1
|
Yin H, Wang Y, Chen Y, Shehzad Q, Xiao F. Association between red blood cell fatty acids composition and risk of esophageal cancer: a hospital-based case-control study. Lipids Health Dis 2025; 24:101. [PMID: 40114210 PMCID: PMC11924718 DOI: 10.1186/s12944-025-02531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND & aims: Esophageal cancer (EC) is a tumor type with high invasiveness and poor prognosis, attracting scientists' attention to its pathogenesis and etiology. Given the limited evidence and conflicting findings regarding the association between EC risk and RBC fatty acids, we aimed to evaluate this association. METHODS The study utilized gas chromatography to analyze RBC fatty acids in 158 EC patients and 224 controls. Multivariable conditional logistic regression and restricted cubic spline analysis were employed to assess the association between EC risk and RBC fatty acids, as well as to determine the odds ratio with a 95% confidence interval (OR, 95% CI) for this association. RESULTS Higher levels of total n-3 polyunsaturated fatty acids (n-3 PUFA), docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and n-3 index were associated with lower odds of being an EC case [ORT3-T1 = 0.22 (0.12-0.41), ORT3-T1 = 0.29 (0.15-0.54), ORT3-T1 = 0.49 (0.27-0.88), and ORT3-T1 = 0.19 (0.09-0.35), respectively]. Total saturated fatty acids (SFA), particularly palmitic acid (C16:0), stearic acid (C18:0), and arachidonic acid (C20:4n-6) in high concentrations, were associated with higher odds of being an EC case [ORT1-T3 = 2.02 (1.11-3.70), ORT1-T3 = 2.10 (1.15-3.87), ORT1-T3 = 2.82 (1.53-5.30), and ORT1-T3 = 2.07 (1.12-3.86), respectively]. Total monounsaturated fatty acids (MUFA) and total trans fatty acids (TFA) showed no significant association with EC case status. CONCLUSION The different types of RBC fatty acids may significantly influence susceptibility to EC. Higher levels of total n-3 PUFA in RBC, specifically DHA and EPA, were associated with lower odds of being an EC case, while higher levels of C20:4n-6, C18:0, and C16:0 were associated with higher odds.
Collapse
Affiliation(s)
- Hongming Yin
- Department of Laboratory Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Yongjin Wang
- State Key Laboratory of Food Science and Resources, International Joint Research Laboratory for Lipid Nutrition and Safety, National Engineering Research Center for Functional Food, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Yujia Chen
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Qayyum Shehzad
- School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442, New Zealand
| | - Feng Xiao
- Department of Cardiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, China.
| |
Collapse
|
2
|
Huang YX, Wu JH, Zhao YQ, Sui WN, Tian T, Han WX, Ni J. An atlas on risk factors for gastrointestinal cancers: A systematic review of Mendelian randomization studies. Prev Med 2024; 189:108147. [PMID: 39368643 DOI: 10.1016/j.ypmed.2024.108147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE Gastrointestinal cancers are one of the most frequent cancer types and seriously threaten human life and health. Recent studies attribute the occurrence of gastrointestinal cancers to both genetic and environmental factors, yet the intrinsic etiology remains unclear. Mendelian randomization is a powerful well-established statistical method that is based on genome-wide association study (GWAS) to evaluate the causal relationship between exposures and outcomes. In the present study, we aimed to conduct a systematic review of Mendelian randomization studies investigating any causal risk factors for gastrointestinal cancers. METHODS We systematically searched Mendelian randomization studies that addressed the associations of genetically predicted exposures with five main gastrointestinal cancers from September 2014 to March 2024, as well as testing the research quality and validity. RESULTS Our findings suggested robust and consistent causal effects of body mass index (BMI), basal metabolic rate, fatty acids, total cholesterol, total bilirubin, insulin like growth factor-1, eosinophil counts, interleukin 2, alcohol consumption, coffee consumption, apolipoprotein B on colorectal cancer risks, BMI, waist circumference, low-density lipoprotein (LDL), total testosterone, smoking on gastric cancer risks, BMI, fasting insulin, LDL, waist circumference, visceral adipose tissue (VAT), immune cells, type 2 diabetes mellitus (T2DM) on pancreatic cancer risks, waist circumference, smoking, T2DM on esophageal adenocarcinoma risks, and VAT, ferritin, transferrin, alcohol consumption, hepatitis B virus infection, rheumatoid arthritis on liver cancer risks, respectively. CONCLUSION Larger, well-designed Mendelian randomization studies are practical in determining the causal status of risk factors for diseases.
Collapse
Affiliation(s)
- Yi-Xuan Huang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jun-Hua Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Qiang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Wan-Nian Sui
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Wen-Xiu Han
- Department of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Murai U, Ishihara J, Takachi R, Kotemori A, Ishii Y, Nakamura K, Tanaka J, Iso H, Tsugane S, Sawada N. Validity of the Intake of Sugars, Amino Acids, and Fatty Acids Estimated Using a Self-administered Food Frequency Questionnaire in Middle-aged and Elderly Japanese: The Japan Public Health Center-based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. J Epidemiol 2024; 34:372-379. [PMID: 38191182 PMCID: PMC11230880 DOI: 10.2188/jea.je20230132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND The Japanese database of food composition was revised in 2020, during which both the number of food items and the number of food items measured for sugars, amino acids, and fatty acids were increased. We evaluated the validity of estimated intakes of sugars, amino acids and fatty acids using a long food frequency questionnaire (long-FFQ) among middle-aged and elderly Japanese. METHODS From 2012 to 2013, 240 men and women aged 40-74 years from five areas in the JPHC-NEXT protocol were asked to respond to the long-FFQ and provide a 12-day weighed food record (WFR) as reference. The long-FFQ, which included 172 food and beverage items and 11 seasonings, was compared with a 3-day WFR, completed during each distinct season, and validity was assessed using Spearman's correlation coefficients. RESULTS Percentage differences based on the long-FFQ with the 12-day WFR in men and women varied from -84.4% to 419.6%, and from -75.8% to 623.1% for sugars, -17.5% to 3.8% and -5.8% to 19.6% for amino acids, and -58.5% to 78.8% and -43.4% to 129.3% for fatty acids, respectively. Median values of correlation coefficients for the long-FFQ in men and women were 0.52 and 0.42 for sugars, 0.38 and 0.37 for amino acids, and 0.42 and 0.42 for fatty acids, respectively. CONCLUSION The long-FFQ provided reasonable validity in estimating the intakes of sugars, amino acids, and fatty acids in middle-aged and elderly Japanese. Although caution is warranted for some nutrients, these results may be used in future epidemiological studies.
Collapse
Affiliation(s)
- Utako Murai
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Junko Ishihara
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Ribeka Takachi
- Department of Food Science and Nutrition, Nara Women’s University Graduate School of Humanities and Sciences, Nara, Japan
| | - Ayaka Kotemori
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Yuri Ishii
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Kazutoshi Nakamura
- Department of Community Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Junta Tanaka
- Department of Health Promotion Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyasu Iso
- Institute for Global Health Policy Research, Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shoichiro Tsugane
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Graduate School of Public Health, International University of Health and Welfare, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
4
|
Jayakrishnan TT, Sangwan N, Barot SV, Farha N, Mariam A, Xiang S, Aucejo F, Conces M, Nair KG, Krishnamurthi SS, Schmit SL, Liska D, Rotroff DM, Khorana AA, Kamath SD. Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer. NPJ Precis Oncol 2024; 8:146. [PMID: 39020083 PMCID: PMC11255257 DOI: 10.1038/s41698-024-00647-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Thejus T Jayakrishnan
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Naseer Sangwan
- Microbial Sequencing & Analytics Resource (MSAAR), Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shimoli V Barot
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Farha
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Arshiya Mariam
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, USA
| | - Shao Xiang
- Department of Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Madison Conces
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Department of Hematology-Oncology, University Hospital Seidman Cancer Center, Cleveland, OH, USA
| | - Kanika G Nair
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Smitha S Krishnamurthi
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Stephanie L Schmit
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - David Liska
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
- Department of Colorectal Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH, USA
| | - Alok A Khorana
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, USA
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA
| | - Suneel D Kamath
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, USA.
- Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
5
|
Li S, Che J, Gu B, Li Y, Han X, Sun T, Pan K, Lv J, Zhang S, Wang C, Zhang T, Wang J, Xue F. Metabolites, Healthy Lifestyle, and Polygenic Risk Score Associated with Upper Gastrointestinal Cancer: Findings from the UK Biobank Study. J Proteome Res 2024; 23:1679-1688. [PMID: 38546438 DOI: 10.1021/acs.jproteome.3c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Previous metabolomics studies have highlighted the predictive value of metabolites on upper gastrointestinal (UGI) cancer, while most of them ignored the potential effects of lifestyle and genetic risk on plasma metabolites. This study aimed to evaluate the role of lifestyle and genetic risk in the metabolic mechanism of UGI cancer. Differential metabolites of UGI cancer were identified using partial least-squares discriminant analysis and the Wilcoxon test. Then, we calculated the healthy lifestyle index (HLI) score and polygenic risk score (PRS) and divided them into three groups, respectively. A total of 15 metabolites were identified as UGI-cancer-related differential metabolites. The metabolite model (AUC = 0.699) exhibited superior discrimination ability compared to those of the HLI model (AUC = 0.615) and the PRS model (AUC = 0.593). Moreover, subgroup analysis revealed that the metabolite model showed higher discrimination ability for individuals with unhealthy lifestyles compared to that with healthy individuals (AUC = 0.783 vs 0.684). Furthermore, in the genetic risk subgroup analysis, individuals with a genetic predisposition to UGI cancer exhibited the best discriminative performance in the metabolite model (AUC = 0.770). These findings demonstrated the clinical significance of metabolic biomarkers in UGI cancer discrimination, especially in individuals with unhealthy lifestyles and a high genetic risk.
Collapse
Affiliation(s)
- Shuting Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiajing Che
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Bingbing Gu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yunfei Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyue Han
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tiantian Sun
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Keyu Pan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shuai Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Cheng Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jialin Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Lakshimi VI, Kavitha M. New Insights into Prospective Health Potential of ω-3 PUFAs. Curr Nutr Rep 2023; 12:813-829. [PMID: 37996669 DOI: 10.1007/s13668-023-00508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.
