1
|
Deka D, Jha DK. Endophytic fungi associated with Brucea mollis Wall. ex Kurz.: a hidden source of antimicrobial and antioxidant metabolites. Biotechnol Genet Eng Rev 2024; 40:4825-4848. [PMID: 37232471 DOI: 10.1080/02648725.2023.2216967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Geosmithia pallida (KU693285) was isolated from Brucea mollis an endangered medicinal plant of North-East India. The secondary metabolites, produced by the endophytic fungi, extracted by ethyl acetate were screened for antimicrobial activity. G. pallida extract displayed the highest antimicrobial activity against Candida albicans with a minimum inhibitory concentration of 80.5 ± 1.25 µg/mL. G. pallida also showed the highest antioxidant activity which differed insignificantly from Penicillium sp. (P > 0.05). The G. pallida extract also exhibited the highest cellulase activity and also amylase and protease activities. The cytotoxicity assay of the ethyl acetate extract of this endophyte showed negligible effect (1.93 ± 0.42%) on chromosomal aberration as compared to the control (cyclophosphamide monohydrate) (7.20 ± 1.51%). The internal transcribed spacer rDNA sequence of G. pallida was submitted to the NCBI (Accession number KU693285) from India for the first time. The FT-IR spectrophotometry of the bioactive metabolite of G. pallida showed the presence of different functional groups such as alcohol, carboxylic acids, amines, aromatics, alkyl halides, aliphatic amines and alkynes. The GC-MS analysis revealed the presence of acetic acid, 2-phenylethyl ester; tetracosane; cyclooctasiloxane hexadecamethyl; cyclononasiloxane octadecamethyl; octadecanoic acid; phthalic acid, di(2-propylpentyl) ester and nonadecane, 2,6,10,14,18-pentamethyl as the major compounds in the metabolite. The findings of the present work indicated G. pallida as a potential source of important biomolecules without mammalian cytotoxic effects, which can be utilized for pharmaceutical purposes.
Collapse
Affiliation(s)
- Deepanwita Deka
- Department of Botany, SB Deorah College, Guwahati, Assam, India
| | - Dhruva Kumar Jha
- Department of Botany, Gauhati University, Guwahati, Assam, India
| |
Collapse
|
2
|
da Silveira Bastos IMA, Cadamuro RD, de Freitas ACO, da Silva IT, Stoco PH, Sandjo LP, Treichel H, Fongaro G, Robl D, Steindel M. Diversity of fungal endophytes from mangrove plants of Santa Catarina Island, Brazil. Braz J Microbiol 2024; 55:1477-1487. [PMID: 38319531 PMCID: PMC11153381 DOI: 10.1007/s42770-023-01234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/26/2023] [Indexed: 02/07/2024] Open
Abstract
The mangrove ecosystem plays a crucial role in preserving the biodiversity of plants, animals, and microorganisms that are essential for materials cycles. However, the exploration of endophytic fungi isolated from mangroves, particulary in Santa Catarina (SC, Brazil), remains limited. Therefore, the purpose of this study was to assess the biodiversity of endophytic fungi found in Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, and Spartina alterniflora from two mangroves on the Island of Santa Catarina: one impacted by anthropic action (Itacorubi mangrove) and the other environmentally preserved (Ratones mangrove). Samplings were carried out between January 2020 and May 2021. Fungi were isolated from leaves, stems, and roots, identified, and clustered into groups through morphological characteristics. Further, a representative strain of each group was identified through ITS1 sequencing. A total of 373 isolates were obtained from plant tissues, of which 96 and 277 isolates were obtained from Itacorubi and Ratones mangroves, respectively. Molecular identification showed that the endophytic fungal community comprised at least 19 genera. The data on fungal community diversity revealed comparable diversity indices for genera in both mangroves. However, we observed differences in the total frequency of fungal genera between impacted (27.38%) and non-impacted (72.62%) mangroves. These findings suggest that anthropic activities in and around the Santa Catarina mangroves have had negative impact on the frequency of endophytic fungi. This emphasizes the reinforcing the significance of preserving these environments to ensure the maintenance of fungal community diversity.
Collapse
Affiliation(s)
| | - Rafael Dorighello Cadamuro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Ana Claudia Oliveira de Freitas
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Izabella Thaís da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
- Department of Pharmaceutical Sciences, Federal University Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Patrícia Hermes Stoco
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Louis Pergaud Sandjo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim, RS, 99700-000, Brazil
| | - Gislaine Fongaro
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Mário Steindel
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
3
|
Zhang Q, Wang Y, Hou Y, Zhao Q, Yang L, Zhang Y, Zhou L. Metabarcode insights into the airborne fungal diversity in the indoor and outdoor environments in archives from Yunnan, Southwestern China. Braz J Microbiol 2024; 55:1601-1618. [PMID: 38587763 PMCID: PMC11153435 DOI: 10.1007/s42770-024-01323-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
Monitoring dynamics of airborne fungal species and controlling of harmful ones are of vital importance to conservation of cultural relics. However, the evaluation of air quality and the community structure characteristics of microorganisms, especially fungi, in the atmosphere of archives is in a stage of continuous exploration though more than 4,000 archives were constructed in China. Seventy-two air samples were collected in this study under different spatial and weather conditions from the archives of Kunming Medical University, located in the Kunming metropolitan area, Yunnan province, southwestern China. A total of 22 airborne fungal classes, 160 genera and 699 ASVs were identified, the species diversity is on the rise with the strengthening of air circulation with the outside space, and thus the intensive energy metabolism and activity were found in the spaces with window and sunny weather, except for the higher lipid synthesis of indoor samples than that of outdoor ones. Furthermore, there were significant differences in fungal community composition and abundance between sunny and rainy weathers. A considerable number of species have been identified as indicator in various environmental and weather conditions of the archives, and temperature and humidity were thought to have significant correlations with the abundance of these species. Meanwhile, Cladosporium and Alternaria were the dominant genera here, which may pose a threat to the health of archive professionals. Therefore, monitoring and controlling the growth of these fungal species is crucial for both conservation of paper records and health of archive professionals.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China
| | - Yuan Wang
- Archives of Kunming Medical University, Kunming, 650500, China
| | - Yutong Hou
- The School of Health, Fujian Medical University, Fuzhou, 350100, China
| | - Qingxue Zhao
- School of Basic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Liu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650032, China.
| | - Lu Zhou
- Archives of Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
4
|
Flores AC, Kimiko Kadowaki M, da Conceição Silva JL, de Andrade Bianchini I, de Almeida Felipe MDG, Sene L. Enzymatic potential of endophytic fungi: xylanase production by Colletotrichum boninense from sugarcane biomass. Braz J Microbiol 2023; 54:2705-2718. [PMID: 37735300 PMCID: PMC10689674 DOI: 10.1007/s42770-023-01131-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Endophytic fungi constitute a major part of the still unexplored fungal diversity and have gained interest as new biological sources of natural active compounds, including enzymes. Endophytic fungi were isolated from soybean leaves and initially screened on agar plates for the production of CMCase (carboxymethylcellulase), xylanase, amylase and protease. The highest Enzymatic Indexes (IE) were verified for xylanase (2.14 and 1.31) with the fungi M6-A6P5F2 and M12-A5P3F1.2 and CMCase (1.92 and 1.62) with the fungi M13-A9P2F1 and M12-A5P3F1.2, respectively. The production of xylanase and CMCase by the selected fungi was evaluated in submerged cultivation using beechwood xylan and carboxymethylcellulose (CMC), as well as sugarcane straw and bagasse in different ratios as carbon sources. Both types of lignocellulosic biomass proved to be good inducers of enzymatic activity. The best xylanase producer among the isolates was identified as Colletotrichum boninense. With this fungus, the highest xylanase activity was obtained with a sugarcane straw-bagasse mixture in a 50:50 ratio (383.63 U mL-1), a result superior to that obtained with the use of beechwood xylan (296.65 U mL-1). Regardingthe kinetic behavior of the crude xylanase, there was found optimal pH of 5.0 and optimal temperatures of 50°C and 60°C. At 40°C and 50°C, xylanase retained 87% and 76% of its initial catalytic activity, respectively. These results bring new perspectives on bioprospecting endophytic fungi for the production of enzymes, mainly xylanase, as well as the exploitation of agro-industrial by-products, such as sugarcane straw and bagasse.
