1
|
Jia Y, Zhou X, Liu Y, Liu X, Ren F, Liu H. Novel Insights Into Naringenin: A Multifaceted Exploration of Production, Synthesis, Health Effects, Nanodelivery Systems, and Molecular Simulation. Mol Nutr Food Res 2025:e70066. [PMID: 40223444 DOI: 10.1002/mnfr.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/18/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Naringenin, a flavonoid widely present in citrus fruits, has garnered considerable attention due to its diverse biological activities and health-promoting benefits. As research on naringenin advances, the application scope of naringenin has significantly expanded. This paper provides a systematic overview of the production and synthesis methods of naringenin, focusing especially on the application of green extraction techniques and the strategies for constructing microbial metabolic engineering. Naringenin not only achieves its diverse biological activities including antioxidant, antiinflammatory, and glucolipid metabolism regulation through multiple mechanisms but also modulates the balance of gut microbiota, thereby mediating synergistic health effects via the host-microbial metabolic axis. Given the low oral bioavailability of naringenin, various nanodelivery systems have been developed to improve its bioavailability. Meanwhile, molecular simulation techniques elucidate the binding conformation characteristics with receptors at the molecular level, providing novel insights into its mechanisms of action. In conclusion, this review seeks to offer a theoretical basis and future directions for further research and application of naringenin.
Collapse
Affiliation(s)
- Yuanqiang Jia
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Xinjing Zhou
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yanan Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | | | - Feiyue Ren
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Hongzhi Liu
- Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Wang F, Zhao Q, Li S, Sun R, Zang Z, Xiong AS, Seck EHM, Ye Y, Zhang J. Genetic mechanisms, biological function, and biotechnological advance in sorghum tannins research. Biotechnol Adv 2025; 81:108573. [PMID: 40169114 DOI: 10.1016/j.biotechadv.2025.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Sorghum (Sorghum bicolor) holds a unique position in the human diet and serves as a stable food source in many developing countries especially in African and south Asian regions. Tannins, the primary secondary metabolites in sorghum, are pivotal in determining its characteristic bitter taste. Beyond their influence on flavor, tannins play a vital role in sorghum's resistance to biotic and abiotic stresses and serve as key indicators of grain quality. The concentration of tannins significantly affects the potential for diverse applications of sorghum. This review provides a comprehensive analysis of sorghum tannins, focusing on their genetic basis, biological activities, and biosynthesis mechanisms. It highlights the relationship between tannin levels and grain color and delves into the underlying biogenetic pathways. Furthermore, the potential of functional genomics and biotechnological approaches in precisely controlling tannin levels for sorghum breeding is discussed. This study aims to offer valuable insights and perspectives for advancing both the scientific understanding and practical applications of sorghum tannins.
Collapse
Affiliation(s)
- Fu Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Qian Zhao
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Shuyao Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Ruidong Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Zhenyuan Zang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Ai-Sheng Xiong
- Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - El Hadji Moussa Seck
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China
| | - Yuxin Ye
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, 130118, China; Laboratory of Sorghum Biotechnology, Suqian Institute of Applied Research, Suqian, China; Department of Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
3
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
4
|
Lee SB, Lee SE, Lee H, Kim JS, Choi H, Lee S, Kim BG. Engineering Nicotiana benthamiana for chrysoeriol production using synthetic biology approaches. FRONTIERS IN PLANT SCIENCE 2024; 15:1458916. [PMID: 39741678 PMCID: PMC11685227 DOI: 10.3389/fpls.2024.1458916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025]
Abstract
Flavonoids are prevalent plant secondary metabolites with a broad range of biological activities. Their antioxidant, anti-inflammatory, and anti-cancer activities make flavonoids widely useful in a variety of industries, including the pharmaceutical and health food industries. However, many flavonoids occur at only low concentrations in plants, and they are difficult to synthesize chemically due to their structural complexity. To address these difficulties, new technologies have been employed to enhance the production of flavonoids in vivo. In this study, we used synthetic biology techniques to produce the methylated flavone chrysoeriol in Nicotiana benthamiana leaves. The chrysoeriol biosynthetic pathway consists of eight catalytic steps. However, using an Agrobacterium-mediated transient expression assay to examine the in planta activities of genes of interest, we shortened this pathway to four steps catalyzed by five enzymes. Co-expression of these five enzymes in N. benthamiana leaves resulted in de novo chrysoeriol production. Chrysoeriol production was unaffected by the Agrobacterium cell density used for agroinfiltration and increased over time, peaking at 10 days after infiltration. Chrysoeriol accumulation in agroinfiltrated N. benthamiana leaves was associated with increased antioxidant activity, a typical property of flavones. Taken together, our results demonstrate that synthetic biology represents a practical method for engineering plants to produce substantial amounts of flavonoids and flavonoid derivatives without the need for exogenous substrates.