Collapse
Affiliation(s)
- V Iswareya Lakshimi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
M. S, V. J, Ahmad SF, Attia SM, Emran TB, Patil RB, Ahmed SSSJ. Structural Characteristics of PON1 with Leu55Met and Gln192Arg Variants Influencing Oxidative-Stress-Related Diseases: An Integrated Molecular Modeling and Dynamics Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2060. [PMID: 38138163 PMCID: PMC10744641 DOI: 10.3390/medicina59122060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: PON1 is a multi-functional antioxidant protein that hydrolyzes a variety of endogenous and exogenous substrates in the human system. Growing evidence suggests that the Leu55Met and Gln192Arg substitutions alter PON1 activity and are linked with a variety of oxidative-stress-related diseases. Materials and Methods: We implemented structural modeling and molecular dynamics (MD) simulation along with essential dynamics of PON1 and molecular docking with their endogenous (n = 4) and exogenous (n = 6) substrates to gain insights into conformational changes and binding affinity in order to characterize the specific functional ramifications of PON1 variants. Results: The Leu55Met variation had a higher root mean square deviation (0.249 nm) than the wild type (0.216 nm) and Gln192Arg (0.202 nm), implying increased protein flexibility. Furthermore, the essential dynamics analysis confirms the structural change in PON1 with Leu55Met vs. Gln192Arg and wild type. Additionally, PON1 with Leu55Met causes local conformational alterations at the substrate binding site, leading to changes in binding affinity with their substrates. Conclusions: Our findings highlight the structural consequences of the variants, which would increase understanding of the role of PON1 in the pathogenesis of oxidative-stress-related diseases, as well as the management of endogenous and exogenous chemicals in the treatment of diseases.
Collapse
Affiliation(s)
- Sudhan M.
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Janakiraman V.
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Rajesh B. Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Societys, Sinhgad College of Pharmacy, Vadgaon (BK), Pune 411041, Maharashtra, India
| | - Shiek S. S. J. Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
8
|
Kawashima H, Yoshizawa K. The physiological and pathological properties of Mead acid, an endogenous multifunctional n-9 polyunsaturated fatty acid. Lipids Health Dis 2023; 22:172. [PMID: 37838679 PMCID: PMC10576882 DOI: 10.1186/s12944-023-01937-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
Mead acid (MA, 5,8,11-eicosatrienoic acid) is an n-9 polyunsaturated fatty acid (PUFA) and a marker of essential fatty acid deficiency, but nonetheless generally draws little attention. MA is distributed in various normal tissues and can be converted to several specific lipid mediators by lipoxygenase and cyclooxygenase. Recent pathological and epidemiological studies on MA raise the possibility of its effects on inflammation, cancer, dermatitis and cystic fibrosis, suggesting it is an endogenous multifunctional PUFA. This review summarizes the biosynthesis, presence, metabolism and physiological roles of MA and its relation to various diseases, as well as the significance of MA in PUFA metabolism.
Collapse
Affiliation(s)
- Hiroshi Kawashima
- Research Institute, Suntory Global Innovation Center Ltd, Seika, Kyoto, Japan.
| | - Katsuhiko Yoshizawa
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
9
|
Peng F, Yu L, Zhang C, Liu Q, Yan K, Zhang K, Zheng Y, Liu W, Li Y, Fan J, Ding C. Analysis of serum metabolome of laborers exposure to welding fume. Int Arch Occup Environ Health 2023; 96:1029-1037. [PMID: 37243737 DOI: 10.1007/s00420-023-01987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVE Welding fume exposure is inevitable of welding workers and poses a severe hazard to their health since welding is a necessary industrial process. Thus, preclinical diagnostic symptoms of worker exposure are of great importance. The aim of this study was to screen serum differential metabolites of welding fume exposure based on UPLC-QTOF-MS/MS. METHODS In 2019, 49 participants were recruited at a machinery manufacturing factory. The non-target metabolomics technique was used to clarify serum metabolic signatures in people exposed to welding fume. Differential metabolites were screened by OPLS-DA analysis and Student's t-test. The receiver operating characteristic curve evaluated the discriminatory power of differential metabolites. And the correlations between differential metabolites and metal concentrations in urine and whole blood were analyzed utilizing Pearson correlation analysis. RESULTS Thirty metabolites were increased significantly, and 5 metabolites were decreased. The differential metabolites are mainly enriched in the metabolism of arachidonic acid, glycero phospholipid, linoleic acid, and thiamine. These results observed that lysophosphatidylcholine (20:1/0:0) and phosphatidylglycerol(PGF1α/16:0) had a tremendous anticipating power with relatively increased AUC values (AUC > 0.9), and they also presented a significant correlation of Mo concentrations in whole blood and Cu concentrations in urine, respectively. CONCLUSION The serum metabolism was changed significantly after exposure to welding fume. Lysophosphatidylcholine (20:1/0:0) and phosphatidylglycerol (PGF1α/16:0) may be a potential biological mediator and biomarker for laborers exposure to welding fume.
Collapse
Affiliation(s)
- Fangda Peng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Lijia Yu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Chunmin Zhang
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Qicai Liu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Kai Yan
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Kangfu Zhang
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Yuqiao Zheng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Wubin Liu
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Yan Li
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China
| | - Jingguang Fan
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| | - Chunguang Ding
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| |
Collapse
|
10
|
Salucci S, Aramini B, Bartoletti-Stella A, Versari I, Martinelli G, Blalock W, Stella F, Faenza I. Phospholipase Family Enzymes in Lung Cancer: Looking for Novel Therapeutic Approaches. Cancers (Basel) 2023; 15:3245. [PMID: 37370855 DOI: 10.3390/cancers15123245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer (LC) is the second most common neoplasm in men and the third most common in women. In the last decade, LC therapies have undergone significant improvements with the advent of immunotherapy. However, the effectiveness of the available treatments remains insufficient due to the presence of therapy-resistant cancer cells. For decades, chemotherapy and radiotherapy have dominated the treatment strategy for LC; however, relapses occur rapidly and result in poor survival. Malignant lung tumors are classified as either small- or non-small-cell lung carcinoma (SCLC and NSCLC). Despite improvements in the treatment of LC in recent decades, the benefits of surgery, radiotherapy, and chemotherapy are limited, although they have improved the prognosis of LC despite the persistent low survival rate due to distant metastasis in the late stage. The identification of novel prognostic molecular markers is crucial to understand the underlying mechanisms of LC initiation and progression. The potential role of phosphatidylinositol in tumor growth and the metastatic process has recently been suggested by some researchers. Phosphatidylinositols are lipid molecules and key players in the inositol signaling pathway that have a pivotal role in cell cycle regulation, proliferation, differentiation, membrane trafficking, and gene expression. In this review, we discuss the current understanding of phosphoinositide-specific phospholipase enzymes and their emerging roles in LC.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Beatrice Aramini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Anna Bartoletti-Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Versari
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Giovanni Martinelli
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy
| | - William Blalock
- "Luigi Luca Cavalli-Sforza'' Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerca (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Franco Stella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
11
|
Haycock PC, Borges MC, Burrows K, Lemaitre RN, Burgess S, Khankari NK, Tsilidis KK, Gaunt TR, Hemani G, Zheng J, Truong T, Birmann BM, OMara T, Spurdle AB, Iles MM, Law MH, Slager SL, Saberi Hosnijeh F, Mariosa D, Cotterchio M, Cerhan JR, Peters U, Enroth S, Gharahkhani P, Le Marchand L, Williams AC, Block RC, Amos CI, Hung RJ, Zheng W, Gunter MJ, Smith GD, Relton C, Martin RM. The association between genetically elevated polyunsaturated fatty acids and risk of cancer. EBioMedicine 2023; 91:104510. [PMID: 37086649 PMCID: PMC10148095 DOI: 10.1016/j.ebiom.2023.104510] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains uncertain. METHODS Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on 10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation increase in genetically proxied PUFA exposures. FINDINGS Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% confidence interval]) of colorectal cancer (1.09 [1.07-1.11]), esophageal squamous cell carcinoma (1.16 [1.06-1.26]), lung cancer (1.06 [1.03-1.08]) and basal cell carcinoma (1.05 [1.02-1.07]). There was little evidence for associations with reproductive cancers (OR = 1.00 [95% CI: 0.99-1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99-1.06], Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95-1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98-1.04], Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega 6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity, mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of inflammatory bowel disease but not bleeding. INTERPRETATION The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease. FUNDING Cancer Resesrch UK (C52724/A20138, C18281/A19169). UK Medical Research Council (MR/P014054/1). National Institute for Health Research (NIHR202411). UK Medical Research Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4). National Cancer Institute (R00 CA215360). National Institutes of Health (U01 CA164973, R01 CA60987, R01 CA72520, U01 CA74806, R01 CA55874, U01 CA164973 and U01 CA164973).
Collapse
Affiliation(s)
- Philip C Haycock
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom.
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Rozenn N Lemaitre
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | | | - Nikhil K Khankari
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Therese Truong
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, Team "Exposome, Heredity, Cancer and Health", CESP, Villejuif, France
| | - Brenda M Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tracy OMara
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, Faculty of Health Sciences, University of Queensland, Australia
| | - Amanda B Spurdle
- Genetics and Computational Biology Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, Faculty of Health Sciences, University of Queensland, Australia
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia; School of Biomedical Sciences, Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Susan L Slager
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Daniela Mariosa
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michelle Cotterchio
- Dalla Lana School of Public Health, University of Toronto, Canada; Prevention and Cancer Control, Cancer Care Ontario, Ontario Health, Toronto, ON, Canada
| | - James R Cerhan
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, USA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, USA
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Uppsala, Sweden
| | - Puya Gharahkhani
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston QLD, 4006, Australia
| | | | - Ann C Williams
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Robert C Block
- Department of Public Health Sciences, University of Rochester, NY, USA
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute Mount Sinai Hospital and University of Toronto, Canada
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, France
| | - George Davey Smith
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Caroline Relton
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard M Martin
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, University of Bristol, Bristol, United Kingdom; The National Institute for Health Research (NIHR) Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust and University of Bristol, Bristol, United Kingdom; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
12
|
Mohamad Ali D, Hogeveen K, Orhant RM, Le Gal de Kerangal T, Ergan F, Ulmann L, Pencreac'h G. Lysophosphatidylcholine-DHA Specifically Induces Cytotoxic Effects of the MDA-MB-231 Human Breast Cancer Cell Line In Vitro-Comparative Effects with Other Lipids Containing DHA. Nutrients 2023; 15:2137. [PMID: 37432249 DOI: 10.3390/nu15092137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
Docosahexaenoic acid (DHA, C22:6 ω-3) is a dietary polyunsaturated fatty acid that has an important role in human health. Epidemiological studies linked a high intake of DHA to a reduced risk of certain cancers. Recently, attention focused on how the lipid carrier in which DHA is delivered, i.e., esterified on acylglycerols, phospholipids, or free, affects its biological effects. However, studies comparing the effects of these different forms for DHA supply to cancer cells in vitro are limited. In this study, the effect of free DHA and five lipids carrying one to three DHA chains (LPC-DHA, PC-DHA, MAG-DHA, DAG-DHA and TAG-DHA) on the viability of the MDA-MB-231 breast cancer cell line was compared. Our results revealed a strong structure-function relationship of DHA-carrying lipids on the viability of MDA-MB-231 cells. Glycerophosphocholine-based lipids are the most effective DHA carriers in reducing the viability of MDA-MB-231 cells, with LPC-DHA being more effective (IC50 = 23.7 µM) than PC-DHA (IC50 = 67 µM). The other tested lipids are less toxic (MAG-DHA, free DHA) or even not toxic (DAG-DHA, TAG-DHA) under our conditions. Investigating the mechanism of cell death induced by LPC-DHA revealed increased oxidative stress and membrane cell damage.