Collapse
Affiliation(s)
- Andressa Caroline Flores
- Center of Exact and Technological Sciences, State University of West Paraná, Cascavel, Paraná, Brazil.
| | - Marina Kimiko Kadowaki
- Center of Medical and Pharmaceutical Sciences, State University of West Paraná, Cascavel, Paraná, Brazil
| | | | | | | | - Luciane Sene
- Center of Exact and Technological Sciences, State University of West Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
5
|
Dixit M, Shukla P. Multi-efficient endoglucanase from Aspergillus niger MPS25 and its potential applications in saccharification of wheat straw and waste paper deinking. CHEMOSPHERE 2023; 313:137298. [PMID: 36427581 DOI: 10.1016/j.chemosphere.2022.137298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The deinking in the paper industry is in great demand, and microbial enzymes are key players. In the present study, the endoglucanase production from newly isolated fungi Aspergillus niger MPS25 is reported. The optimization of endoglucanase production was carried out using one factor at a time approach resulting in endoglucanase activity (2.37 IU/ml) at 45 °C and pH 8 in submerged fermentation (SmF), which shows optimum enzyme activity at 60 °C. Interestingly, the metal ions viz. Co2+ stimulated the endoglucanase activity, whereas Mn2+ reduced the enzyme activity, which shows that this enzyme can be used for effluent treatment released through deinking. The enzymatic hydrolysis of wheat straw produced 26.96 ± 0.108 mg/g of reducing sugars, indicating its potential in saccharification and the biofuel industry. Furthermore, the validation of the deinking efficiency of this enzyme resulted in improved deinking of mixed office waste and old newspapers by 31.5% and 20.4%, respectively. The strength properties, viz. burst factor and tear index, breaking length, and tensile index of the handmade paper sheets, were also improved which were analyzed by the scanning electron micrographs. The FTIR and XRD analysis of pulp provided insights into the changes in functional groups and cellulose crystallinity, respectively. These results indicate that multi-efficient endoglucanase from Aspergillus niger MPS25 is suitable for enzyme-based eco-friendly deinking for waste paper recycling and lignocellulosic biomass saccharification.
Collapse
Affiliation(s)
- Mandeep Dixit
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pratyoosh Shukla
- Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India; Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Niu L, Qin X, Wang L, Guo N, Cao H, Li H, Zhao C, Wang H, Fu Y. Upgrading the accumulation of ginsenoside Rd in Panax notoginseng by a novel glycosidase-producing endophytic fungus G11-7. Folia Microbiol (Praha) 2022; 68:441-452. [PMID: 36571675 DOI: 10.1007/s12223-022-01020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/18/2022] [Indexed: 12/27/2022]
Abstract
A novel endophytic fungus producing beta-glucosidase was isolated and characterized from pigeon pea (Cajanus cajan [L.] Millsp.), which has excellent properties in converting ginsenoside Rb1 to ginsenoside Rd in Panax notoginseng. According to the 16S rDNA gene sequence, the G11-7 strain was identified as Fusarium proliferatum, and the accession number KY303906 was confirmed in GenBank. The G11-7 immobilized spores, in which the activity of beta-glucosidase could reach 0.95 U/mL, were co-cultured with P. notoginseng plant material to obtain a continuous beta-glucosidase supply for the biotransformation of ginsenoside Rb1 to Rd. Under the liquid-solid ratio (20:1), initial pH (6.0), and temperature (30 °C) constituents, the maximum ginsenoside Rd yield was obtained as 9.15 ± 0.65 mg/g, which was 3.67-fold higher than that without fungal spore co-culture (2.49 ± 0.98 mg/g). Furthermore, immobilized G11-7 spores showed significant beta-glucosidase producing ability which could be recovered and reused for 6 cycles. Overall, these results suggested that immobilized G11-7 offered a promising and effective approach to enhance the production of ginsenoside Rd for possible nutraceutical and pharmaceutical uses.
Collapse
Affiliation(s)
- Lili Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.,Medicinal Plant Cultivation Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haidian District, Beijing, 100193, China
| | - Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Litao Wang
- The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Hongyan Cao
- The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hanghang Li
- The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Chunjian Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Huimei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China. .,The College of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
7
|
Fermentation process optimisation based on ANN and RSM for xylitol production from areca nut husk followed by xylitol crystal characterisation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Nair LG, Agrawal K, Verma P. An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnol Genet Eng Rev 2022; 38:288-338. [PMID: 35670485 DOI: 10.1080/02648725.2022.2082223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic biomass (LCB) is an energy source that has a huge impact in today's world. The depletion of fossil fuels, increased pollution, climatic changes, etc. have led the public and private sectors to move towards sustainability i.e. using LCB for the production of biofuels and value-added compounds. A major bottleneck of the process is the recalcitrant nature of LCB. This can be overcome by using various pretreatment strategies like physical, chemical, biological, physicochemical, etc. Further, the pretreated biomass is made to undergo various steps like hydrolysis, saccharification, etc. for the conversion of value-added products and the remaining waste residues can be further utilized for the synthesis of secondary products thus favouring the zero-waste biorefinery concept. Currently, microorganisms are being explored for their use in biorefinery but the unavailability of commercial strains is a major limitation. Thus, the use of metagenomics can be used to overcome the limitation which is both cost-effective and environmentally friendly. The review deliberates the composition of LCBs, and their recalcitrance nature, followed by the structural changes caused by various pretreatment methods. The further steps in biorefineries, strategies for the development of zero-waste refineries, bottlenecks, and suggestions are also discussed. Special emphasis is given to the use of metagenomics for the discovery of microorganisms efficient for zero-waste biorefineries.
Collapse
Affiliation(s)
- Lakshana G Nair
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Komal Agrawal
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Kishangarh, Ajmer, India
| |
Collapse
|
9
|
Biodiversity and Bioprospecting of Fungal Endophytes from the Antarctic Plant Colobanthus quitensis. J Fungi (Basel) 2022; 8:jof8090979. [PMID: 36135704 PMCID: PMC9504944 DOI: 10.3390/jof8090979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/14/2022] Open
Abstract
Microorganisms from extreme environments are considered as a new and valuable reservoir of bioactive molecules of biotechnological interest and are also utilized as tools for enhancing tolerance to (a)biotic stresses in crops. In this study, the fungal endophytic community associated with the leaves of the Antarctic angiosperm Colobanthus quitensis was investigated as a new source of bioactive molecules. We isolated 132 fungal strains and taxonomically annotated 26 representative isolates, which mainly belonged to the Basidiomycota division. Selected isolates of Trametes sp., Lenzites sp., Sistotrema sp., and Peniophora sp. displayed broad extracellular enzymatic profiles; fungal extracts from some of them showed dose-dependent antitumor activity and inhibited the formation of amyloid fibrils of α-synuclein and its pathological mutant E46K. Selected fungal isolates were also able to promote secondary root development and fresh weight increase in Arabidopsis and tomato and antagonize the growth of pathogenic fungi harmful to crops. This study emphasizes the ecological and biotechnological relevance of fungi from the Antarctic ecosystem and provides clues to the bioprospecting of Antarctic Basidiomycetes fungi for industrial, agricultural, and medical applications.
Collapse
|
10
|
Cruz-Davila J, Perez JV, Castillo DSD, Diez N. Fusarium graminearum as a producer of xylanases with low cellulases when grown on wheat bran. BIOTECHNOLOGY REPORTS 2022; 35:e00738. [PMID: 35619590 PMCID: PMC9127173 DOI: 10.1016/j.btre.2022.e00738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022]
Abstract
Endophytic fungi of cacao had important xylanase activity when grown on wheat bran. F. graminearum strain Ec220 produced xylanases with low cellulolytic activity. Xylanase production was optimized using response surface methodology. Proteomic analysis revealed similarities with previously reported xylanases.
The xylanolytic potential of endophytic fungi isolated from leaves of Theobroma cacao was explored for the first time. Four fungal strains showed significant amounts of xylanase activity and low cellulase levels when grown on wheat bran as the sole carbon source. Strain Ec220 of Fusarium graminearum had the highest xylanase production (1.79 U/ml), whereas its cellulase activity was minimal (0.24 U/ml). Optimal conditions for xylanase production were: 154 h of incubation time, pH 5.79 and 29.8 °C. Furthermore, two protein spots detected by two-dimensional gel electrophoresis showed molecular weights (26.05 and 27.70 kDa) and isoelectric points (6.18 and 9.20) corresponding to previously reported F. graminearum xylanases, Xyl A and Xyl B, respectively. Therefore, endophytic fungi of T. cacao can be an important source of xylanolytic activities when cultured on wheat bran, and xylanases with low cellulases found in strain Ec220 require further characterization as they show promise for possible industrial applications.
Collapse
|
11
|
Kumar Saini J, Himanshu, Hemansi, Kaur A, Mathur A. Strategies to enhance enzymatic hydrolysis of lignocellulosic biomass for biorefinery applications: A review. BIORESOURCE TECHNOLOGY 2022; 360:127517. [PMID: 35772718 DOI: 10.1016/j.biortech.2022.127517] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Global interest in lignocellulosic biorefineries has increased in the recent past due to technological advancements in sustainable and cost-effective production of numerous commodity and speciality chemicals and fuels from renewable lignocellulosic biomass (LCB). As a result, the market value of biorefinery products has also increased over the time, with an estimated worth of USD 867.7 billion by 2025. However, biorefinery operations, especially enzymatic hydrolysis, suffer from many challenges that limits the cost-effectiveness of conversion of LCB. Therefore, it is essential to understand and address these challenges in future biorefineries. The paper focuses on recent trends and challenges in enzymatic hydrolysis of LCB during lignocellulosic biorefinery operation for greener synthesis of energy, fuels, chemicals and other high-value products. Insights into the gaps in knowledge and technological challenges have also been addressed together with focus on future research needs and perspectives of enzymatic hydrolysis of LCB for biorefinery applications.
