, Madore J, Birch AH, de Ladurantaye M, Rahimi K, Provencher DM, Mes-Masson AM, Greenwood CMT, Tonin PN. The genomic landscape of TP53 and p53 annotated high grade ovarian serous carcinomas from a defined founder population associated with patient outcome. PLoS One 2012; 7:e45484. [PMID: 23029043 PMCID: PMC3447752 DOI: 10.1371/journal.pone.0045484] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022] Open
Abstract
High-grade ovarian serous carcinomas (HGSC) are characterized by TP53 mutations and non-random patterns of chromosomal anomalies, where the nature of the TP53 mutation may correlate with clinical outcome. However, the frequency of common somatic genomic events occurring in HGSCs from demographically defined populations has not been explored. Whole genome SNP array, and TP53 mutation, gene and protein expression analyses were assessed in 87 confirmed HGSC samples with clinical correlates from French Canadians, a population exhibiting strong founder effects, and results were compared with independent reports describing similar analyses from unselected populations. TP53 mutations were identified in 91% of HGSCs. Anomalies observed in more than 50% of TP53 mutation-positive HGSCs involved gains of 3q, 8q and 20q, and losses of 4q, 5q, 6q, 8p, 13q, 16q, 17p, 17q, 22q and Xp. Nearly 400 regions of non-overlapping amplification or deletion were identified, where 178 amplifications and 98 deletions involved known genes. The subgroup expressing mutant p53 protein exhibited significantly prolonged overall and disease-free survival as compared with the p53 protein null subgroup. Interestingly, a comparative analysis of genomic landscapes revealed a significant enrichment of gains involving 1q, 8q, and 12p intervals in the subgroup expressing mutant p53 protein as compared with the p53 protein null subgroup. Although the findings show that the frequency of TP53 mutations and the genomic landscapes observed in French Canadian samples were similar to those reported for samples from unselected populations, there were differences in the magnitude of global gains/losses of specific chromosomal arms and in the spectrum of amplifications and deletions involving focal regions in individual samples. The findings from our comparative genomic analyses also support the notion that there may be biological differences between HGSCs that could be related to the nature of the TP53 mutation.
Collapse
Affiliation(s)
| | - Kathleen Klein Oros
- Division of Clinical Epidemiology and Segal Cancer Centre, Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael C. J. Quinn
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Suzanna L. Arcand
- The Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada
| | - Karen Gambaro
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Jason Madore
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Ashley H. Birch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Manon de Ladurantaye
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montreal, Quebec, Canada
| | - Kurosh Rahimi
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Diane M. Provencher
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montreal, Quebec, Canada
- Division of Gynecologic Oncology, Université de Montréal, Montreal, Quebec, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Institut du Cancer de Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Celia M. T. Greenwood
- Division of Clinical Epidemiology and Segal Cancer Centre, Lady Davis Research Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- The Research Institute of the McGill University Health Centre (MUHC), Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Scarlett UK, Rutkowski MR, Rauwerdink AM, Fields J, Escovar-Fadul X, Baird J, Cubillos-Ruiz JR, Jacobs AC, Gonzalez JL, Weaver J, Fiering S, Conejo-Garcia JR. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med 2012; 209:495-506. [PMID: 22351930 PMCID: PMC3302234 DOI: 10.1084/jem.20111413] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/23/2012] [Indexed: 01/21/2023] Open
Abstract
We characterized the initiation and evolution of the immune response against a new inducible p53-dependent model of aggressive ovarian carcinoma that recapitulates the leukocyte infiltrates and cytokine milieu of advanced human tumors. Unlike other models that initiate tumors before the development of a mature immune system, we detect measurable anti-tumor immunity from very early stages, which is driven by infiltrating dendritic cells (DCs) and prevents steady tumor growth for prolonged periods. Coinciding with a phenotypic switch in expanding DC infiltrates, tumors aggressively progress to terminal disease in a comparatively short time. Notably, tumor cells remain immunogenic at advanced stages, but anti-tumor T cells become less responsive, whereas their enduring activity is abrogated by different microenvironmental immunosuppressive DCs. Correspondingly, depleting DCs early in the disease course accelerates tumor expansion, but DC depletion at advanced stages significantly delays aggressive malignant progression. Our results indicate that phenotypically divergent DCs drive both immunosurveillance and accelerated malignant growth. We provide experimental support for the cancer immunoediting hypothesis, but we also show that aggressive cancer progression after a comparatively long latency period is primarily driven by the mobilization of immunosuppressive microenvironmental leukocytes, rather than loss of tumor immunogenicity.