Collapse
Affiliation(s)
- Dalal Mohamad Ali
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
- Toulouse Biotechnology Institute, Equipe CIMEs, Université de Toulouse, CNRS, INRAE, INSA, F-31077 Toulouse, France
| | - Kevin Hogeveen
- Unité de Toxicologie des Contaminants, ANSES, F-35306 Fougères, France
| | - Rose-Marie Orhant
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Tiphaine Le Gal de Kerangal
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Françoise Ergan
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Lionel Ulmann
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Gaëlle Pencreac'h
- BiOSSE: Biology of Organisms, Stress, Health, Environment, IUT de Laval, Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| |
Collapse
|
13
|
Tallima H, El Ridi R. Mechanisms of Arachidonic Acid In Vitro Tumoricidal Impact. Molecules 2023; 28:molecules28041727. [PMID: 36838715 PMCID: PMC9966399 DOI: 10.3390/molecules28041727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
To promote the potential of arachidonic acid (ARA) for cancer prevention and management, experiments were implemented to disclose the mechanisms of its tumoricidal action. Hepatocellular, lung, and breast carcinoma and normal hepatocytes cell lines were exposed to 0 or 50 μM ARA for 30 min and then assessed for proliferative capacity, surface membrane-associated sphingomyelin (SM) content, neutral sphingomyelinase (nSMase) activity, beta 2 microglobulin (β2 m) expression, and ceramide (Cer) levels. Reactive oxygen species (ROS) content and caspase 3/7 activity were evaluated. Exposure to ARA for 30 min led to impairment of the tumor cells' proliferative capacity and revealed that the different cell lines display remarkably similar surface membrane SM content but diverse responses to ARA treatment. Arachidonic acid tumoricidal impact was shown to be associated with nSMase activation, exposure of cell surface membrane β2 m to antibody binding, and hydrolysis of SM to Cer, which accumulated on the cell surface and in the cytosol. The ARA and Cer-mediated inhibition of tumor cell viability appeared to be independent of ROS generation or caspase 3/7 activation. The data were compared and contrasted to findings reported in the literature on ARA tumoricidal mechanisms.
Collapse
Affiliation(s)
- Hatem Tallima
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence:
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
14
|
Moon YA. Emerging roles of polyunsaturated fatty acid synthesis pathway in colorectal cancer. Anim Cells Syst (Seoul) 2023; 27:61-71. [PMID: 36970499 PMCID: PMC10035963 DOI: 10.1080/19768354.2023.2189933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
The development of colorectal cancer typically involves the accumulated influences of genetic alterations, medical issues, lifestyle, and diet. Dietary fatty acids appear to affect the tumorigenesis and progression of colorectal cancer. Despite conflicting results, the current consensus on the effects of very long-chain polyunsaturated fatty acids on colorectal cancer is that low levels of eicosapentaenoic acid and docosahexaenoic acid, and high levels of arachidonic acid are associated with an increased risk of colorectal cancer. Altered levels of arachidonic acid in membrane phospholipids can change the levels of prostaglandin E2, which affect the biological activities of cancer cells in multiple stages. Arachidonic acid and other very long-chain polyunsaturated fatty acids can affect tumorigenesis in prostaglandin E2-independent manners as well, including stabilization of β-catenine, ferroptosis, ROS generation, regulation of transcription factors, and de novo lipogenesis. Recent studies have revealed an association between the activities of enzymes synthesizing very long-chain polyunsaturated fatty acids and tumorigenesis and cancer progression, although the mechanisms are still unknown. In this study, PUFA effects on tumorigenesis, the endogenous very long-chain polyunsaturated fatty acid synthesis pathway, metabolites of arachidonic acid and their effects on tumorigenesis and progression of CRC, and current knowledge that supports the association of the enzymes involved in the polyunsaturated fatty acid synthesis pathway with colorectal cancer tumorigenesis and progression are reviewed.
Collapse
Affiliation(s)
- Young-Ah Moon
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
- Young-Ah Moon Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| |
Collapse
|
15
|
Zhang Z, Jiang Y, Li X, Shi D, Ma T, Zhou R, Zhang C. Association of dietary n - 3 polyunsaturated fatty acids with breast cancer risk: Serial mediating roles of erythrocyte n - 3 polyunsaturated fatty acids. Front Nutr 2022; 9:990755. [DOI: 10.3389/fnut.2022.990755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundDietary n– 3 polyunsaturated fatty acids (PUFAs) were found to be inversely associated with breast cancer risk; however, the underlying pathways between them remain uncertain. We aimed to explore serial mediatory roles of erythrocyte n– 3 PUFAs in association between dietary n– 3 PUFAs and breast cancer risk.Materials and methodsUsing a case-control study, 850 cases and 861 controls completed structured questionnaires with dietary information. Erythrocyte n– 3 PUFAs were measured by gas chromatography. Odds ratios (ORs) and 95% confidence intervals (CIs) were obtained using multiple unconditional logistic regression models to examine association between dietary n– 3 PUFAs and breast cancer risk. Mediation analyses with bootstrapping were conducted to investigate indirect effects.ResultsHigher intake of dietary ALA, long-chain n– 3 PUFAs and total n– 3 PUFAs was associated with lower risk of breast cancer. The adjusted ORtertile 3 v.1 (95% CI) was 0.70 (0.55, 0.90) for ALA, 0.76 (0.60, 0.97) for long-chain n– 3 PUFAs and 0.74 (0.58, 0.94) for total n– 3 PUFAs, respectively. Mediation analysis showed that erythrocyte long-chain n– 3 PUFAs served as sequential mediators in the relationship between dietary long-chain or total n– 3 PUFAs and breast cancer risk. In particular, erythrocyte long-chain n– 3 PUFAs completely mediated the association between dietary long-chain n– 3 PUFAs and breast cancer risk [indirect effect (95% CI) = –0.982 (–1.529, –0.508)]. The relationship between dietary total n– 3 PUFAs and breast cancer risk was partly mediated by erythrocyte long-chain n– 3 PUFAs [indirect effect (95% CI) = –0.107 (–0.216, –0.014)], accounting for 19.31%. However, the serial mediation model in dietary ALA and risk of breast cancer was not statistically significant [indirect effect (95% CI) = –0.042 (–0.144, 0.049)].ConclusionThis study highlights the complexity and inaccuracy in using a simple analysis of individual dietary n– 3 PUFAs to examine their associations with breast cancer risk without considering the variety of metabolic processes. Interventions aimed at increasing erythrocyte long-chain n– 3 PUFAs may represent a promising strategy for breast cancer prevention.
Collapse
|
16
|
Kim HK, Kang EY, Go GW. Recent insights into dietary ω-6 fatty acid health implications using a systematic review. Food Sci Biotechnol 2022; 31:1365-1376. [PMID: 36060573 PMCID: PMC9433510 DOI: 10.1007/s10068-022-01152-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/17/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The American Heart Association suggests that consuming ω-6 fatty acids (5-10% of total energy) can prevent cardiovascular disease by improving lipoprotein profiles. However, some studies warn of deleterious effects of these due to eicosanoid biosynthesis. We explored the five years for clinical evidence of ω-6 fatty acids on several diseases including inflammation, cancer, cardiovascular disease, and metabolic syndrome. Predefined criteria identified a total of 21 articles in 5 databases. Some studies indicated that dietary arachidonic acid was not related to increase of pro-inflammatory cytokines. In cohort studies, ω-6 fatty acids prevented the onset of digestive and lung cancer. ω-6 Fatty acids improved blood lipoprotein profiles. Moreover, consuming ω-6 fatty acids delayed diabetes mellitus and chronic renal disease and had positive effects on muscle recovery and glaucoma. In conclusion, ω-6 fatty acids have beneficial effects on cancers, blood lipoprotein profiles, diabetes, renal disease, muscle function, and glaucoma without inflammation response.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Eun Young Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| | - Gwang-woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Korea
| |
Collapse
|
17
|
Biswas P, Datta C, Rathi P, Bhattacharjee A. Fatty acids and their lipid mediators in the induction of cellular apoptosis in cancer cells. Prostaglandins Other Lipid Mediat 2022; 160:106637. [PMID: 35341977 DOI: 10.1016/j.prostaglandins.2022.106637] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/06/2023]
Abstract
The oxygenation of polyunsaturated fatty acids such as arachidonic and linoleic acid through enzymes like lipoxygenases (LOXs) are common and often leads to the production of various bioactive lipids that are important both in acute inflammation and its resolution and thus in disease progression. Amongst the several isoforms of LOX that are expressed in mammals, 15-lipoxygenase (15-LOX) has shown to be crucial in the context of inflammation. Moreover, being expressed in cells of the immune system, as well as in epithelial cells; the enzyme has been shown to crosstalk with a number of important signalling pathways. Mounting evidences from recent reports suggest that 15-LOX has anti-cancer activities which are dependent or independent of its metabolites, and is executed through several downstream pathways like cGMP, PPAR, p53, p21 and NAG-1. However, it is still unclear whether the up-regulation of 15-LOX is associated with cancer cell apoptosis. Monoamine oxidase A (MAO-A), on the other hand, is a mitochondrial flavoenzyme which is believed to be involved in the pathogenesis of atherosclerosis and inflammation and in many other neurological disorders. MAO-A has also been reported as a potential therapeutic target in different types of cancers like prostate cancer, lung cancer etc. In this review, we discussed about the role of fatty acids and their lipid mediators in cancer cell apoptosis. Here we particularly focused on the contribution of oxidative enzymes like 15-LOX and MAO-A in mediating apoptosis in lung cancer cell after fatty acid induction.
Collapse
Affiliation(s)
- Pritam Biswas
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Chandreyee Datta
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Parul Rathi
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur 713209, West Bengal, India.
| |
Collapse
|
18
|
Bhullar AS, Rivas-Serna IM, Anoveros-Barrera A, Dunichand-Hoedl A, Bigam D, Khadaroo RG, McMullen T, Bathe O, Putman CT, Baracos V, Clandinin MT, Mazurak VC. Depletion of essential fatty acids in muscle is associated with shorter survival of cancer patients undergoing surgery-preliminary report. Sci Rep 2021; 11:23006. [PMID: 34836998 PMCID: PMC8626431 DOI: 10.1038/s41598-021-02269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022] Open
Abstract
Emerging studies are reporting associations between skeletal muscle abnormalities and survival in cancer patients. Cancer prognosis is associated with depletion of essential fatty acids in erythrocytes and plasma in humans. However the relationship between skeletal muscle membrane fatty acid composition and survival is unknown. This study investigates the relationship between fatty acid content of phospholipids in skeletal muscle and survival in cancer patients. Rectus abdominis biopsies were collected during cancer surgery from 35 patients diagnosed with cancer. Thin-layer and gas chromatography were used for quantification of phospholipid fatty acids. Cutpoints for survival were defined using optimal stratification. Median survival was between 450 and 500 days when patients had arachidonic acid (AA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in muscle phospholipid below the cut-point compared to 720-800 days for patients above. Cox regression analysis revealed that low amounts of AA, EPA and DHA are risk factors for death. The risk of death remained significant for AA [HR 3.5 (1.11-10.87), p = 0.03], EPA [HR 3.92 (1.1-14.0), p = 0.04] and DHA [HR 4.08 (1.1-14.6), p = 0.03] when adjusted for sex. Lower amounts of essential fatty acids in skeletal muscle membrane is a predictor of survival in cancer patients. These results warrant investigation to restore bioactive fatty acids in people with cancer.