Collapse
Affiliation(s)
- Saet Buyl Lee
- Metabolic Engineering Division, National Institute of Agricultural Science, Rural Development Administration, JeonJu, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
5
|
Kurnia K, Efimova E, Santala V, Santala S. Metabolic engineering of Acinetobacter baylyi ADP1 for naringenin production. Metab Eng Commun 2024; 19:e00249. [PMID: 39555486 PMCID: PMC11568779 DOI: 10.1016/j.mec.2024.e00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Naringenin, a flavanone and a precursor for a variety of flavonoids, has potential applications in the health and pharmaceutical sectors. The biological production of naringenin using genetically engineered microbes is considered as a promising strategy. The naringenin synthesis pathway involving chalcone synthase (CHS) and chalcone isomerase (CHI) relies on the efficient supply of key substrates, malonyl-CoA and p-coumaroyl-CoA. In this research, we utilized a soil bacterium, Acinetobacter baylyi ADP1, which exhibits several characteristics that make it a suitable candidate for naringenin biosynthesis; the strain naturally tolerates and can uptake and metabolize p-coumaric acid, a primary compound in alkaline-pretreated lignin and a precursor for naringenin production. A. baylyi ADP1 also produces intracellular lipids, such as wax esters, thereby being able to provide malonyl-CoA for naringenin biosynthesis. Moreover, the genomic engineering of this strain is notably straightforward. In the course of the construction of a naringenin-producing strain, the p-coumarate catabolism was eliminated by a single gene knockout (ΔhcaA) and various combinations of plant-derived CHS and CHI were evaluated. The best performance was obtained by a novel combination of genes encoding for a CHS from Hypericum androsaemum and a CHI from Medicago sativa, that enabled the production of 17.9 mg/L naringenin in batch cultivations from p-coumarate. Furthermore, the implementation of a fed-batch system led to a 3.7-fold increase (66.4 mg/L) in naringenin production. These findings underscore the potential of A. baylyi ADP1 as a host for naringenin biosynthesis as well as advancement of lignin-based bioproduction.
Collapse
Affiliation(s)
- Kesi Kurnia
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Elena Efimova
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Ville Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| | - Suvi Santala
- Faculty of Engineering and Natural Sciences, Tampere University, Hervanta Campus, 33720, Tampere, Finland
| |
Collapse
|
6
|
Yu J, Zheng Y, Song C, Chen S. New insights into the roles of fungi and bacteria in the development of medicinal plant. J Adv Res 2024; 65:137-152. [PMID: 38092299 PMCID: PMC11518954 DOI: 10.1016/j.jare.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND The interaction between microorganisms and medicinal plants is a popular topic. Previous studies consistently reported that microorganisms were mainly considered pathogens or contaminants. However, with the development of microbial detection technology, it has been demonstrated that fungi and bacteria affect beneficially the medicinal plant production chain. AIM OF REVIEW Microorganisms greatly affect medicinal plants, with microbial biosynthesis a high regarded topic in medicinal plant-microbial interactions. However, it lacks a systematic review discussing this relationship. Current microbial detection technologies also have certain advantages and disadvantages, it is essential to compare the characteristics of various technologies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review first illustrates the role of fungi and bacteria in various medicinal plant production procedures, discusses the development of microbial detection and identification technologies in recent years, and concludes with microbial biosynthesis of natural products. The relationship between fungi, bacteria, and medicinal plants is discussed comprehensively. We also propose a future research model and direction for further studies.