Collapse
Affiliation(s)
| | | | - Adam M. Rauwerdink
- Department of Radiology, Department of Genetics, Department of Microbiology and Immunology, and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
| | - Jennifer Fields
- Department of Radiology, Department of Genetics, Department of Microbiology and Immunology, and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
| | | | - Jason Baird
- Department of Radiology, Department of Genetics, Department of Microbiology and Immunology, and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
| | - Juan R. Cubillos-Ruiz
- Department of Radiology, Department of Genetics, Department of Microbiology and Immunology, and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
| | - Ana C. Jacobs
- Department of Radiology, Department of Genetics, Department of Microbiology and Immunology, and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
| | - Jorge L. Gonzalez
- Department of Radiology, Department of Genetics, Department of Microbiology and Immunology, and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
| | - John Weaver
- Department of Radiology, Department of Genetics, Department of Microbiology and Immunology, and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
| | - Steven Fiering
- Department of Radiology, Department of Genetics, Department of Microbiology and Immunology, and Department of Pathology, Dartmouth Medical School, Lebanon, NH 03756
| | | |
Collapse
|
42
|
Archibald KM, Kulbe H, Kwong J, Chakravarty P, Temple J, Chaplin T, Flak MB, McNeish IA, Deen S, Brenton JD, Young BD, Balkwill F. Sequential genetic change at the TP53 and chemokine receptor CXCR4 locus during transformation of human ovarian surface epithelium. Oncogene 2012; 31:4987-95. [PMID: 22266861 PMCID: PMC3378508 DOI: 10.1038/onc.2011.653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Early genetic events in the development of high-grade serous ovarian cancer, HGSOC, may define the molecular basis of the profound structural and numerical instability of chromosomes in this disease. To discover candidate genetic changes we sequentially passaged cells from a karyotypically normal hTERT immortalised human ovarian surface epithelial line (IOSE25) resulting in the spontaneous formation of colonies in soft agar. Cell lines (TOSE 1 and 4) established from these colonies had an abnormal karyotype and altered morphology but were not tumorigenic in immunodeficient mice. TOSE cells showed loss of heterozygosity at TP53, increased nuclear p53 immunoreactivity and altered expression profile of p53 target genes. The parental IOSE25 cells contained a missense, heterozygous R175H mutation in TP53 whereas TOSE cells had loss of heterozygosity at the TP53 locus with a new R273H mutation at the previous wild-type TP53 allele. Cytogenetic and array CGH analysis of TOSE cells also revealed a focal genomic amplification of CXCR4, a chemokine receptor commonly expressed by HGSOC cells. TOSE cells had increased functional CXCR4 protein and its abrogation reduced epidermal growth factor receptor, EGFR, expression, as well as colony size and number. The CXCR4 ligand, CXCL12, was epigenetically silenced in TOSE cells and its forced expression increased TOSE colony size. TOSE cells had other cytogenetic changes typical of those seen in HGSOC ovarian cancer cell lines and biopsies. In addition, enrichment of CXCR4 pathway in expression profiles from HGSOC correlated with enrichment of a mutated TP53 gene expression signature and of EGFR pathway genes. Our data suggest that mutations in TP53 and amplification of the CXCR4 gene locus may be early events in the development of HGSOC, and associated with chromosomal instability.