Collapse
Affiliation(s)
- Amritpal S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Irma Magaly Rivas-Serna
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Ana Anoveros-Barrera
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - Abha Dunichand-Hoedl
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
| | - David Bigam
- Department of Surgery, University of Alberta, Edmonton, Canada
| | | | - Todd McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Oliver Bathe
- Departments of Surgery and Oncology, Tom Baker Cancer Centre, University of Calgary, Calgary, Canada
| | - Charles T Putman
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Vickie Baracos
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Michael T Clandinin
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, Canada
| | - Vera C Mazurak
- Department of Agricultural, Food & Nutritional Science, University of Alberta, 4-002 Li Ka Shing Centre for Health Research Innovation, 8602-112 St NW, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Larsson SC, Carter P, Vithayathil M, Mason AM, Michaëlsson K, Baron JA, Burgess S. Genetically predicted plasma phospholipid arachidonic acid concentrations and 10 site-specific cancers in UK biobank and genetic consortia participants: A mendelian randomization study. Clin Nutr 2021; 40:3332-3337. [DOI: 10.1016/j.clnu.2020.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022]
|
20
|
Ge S, Zhou H, Zhou Z, Liu L, Lou J. Serum metabolite profiling of a 4-Nitroquinoline-1-oxide-induced experimental oral carcinogenesis model using gas chromatography-mass spectrometry. PeerJ 2021; 9:e10619. [PMID: 33505800 PMCID: PMC7789858 DOI: 10.7717/peerj.10619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
Background Oral cancer progresses from hyperplastic epithelial lesions through dysplasia to invasive carcinoma. The critical needs in oral cancer treatment are expanding our knowledge of malignant tumour progression and the development of useful approaches to prevent dysplastic lesions. This study was designed to gain insights into the underlying metabolic transformations that occur during the process of oral carcinogenesis. Methods We used gas chromatography-mass spectrometry (GC-MS) in conjunction with multivariate statistical techniques to observe alterations in serum metabolites in a 4-Nitroquinoline 1-oxide (4NQO)-induced rat tongue carcinogenesis model. Thirty-eight male rats were randomly divided into two groups, including the 4NQO-induced model group of 30 rats and the healthy control group of five rats. Animals were sacrificed at weeks 9, 13, 20, 24, and 32, post-4NQO treatment. Tissue samples were collected for histopathological examinations and blood samples were collected for metabolomic analysis. Partial least squares discriminate analysis (PLS-DA) models generated from GC-MS metabolic profile data showed robust discrimination from rats with oral premalignant and malignant lesions induced by 4NQO, and normal controls. Results The results found 16 metabolites associated with 4NQO-induced rat tongue carcinogenesis. Dysregulated arachidonic acid, fatty acid, and glycine metabolism, as well as disturbed tricarboxylic acid (TCA) cycle and mitochondrial respiratory chains were observed in the animal model. The PLS-DA models of metabolomic results demonstrated good separations between the 4NQO-induced model group and the normal control group. Conclusion We found several metabolites modulated by 4NQO and provide a good reference for further study of early diagnosis in oral cancer.
Collapse
Affiliation(s)
- Shuyun Ge
- Department of Oral Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| | - Haiwen Zhou
- Department of Oral Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| | - Zengtong Zhou
- Department of Oral Medicine, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R.China
| | - Lin Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, P. R. China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, P. R. China
| | - Jianing Lou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, P. R. China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, P. R. China.,Department of Stomatology, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
21
|
Abstract
In the present study, we analysed the effects of SNP rs174547 (T/C) in the fatty acid desaturase 1 (FADS1) gene on long-chain PUFA levels. Four databases were searched to retrieve related literature with keywords such as fatty acid (FA), SNP, FADS1 and rs174547. A meta-analysis of the data was performed using Stata12.0 software, including summary statistics, test for heterogeneity, evaluation of publication bias, subgroup analysis and sensitivity analysis. The associations between rs174547 in FADS1 and seven types of FA, and Δ-5 (D5D) and Δ-6 fatty acid desaturase (D6D) activity were assessed based on the pooled results from eleven papers. A total of 3713 individuals (1529 TT and 2184 TC + CC) were included. The results demonstrated that minor C allele carriers of rs174547 had higher linoleic acid (LA; P < 0·001) and α-linolenic acid (P = 0·020) levels, lower γ-linolenic acid (GLA; P = 0·001) and arachidonic acid (P = 0·024) levels, and lower D5D (P = 0·005) and D6D (P = 0·004) activities than the TT genotype group. Stratification analysis showed that minor C allele carriers of rs174547 had higher LA and lower GLA levels and lower D6D activities in plasma (LA, P < 0·001; GLA, P < 0·001; D6D activity, P < 0·001) samples and in Asian populations (LA, P < 0·001; GLA, P = 0·001; D6D activity, P = 0·001) than the TT genotype group. In conclusion, minor C allele carriers of the SNP rs174547 were associated with decreased activity of D5D and D6D.
Collapse
|
22
|
Investigation of the content differences of arachidonic acid metabolites in a mouse model of breast cancer by using LC-MS/MS. J Pharm Biomed Anal 2020; 194:113763. [PMID: 33279296 DOI: 10.1016/j.jpba.2020.113763] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 11/21/2022]
Abstract
Arachidonic acid (AA) is closely associated with breast cancer. In addition to the two metabolic pathways regulated by cyclooxygenase and lipoxygenase, AA has a third metabolic pathway through which cytochrome P450 (CYP) enzymes produce hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs). The targeted CYP-mediated pathway of AA can not only kill cancer cells but also inhibit the interstitial microenvironment around a tumor. Therefore, it makes sense to identify potential biomarkers from the AA metabolome for the diagnosis and treatment of breast cancer. This study established a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the analysis of AA and its main metabolites, EETs and HETEs, in MMTV-PyMT mice, a spontaneous breast cancer mouse model. The results showed that there were significant differences in the concentrations of AA, 12-HETE, 19-HETE and 8,9-EET in plasma and tumor tissues between normal and MMTV-PyMT mice. Therefore, the eicosanoids mentioned above may be used as new biomarkers for breast cancer diagnosis. This study provides a new perspective for the recognition and diagnosis of breast cancer.
Collapse
|
23
|
Lope V, Del Pozo MDP, Criado-Navarro I, Pérez-Gómez B, Pastor-Barriuso R, Ruiz E, Castelló A, Lucas P, Sierra Á, Salas-Trejo D, Llobet R, Martínez I, Romieu I, Chajès V, Priego-Capote F, Pollán M. Serum Phospholipid Fatty Acids and Mammographic Density in Premenopausal Women. J Nutr 2020; 150:2419-2428. [PMID: 32584993 DOI: 10.1093/jn/nxaa168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The role of fatty acids (FAs) on mammographic density (MD) is unclear, and available studies are based on self-reported dietary intake. OBJECTIVES This study assessed the association between specific serum phospholipid fatty acids (PLFAs) and MD in premenopausal women. METHODS The cross-sectional study DDM-Madrid recruited 1392 Spanish premenopausal women, aged 39-50 y, who attended a screening in a breast radiodiagnosis unit of Madrid City Council. Women completed lifestyle questionnaires and FFQs. Percentage MD was estimated using a validated computer tool (DM-Scan), and serum PLFA percentages were measured by GC-MS. Multivariable linear regression models were used to quantify the association of FA tertiles with MD. Models were adjusted for age, education, BMI, waist circumference, parity, oral contraceptive use, previous breast biopsies, and energy intake, and they were corrected for multiple testing. RESULTS Women in the third tertile of SFAs showed significantly higher MD compared with those in the first tertile (βT3vsT1 = 7.53; 95% CI: 5.44, 9.61). Elevated relative concentrations of palmitoleic (βT3vsT1 = 3.12; 95% CI: 0.99, 5.25) and gondoic (βT3vsT1 = 2.67; 95% CI: 0.57, 4.77) MUFAs, as well as high relative concentrations of palmitelaidic (βT3vsT1 = 5.22; 95% CI: 3.15, 7.29) and elaidic (βT3vsT1 = 2.69; 95% CI: 0.59, 4.79) trans FAs, were also associated with higher MD. On the contrary, women with elevated relative concentrations of n-6 (ω-6) linoleic (βT3vsT1 = -5.49; 95% CI; -7.62, -3.35) and arachidonic (βT3vsT1 = -4.68; 95% CI: -6.79, -2.58) PUFAs showed lower MD. Regarding desaturation indices, an elevated palmitoleic to palmitic ratio and a low ratio of oleic to steric and arachidonic to dihomo-γ-linolenic acids were associated with higher MD. CONCLUSIONS Spanish premenopausal women with high relative concentrations of most SFAs and some MUFAs and trans FAs showed an increased MD, whereas those with high relative concentrations of some n-6 PUFAs presented lower density. These results, which should be confirmed in further studies, underscore the importance of analyzing serum FAs individually.