Collapse
Affiliation(s)
- Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India.
| | - Himanshu
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Hemansi
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Research & Development Office, Ashoka University, Sonipat, Haryana PIN- 131029, India
| | - Amanjot Kaur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Aayush Mathur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| |
Collapse
|
12
|
Exploring the Potential Applications of Paecilomyceslilacinus 112. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microorganisms are widely used to obtain biostimulants that can facilitate the assimilation of nutrients, ensuring high crop yield and quality. A particular category of biostimulants are protein hydrolyzates (PH), obtained from microbial cultures grown on a nutrient medium. In the present study, Paecilomyces lilacinus 112, an endophytic fungus isolated from soil, was tested to determine its effect on the growth promotion of tomato seedlings in greenhouse conditions. Additionally, other beneficial features of the P.lilacinus isolate were evaluated via several tests: antagonism against plant pathogenic fungi, production of secondary useful metabolites, and solubilization of vital micronutrients. Out of the tested pathogens, P.lilacinus exhibited the highest antifungal activity against a Cladosporium isolate (inhibition of 66.3%), followed by Rhizoctonia. solani (52.53%), and Sclerotinia sclerotiorum (50.23%). Paecilomyceslilacinus 112 was able to secrete hydrolytic enzymes and siderophores, and solubilize zinc and phosphorus. In the tomato treatment, the application of PH obtained from fungal cultivation on a feather medium led to the following increases in plant growth parameters: 3.54-fold in plant biomass; 3.26-fold in plant height, 1.28-fold in plant diameter; 1.5-fold in the number of branches/plant; and 1.43-fold in the number of leaves/plant, as compared to water treatment. The application of this isolate can be of benefit to bioeconomy because keratin wastes are valorized and returned, in agriculture, contributing to renewable natural resources.
Collapse
|
13
|
Seddouk L, Jamai L, Tazi K, Ettayebi M, Alaoui-Mhamdi M, Aleya L, Janati-Idrissi A. Isolation and characterization of a mesophilic cellulolytic endophyte Preussia africana from Juniperus oxycedrus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45589-45600. [PMID: 35146609 DOI: 10.1007/s11356-022-19151-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The medicinal plant Juniperus oxycedrus is less recognized for the diversity of its fungal endophytes and their potential to produce extracellular enzymes. The present study is the first report on the isolation and identification of a mesophilic endophytic strain JO-A, Preussia africana, from fresh stems of the J. oxycedrus endemic tree in the Ifrane region-Morocco, and the evaluation of its ability to produce cellulases. A one-time multi-parameter one-factor screening was optimized to select factors that enhance cellulase production in P. africana. The maximum production of both CMCase and FPase activities were 1.913 IU.mL-1 and 0.885 IU.mL-1, respectively, when the medium was supplemented with 2% w/v glucose. These remarkable titers were tenfold greater than those obtained under the initial non-optimized conditions. This mesophilic P. africana JO-A strain grows and actively produces cellulases at 37 °C demonstrating its great potential for various biotechnology applications. The cellulolytic extract showed the highest enzymatic activities at pH 5.0 and 50 °C with a half-life of 24 h at 50 °C.
Collapse
Affiliation(s)
- Loubna Seddouk
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Latifa Jamai
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Karima Tazi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| | - Mohamed Ettayebi
- The Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON, Canada
| | - Mohammed Alaoui-Mhamdi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco.
| | - Lotfi Aleya
- CNRS 6249-Université de Franche-Comté, 16, route de Gray F-25030, Besançon cedex, France
| | - Abellatif Janati-Idrissi
- Laboratory of Biotechnology, Conservation and Valorization of Natural Resources, Faculty of Sciences DM, Sidi Mohammed Ben Abdellah University, P.O. Box 1796 Atlas, Fez, Morocco
| |
Collapse
|
14
|
Song L, Pan L, Jiang N, Fu J, Wan L, Wei S. Effects of endophytic fungi on parasitic process of Taxillus chinensis. Sci Rep 2022; 12:7744. [PMID: 35546173 PMCID: PMC9095678 DOI: 10.1038/s41598-022-11940-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Taxillus chinensis (DC.) Danser is an extensively used medicinal shrub in the traditional as well as modern systems of medicines. It is a perennial hemiparasitic plant, which is difficult to propagate artificially because of its low parasitic rate. Successful parasitism of parasitic plants is to fuse their tissues and connect their vasculature to the host vasculature building a physiological bridge, which can efficiently withdraw water, sugars and nutrients from their host plants. It is reported that endophytic fungi play an important role in cell wall degradation and fusion, which is the key forming process of the physiological bridge. Therefore, in this study, the endophytic fungi from T. chinensis of different hosts were isolated, and then the organisms that could degrade the main components of the cell walls were screened out using a medium consisting of guaihuol and cellulose degradation capacity. The results showed that five strains were screened out from 72 endophytic fungi of T. chinensis which with high enzyme activities for lignocellulosic degradation. The laccase and cellulase activities of five strains reached their peaks at day 7, and the highest enzyme activities of these two enzymes were found in strain P6, which was 117.66 and 1.66 U/mL, respectively. Manganese peroxidase of strain 4 and lignin peroxidase of strain N6 also reached their peaks at day 7 and were the highest among the 5 strains, with enzyme activities of 11.61 and 6.64 U/mL, respectively. Strains 4, 15, 31, N6 and P6 were identified as Colletotrichum sp., Nigerrospora sphaerica, Exserohilum sp., Diaporthe phaseolorum and Pestalotiopsis sp., respectively, according to their morphological and molecular biology properties. The endophytic fungi may secrete efficient cell wall degradation enzymes, which promote the dissolution and relaxation of the cell wall between T. chinensis and host, thus contributing to the parasitism of T. chinensis.
Collapse
Affiliation(s)
- Lisha Song
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Limei Pan
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Ni Jiang
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jine Fu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Lingyun Wan
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Shugen Wei
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
15
|
Metwally RA, Abdelhameed RE, Soliman SA, Al-Badwy AH. Potential use of beneficial fungal microorganisms and C-phycocyanin extract for enhancing seed germination, seedling growth and biochemical traits of Solanum lycopersicum L. BMC Microbiol 2022; 22:108. [PMID: 35448979 PMCID: PMC9027073 DOI: 10.1186/s12866-022-02509-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Biopriming as a new technique of seed treatment involves the application of beneficial microorganisms on the seed surface to stimulate seed germination, plant growth, and protect the seed from soil and seed-borne pathogens. The present investigation was carried out on seed germination, seedling vigor and biochemical traits of one of the most important vegetable crops (Tomato, Solanum lycopersicum L.). The treatments comprised viz. T1: Non primed seeds (Control), T2: Hydropriming, T3: Biopriming with C-phycocyanin (C-PC) (Spirulina platensis extract), T4: Biopriming with Trichoderma asperellum, T5: Biopriming with T. viride, T6: Biopriming with Beauveria bassiana. RESULTS Extraction and purification of C-phycocyanin (C-PC) from the dry S. platensis powder using various methods was performed. The purity after dialyses was 0.49 and its ultimate purity (A620/A280) after ion-exchange chromatography was 4.64. The results on tomato seedlings revealed that the maximum germination percentage (100%), germination index (15.46 and 15.12), seedling length (10.67 cm), seedling dry weight (1.73 and 1.97 mg) and seedling length vigor index (1066.7) were recorded for tomato biopriming with T. viride, and B. bassiana (T5 and T6). Moreover, the quantitative estimation of total carbohydrates and total free amino acids contents in bioprimed tomato seedlings indicated a significantly higher amount with T. viride, followed by those bioprimed with T. asperellum, B. bassiana and C-PC extract. CONCLUSION Thus, our results indicated that biopriming of tomato seeds with beneficial fungal inoculants and C-PC was very effective. The most operative biostimulants were those bioprimed with T. viride and B. bassiana compared to other biostimulants (T. asperellum and C-PC). Therefore, to ensure sustainable agriculture, this study offers new possibilities for the biopriming application as an alternative and ecological management strategy to chemical treatment and provides a valuable basis for improving seed germination.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa H Al-Badwy
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
16
|
Endophytic fungi: a potential source of industrial enzyme producers. 3 Biotech 2022; 12:86. [PMID: 35273898 PMCID: PMC8894535 DOI: 10.1007/s13205-022-03145-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 11/01/2022] Open
Abstract
Microbial enzymes have gained interest for their widespread use in various industries and medicine due to their stability, ease of production, and optimization. Endophytic fungi in plant tissues produce a wide range of secondary metabolites and enzymes, which exhibit a variety of biological activities. The present review illustrates promising applications of enzymes produced by endophytic fungi and discusses the characteristic features of the enzymes, application of the endophytic fungal enzymes in therapeutics, agriculture, food, and biofuel industries. Endophytic fungi producing ligninolytic enzymes have possible biotechnological applications in lignocellulosic biorefineries. The global market of industrially important enzymes, challenges, and future prospects are illustrated. However, the commercialization of endophytic fungal enzymes for industrial purposes is yet to be explored. The present review suggests that endophytic fungi can produce various enzymes and may become a novel source for upscaling the production of enzymes of industrial use.