Collapse
Affiliation(s)
- K M Archibald
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alvarez Secord A, Darcy KM, Hutson A, Huang Z, Lee PS, Jewell EL, Havrilesky LJ, Markman M, Muggia F, Murphy SK. The regulation of MASPIN expression in epithelial ovarian cancer: association with p53 status, and MASPIN promoter methylation: a gynecologic oncology group study. Gynecol Oncol 2011; 123:314-9. [PMID: 21903246 DOI: 10.1016/j.ygyno.2011.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/03/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To elucidate the regulation of MASPIN expression in epithelial ovarian cancer (EOC) and associations with p53 status and MASPIN promoter methylation. METHODS Seven EOC cell lines and 110 advanced stage EOC specimens were analyzed for MASPIN promoter methylation. The cell lines were treated with 5-azacytidine (5-azaC) and evaluated for MASPIN promoter methylation, protein, and mRNA expression. Wild-type (wt) p53 was transiently transfected into the mutant p53 (m p53) SKOV3 cells which were treated with 5-azaC. Phosphor imager analysis quantified the percent methylation of the MASPIN promoter. RESULTS Of the 3 MASPIN-low m p53 cell lines 2 had greater than 5% MASPIN methylation whereas only 1 of 4 MASPIN-high wt p53 cell lines had greater than 5% MASPIN methylation. Despite the presence of aberrant MASPIN promoter methylation in SKOV3 cells, wt p53-transfection alone resulted in a 3.3-fold increase in MASPIN mRNA. The combination of 5-azaC and wt p53-transfection produced a 36% reduction in MASPIN promoter methylation and 4.5-fold increase in MASPIN transcription. Among the 110 ovarian cancer specimens analyzed for methylation of the MASPIN promoter, 81.8% were weakly methylated, 14.5% were heavily methylated and 3.6% were fully methylated. There was no relationship between promoter methylation and p53 status or MASPIN protein expression. However, MASPIN protein was 6 times more likely to be detected in cancer specimens that harbor a p53 mutation relative to cancer specimens with a wt p53 gene. CONCLUSION The regulation of MASPIN is a complex multifactorial process that may be controlled by both p53-dependent and -independent epigenetic mechanisms.
Collapse
Affiliation(s)
- Angeles Alvarez Secord
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mezzanzanica D, Canevari S, Cecco LD, Bagnoli M. miRNA control of apoptotic programs: focus on ovarian cancer. Expert Rev Mol Diagn 2011; 11:277-86. [PMID: 21463237 DOI: 10.1586/erm.11.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
miRNAs are a class of small non-coding RNAs that regulate the stability or translational efficiency of targeted mRNAs. miRNAs are involved in many cellular processes, such as differentiation, proliferation and apoptosis, which are altered in cancer through miRNA expression dysregulation. In this article we will discuss recent findings implicating miRNAs in apoptotic program regulation using ovarian carcinoma as an example. Ovarian cancer is the most lethal gynecological malignancy. Most patients are diagnosed with advanced disease that is conventionally managed with surgical resection followed by platinum-based chemotherapy. Killing of cancer cells by chemotherapeutic agents or by triggering cell-surface death receptors relies on activation of apoptotic programs executed through receptor-mediated extrinsic pathways and mitochondrial-dependent intrinsic pathways. Despite an initial good response to chemotherapy, ovarian cancer patients typically experience disease relapse within 2 years of the initial treatment developing resistance even to structurally different drugs. Thus, also in this pathology, tumor cells are able to evade apoptosis using multiple mechanisms, several of which are dependent on miRNA gene regulation.
Collapse
Affiliation(s)
- Delia Mezzanzanica
- Department of Experimental Oncology and Molecular Medicine-Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. delia.mezzanzanica@ istitutotumori.mi.it
| | | | | | | |
Collapse
|