Collapse
Affiliation(s)
- Virginia Lope
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - María Del Pilar Del Pozo
- Department of Preventive Medicine, Public Health, and Microbiology, Autonomous University of Madrid, Madrid, Spain
| | - Inmaculada Criado-Navarro
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Cordoba, Cordoba, Spain
- Maimónides Institute of Biomedical Research, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Beatriz Pérez-Gómez
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Roberto Pastor-Barriuso
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Emma Ruiz
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Adela Castelló
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
- Faculty of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Pilar Lucas
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Ángeles Sierra
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Dolores Salas-Trejo
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
- Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain
- Center for Public Health Research CSISP, FISABIO, Valencia, Spain
| | - Rafael Llobet
- Institute of Computer Technology, Polytechnic University of Valencia, Valencia, Spain
| | - Inmaculada Martínez
- Valencian Breast Cancer Screening Program, General Directorate of Public Health, Valencia, Spain
- Center for Public Health Research CSISP, FISABIO, Valencia, Spain
| | - Isabelle Romieu
- Center for Research on Population Health, National Institute of Public Health, Cuernavaca, Mexico
- Huber Department of Global Health, Emory University, Atlanta, GA, USA
| | - Véronique Chajès
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Cordoba, Cordoba, Spain
- Maimónides Institute of Biomedical Research, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Marina Pollán
- Cancer and Environmental Epidemiology Unit, Department of Epidemiology of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| |
Collapse
|
24
|
N-6 Polyunsaturated Fatty Acids and Risk of Cancer: Accumulating Evidence from Prospective Studies. Nutrients 2020; 12:nu12092523. [PMID: 32825393 PMCID: PMC7551408 DOI: 10.3390/nu12092523] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Previous studies on the association between polyunsaturated fatty acids (PUFAs) and cancer have focused on n-3 PUFAs. To investigate the association between intake or blood levels of n-6 PUFAs and cancer, we searched the PubMed and Embase databases up to March 2020 and conducted a meta-analysis. A total of 70 articles were identified. High blood levels of n-6 PUFAs were associated with an 8% lower risk of all cancers (relative risk (RR) = 0.92; 95% confidence interval (CI): 0.86-0.98) compared to low blood levels of n-6 PUFAs. In the subgroup analyses by cancer site, type of n-6 PUFAs, and sex, the inverse associations were strong for breast cancer (RR = 0.87; 95% CI: 0.77-0.98), linoleic acid (LA) (RR = 0.91; 95% CI: 0.82-1.00), and women (RR = 0.88; 95% CI: 0.79-0.97). In the dose-response analysis, a 2% and 3% decrease in the risk of cancer was observed with a 5% increase in blood levels of n-6 PUFAs and LA, respectively. Thus, there was no significant association between n-6 PUFA intake and the risk of cancer. The pooled RR of cancer for the highest versus lowest category of n-6 PUFA intake was 1.02 (95% CI: 0.99-1.05). Evidence from prospective studies indicated that intake of n-6 PUFAs was not significantly associated with risk of cancer, but blood levels of n-6 PUFAs were inversely associated with risk of cancer.
Collapse
|
25
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
26
|
Khankari NK, Banbury BL, Borges MC, Haycock P, Albanes D, Arndt V, Berndt SI, Bézieau S, Brenner H, Campbell PT, Casey G, Chan AT, Chang-Claude J, Conti DV, Cotterchio M, English DR, Figueiredo JC, Giles GG, Giovannucci EL, Gunter MJ, Hampe J, Hoffmeister M, Hopper JL, Jenkins MA, Joshi AD, Marchand LL, Lemire M, Li CI, Li L, Lindblom A, Martín V, Moreno V, Newcomb PA, Offit K, Pharoah PDP, Rennert G, Sakoda LC, Schafmayer C, Schmit SL, Slattery ML, Song M, Thibodeau SN, Ulrich CM, Weinstein SJ, White E, Win AK, Wolk A, Woods MO, Wu AH, Cai Q, Denny JC, Edwards TL, Murff HJ, Gruber SB, Peters U, Zheng W. Mendelian Randomization of Circulating Polyunsaturated Fatty Acids and Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2020; 29:860-870. [PMID: 32051193 PMCID: PMC7125012 DOI: 10.1158/1055-9965.epi-19-0891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Results from epidemiologic studies examining polyunsaturated fatty acids (PUFA) and colorectal cancer risk are inconsistent. Mendelian randomization may strengthen causal inference from observational studies. Given their shared metabolic pathway, examining the combined effects of aspirin/NSAID use with PUFAs could help elucidate an association between PUFAs and colorectal cancer risk. METHODS Information was leveraged from genome-wide association studies (GWAS) regarding PUFA-associated SNPs to create weighted genetic scores (wGS) representing genetically predicted circulating blood PUFAs for 11,016 non-Hispanic white colorectal cancer cases and 13,732 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Associations per SD increase in the wGS were estimated using unconditional logistic regression. Interactions between PUFA wGSs and aspirin/NSAID use on colorectal cancer risk were also examined. RESULTS Modest colorectal cancer risk reductions were observed per SD increase in circulating linoleic acid [ORLA = 0.96; 95% confidence interval (CI) = 0.93-0.98; P = 5.2 × 10-4] and α-linolenic acid (ORALA = 0.95; 95% CI = 0.92-0.97; P = 5.4 × 10-5), whereas modest increased risks were observed for arachidonic (ORAA = 1.06; 95% CI = 1.03-1.08; P = 3.3 × 10-5), eicosapentaenoic (OREPA = 1.04; 95% CI = 1.01-1.07; P = 2.5 × 10-3), and docosapentaenoic acids (ORDPA = 1.03; 95% CI = 1.01-1.06; P = 1.2 × 10-2). Each of these effects was stronger among aspirin/NSAID nonusers in the stratified analyses. CONCLUSIONS Our study suggests that higher circulating shorter-chain PUFAs (i.e., LA and ALA) were associated with reduced colorectal cancer risk, whereas longer-chain PUFAs (i.e., AA, EPA, and DPA) were associated with an increased colorectal cancer risk. IMPACT The interaction of PUFAs with aspirin/NSAID use indicates a shared colorectal cancer inflammatory pathway. Future research should continue to improve PUFA genetic instruments to elucidate the independent effects of PUFAs on colorectal cancer.
Collapse
Affiliation(s)
- Nikhil K Khankari
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Maria C Borges
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Philip Haycock
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire (CHU) Nantes, Nantes, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Jenny Chang-Claude
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg (UCCH), Hamburg, Germany
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Michelle Cotterchio
- Prevention and Cancer Control, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Dallas R English
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Marc J Gunter
- Nutrition and Metabolism Section, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Jochen Hampe
- Department of Medicine, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | | | - Mathieu Lemire
- PanCuRx Translational Research Initiative, Ontario, Institute for Cancer Research, Toronto, Ontario, Canada
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Vicente Martín
- Área de Medicina Preventiva y Salud Publica, Universidad de León, León, Spain
| | - Victor Moreno
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, Washington
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Clemens Schafmayer
- Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephanie L Schmit
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Martha L Slattery
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Mingyang Song
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | | | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, Washington
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua C Denny
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd L Edwards
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Harvey J Murff
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Stephen B Gruber
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health and Community Medicine, Seattle, Washington
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
27
|
Roy S, Singh M, Rawat A, Kumar D, Kaithwas G. Mitochondrial apoptosis and curtailment of hypoxia-inducible factor-1α/fatty acid synthase: A dual edge perspective of gamma linolenic acid in ER+ mammary gland cancer. Cell Biochem Funct 2020; 38:591-603. [PMID: 32207176 DOI: 10.1002/cbf.3513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Gamma linolenic acid is a polyunsaturated fatty acid having selective anti-tumour properties with negligible systemic toxicity. In the present study, the anti-cancer potential of gamma linolenic acid and its effects on mitochondrial as well as hypoxia-associated marker was evaluated. The effect of gamma linolenic acid was scrutinised against ER + MCF-7 cells by using fluorescence microscopy, JC-1 staining, dot plot assay and cell cycle analysis. The in vitro results were also confirmed using carcinogen (n-methyl-n-nitrosourea) induced in vivo model. The early and late apoptotic signals in the conjugation with mitochondrial depolarisation were found once scrutinised through mitochondrial membrane potential and life death staining after gamma linolenic acid treatment. Gamma linolenic acid arrested the cell cycle in G0/G1 phase with the majority of cell populations in the early apoptotic stage. The translocation of phosphatidylserine was studied through annexin-V FITC dot plot assay. The markers of cellular proliferation (decreased alveolar bud count, histopathological architecture restoration and loss of tumour micro-vessels) were diminished after gamma linolenic acid treatment. Gamma linolenic acid ameliorates the biological effects of n-methyl-n-nitrosourea persuading the mitochondrial mediated death pathway and impeding the hypoxic microenvironment to make a halt in palmitic acid synthesis. SIGNIFICANCE: The present study elaborates the effect of gamma linolenic acid on mammary gland cancer by following mitochondrial-mediated death apoptosis pathway. Gamma linolenic acid also inhibits cell-wall synthesis by the curtailment of HIF-1α and FASN level in mammary gland cancer.
Collapse
Affiliation(s)
- Subhadeep Roy
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Atul Rawat
- Centre for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre for Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Lucknow, Uttar Pradesh, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Mika A, Kobiela J, Pakiet A, Czumaj A, Sokołowska E, Makarewicz W, Chmielewski M, Stepnowski P, Marino-Gammazza A, Sledzinski T. Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells. Sci Rep 2020; 10:1954. [PMID: 32029824 PMCID: PMC7005037 DOI: 10.1038/s41598-020-58895-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Although a growing body of evidence suggests that colorectal cancer (CRC) is associated with alterations of fatty acid (FA) profiles in serum and tumor tissues, available data about polyunsaturated fatty acid (PUFA) content in CRC patients are inconclusive. Our study showed that CRC tissues contained more PUFAs than normal large intestinal mucosa. However, serum levels of PUFAs in CRC patients were lower than in healthy controls. To explain the mechanism of PUFA alterations in CRC, we measured FA uptake by the colon cancer cells and normal colon cells. The levels of PUFAs in colon cancer cell culture medium decreased significantly with incubation time, while no changes were observed in the medium in which normal colon cells were incubated. Our findings suggest that the alterations in tumor and serum PUFA profiles result from preferential uptake of these FAs by cancer cells; indeed, PUFAs are essential for formation of cell membrane phospholipids during rapid proliferation of cancer cells. This observation puts into question potential benefits of PUFA supplementation in CRC patients.
Collapse
Affiliation(s)
- Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Jaroslaw Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Sokołowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Wojciech Makarewicz
- Department of Oncologic Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Michał Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Antonella Marino-Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, 90127, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100, Palermo, Italy
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
29
|
Jóźwiak M, Filipowska A, Fiorino F, Struga M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur J Pharmacol 2020; 871:172937. [PMID: 31958454 DOI: 10.1016/j.ejphar.2020.172937] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Traditional chemotherapy relies on the premise that rapidly proliferating cancer cells are more likely to be killed by a cytotoxic agent, but in reality, the long-standing problem of chemotherapy is the lack of tumor-specific treatments. Apart from the impact on tumor cells, the drugs' major limitation is their severe adverse side effects on normal cells and tissues. Nutritional and epidemiological studies have indicated that cancer progression is correlated with the consumption of fatty acids, but the exact mechanisms still remain unknown. In the first part of our review, we discussed the beneficial effects of free fatty acids (saturated and unsaturated) on the progress of carcinogenesis in different tumor cell lines. We presented various mechanisms proposed in the literature, which explain the possible impact on the cells metabolism. The second part describes modifications of different fatty acids with existing anticancer drugs and heterocyclic moieties by condensation reactions. Such conjugations increased the tissue selectivity and made chemotherapy potentially more effective and less toxic in in vivo and in vitro studies. This fatty acid modifications, which change the activity of compounds, their uptake selectivity and alter drug delivery methods, may be the key to unlocking true medical potential of fatty acids.