Collapse
|
17
|
Amelioration in traditional farming system by exploring the different plant growth-promoting attributes of endophytes for sustainable agriculture. Arch Microbiol 2022; 204:151. [DOI: 10.1007/s00203-021-02637-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022]
|
18
|
Ptitsyn LR, Yampolskaya TA, Kutukova EA, Altman IB. Identification of Core Cellulolytic Enzymes from the Talaromyces cellulolyticus Strains Y-94 and S6-25. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Ganeshan S, Kim SH, Vujanovic V. Scaling-up production of plant endophytes in bioreactors: concepts, challenges and perspectives. BIORESOUR BIOPROCESS 2021; 8:63. [PMID: 34760435 PMCID: PMC8570317 DOI: 10.1186/s40643-021-00417-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 07/09/2021] [Indexed: 11/11/2022] Open
Abstract
The benefit of microorganisms to humans, animals, insects and plants is increasingly recognized, with intensified microbial endophytes research indicative of this realization. In the agriculture industry, the benefits are tremendous to move towards sustainable crop production and minimize or circumvent the use of chemical fertilizers and pesticides. The research leading to the identification of potential plant endophytes is long and arduous and for many researchers the challenge is ultimately in scale-up production. While many of the larger agriculture and food industries have their own scale-up and manufacturing facilities, for many in academia and start-up companies the next steps towards production have been a stumbling block due to lack of information and understanding of the processes involved in scale-up fermentation. This review provides an overview of the fermentation process from shake flask cultures to scale-up and the manufacturing steps involved such as process development optimization (PDO), process hazard analysis (PHA), pre-, in- and post-production (PIP) challenges and finally the preparation of a technology transfer package (TTP) to transition the PDO to manufacturing. The focus is on submerged liquid fermentation (SLF) and plant endophytes production by providing original examples of fungal and bacterial endophytes, plant growth promoting Penicillium sp. and Streptomyces sp. bioinoculants, respectively. We also discuss the concepts, challenges and future perspectives of the scale-up microbial endophyte process technology based on the industrial and biosafety research platform for advancing a massive production of next-generation biologicals in bioreactors.
Collapse
Affiliation(s)
- Seedhabadee Ganeshan
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Seon Hwa Kim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| | - Vladimir Vujanovic
- Department of Food and Bioproduct Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8 Canada
| |
Collapse
|
20
|
Arumugam N, Thangavelu P. Purification and anticancer activity of glutaminase and urease free intracellular l-asparaginase from Chaetomium sp. Protein Expr Purif 2021; 190:106006. [PMID: 34742913 DOI: 10.1016/j.pep.2021.106006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
l-asparaginase is a chemotherapeutic drug used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. l-asparaginase helps in removing acrylamide found in fried and baked foods which is carcinogenic in nature. The search for new therapeutic enzymes is of great interest in both medical and food applications. The present work aims to isolate the intracellular l-asparaginase from endophytic fungi Chaetomium sp. The intracellular enzyme was partially purified by chromatographic techniques. Molecular weight of enzyme was found to be ~66 kDa by SDS PAGE analysis. The enzyme is highly specific for l-asparagine and did not show glutaminase and urease activity. Maximum enzyme activity was found to be 58 ± 5 U/mL at 40 °C, pH 7.0 with 2 μg of protein. Intracellular l-asparaginase from Chaetomium sp. exhibited anticancer activity on human blood cancer (MOLT-4) cells.
Collapse
Affiliation(s)
- Nagarajan Arumugam
- Thermal and Bio Analysis Lab, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India
| | - Perarasu Thangavelu
- Thermal and Bio Analysis Lab, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, India.
| |
Collapse
|
21
|
Zafar H, Rehman I, Ejaz U, Ansari A, Sohail M. Production of multienzyme by Bacillus aestuarii UE25 using ionic liquid pretreated sugarcane bagasse. J Basic Microbiol 2021; 61:1016-1028. [PMID: 34463967 DOI: 10.1002/jobm.202100323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/12/2021] [Accepted: 08/21/2021] [Indexed: 11/05/2022]
Abstract
The utilization of sugarcane bagasse (SB) in fermentation requires pretreatment processes to render fermentable components available to microorganisms. Pretreatment by using ionic liquids (ILs) is considered promising but the high cost is an impediment in its adoption, therefore, a mixture of IL pretreated and untreated SB was utilized to obtain bacterial multienzyme under solid-state fermentation (SSF). Bacillus aestuarii UE25, a thermophilic strain was utilized for that purpose. Fermentation conditions were optimized by adopting a central composite design. The model showed a good correlation between the predicted and the experimental values for amylase, xylanase, endoglucanase, and β-glucosidase. Volumetric and specific productivity of xylanase (4580 IU ml-1 h-1 , 244.25 IU mg-1 substrate, and 50 IU mg-1 protein) were higher than the other enzymes. Changes in lignin content and reduced cellulose crystallinity due to IL pretreatment, followed by fermentation, were visualized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Nuclear magnetic resonance. The strategy adopted by utilizing a mixture of IL pretreated and untreated SB under SSF proved promising to obtain high titers of different enzymes simultaneously. Since the bacterial strain used is thermophilic, therefore, the multienzyme can find its application in commercial processes which are carried out at high temperatures.
Collapse
Affiliation(s)
- Hani Zafar
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Iqra Rehman
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Uroosa Ejaz
- Department of Microbiology, University of Karachi, Karachi, Pakistan.,Department of Biosciences, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan
| | - Asma Ansari
- The Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| |
Collapse
|
22
|
Naik B, Goyal SK, Tripathi AD, Kumar V. Exploring the diversity of endophytic fungi and screening for their pullulanase-producing capabilities. J Genet Eng Biotechnol 2021; 19:110. [PMID: 34324093 PMCID: PMC8322383 DOI: 10.1186/s43141-021-00208-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 11/10/2022]
Abstract
Background Pullulanases are the significant industrial group in the 13 glycosyl hydrolases category, known as the α-amylases family. There are very few reports on pullulanase from fungal sources. Based on the above research gap, the present study was undertaken to explore the endophytic fungi for their pullulanase-producing capabilities. Results A total of 126 endophytes were isolated from Tradescantia pallida, Zea mays, and Trifolium alexandrinum. Aspergillus, Penicillium, and Ganoderma species recovered highest from the stem of Tradescantia palida. Fusarium was dominant in the stem and leaf of Zea mays. Penicillium, Aspergillus, Ganoderma, Cladosporium, Fusarium, and Alternaria were recovered from the Trifolium alexandrium. The Shannon index in Tradescantia pallida was highest in leaves while in Zea mays and Trifolium alexandrinum, it is highest in the stem. The Simpson’s index is highest in the case of Zea mays stem and root. Species richness was indicated by Menhinick’s index, and it was found that this value was highest in the roots of Trifolium alexandrinum. As per our knowledge, no comparative data is available on the endophytic diversity of the above plants taken for the study. Out of 126 endophytes, only 2.38% produced pullulanase while 7.94% produced amylase. The recovery of pullulanase-producing endophytic fungi was very less. But the importance of pullulanase is high as compared to amylase because it has both α-1,6 and α-1,4 hydrolyzing ability. Therefore, the most promising isolates were identified by ITS sequence analysis. Based on spore chain morphology, isolates BHU-25 and BHU-30 were identified as Penicillium sp. and Aspergillus species, respectively. This is the first report of pullulanase from endophytic Aspergillus and Penicillium. Conclusion Endophytes Aspergillus sp. and Penicillium sp. produce pullulanase enzyme. This is the first report of pullulanase from endophytic Aspergillus and Penicillium. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-021-00208-0.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Agricultural Engineering (Formely Farm Engineering), Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - S K Goyal
- Department of Agricultural Engineering (Formely Farm Engineering), Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Abhishek Dutt Tripathi
- Centre of Food Science and Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vijay Kumar
- Department of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly grant, Dehradun, Uttarakhand, 248140, India.
| |
Collapse
|
23
|
Bertacchi S, Jayaprakash P, Morrissey JP, Branduardi P. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Microb Biotechnol 2021; 15:985-995. [PMID: 34289233 PMCID: PMC8913906 DOI: 10.1111/1751-7915.13886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Biorefineries have a pivotal role in the bioeconomy scenario for the transition from fossil‐based processes towards more sustainable ones relying on renewable resources. Lignocellulose is a prominent feedstock since its abundance and relatively low cost. Microorganisms are often protagonists of biorefineries, as they contribute both to the enzymatic degradation of lignocellulose complex polymers and to the fermentative conversion of the hydrolyzed biomasses into fine and bulk chemicals. Enzymes have therefore become crucial for the development of sustainable biorefineries, being able to provide nutrients to cells from lignocellulose. Enzymatic hydrolysis can be performed by a portfolio of natural enzymes that degrade lignocellulose, often combined into cocktails. As enzymes can be deployed in different operative settings, such as separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF), their characteristics need to be combined with microbial ones to maximize the process. We therefore reviewed how the optimization of lignocellulose enzymatic hydrolysis can ameliorate bioethanol production when Saccharomyces cerevisiae is used as cell factory. Expanding beyond biofuels, enzymatic cocktail optimization can also be pivotal to unlock the potential of non‐Saccharomyces yeasts, which, thanks to broader substrate utilization, inhibitor resistance and peculiar metabolism, can widen the array of feedstocks and products of biorefineries.