Collapse
Affiliation(s)
- Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Yixuan Zheng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 China.
| |
Collapse
|
7
|
Zhou S, Zhang Q, Yuan M, Yang H, Deng Y. Static and Dynamic Regulation of Precursor Supply Pathways to Enhance Raspberry Ketone Synthesis from Glucose in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23411-23421. [PMID: 39378372 DOI: 10.1021/acs.jafc.4c07423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Raspberry ketone (RK), a natural product derived from raspberry fruit, is commonly utilized as a flavoring agent in foods and as an active component for weight loss. Metabolic engineering has enabled microorganisms to produce RK more efficiently and cost-effectively. However, the biosynthesis of RK is hindered by an unbalanced synthetic pathway and a deficiency of precursors, including tyrosine and malonyl-CoA. In this study, we constructed and optimized the RK synthetic pathway in Escherichia coli using a static metabolic engineering strategy to enhance the biosynthesis of tyrosine from glucose, thereby achieving the de novo production of RK. Additionally, the synthetic and consumption pathways of malonyl-CoA were dynamically regulated by p-coumaric acid-responsive biosensor to balance the metabolic flux distribution between cell growth and RK biosynthesis. Following pathway optimization, the medium components and fermentation conditions were further refined, resulting in a significant increase in the RK titer to 415.56 mg/L. The optimized strain demonstrated a 32.4-fold increase in the RK titer while maintaining a comparable final OD600 to the initial strain. Overall, the implemented static and dynamic regulatory strategies provide a novel approach for the efficient production of RK, taking into account cell viability and growth.
Collapse
Affiliation(s)
- Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiyue Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Manwen Yuan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Haining Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Li Y, Sun J, Fu Z, He Y, Chen X, Wang S, Zhang L, Jian J, Yang W, Liu C, Liu X, Yang Y, Bai Z. Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:130. [PMID: 39415302 PMCID: PMC11481463 DOI: 10.1186/s13068-024-02576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Tryptophol (IET) is a metabolite derived from L-tryptophan that can be isolated from plants, bacteria, and fungi and has a wide range of biological activities in living systems. Despite the fact that IET biosynthesis pathways exist naturally in living organisms, industrial-scale production of IET and its derivatives is solely based on environmentally unfriendly chemical conversion. With diminishing petroleum reserves and a significant increase in global demand in all major commercial segments, it becomes essential to develop new technologies to produce chemicals from renewable resources and under mild conditions, such as microbial fermentation. Here we characterized and engineered the less-studied L-tryptophan pathway and IET biosynthesis in the baker's yeast Saccharomyces cerevisiae, with the goal of investigating microbial fermentation as an alternative/green strategy to produce IET. In detail, we divided the aromatic amino acids (AAAs) metabolism related to IET synthesis into the shikimate pathway, the L-tryptophan pathway, the competing L-tyrosine/L-phenylalanine pathways, and the Ehrlich pathway based on a modular engineering concept. Through stepwise engineering of these modules, we obtained a yeast mutant capable of producing IET up to 1.04 g/L through fed-batch fermentation, a ~ 650-fold improvement over the wild-type strain. Besides, our engineering process also revealed many insights about the regulation of AAAs metabolism in S. cerevisiae. Finally, during our engineering process, we also discovered yeast mutants that accumulate anthranilate and L-tryptophan, both of which are precursors of various valuable secondary metabolites from fungi and plants. These strains could be developed to the chassis for natural product biosynthesis upon introducing heterologous pathways.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jingzhen Sun
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenhao Fu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yubing He
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaorui Chen
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Shijie Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lele Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Wuxi Tmaxtree Biotechnology Co. Ltd., Wuxi, 214072, China
| | - Jiansheng Jian
- Wuxi Tmaxtree Biotechnology Co. Ltd., Wuxi, 214072, China
| | - Weihua Yang
- Changxing Pharmaceutical Co. Ltd., Huzhou, 313100, China
| | - Chunli Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
9
|
Van Gelder K, Lindner SN, Hanson AD, Zhou J. Strangers in a foreign land: 'Yeastizing' plant enzymes. Microb Biotechnol 2024; 17:e14525. [PMID: 39222378 PMCID: PMC11368087 DOI: 10.1111/1751-7915.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Expressing plant metabolic pathways in microbial platforms is an efficient, cost-effective solution for producing many desired plant compounds. As eukaryotic organisms, yeasts are often the preferred platform. However, expression of plant enzymes in a yeast frequently leads to failure because the enzymes are poorly adapted to the foreign yeast cellular environment. Here, we first summarize the current engineering approaches for optimizing performance of plant enzymes in yeast. A critical limitation of these approaches is that they are labour-intensive and must be customized for each individual enzyme, which significantly hinders the establishment of plant pathways in cellular factories. In response to this challenge, we propose the development of a cost-effective computational pipeline to redesign plant enzymes for better adaptation to the yeast cellular milieu. This proposition is underpinned by compelling evidence that plant and yeast enzymes exhibit distinct sequence features that are generalizable across enzyme families. Consequently, we introduce a data-driven machine learning framework designed to extract 'yeastizing' rules from natural protein sequence variations, which can be broadly applied to all enzymes. Additionally, we discuss the potential to integrate the machine learning model into a full design-build-test cycle.