Collapse
Affiliation(s)
- Michał Jóźwiak
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Filipowska
- Department of Biosensors and Processing of Biomedical Signals, Silesian University of Technology, Zabrze, Poland
| | - Ferdinando Fiorino
- Dipartimento di Farmacia Universita di Napoli "Federico II", Naples, Italy
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
30
|
Seethaler B, Basrai M, Vetter W, Lehnert K, Engel C, Siniatchkin M, Halle M, Kiechle M, Bischoff SC. Fatty acid profiles in erythrocyte membranes following the Mediterranean diet - data from a multicenter lifestyle intervention study in women with hereditary breast cancer (LIBRE). Clin Nutr 2019; 39:2389-2398. [PMID: 31735538 DOI: 10.1016/j.clnu.2019.10.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Evidence-based concepts to prevent breast cancer in women with BRCA1/2 mutations are limited. Adherence to a Mediterranean diet (MedD) has been associated with a lower risk for breast cancer, possibly due to a favorable fatty acid (FA) intake. Here, we studied in an at-risk population the effect of a lifestyle intervention that included the MedD on FA composition in red blood cell membranes (RBCM). METHODS Data derived from the German multicenter trial LIBRE, from which 68 women were randomized into an intervention group (IG) trained for MedD and increased physical activity for 12 months, and a usual care control group (CG). Adherence to the diet was assessed after 3 and 12 months using the validated Mediterranean Diet Adherence Screener (MEDAS) and a food frequency questionnaire. RBCM FA were analyzed by gas chromatography with mass spectrometry. RESULTS The MEDAS was increased in both groups after 3 months (IG: P < 0.001; CG: P = 0.004), and remained increased only in the IG after 12 months (P < 0.001). The food frequency questionnaire revealed an increased intake of omega-3 (n-3) FA at month 3 and month 12 in the IG (both P < 0.01), but not in the CG, in which intake of energy, protein and saturated FA decreased. In both groups n-6 FA in the RBCM decreased (P < 0.001), while n-9 FA increased (P < 0.001) and n-3 FA were unchanged. Women with higher consumption of fish had higher amounts of n-3 fatty acids in the RBCM. The MEDAS was inversely correlated with n-6 fatty acids. CONCLUSIONS The RBCM FA composition was associated with dietetic parameters related to the MedD. Adherence to the MedD resulted in an altered, likely favorable FA composition. Our data suggest selected FA as biomarkers to monitor compliance to a dietetic intervention such as the MedD. CLINICAL TRIAL REGISTRY The trial is registered at ClinicalTrials.gov (reference: NCT02087592).
Collapse
Affiliation(s)
- Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany.
| | - Maryam Basrai
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany.
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, 70593, Stuttgart, Germany.
| | - Katja Lehnert
- Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, 70593, Stuttgart, Germany.
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstrasse 16-18, 04107, Leipzig, Germany.
| | - Michael Siniatchkin
- Institute for Medical Psychology and Sociology, University Hospital Schleswig-Holstein, Campus Kiel, Preusserstr. 1 - 9, 24105, Kiel, Germany.
| | - Martin Halle
- Department of Prevention and Sports Medicine, Klinikum Rechts der Isar, 6 Technical University Munich (TUM), Ismaninger Str. 22, 81675, Munich, Germany.
| | - Marion Kiechle
- Department of Gynecology, Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts Der Isar, Technical University Munich (TUM) and Comprehensive Cancer Center Munich (CCCM), Ismaninger Str. 22, 81675, München, Germany.
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany.
| |
Collapse
|
31
|
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| | - Priyatharini Ambigaipalan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada;
| |
Collapse
|
32
|
Ruan L, Cheng SP, Zhu QX. Dietary Fat Intake and the Risk of Skin Cancer: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Cancer 2019; 72:398-408. [PMID: 31298947 DOI: 10.1080/01635581.2019.1637910] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022]
Abstract
We conducted a meta-analysis to evaluate the association between fat intake and the risk of three major types of skin cancer including basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and cutaneous malignant melanoma (CMM). A comprehensive search of PubMed and EMBASE was performed to identify all relevant observational studies published up to December 1, 2018. Specific odds ratio (OR) or relative risk (RR) estimates for the highest versus the lowest intake of dietary fat and 95% confidence intervals (CI) from the included studies were pooled using random effect model. Three prospective cohort studies (175,675 participants and 30,915 BCC cases, 4,106 SCC cases and 1,638 CMM cases) and nine case-control studies (328 BCC cases, 493 SCC cases, 1,547 CMM cases and 2,660 controls) were identified. The pooled results indicated that dietary consumption of total fat and saturated fat were not associated with three major types of skin cancer. High consumption of monounsaturated fat was significantly associated with a decreased risk of BCC (RR: 0.90, 95% CI: 0.85-0.96) and high level of polyunsaturated fat intake was potentially positively associated with SCC (RR: 1.19, 95% CI: 1.06-1.33). Our findings should be confirmed by further evidence from well-designed and large-scale prospective cohort studies.
Collapse
Affiliation(s)
- Liang Ruan
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Shuang-Ping Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui Province, China
| | - Qi-Xing Zhu
- Institute of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
33
|
Szachowicz-Petelska B. Changes in the Lipid Composition of Biological Membranes under the Influence of Endogenous and Exogenous Factors. BIOCHEMISTRY (MOSCOW) 2019; 84:164-170. [PMID: 31216975 DOI: 10.1134/s000629791902007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Quantitative and qualitative assessments of cell membrane components are essential for the accurate interpretation of processes occurring in biological membranes. Changes in the structure and function of cell membrane components have been linked to oxidative stress. Oxidative stress induced by chronic ethanol consumption or cancer transformation has been implicated in changing the levels of phospholipids and fatty acids in the cell membrane. In this study, we used high-performance liquid chromatography to quantitate the effects of alcohol and malignant transformation on membrane components, namely phospholipids and free fatty acids. Ethanol increased the phospholipid levels. Moreover, the process of malignant transformation was accompanied by increased levels of phospholipids and arachidonic acid as well as decreased levels of linoleic acid and α-linolenic acid. Thus, these oxidative stress-inducing conditions that cause variations in the cellular composition affect the actions of the cell membrane and cell function.
Collapse
|
34
|
Ombra MN, Paliogiannis P, Stucci LS, Colombino M, Casula M, Sini MC, Manca A, Palomba G, Stanganelli I, Mandalà M, Gandini S, Lissia A, Doneddu V, Cossu A, Palmieri G. Dietary compounds and cutaneous malignant melanoma: recent advances from a biological perspective. Nutr Metab (Lond) 2019; 16:33. [PMID: 31139235 PMCID: PMC6528337 DOI: 10.1186/s12986-019-0365-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022] Open
Abstract
Cutaneous malignant melanoma is a heterogeneous disease, being the consequence of specific genetic alterations along several molecular pathways. Despite the increased knowledge about the biology and pathogenesis of melanoma, the incidence has grown markedly worldwide, making it extremely important to develop preventive measures. The beneficial role of correct nutrition and of some natural dietary compounds in preventing malignant melanoma has been widely demonstrated. This led to numerous studies investigating the role of several dietary attitudes, patterns, and supplements in the prevention of melanoma, and ongoing research investigates their impact in the clinical management and outcomes of patients diagnosed with the disease. This article is an overview of recent scientific advances regarding specific dietary compounds and their impact on melanoma development and treatment.
Collapse
Affiliation(s)
- Maria Neve Ombra
- 1Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Panagiotis Paliogiannis
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Luigia Stefania Stucci
- 3Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Maria Colombino
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Milena Casula
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Maria Cristina Sini
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Antonella Manca
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Grazia Palomba
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Ignazio Stanganelli
- 5Istituto Scientifico Romagnolo per Studio e Cura Tumori (IRST-IRCCS), Meldola, Italy
| | - Mario Mandalà
- 6Medical Oncology, "Papa Giovanni XXIII" Hospital, Bergamo, Italy
| | - Sara Gandini
- 7Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Amelia Lissia
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Valentina Doneddu
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Antonio Cossu
- 2Department of Medical, Surgical and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100 Sassari, Italy
| | - Giuseppe Palmieri
- 4Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | | |
Collapse
|
35
|
Wang H, Zhang S, Shen Q, Zhu MJ. A metabolomic explanation on beneficial effects of dietary Goji on intestine inflammation. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
36
|
Plasma and erythrocyte ω-3 and ω-6 fatty acids are associated with multiple inflammatory and oxidative stress biomarkers in breast cancer. Nutrition 2019; 58:194-200. [DOI: 10.1016/j.nut.2018.07.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/23/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
|
37
|
Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis 2019; 18:29. [PMID: 30684960 PMCID: PMC6347819 DOI: 10.1186/s12944-019-0977-8] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/16/2019] [Indexed: 02/06/2023] Open
Abstract
Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids, oxylipins and triacylglycerols in CRC patients' sera, tumor tissues and adipose tissue. Some of altered lipid molecules may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
Collapse
Affiliation(s)
- Alicja Pakiet
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| | - Jarosław Kobiela
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland.
| | - Adriana Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki 1, 80-211, Gdansk, Poland
| |
Collapse
|
38
|
Arshad Z, Rezapour-Firouzi S, Mohammadian M, Ebrahimifar M. The Sources of Essential Fatty Acids for Allergic and Cancer Patients; a Connection with Insight into Mammalian Target of Rapamycin: A Narrative Review. Asian Pac J Cancer Prev 2018; 19:2391-2401. [PMID: 30255691 PMCID: PMC6249470 DOI: 10.22034/apjcp.2018.19.9.2391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Disturbance in essential fatty acids (EFA) metabolism plays a key role in autoimmune diseases, but EFA supplementation with sources of borage, evening primrose, hemp seed and fish oils was not effective in atopic and cancer diseases, as that seen in the case of multiple sclerosis. It seems that two complexes of the mammalian target of rapamycin (mTOR) signaling, mTORC1 and mTORC2, are congruent with the two bases of the Traditional Iranian Medicine (TIM) therapy, Cold and Hot nature, which are essential for the efficacy of functional oils for controlling immune responses in autoimmune diseases. Methods: We searched PubMed database, Web of Science (WOS), Google Scholar, Scopus and selected studies by predefined eligibility criteria. We then assessed their quality and extracted data. Results: The oils controlled by Cold or Hot nature may be helpful in maintaining homeostasis and preventing autoimmune diseases. In summary, studies of randomized controlled trials for allergy and cancer patients found no improvement in the signs or response to tests, despite a remarkable change in EFA fractions in the blood by supplementation with sources of borage, evening primrose, hemp seed and fish oils. In contrast, portulaca oleracea oil exhibited protective effects by anti-inflammatory properties via the PI3K/Akt/mTORC2 pathway with a deviation immune response to Th1 to treat atopic diseases and cancer. Conclusions: According to the concept of Traditional Iranian Medicine therapy, in contrast to Cold-nature oils, EFA supplementation with the sources of Hot-nature oilsis not suitable for the treatment of atopic and cancerous diseases.