Collapse
Affiliation(s)
- Stefano Bertacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Pooja Jayaprakash
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy.,School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| |
Collapse
|
24
|
Burragoni SG, Jeon J. Applications of endophytic microbes in agriculture, biotechnology, medicine, and beyond. Microbiol Res 2021; 245:126691. [PMID: 33508761 DOI: 10.1016/j.micres.2020.126691] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022]
Abstract
Endophytes are emerging as integral components of plant microbiomes. Some of them play pivotal roles in plant development and plant responses to pathogens and abiotic stresses, whereas others produce useful and/or interesting secondary metabolites. The appreciation of their abilities to affect plant phenotypes and produce useful compounds via genetic and molecular interactions has paved the way for these abilities to be exploited for health and welfare of plants, humans and ecosystems. Here we comprehensively review current and potential applications of endophytes in the agricultural, pharmaceutical, and industrial sectors. In addition, we briefly discuss the research objectives that should be focused upon in the coming years in order for endophytes and their metabolites to be fully harnessed for potential use in diverse areas.
Collapse
Affiliation(s)
- Sravanthi Goud Burragoni
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
25
|
Plant Growth-Promoting Endophytic Fungi from Different Habitats and Their Potential Applications in Agriculture. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Cong B, Yin X, Deng A, Shen J, Tian Y, Wang S, Yang H. Diversity of Cultivable Microbes From Soil of the Fildes Peninsula, Antarctica, and Their Potential Application. Front Microbiol 2020; 11:570836. [PMID: 33013802 PMCID: PMC7495136 DOI: 10.3389/fmicb.2020.570836] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 12/02/2022] Open
Abstract
To explore the diversity and application potential of Antarctic microorganisms, 1208 strains bacteria and fungi were isolated from 5 samples collected from the Fildes Peninsula during China’s 27th and 31st Antarctic expeditions. By using 16S and ITS sequence similarity alignment, 83 strains bacteria belonging to 20 genera and 30 strains fungi belonging to 7 genera were identified. Among them, 1 strains bacteria and 6 strains fungi showed low sequence similarity to the database, suggesting that they might be novel species. Physiological-biochemical characteristics showed that the identified bacteria could utilize many kinds of carbohydrates and that the identified fungi could produce several kinds of extracellular enzymes. The fungal strain MS-19, identified as Aspergillus sydowii, possesses the potential to produce antifungal activity agents based on an activity-guided approach. Further isolation yielded four polyketones: versicone A (1), versicone B (2), 4-methyl-5,6-dihydro-2H-pyran-2-one (3), and (R)-(+)-sydowic acid (4). It should be noted that 1 displayed strong activity against Candida albicans, with an MIC value of 3.91 μg/mL.
Collapse
Affiliation(s)
- Bailin Cong
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xiaofei Yin
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Aifang Deng
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Jihong Shen
- The First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yongqi Tian
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Huanghao Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
27
|
Queiroz CBD, Santana MF. Prediction of the secretomes of endophytic and nonendophytic fungi reveals similarities in host plant infection and colonization strategies. Mycologia 2020; 112:491-503. [PMID: 32286912 DOI: 10.1080/00275514.2020.1716566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endophytic fungi are microorganisms that inhabit internal plant tissues without causing apparent damage. During the infection process, both endophytic and phytopathogenic fungi secrete proteins to resist or supplant the plant's defense mechanisms. This study analyzed the predicted secretomes of six species of endophytic fungi and compared them with predicted secretomes of eight fungal species with different lifestyles: saprophytic, necrotrophic, hemibiotrophic, and biotrophic. The sizes of the predicted secretomes varied from 260 to 1640 proteins, and the predicted secretomes have a wide diversity of CAZymes, proteases, and conserved domains. Regarding the CAZymes in the secretomes of the analyzed fungi, the most abundant CAZyme families were glycosyl hydrolase and serine proteases. Several predicted proteins have characteristics similar to those found in small, secreted proteins with effector characteristics (SSPEC). The most abundant conserved domains, besides those found in the SSPEC, have oxidation activities, indicating that these proteins can protect the fungus against oxidative stress, against domains with protease activity, which may be involved in the mechanisms of nutrition, or against lytic enzymes secreted by the host plant. This study demonstrates that secretomes of endophytic and nonendophytic fungi share an arsenal of proteins important in the process of infection and colonization of host plants.
Collapse
Affiliation(s)
- Casley Borges de Queiroz
- Laboratório de Biologia Molecular, Embrapa Amazônia Ocidental , Rodovia AM 10, km 29, s/n, CEP: 69010-970, Manaus, Amazonas, Brazil
| | - Mateus Ferreira Santana
- Departamento de Microbiologia (BIOAGRO), Universidade Federal de Viçosa , CEP: 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
28
|
Dal Cortivo C, Ferrari M, Visioli G, Lauro M, Fornasier F, Barion G, Panozzo A, Vamerali T. Effects of Seed-Applied Biofertilizers on Rhizosphere Biodiversity and Growth of Common Wheat ( Triticum aestivum L.) in the Field. FRONTIERS IN PLANT SCIENCE 2020; 11:72. [PMID: 32174929 PMCID: PMC7054350 DOI: 10.3389/fpls.2020.00072] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/17/2020] [Indexed: 05/24/2023]
Abstract
In order to reduce chemical fertilization and improve the sustainability of common wheat (Triticum aestivum L.) cultivation, maintaining at the same time high production and quality standards, this study investigated the effects of three commercial biofertilizers on rhizosphere bacterial biomass, biodiversity and enzymatic activity, and on plant growth and grain yield in a field trial. The wheat seeds were inoculated with the following aiding microrganisms: (i) a bacterial consortium (Azospirillum spp. + Azoarcus spp. + Azorhizobium spp.); and two mycorrhizal fungal-bacterial consortia, viz. (ii) Rhizophagus irregularis + Azotobacter vinelandii, and (iii) R. irregularis + Bacillus megaterium + Frateuria aurantia, and comparisons were made with noninoculated controls. We demonstrate that all the biofertilizers significantly enhanced plant growth and nitrogen accumulation during stem elongation and heading, but this was translated into only small grain yield gains (+1%-4% vs controls). The total gluten content of the flour was not affected, but in general biofertilization significantly upregulated two high-quality protein subunits, i.e., the 81 kDa high-molecular-weight glutenin subunit and the 43.6 kDa low-molecular-weight glutenin subunit. These effects were associated with increases in the rhizosphere microbial biomass and the activity of enzymes such as β-glucosidase, α-mannosidase, β-mannosidase, and xylosidase, which are involved in organic matter decomposition, particularly when Rhizophagus irregularis was included as inoculant. No changes in microbial biodiversity were observed. Our results suggest that seed-applied biofertilizers may be effectively exploited in sustainable wheat cultivation without altering the biodiversity of the resident microbiome, but attention should be paid to the composition of the microbial consortia in order to maximize their benefits in crop cultivation.
Collapse
Affiliation(s)
- Cristian Dal Cortivo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro-Padua, Italy
| | - Manuel Ferrari
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro-Padua, Italy
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marta Lauro
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Flavio Fornasier
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Analysis of Agricultural Economics (CREA), Gorizia, Italy
| | - Giuseppe Barion
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro-Padua, Italy
| | - Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro-Padua, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padua, Legnaro-Padua, Italy
| |
Collapse
|
29
|
Production of Oxalate Oxidase from Endophytic Ochrobactrum intermedium CL6. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Eom SH, Chun YG, Park CE, Kim BK, Lee SH, Park DJ. Application of freeze-thaw enzyme impregnation to produce softened root vegetable foods for elderly consumers. J Texture Stud 2018; 49:404-414. [PMID: 29896872 DOI: 10.1111/jtxs.12341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
Abstract
The aims of this study were to determine the viability of using freeze-thaw infusion (FI) technology to produce a range of root vegetables using enzyme treatments with improved texture characteristics for elderly consumers with swallowing difficulties. We applied enzyme impregnation as a technology to soften the textures of root vegetables commonly consumed in Korea; balloon flower root (Platycodon grandiflorus), burdock root (Arctium lappa L.), carrot (Daucus carota L.), and lotus root (Nelumbo nucifera Gaertn) through the use of a texture analyzer after the FI of a commercial enzyme. Out of 15 commercial enzymes that were analyzed, three enzymes exhibited a marked softening effect on the tested carrots, burdock roots, balloon flower roots, and lotus roots. The hardness of the enzymes-treated food materials reached 1.4 × 104 N/m2 for carrots, 3.0 × 104 N/m2 for burdock roots, of 3.0 × 104 N/m2 for balloon flower roots, and 3.2 × 104 N/m2 for lotus roots without changing the original shapes of the samples. These findings confirmed the potential benefits of softening carrots, lotus roots burdock roots, and balloon flower roots and will contribute to the development of foods that can be easily eaten as part of a balanced diet by elderly adults with eating difficulties.