Collapse
Affiliation(s)
- Kristen Van Gelder
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Steffen N. Lindner
- Department of Systems and Synthetic MetabolismMax Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Department of BiochemistryCharité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt‐UniversitätBerlinGermany
| | - Andrew D. Hanson
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Juannan Zhou
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
10
|
Mei X, Hua D, Liu N, Zhang L, Zhao X, Tian Y, Zhao B, Huang J, Zhang L. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae using metabolic pathway synthases from blueberry. Microb Cell Fact 2024; 23:228. [PMID: 39143478 PMCID: PMC11323355 DOI: 10.1186/s12934-024-02500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Anthocyanins are water-soluble flavonoids in plants, which give plants bright colors and are widely used as food coloring agents, nutrients, and cosmetic additives. There are several limitations for traditional techniques of collecting anthocyanins from plant tissues, including species, origin, season, and technology. The benefits of using engineering microbial production of natural products include ease of use, controllability, and high efficiency. RESULTS In this study, ten genes encoding enzymes involved in the anthocyanin biosynthetic pathway were successfully cloned from anthocyanin-rich plant materials blueberry fruit and purple round eggplant rind. The Yeast Fab Assembly technology was utilized to construct the transcriptional units of these genes under different promoters. The transcriptional units of PAL and C4H, 4CL and CHS were fused and inserted into Chr. XVI and IV of yeast strain JDY52 respectively using homologous recombination to gain Strain A. The fragments containing the transcriptional units of CHI and F3H, F3'H and DFR were inserted into Chr. III and XVI to gain Strain B1. Strain B2 has the transcriptional units of ANS and 3GT in Chr. IV. Several anthocyanidins, including cyanidin, peonidin, pelargonidin, petunidin, and malvidin, were detected by LC-MS/MS following the predicted outcomes of the de novo biosynthesis of anthocyanins in S. cerevisiae using a multi-strain co-culture technique. CONCLUSIONS We propose a novel concept for advancing the heterologous de novo anthocyanin biosynthetic pathway, as well as fundamental information and a theoretical framework for the ensuing optimization of the microbial synthesis of anthocyanins.
Collapse
Affiliation(s)
- Xuefeng Mei
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Deping Hua
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Na Liu
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Lilin Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaowen Zhao
- Novogene Bioinformatics Institute, Beijing, 100015, China
| | - Yujing Tian
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Baiping Zhao
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Jinhai Huang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
| | - Lei Zhang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
11
|
Gomes D, Rodrigues JL, Rodrigues LR. Step-by-step optimization of a heterologous pathway for de novo naringenin production in Escherichia coli. Appl Microbiol Biotechnol 2024; 108:435. [PMID: 39126431 DOI: 10.1007/s00253-024-13271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Naringenin is a plant polyphenol, widely explored due to its interesting biological activities, namely anticancer, antioxidant, and anti-inflammatory. Due to its potential applications and attempt to overcome the industrial demand, there has been an increased interest in its heterologous production. The microbial biosynthetic pathway to produce naringenin is composed of tyrosine ammonia-lyase (TAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), and chalcone isomerase (CHI). Herein, we targeted the efficient de novo production of naringenin in Escherichia coli by performing a step-by-step validation and optimization of the pathway. For that purpose, we first started by expressing two TAL genes from different sources in three different E. coli strains. The highest p-coumaric acid production (2.54 g/L) was obtained in the tyrosine-overproducing M-PAR-121 strain carrying TAL from Flavobacterium johnsoniae (FjTAL). Afterwards, this platform strain was used to express different combinations of 4CL and CHS genes from different sources. The highest naringenin chalcone production (560.2 mg/L) was achieved by expressing FjTAL combined with 4CL from Arabidopsis thaliana (At4CL) and CHS from Cucurbita maxima (CmCHS). Finally, different CHIs were tested and validated, and 765.9 mg/L of naringenin was produced by expressing CHI from Medicago sativa (MsCHI) combined with the other previously chosen genes. To our knowledge, this titer corresponds to the highest de novo production of naringenin reported so far in E. coli. KEY POINTS: • Best enzyme and strain combination were selected for de novo naringenin production. • After genetic and operational optimizations, 765.9 mg/L of naringenin was produced. • This de novo production is the highest reported so far in E. coli.