Collapse
Affiliation(s)
- Zhila Arshad
- Department of Pathology of Anatomy, School of Medicine, Baku University of Medical Sciences, Baku, Azerbaijan
| | | | - Mahshid Mohammadian
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| |
Collapse
|
39
|
Dietary n-3 and n-6 polyunsaturated fatty acids, the FADS gene, and the risk of gastric cancer in a Korean population. Sci Rep 2018; 8:3823. [PMID: 29491470 PMCID: PMC5830640 DOI: 10.1038/s41598-018-21960-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
n-3 polyunsaturated fatty acids (PUFAs) and n-6 PUFAs are reported to have immunomodulatory effects, but few studies have examined these functions. Thus, we examined whether dietary n-3 and n-6 PUFAs are associated with the risk of gastric cancer and further investigated whether fatty acid desaturases 1 and 2 (FADS1 and FADS2) modify this association. In a case-control study, 1,464 participants (402 cases and 1,062 controls) were enrolled. A semi-quantitative food frequency questionnaire was utilized to measure dietary PUFA intake. Genotyping was performed using the Axiom® Exome 319 Array. Multivariable logistic models were established after adjusting for confounding variables. The risk of gastric cancer was significantly decreased among participants who had the highest tertile intake of docosahexaenoic acid (DHA), an n-3 PUFA, even after adjusting for covariates [odds ratios (OR) = 0.72, 95% confidence intervals (95% CIs) = 0.53-0.99]. However, no significant interaction according to FADS1 rs174546 or FADS2 rs174583 was observed. In conclusion, we observed a significant inverse association between dietary DHA and the risk of gastric cancer but found that FADS1 rs174546 and FADS2 rs174583 did not modify the association between dietary n-3 or n-6 PUFAs and gastric cancer risk.
Collapse
|
40
|
Chilton FH, Dutta R, Reynolds LM, Sergeant S, Mathias RA, Seeds MC. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases. Nutrients 2017; 9:E1165. [PMID: 29068398 PMCID: PMC5707637 DOI: 10.3390/nu9111165] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/07/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. METHODS This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene-diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. CONCLUSIONS The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease.
Collapse
Affiliation(s)
- Floyd H Chilton
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rahul Dutta
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Lindsay M Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Susan Sergeant
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Rasika A Mathias
- GeneSTAR Research Program, General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | - Michael C Seeds
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
41
|
Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity. Protein J 2017. [PMID: 28646265 DOI: 10.1007/s10930-017-9727-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.
Collapse
|
42
|
Nagata M, Hata J, Hirakawa Y, Mukai N, Yoshida D, Ohara T, Kishimoto H, Kawano H, Kitazono T, Kiyohara Y, Ninomiya T. The ratio of serum eicosapentaenoic acid to arachidonic acid and risk of cancer death in a Japanese community: The Hisayama Study. J Epidemiol 2017; 27:578-583. [PMID: 28669629 PMCID: PMC5623032 DOI: 10.1016/j.je.2017.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
Background Whether the intake of eicosapentaenoic acid (EPA) or arachidonic acid (AA) affects the risk of cancer remains unclear, and the association between the serum EPA:AA ratio and cancer risk has not been fully evaluated in general populations. Methods A total of 3098 community-dwelling subjects aged ≥40 years were followed up for 9.6 years (2002–2012). The levels of the serum EPA:AA ratio were categorized into quartiles (<0.29, 0.29–0.41, 0.42–0.60, and >0.60). The risk estimates were computed using a Cox proportional hazards model. The same analyses were conducted for the serum docosahexaenoic acid to arachidonic acid (DHA:AA) ratio and individual fatty acid concentrations. Results During the follow-up period, 121 subjects died of cancer. Age- and sex-adjusted cancer mortality increased with lower serum EPA:AA ratio levels (P trend<0.05). In the multivariable-adjusted analysis, the subjects in the first quartile of the serum EPA:AA ratio had a 1.93-fold (95% confidence interval, 1.15–3.22) greater risk of cancer death than those in the fourth quartile. Lower serum EPA concentrations were marginally associated with higher cancer mortality (P trend<0.11), but the serum DHA or AA concentrations and the serum DHA:AA ratio were not (all P trend>0.37). With regard to site-specific cancers, lower serum EPA:AA ratio was associated with a higher risk of death from liver cancer. However, no such associations were detected for deaths from other cancers. Conclusions These findings suggest that decreased level of the serum EPA:AA ratio is a significant risk factor for cancer death in the general Japanese population. Lower serum EPA:AA ratio was significantly associated with higher cancer mortality. The risk of death from liver cancer increased with lower serum EPA:AA ratio. No significant association was found between serum DHA:AA ratio and cancer death.
Collapse
Affiliation(s)
- Masaharu Nagata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoichiro Hirakawa
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoko Mukai
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daigo Yoshida
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiro Kishimoto
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Kawano
- Developmental Research, Mochida Pharmaceutical CO., Ltd., Gotenba, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Kiyohara
- Hisayama Research Institute For Lifestyle Diseases, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
43
|
Huerta-Yépez S, Tirado-Rodriguez AB, Hankinson O. Role of diets rich in omega-3 and omega-6 in the development of cancer. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:446-456. [PMID: 29421289 DOI: 10.1016/j.bmhimx.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, some studies have addressed the therapeutic effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and the opposite effects of omega-6 (ω-6) PUFAs on several diseases, including cardiovascular disorders, diabetes, neurodegenerative diseases, and cancer. Research demonstrates the safety of these naturally occurring ingredients. Of particular interest, several studies have shown that ω-3 PUFAs possess a therapeutic role against certain types of cancer. It is also known that ω-3 PUFAs can improve the efficacy and tolerability of chemotherapy. Previous reports have indicated that suppression of nuclear factor-κB, activation of AMPK/SIRT1, modulation of cyclooxygenase (COX) activity, and up-regulation of novel anti-inflammatory lipid mediators such as protectins, maresins, and resolvins, are the main mechanisms of the antineoplastic effect of ω-3 PUFAs. In contrast, several studies have demonstrated that ω-6 PUFAs induce progression in certain types of cancer. In this review, we discuss epidemiological and experimental studies addressing the relationship between the development of some types of cancer, including colon and colorectal carcinoma, breast cancer, prostate cancer, lung cancer and neuroblastoma, and the ingestion to ω-3 and ω-6 (PUFAs). We also discuss the clinical data, addressing the therapeutic role of omega-3 PUFA against different types of cancer.
Collapse
Affiliation(s)
- Sara Huerta-Yépez
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States; Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Ana B Tirado-Rodriguez
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States
| | - Oliver Hankinson
- Department of Pathology & Laboratory Medicine, UCLA Medical Center, Center for the Health Sciences, Los Angeles, United States.
| |
Collapse
|
44
|
Huerta-Yépez S, Tirado-Rodriguez AB, Hankinson O. Role of diets rich in omega-3 and omega-6 in the development of cancer. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.bmhime.2017.11.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Cui T, Hester AG, Seeds MC, Rahbar E, Howard TD, Sergeant S, Chilton FH. Impact of Genetic and Epigenetic Variations Within the FADS Cluster on the Composition and Metabolism of Polyunsaturated Fatty Acids in Prostate Cancer. Prostate 2016; 76:1182-91. [PMID: 27197070 PMCID: PMC6680327 DOI: 10.1002/pros.23205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND In vitro and experimental animal studies have demonstrated that high levels of omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and high ratios of n-6 to omega-3 (n-3) PUFAs are strongly associated with the development and progression of prostate cancer (PCA). However, epidemiological studies in humans have demonstrated inconsistent findings linking dietary PUFAs and PCA risk. We hypothesize that genetic and epigenetic variations within the fatty acid desaturase (FADS) gene cluster produce gene-diet interactions that may explain these disparate findings. This study tested the relationship of the genotype of a single nucleotide polymorphism, rs174537, and the methylation status of a CpG site, cg27386326, with PUFA composition, and markers of PUFA biosynthesis in PCA tissue. METHODS Sixty PCA specimens from patients undergoing radical prostatectomy were genotyped, pyrosequenced and quantitated for fatty acids (FAs). RESULTS Long-chain (LC)-PUFAs, such as arachidonic acid (ARA), were abundant in these specimens, with ARA accounting for 15.8% of total FAs. In addition, there was a positive association of the G allele at rs174537 with concentrations of ARA and adrenic acid and ratios of products to precursors within the n-6 PUFA pathway such that specimens from homozygous G individuals exhibited increasingly higher values as compared to specimens from heterozygous individuals and homozygous T individuals. Finally, the methylation status of cg27386326 was inversely correlated with tissue concentrations of LC-PUFAs and markers of LC-PUFA biosynthesis. CONCLUSIONS These data reveal that genetic and epigenetic variations within the FADS cluster are highly associated with LC-PUFA concentrations and LC-PUFA biosynthetic capacity in PCA tissue. They also raise the potential that gene-PUFA interactions play an important role in PCA risk and severity. Prostate 76:1182-1191, 2016. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tao Cui
- Department of UrologyWake Forest School of MedicineWinston‐SalemNorth Carolina
| | - Austin G. Hester
- Department of UrologyWake Forest School of MedicineWinston‐SalemNorth Carolina
| | - Michael C. Seeds
- Department of Internal MedicineSection on Translational and Molecular MedicineWake Forest School of MedicineWinston‐SalemNorth Carolina
| | - Elaheh Rahbar
- Department of Biomedical EngineeringWake Forest School of MedicineWinston‐SalemNorth Carolina
| | - Timothy D. Howard
- Department of Internal MedicineSection on Genetics and GenomicsWake Forest School of MedicineWinston‐SalemNorth Carolina
| | - Susan Sergeant
- Department of BiochemistryWake Forest School of MedicineWinston‐SalemNorth Carolina
| | - Floyd H. Chilton
- Department of Physiology and PharmacologyWake Forest School of MedicineWinston‐SalemNorth Carolina
| |
Collapse
|
46
|
Khankari NK, Murff HJ, Zeng C, Wen W, Eeles RA, Easton DF, Kote-Jarai Z, Al Olama AA, Benlloch S, Muir K, Giles GG, Wiklund F, Gronberg H, Haiman CA, Schleutker J, Nordestgaard BG, Travis RC, Donovan JL, Pashayan N, Khaw KT, Stanford JL, Blot WJ, Thibodeau SN, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Brenner H, Park J, Kaneva R, Batra J, Teixeira MR, Pandha H, Zheng W, the PRACTICAL consortium. Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. Br J Cancer 2016; 115:624-31. [PMID: 27490808 PMCID: PMC4997551 DOI: 10.1038/bjc.2016.228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations between PUFAs and prostate cancer risk. METHODS We used individual-level data from a consortium of 22 721 cases and 23 034 controls of European ancestry. Externally-weighted PUFA-specific polygenic risk scores (wPRSs), with explanatory variation ranging from 0.65 to 33.07%, were constructed and used to evaluate associations with prostate cancer risk per one standard deviation (s.d.) increase in genetically-predicted plasma PUFA levels using multivariable-adjusted unconditional logistic regression. RESULTS No overall association was observed between the genetically-predicted PUFAs evaluated in this study and prostate cancer risk. However, risk reductions were observed for short-chain PUFAs, linoleic (ORLA=0.95, 95%CI=0.92, 0.98) and α-linolenic acids (ORALA=0.96, 95%CI=0.93, 0.98), among men <62 years; whereas increased risk was found among men ⩾62 years for LA (ORLA=1.04, 95%CI=1.01, 1.07). For long-chain PUFAs (i.e., arachidonic, eicosapentaenoic, and docosapentaenoic acids), increased risks were observed among men <62 years (ORAA=1.05, 95%CI=1.02, 1.08; OREPA=1.04, 95%CI=1.01, 1.06; ORDPA=1.05, 95%CI=1.02, 1.08). CONCLUSION Results from this study suggest that circulating ω-3 and ω-6 PUFAs may have a different role in the aetiology of early- and late-onset prostate cancer.