Collapse
Affiliation(s)
- Sung-Hwan Eom
- Department of Food Science and Technology, Dong-Eui University, Busan, Republic of Korea
| | - Yong-Gi Chun
- Korea Food Research Institute, Wanju, Jeonbuk, Republic of Korea
| | - Chan-Eun Park
- Korea Food Research Institute, Wanju, Jeonbuk, Republic of Korea
| | - Bum-Keun Kim
- Korea Food Research Institute, Wanju, Jeonbuk, Republic of Korea
| | - Sang-Hoon Lee
- Korea Food Research Institute, Wanju, Jeonbuk, Republic of Korea
- University of Science and Technology, Daejeon, Republic of Korea
| | - Dong-June Park
- Korea Food Research Institute, Wanju, Jeonbuk, Republic of Korea
| |
Collapse
|
31
|
García-Calvo L, Ullán RV, Fernández-Aguado M, García-Lino AM, Balaña-Fouce R, Barreiro C. Secreted protein extract analyses present the plant pathogen Alternaria alternata as a suitable industrial enzyme toolbox. J Proteomics 2018; 177:48-64. [PMID: 29438850 DOI: 10.1016/j.jprot.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 01/08/2023]
Abstract
Lignocellulosic plant biomass is the most abundant carbon source in the planet, which makes it a potential substrate for biorefinery. It consists of polysaccharides and other molecules with applications in pharmaceutical, food and feed, cosmetics, paper and textile industries. The exploitation of these resources requires the hydrolysis of the plant cell wall, which is a complex process. Aiming to discover novel fungal natural isolates with lignocellulolytic capacities, a screening for feruloyl esterase activity was performed in samples taken from different metal surfaces. An extracellular enzyme extract from the most promising candidate, the natural isolate Alternaria alternata PDA1, was analyzed. The feruloyl esterase activity of the enzyme extract was characterized, determining the pH and temperature optima (pH 5.0 and 55-60 °C, respectively), thermal stability and kinetic parameters, among others. Proteomic analyses derived from two-dimensional gels allowed the identification and classification of 97 protein spots from the extracellular proteome. Most of the identified proteins belonged to the carbohydrates metabolism group, particularly plant cell wall degradation. Enzymatic activities of the identified proteins (β-glucosidase, cellobiohydrolase, endoglucanase, β-xylosidase and xylanase) of the extract were also measured. These findings confirm A. alternata PDA1 as a promising lignocellulolytic enzyme producer. SIGNIFICANCE Although plant biomass is an abundant material that can be potentially utilized by several industries, the effective hydrolysis of the recalcitrant plant cell wall is not a straightforward process. As this hydrolysis occurs in nature relying almost solely on microbial enzymatic systems, it is reasonable to infer that further studies on lignocellulolytic enzymes will discover new sustainable industrial solutions. The results included in this paper provide a promising fungal candidate for biotechnological processes to obtain added value from plant byproducts and analogous substrates. Moreover, the proteomic analysis of the secretome of a natural isolate of Alternaria sp. grown in the presence of one of the most used vegetal substrates on the biofuels industry (sugar beet pulp) sheds light on the extracellular enzymatic machinery of this fungal plant pathogen, and can be potentially applied to developing new industrial enzymatic tools. This work is, to our knowledge, the first to analyze in depth the secreted enzyme extract of the plant pathogen Alternaria when grown on a lignocellulosic substrate, identifying its proteins by means of MALDI-TOF/TOF mass spectrometry and characterizing its feruloyl esterase, cellulase and xylanolytic activities.
Collapse
Affiliation(s)
- L García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain
| | - R V Ullán
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, s/n, Armunia, 24009 León, Spain
| | - M Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain
| | - A M García-Lino
- Área de Fisiología, Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - R Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - C Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006 León, Spain; Departamento de Biología Molecular, Universidad de León, Campus de Ponferrada, Avda. Astorga s/n, 24401 Ponferrada, Spain.
| |
Collapse
|
32
|
Sengupta A, Zabala A, Tan SY, Broadstock A, Suryanarayanan TS, Gopalan V. Characterization of an ionic liquid-tolerant β-xylosidase from a marine-derived fungal endophyte. Biochem Cell Biol 2017; 95:585-591. [DOI: 10.1139/bcb-2017-0053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ionic liquids (ILs) are used in lignocellulosic biomass (LCB) pretreatment because of their ability to disrupt the extensive hydrogen-bonding network in cellulose and hemicellulose, and thereby decrease LCB recalcitrance to subsequent enzymatic degradation. However, this approach necessitates the development of cellulases and hemicellulases that can tolerate ∼20% (w/v) IL, an amount that either co-precipitates with the sugar polymers after the initial pretreatment or is typically used in single-pot biomass deconstructions. By investigating the secretomes from 4 marine-derived fungal endophytes, we identified a β-xylosidase derived from Trichoderma harzianum as the most promising in terms of tolerating 1-ethyl-3-methylimidazolium-dimethyl phosphate (EMIM-DMP), an IL. When tested with p-nitrophenyl-β-d-xyloside, this extracellular xylosidase retained ∼50% activity even in 1.2 mol·L–1 (20% w/v) EMIM-DMP after incubation for 48 h. When tested on the natural substrate xylobiose, there was ∼85% of the initial activity in 1.2 mol·L–1 EMIM-DMP after incubation for 9 h and ∼80% after incubation for 48 h. Despite previous findings associating thermostability and IL tolerance, our findings related to the mesophilic T. harzianum β-xylosidase(s) emphasize the need to include the marine habitat in the bioprospecting dragnet for identification of new IL-tolerant LCB-degrading enzymes.
Collapse
Affiliation(s)
- Anindita Sengupta
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Angela Zabala
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Si Yu Tan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Arthur Broadstock
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Trichur S. Suryanarayanan
- Vivekananda Institute of Tropical Mycology (VINSTROM), Ramakrishna Mission Vidyapith, Chennai 600004, India
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Maroldi MMC, Vasconcellos VM, Lacava PT, Farinas CS. Potential of Mangrove-Associated Endophytic Fungi for Production of Carbohydrolases with High Saccharification Efficiency. Appl Biochem Biotechnol 2017; 184:806-820. [PMID: 28866806 DOI: 10.1007/s12010-017-2590-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/29/2017] [Indexed: 11/28/2022]
Abstract
The endophytic fungi represent a potential source of microorganisms for enzyme production. However, there have been only few studies exploiting their potential for the production of enzymes of industrial interest, such as the (hemi)cellulolytic enzymatic cocktail required in the hydrolysis of lignocellulosic biomass. Here, a collection of endophytic fungi isolated from mangrove tropical forests was evaluated for the production of carbohydrolases and performance on the hydrolysis of cellulose. For that, 41 endophytic strains were initially screened using a plate assay containing crystalline cellulose as the sole carbon source and the selected strains were cultivated under solid-state fermentation for endoglucanase, β-glucosidase, and xylanase enzyme quantification. The hydrolysis of a cellulosic material with the enzymes from endophytic strains of the Aspergillus genus resulted in glucose and conversion values more than twofold higher than the reference strains (Aspergillus niger F12 and Trichoderma reesei Rut-C30). Particularly, the enzymes from strains A. niger 56 (3) and A. awamori 82 (4) showed a distinguished saccharification performance, reaching cellulose conversion values of about 35% after 24 h. Linking hydrolysis performance to the screening steps played an important role towards finding potential fungal strains for producing enzymatic cocktails with high saccharification efficiency. These results indicate the potential of mangrove-associated endophytic fungi for production of carbohydrolases with efficient performance in the hydrolysis of biomass, thus contributing to the implementation of future biorefineries.
Collapse
Affiliation(s)
- M M C Maroldi
- Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, São Paulo, 13561-206, Brazil.,Center of Biological Sciences and Health, Federal University of São Carlos, PO Box 676, São Carlos, São Paulo, 13565-905, Brazil
| | - V M Vasconcellos
- Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, São Paulo, 13561-206, Brazil.,Graduate Program of Chemical Engineering, Federal University of São Carlos, PO Box 676, São Carlos, São Paulo, 13565-905, Brazil
| | - P T Lacava
- Center of Biological Sciences and Health, Federal University of São Carlos, PO Box 676, São Carlos, São Paulo, 13565-905, Brazil
| | - C S Farinas
- Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, São Paulo, 13561-206, Brazil. .,Graduate Program of Chemical Engineering, Federal University of São Carlos, PO Box 676, São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
34
|
|
35
|
Bagewadi ZK, Mulla SI, Ninnekar HZ. Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. J Genet Eng Biotechnol 2017; 15:139-150. [PMID: 30647650 PMCID: PMC6296572 DOI: 10.1016/j.jgeb.2017.01.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/16/2017] [Accepted: 01/21/2017] [Indexed: 01/24/2023]
Abstract
In this study we report the purification of laccase produced by Trichoderma harzianum strain HZN10 (using wheat bran under solid state fermentation) and its application in decolorization of synthetic dyes. Extracellular laccase was purified to homogeneity by DEAE-Sepharose and Sephadex G-100 chromatography with specific activity of 162.5 U/mg and 25-fold purification. Purified laccase was immobilized in various entrapments like calcium alginate, copper alginate, calcium alginate-chitosan beads and sol-gel matrix. Optimization results revealed that the laccase immobilized in sol-gel was optimally active in wide pH range (4.0-7.0) and thermo-stable (50-70 °C) than free enzyme which was optimum at 50 °C and pH 6.0. Kinetic analysis showed K m of 0.5 mM and 2.0 mM and V max of 285 U/mg and 500 U/mg by free laccase and sol-gel immobilized laccase respectively with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) [ABTS] substrate. Free and immobilized laccase was employed for decolorization of three different synthetic dyes (malachite green, methylene blue and congo red). High performance liquid chromatography (HPLC) analysis results revealed that approximately 100% of malachite green, 90% of methylene blue and 60% of congo red dyes at initial concentration of 200 mg/L were decolorized within 16, 18 and 20 h, respectively by laccase immobilized in sol-gel matrix in the presence of 1-hydroxybenzotriazole (HBT) mediator. During the decolorization all three synthetic dyes showed various peaks on HPLC chromatogram indicating different by-products formation. Finally, phytotoxicity analysis results revealed that the by-products of synthetic dyes (formed during decolorization) showed less toxicity against Phaseolus mungo compared to untreated synthetic dyes.
Collapse
Affiliation(s)
- Zabin K. Bagewadi
- Department of Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
- Department of Biotechnology, KLE Technological University Hubballi, Karnataka 580 031, India
| | - Sikandar I. Mulla
- Department of Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | | |
Collapse
|
36
|
EL-Moslamy SH, Elkady MF, Rezk AH, Abdel-Fattah YR. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci Rep 2017; 7:45297. [PMID: 28349997 PMCID: PMC5368611 DOI: 10.1038/srep45297] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/14/2017] [Indexed: 11/26/2022] Open
Abstract
Development of reliable and low-cost requirement for large-scale eco-friendly biogenic synthesis of metallic nanoparticles is an important step for industrial applications of bionanotechnology. In the present study, the mycosynthesis of spherical nano-Ag (12.7 ± 0.8 nm) from extracellular filtrate of local endophytic T. harzianum SYA.F4 strain which have interested mixed bioactive metabolites (alkaloids, flavonoids, tannins, phenols, nitrate reductase (320 nmol/hr/ml), carbohydrate (25 μg/μl) and total protein concentration (2.5 g/l) was reported. Industrial mycosynthesis of nano-Ag can be induced with different characters depending on the fungal cultivation and physical conditions. Taguchi design was applied to improve the physicochemical conditions for nano-Ag production, and the optimum conditions which increased its mass weight 3 times larger than a basal condition were as follows: AgNO3 (0.01 M), diluted reductant (10 v/v, pH 5) and incubated at 30 °C, 200 rpm for 24 hr. Kinetic conversion rates in submerged batch cultivation in 7 L stirred tank bioreactor on using semi-defined cultivation medium was as follows: the maximum biomass production (Xmax) and maximum nano-Ag mass weight (Pmax) calculated (60.5 g/l and 78.4 g/l respectively). The best nano-Ag concentration that formed large inhibition zones was 100 μg/ml which showed against A.alternate (43 mm) followed by Helminthosporium sp. (35 mm), Botrytis sp. (32 mm) and P. arenaria (28 mm).
Collapse
Affiliation(s)
- Shahira H. EL-Moslamy
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Marwa F. Elkady
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, Egypt
- Fabrication Technology Researches Department Advanced Technology and New Materials and Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Ahmed H. Rezk
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria, Egypt
| | - Yasser R. Abdel-Fattah
- Bioprocess development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
37
|
Paulo SBM, Julio CD, Marcelo NVDO, Bruno CM, Arnaldo CB, Marcos RT, Julio CLN, Mauricio DC. Diversity and distribution of the endophytic fungal community in eucalyptus leaves. ACTA ACUST UNITED AC 2017. [DOI: 10.5897/ajmr2016.8353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
38
|
Bagewadi ZK, Mulla SI, Shouche Y, Ninnekar HZ. Xylanase production from Penicillium citrinum isolate HZN13 using response surface methodology and characterization of immobilized xylanase on glutaraldehyde-activated calcium-alginate beads. 3 Biotech 2016; 6:164. [PMID: 28330236 PMCID: PMC4980835 DOI: 10.1007/s13205-016-0484-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 08/01/2016] [Indexed: 01/28/2023] Open
Abstract
The present study reports the production of high-level cellulase-free xylanase from Penicillium citrinum isolate HZN13. The variability in xylanase titers was assessed under both solid-state (SSF) and submerged (SmF) fermentation. SSF was initially optimized with different agro-waste residues, among them sweet sorghum bagasse was found to be the best substrate that favored maximum xylanase production (9643 U/g). Plackett–Burman and response surface methodology employing central composite design were used to optimize the process parameters for the production of xylanase under SSF. A second-order quadratic model and response surface method revealed the optimum conditions for xylanase production (sweet sorghum bagasse 25 g/50 ml; ammonium sulphate 0.36 %; yeast extract 0.6 %; pH 4; temperature 40 °C) yielding 30,144 U/g. Analysis of variance (ANOVA) showed a high correlation coefficient (R2 = 97.63 %). Glutaraldehyde-activated calcium-alginate-immobilized purified xylanase showed recycling stability (87 %) up to seven cycles. Immobilized purified xylanase showed enhanced thermo-stability in comparison to immobilized crude xylanase. Immobilization kinetics of crude and purified xylanase revealed an increase in Km (12.5 and 11.11 mg/ml) and Vmax (12,500 and 10,000 U/mg), respectively. Immobilized (crude) enzymatic hydrolysis of sweet sorghum bagasse released 8.1 g/g (48 h) of reducing sugars. Xylose and other oligosaccharides produced during hydrolysis were detected by High-Performance Liquid Chromatography. The biomass was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray and Fourier Transformation Infrared Spectroscopy. However, this is one of the few reports on high-level cellulase-free xylanase from P. citrinum isolate using sweet sorghum bagasse.
Collapse
|
39
|
Müller CA, Obermeier MM, Berg G. Bioprospecting plant-associated microbiomes. J Biotechnol 2016; 235:171-80. [DOI: 10.1016/j.jbiotec.2016.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
|
40
|
Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid. PLoS One 2016; 11:e0158207. [PMID: 27359330 PMCID: PMC4928835 DOI: 10.1371/journal.pone.0158207] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 06/13/2016] [Indexed: 11/19/2022] Open
Abstract
Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H′ 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi’s potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could establish a unique niche for ecological adaptation during symbiosis with the host Frankincense tree.
Collapse
Affiliation(s)
- Abdul Latif Khan
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
- * E-mail: (AAH); (IJL)
| | - Ahmed Al-Rawahi
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Zainab Al-Farsi
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Aza Al-Mamari
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ali Elyassi
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Fazal Mabood
- UoN Chair of Oman’s Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, Oman
| | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (AAH); (IJL)
| |
Collapse
|
41
|
Delabona PDS, Lima DJ, Robl D, Rabelo SC, Farinas CS, Pradella JGDC. Enhanced cellulase production by Trichoderma harzianum by cultivation on glycerol followed by induction on cellulosic substrates. J Ind Microbiol Biotechnol 2016; 43:617-26. [PMID: 26883662 DOI: 10.1007/s10295-016-1744-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/12/2015] [Indexed: 12/22/2022]
Abstract
The use of glycerol obtained as an intermediate of the biodiesel manufacturing process as carbon source for microbial growth is a potential alternative strategy for the production of enzymes and other high-value bioproducts. This work evaluates the production of cellulase enzymes using glycerol for high cell density growth of Trichoderma harzianum followed by induction with a cellulosic material. Firstly, the influence of the carbon source used in the pre-culture step was investigated in terms of total protein secretion and fungal morphology. Enzymatic productivity was then determined for cultivation strategies using different types and concentrations of carbon source, as well as different feeding procedures (batch and fed-batch). The best strategy for cellulase production was then further studied on a larger scale using a stirred tank bioreactor. The proposed strategy for cellulase production, using glycerol to achieve high cell density growth followed by induction with pretreated sugarcane bagasse, achieved enzymatic activities up to 2.27 ± 0.37 FPU/mL, 106.40 ± 8.87 IU/mL, and 9.04 ± 0.39 IU/mL of cellulase, xylanase, and β-glucosidase, respectively. These values were 2 times higher when compared to the control experiments using glucose instead of glycerol. This novel strategy proved to be a promising approach for improving cellulolytic enzymes production, and could potentially contribute to adding value to biomass within the biofuels sector.