Collapse
Affiliation(s)
- Nikhil K Khankari
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Harvey J Murff
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Chenjie Zeng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, UK
| | - Douglas F Easton
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK
| | - Ali Amin Al Olama
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
| | - Sara Benlloch
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
| | - Kenneth Muir
- Institute of Population Health, University of Warwick, Coventry CV4 7AL, UK
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, 615 St Kilda Road, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Johanna Schleutker
- Department of Medical Biochemistry and Genetics, University of Turku, Turku 20014, Finland
- Institute of Biomedical Technology/BioMediTech, University of Tampere and FimLab Laboratories, Kalevantie 4, Tampere 33014, Finland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev 2730, Denmark
| | - Ruth C Travis
- Cancer Epidemiology, Nuffield Department of Population Health University of Oxford, Oxford OX3 7LF, UK
| | - Jenny L Donovan
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Nora Pashayan
- Strangeways Research Laboratory, Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, 2 Worts' Causeway, Cambridge CB1 8RN, UK
- Department of Applied Health Research, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
| | - Kay-Tee Khaw
- Cambridge Institute of Public Health, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0SR, UK
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA 98195, USA
| | - William J Blot
- International Epidemiology Institute, 1455 Research Boulevard, Suite 550, Rockville, MD 20850, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Christiane Maier
- Institute of Human Genetics, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
- Department of Urology, University Hospital Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Adam S Kibel
- Division of Urology, Brigham and Women's Hospital/Dana-Farber Cancer Institute, 45 Francis Street-ASB II-3, Boston, MA 02115, USA
- Washington University, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Rybacka 1, Szczecin, Poland
| | - Lisa Cannon-Albright
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, Division of Preventive Oncology, German Cancer Research Center, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Jong Park
- Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Radka Kaneva
- Department of Medical Chemistry and Biochemistry, Molecular Medicine Center, Medical University—Sofia, 2 Zdrave Street, 1431 Sofia, Bulgaria
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation and Schools of Life Science and Public Health, Queensland University of Technology, Brisbane, Queensland 4102, Australia
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), Porto University, 4200-072 Porto, Portugal
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, The University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | | |
Collapse
|
47
|
Xu Y, Yang X, Zhao P, Yang Z, Yan C, Guo B, Qian SY. Knockdown of delta-5-desaturase promotes the anti-cancer activity of dihomo-γ-linolenic acid and enhances the efficacy of chemotherapy in colon cancer cells expressing COX-2. Free Radic Biol Med 2016; 96:67-77. [PMID: 27101738 PMCID: PMC4912402 DOI: 10.1016/j.freeradbiomed.2016.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/04/2016] [Accepted: 04/16/2016] [Indexed: 11/26/2022]
Abstract
Cyclooxygenase (COX), commonly overexpressed in cancer cells, is a major lipid peroxidizing enzyme that metabolizes polyunsaturated fatty acids (ω-3s and ω-6s). The COX-catalyzed free radical peroxidation of arachidonic acid (ω-6) can produce deleterious metabolites (e.g. 2-series prostaglandins) that are implicated in cancer development. Thus, COX inhibition has been intensively investigated as a complementary therapeutic strategy for cancer. However, our previous study has demonstrated that a free radical-derived byproduct (8-hydroxyoctanoic acid) formed from COX-catalyzed peroxidation of dihomo-γ-linolenic acid (DGLA, the precursor of arachidonic acid) can inhibit colon cancer cell growth. We thus hypothesize that the commonly overexpressed COX in cancer (~90% of colon cancer patients) can be taken advantage to suppress cell growth by knocking down delta-5-desaturase (D5D, a key enzyme that converts DGLA to arachidonic acid). In addition, D5D knockdown along with DGLA supplement may enhance the efficacy of chemotherapeutic drugs. After knocking down D5D in HCA-7 colony 29 cells and HT-29 cells (human colon cancer cell lines with high and low COX levels, respectively), the antitumor activity of DGLA was significantly enhanced along with the formation of a threshold range (~0.5-1.0μM) of 8-hydroxyoctanoic acid. In contrast, DGLA treatment did not inhibit cell growth when D5D was not knocked down and only limited amount of 8-hydroxyoctanoic acid was formed. D5D knockdown along with DGLA treatment also enhanced the cytotoxicities of various chemotherapeutic drugs, including 5-fluorouracil, regorafenib, and irinotecan, potentially through the activation of pro-apoptotic proteins, e.g. p53 and caspase 9. For the first time, we have demonstrated that the overexpressed COX in cancer cells can be utilized in suppressing cancer cell growth. This finding may provide a new option besides COX inhibition to optimize cancer therapy. The outcome of this translational research will guide us to develop a novel ω-6-based diet-care strategy in combination with current chemotherapy for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Xiaoyu Yang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Pinjing Zhao
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, ND 58108, USA
| | - Bin Guo
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
48
|
Wolfram G, Bechthold A, Boeing H, Ellinger S, Hauner H, Kroke A, Leschik-Bonnet E, Linseisen J, Lorkowski S, Schulze M, Stehle P, Dinter J. Evidence-Based Guideline of the German Nutrition Society: Fat Intake and Prevention of Selected Nutrition-Related Diseases. ANNALS OF NUTRITION AND METABOLISM 2015; 67:141-204. [PMID: 26414007 DOI: 10.1159/000437243] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As nutrition-related chronic diseases have become more and more frequent, the importance of dietary prevention has also increased. Dietary fat plays a major role in human nutrition, and modification of fat and/or fatty acid intake could have a preventive potential. The aim of the guideline of the German Nutrition Society (DGE) was to systematically evaluate the evidence for the prevention of the widespread diseases obesity, type 2 diabetes mellitus, dyslipoproteinaemia, hypertension, metabolic syndrome, coronary heart disease (CHD), stroke, and cancer through the intake of fat or fatty acids. The main results can be summarized as follows: it was concluded with convincing evidence that a reduced intake of total and saturated fat as well as a larger intake of polyunsaturated fatty acids (PUFA) at the expense of saturated fatty acids (SFA) reduces the concentration of total and low-density lipoprotein cholesterol in plasma. Furthermore, there is convincing evidence that a high intake of trans fatty acids increases risk of dyslipoproteinaemia and that a high intake of long-chain polyunsaturated n-3 fatty acids reduces the triglyceride concentration in plasma. A high fat intake increases the risk of obesity with probable evidence when total energy intake is not controlled for (ad libitum diet). When energy intake is controlled for, there is probable evidence for no association between fat intake and risk of obesity. A larger intake of PUFA at the expense of SFA reduces risk of CHD with probable evidence. Furthermore, there is probable evidence that a high intake of long-chain polyunsaturated n-3 fatty acids reduces risk of hypertension and CHD. With probable evidence, a high trans fatty acid intake increases risk of CHD. The practical consequences for current dietary recommendations are described at the end of this article.
Collapse
|
49
|
Marventano S, Kolacz P, Castellano S, Galvano F, Buscemi S, Mistretta A, Grosso G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: does the ratio really matter? Int J Food Sci Nutr 2015; 66:611-22. [PMID: 26307560 DOI: 10.3109/09637486.2015.1077790] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been considered of great interest for human health due to their potential anti-inflammatory action that may protect from a number of chronic-degenerative diseases with an inflammatory pathogenesis. This review aimed to report the most updated evidence of both n-3 and n-6 PUFAs effect on cardiovascular disease, cancer, and depression in humans. Attention has been also paid to those studies exploring the effects of the ratio intake. Results from pooled analyses of human studies reported a general positive effect of n-3 PUFAs intake on all outcomes considered. In contrast, the role of n-6 PUFAs on human health needs to be better assessed in order to clearly identify which compound exerts beneficial/harmful effects. Only a limited number of clinical studies considered the n-3:n-6 PUFAs ratio, rather reporting contrasting results. A number of limitations when considering the ratio between these two families of PUFAs have risen.
Collapse
Affiliation(s)
- Stefano Marventano
- a Department of Medical, Surgical Sciences, and Advanced Technologies "G.F. Ingrassia", Section of Hygiene and Public Health , University of Catania , Catania , Italy
| | - Paulina Kolacz
- b Department of Human Nutrition , Jagiellonian University Medical College in Krakow , Krakow , Poland
| | - Sabrina Castellano
- c Department of Biomedical and Biotechnological Sciences, Section of Pharmacology and Biochemistry , University of Catania , Catania , Italy , and
| | - Fabio Galvano
- c Department of Biomedical and Biotechnological Sciences, Section of Pharmacology and Biochemistry , University of Catania , Catania , Italy , and
| | - Silvio Buscemi
- d Department of Internal Medicine , University of Palermo , Palermo , Italy
| | - Antonio Mistretta
- a Department of Medical, Surgical Sciences, and Advanced Technologies "G.F. Ingrassia", Section of Hygiene and Public Health , University of Catania , Catania , Italy
| | - Giuseppe Grosso
- a Department of Medical, Surgical Sciences, and Advanced Technologies "G.F. Ingrassia", Section of Hygiene and Public Health , University of Catania , Catania , Italy
| |
Collapse
|
50
|
Abstract
The ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) are two major families of PUFAs present as essential cellular components which possess diverse bioactivities. The ω-3s, mainly found in seafood, are associated with many beneficial effects on human health, while the ω-6s are more abundant in our daily diet and could be implicated in many pathological processes including cancer development. Increasing evidence suggests that the adverse effects of ω-6s may be largely attributed to arachidonic acid (AA, a downstream ω-6) and the metabolite prostaglandin E2 (PGE2) that stems from its cyclooxygenase (COX)-catalyzed lipid peroxidation. On the other hand, two of AA's upstream ω-6s, γ-linolenic acid (GLA) and dihomo-γ-linolenic acid (DGLA), are shown to possess certain anti-cancer activities, including inducing cell apoptosis and inhibiting cell proliferation. In this paper, we review the documented anti-cancer activities of ω-6 PUFAs, including the recent findings regarding the anti-cancer effects of free radical-mediated DGLA peroxidation. The possible mechanisms and applications of DGLA (and other ω-6s) in inducing anti-cancer activity are also discussed. Considering the wide availability of ω-6s in our daily diet, the study of the potential beneficial effect of ω-6 PUFAs may guide us to develop an ω-6-based diet care strategy for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing and Allied Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|