Collapse
Affiliation(s)
- Priscila da Silva Delabona
- Brazilian Bioethanol Science and Technology Laboratory, CTBE, Pólo II de Alta Tecnologia, Rua Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, Campinas, SP, CEP 13083-970, Brazil. .,Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| | - Deise Juliana Lima
- Brazilian Bioethanol Science and Technology Laboratory, CTBE, Pólo II de Alta Tecnologia, Rua Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, Campinas, SP, CEP 13083-970, Brazil
| | - Diogo Robl
- Brazilian Bioethanol Science and Technology Laboratory, CTBE, Pólo II de Alta Tecnologia, Rua Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, Campinas, SP, CEP 13083-970, Brazil
| | - Sarita Cândida Rabelo
- Brazilian Bioethanol Science and Technology Laboratory, CTBE, Pólo II de Alta Tecnologia, Rua Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, Campinas, SP, CEP 13083-970, Brazil
| | - Cristiane Sanchez Farinas
- Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.,Embrapa Instrumentation, Rua XV de Novembro 1452, São Carlos, SP, CEP 13560-970, Brazil
| | - José Geraldo da Cruz Pradella
- Brazilian Bioethanol Science and Technology Laboratory, CTBE, Pólo II de Alta Tecnologia, Rua Giuseppe Maximo Scolfaro 10000, Caixa Postal 6192, Campinas, SP, CEP 13083-970, Brazil.,Graduate Program of Biotechnology, Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
42
|
Robl D, da Silva Delabona P, dos Santos Costa P, da Silva Lima DJ, Rabelo SC, Pimentel IC, Büchli F, Squina FM, Padilla G, da Cruz Pradella JG. Xylanase production by endophyticAspergillus nigerusing pentose-rich hydrothermal liquor from sugarcane bagasse. BIOCATAL BIOTRANSFOR 2015. [DOI: 10.3109/10242422.2015.1084296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Robl D, Costa PDS, Büchli F, Lima DJDS, Delabona PDS, Squina FM, Pimentel IC, Padilla G, Pradella JGDC. Enhancing of sugar cane bagasse hydrolysis by Annulohypoxylon stygium glycohydrolases. BIORESOURCE TECHNOLOGY 2015; 177:247-254. [PMID: 25496945 DOI: 10.1016/j.biortech.2014.11.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
The aim of this study was to develop a bioprocess for the production of β-glucosidase and pectinase from the fungus Annulohypoxylon stygium DR47. Media optimization and bioreactor cultivation using citrus bagasse and soybean bran were explored and revealed a maximum production of 6.26 U/mL of pectinase at pH 4.0 and 10.13 U/mL of β-glucosidase at pH 5.0. In addition, the enzymes extracts were able to replace partially Celluclast 1.5L in sugar cane bagasse hydrolysis. Proteomic analysis from A. stygium cultures revealed accessory enzymes, mainly belong to the families GH3 and GH54, that would support enhancement of commercial cocktail saccharification yields. This is the first report describing bioreactor optimization for enzyme production from A. stygium with a view for more efficient degradation of sugar cane bagasse.
Collapse
Affiliation(s)
- Diogo Robl
- Institute of Biomedical Sciences, University of São Paulo (USP), Avenida Lineu Prestes 1374, CEP 05508-900 São Paulo, Brazil; Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, CEP 13083-970 Campinas, São Paulo, Brazil.
| | - Patrícia dos Santos Costa
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Fernanda Büchli
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Deise Juliana da Silva Lima
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Priscila da Silva Delabona
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Fabio Marcio Squina
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, CEP 13083-970 Campinas, São Paulo, Brazil
| | - Ida Chapaval Pimentel
- Department of Basic Pathology, Federal University of Paraná (UFPR), CEP 81531-980 Curitiba, Paraná, Brazil
| | - Gabriel Padilla
- Institute of Biomedical Sciences, University of São Paulo (USP), Avenida Lineu Prestes 1374, CEP 05508-900 São Paulo, Brazil
| | - José Geraldo da Cruz Pradella
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Centre of Research in Energy and Materials (CNPEM), Rua Giuseppe Maximo Scolfaro 10000, Pólo II de Alta Tecnologia, CEP 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
44
|
Maitan-Alfenas GP, Visser EM, Guimarães VM. Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2014.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Mäkelä MR, Donofrio N, de Vries RP. Plant biomass degradation by fungi. Fungal Genet Biol 2014; 72:2-9. [PMID: 25192611 DOI: 10.1016/j.fgb.2014.08.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 12/27/2022]
Abstract
Plant biomass degradation by fungi has implications for several fields of science. The enzyme systems employed by fungi for this are broadly used in various industrial sectors such as food & feed, pulp & paper, detergents, textile, wine, and more recently biofuels and biochemicals. In addition, the topic is highly relevant in the field of plant pathogenic fungi as they degrade plant biomass to either gain access to the plant or as carbon source, resulting in significant crop losses. Finally, fungi are the main degraders of plant biomass in nature and as such have an essential role in the global carbon cycle and ecology in general. In this review we provide a global view on the development of this research topic in saprobic ascomycetes and basidiomycetes and in plant pathogenic fungi and link this to the other papers of this special issue on plant biomass degradation by fungi.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Nicole Donofrio
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Ronald P de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
46
|
Yuan Z, Chen L. The role of endophytic fungal individuals and communities in the decomposition of Pinus massoniana needle litter. PLoS One 2014; 9:e105911. [PMID: 25157631 PMCID: PMC4144953 DOI: 10.1371/journal.pone.0105911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/29/2014] [Indexed: 01/21/2023] Open
Abstract
The role of fungal endophytes (FEs) as "pioneer" decomposers has recently been recognized; however, the extent to which FEs contribute to litter loss is less well understood. The genetic and enzymatic bases of FE-mediated decomposition have also rarely been addressed. The effects of populations and individuals (with an emphasis on two dominant Lophodermium taxa) of FEs on needle-litter decomposition were assessed for Pinus massoniana, a ubiquitous pine in southern China. Data from in vivo (microcosm) experiments indicated that the percentage of litter-mass loss triggered by FEs was linearly correlated with incubation time and approached 60% after seven months. In vitro decomposition tests also confirmed that endophytic Lophodermium isolates caused 14-22% mass loss within two months. Qualitative analysis of exoenzymes (cellulase and laccase, important for lignocellulose degradation) revealed that almost all of the Lophodermium isolates showed moderate or strong positive reactions. Furthermore, partial sequences of β-glucosidase (glycoside hydrolase family 3, GH3), laccase, and cellobiohydrolase (GH7) genes were amplified from Lophodermium isolates as "functional markers" to evaluate their potential for lignocellulolytic activity. Three different genes were detected, suggesting a flexible and delicate decomposition system rich in FEs. Our work highlights the possibility that the saprophytism and endophytism of FEs may be prerequisites to initiating rapid decomposition and thus may be key in Fes' contribution to litter decomposition, at least in the early stage. Potential indicators of the presence of core fungal decomposers are also briefly discussed.
Collapse
Affiliation(s)
- Zhilin Yuan
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang Province, P. R. China
| | - Lianqing Chen
- Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang, Zhejiang Province, P. R. China
| |
Collapse
|
47
|
Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 2014; 41:1467-78. [PMID: 25117531 DOI: 10.1007/s10295-014-1496-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/27/2014] [Indexed: 01/14/2023]
Abstract
Endophytic fungi, mostly belonging to the Ascomycota, are found in the intercellular spaces of the aerial plant parts, particularly in leaf sheaths, sometimes even within the bark and root system without inducing any visual symptoms of their presence. These fungi appear to have a capacity to produce a wide range of enzymes and secondary metabolites exhibiting a variety of biological activities. However, they have been only barely exploited as sources of enzymes of industrial interest. This review emphasizes the suitability and possible advantages of including the endophytic fungi in the screening of new enzyme producing organisms as well as in studies aiming to optimize the production of enzymes through well-known culture processes. Apparently endophytic fungi possess the two types of extracellular enzymatic systems necessary to degrade the vegetal biomass: (1) the hydrolytic system responsible for polysaccharide degradation consisting mainly in xylanases and cellulases; and (2) the unique oxidative ligninolytic system, which degrades lignin and opens phenyl rings, comprises mainly laccases, ligninases and peroxidases. The obvious ability of endophytic fungi to degrade the complex structure of lignocellulose makes them useful in the exploration of the lignocellulosic biomass for the production of fuel ethanol and other value-added commodity chemicals. In addition to this, endophytic fungi may become new sources of industrially useful enzymes such as lipases, amylases and proteases.
Collapse
|