Collapse
Affiliation(s)
- Daniela Gomes
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Joana L Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal.
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
12
|
Atoki AV, Aja PM, Shinkafi TS, Ondari EN, Awuchi CG. Naringenin: its chemistry and roles in neuroprotection. Nutr Neurosci 2024; 27:637-666. [PMID: 37585716 DOI: 10.1080/1028415x.2023.2243089] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
According to epidemiological research, as the population ages, neurological illnesses are becoming a bigger issue. Despite improvements in the treatment of these diseases, there are still widespread worries about how to find a long-lasting remedy. Several neurological diseases can be successfully treated with natural substances. As a result, current research has been concentrated on finding effective neuroprotective drugs with improved efficacy and fewer side effects. Naringenin is one potential treatment for neurodegenerative diseases. Many citrus fruits, tomatoes, bergamots, and other fruits are rich in naringenin, a flavonoid. This phytochemical is linked to a variety of biological functions. Naringenin has attracted a lot of interest for its ability to exhibit neuroprotection through several mechanisms. In the current article, we present evidence from the literature that naringenin reduces neurotoxicity and oxidative stress in brain tissues. Also, the literatures that are currently accessible shows that naringenin reduces neuroinflammation and other neurological anomalies. Additionally, we found several studies that touted naringenin as a promising anti-amyloidogenic, antidepressant, and neurotrophic treatment option. This review's major goal is to reflect on advancements in knowledge of the molecular processes that underlie naringenin's possible neuroprotective effects. Furthermore, this article also provides highlights of Naringenin with respect to its chemistry and pharmacokinetics.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | | | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Pure and Applied Sciences, Department of Biological Sciences, Kisii University, Kisii, Kenya
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Ishaka, Uganda
- School of Natural and Applied Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
13
|
Hao B, Yang Z, Liu H, Liu Y, Wang S. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Curr Issues Mol Biol 2024; 46:2884-2925. [PMID: 38666911 PMCID: PMC11049524 DOI: 10.3390/cimb46040181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the occurrence of a large number of infectious and non-communicable diseases poses a serious threat to human health as well as to drug development for the treatment of these diseases. One of the most significant challenges is finding new drug candidates that are therapeutically effective and have few or no side effects. In this respect, the active compounds in medicinal plants, especially flavonoids, are potentially useful compounds with a wide range of pharmacological activities. They are naturally present in nature and valuable in the treatment of many infectious and non-communicable diseases. Flavonoids are divided into fourteen categories and are mainly derived from plant extraction, chemical synthesis and structural modification, and biosynthesis. The structural modification of flavonoids is an important way to discover new drugs, but biosynthesis is currently considered the most promising research direction with the potential to revolutionize the new production pipeline in the synthesis of flavonoids. However, relevant problems such as metabolic pathway analyses and cell synthesis protocols for flavonoids need to be addressed on an urgent basis. In the present review, new research techniques for assessing the biological activities of flavonoids and the mechanisms of their biological activities are elucidated and their modes of interaction with other drugs are described. Moreover, novel drug delivery systems, such as nanoparticles, bioparticles, colloidals, etc., are gradually becoming new means of addressing the issues of poor hydrophilicity, lipophilicity, poor chemical stability, and low bioavailability of flavonoids. The present review summarizes the latest research progress on flavonoids, existing problems with their therapeutic efficacy, and how these issues can be solved with the research on flavonoids.
Collapse
Affiliation(s)
| | | | | | | | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China; (B.H.); (Z.Y.); (H.L.); (Y.L.)
| |
Collapse
|
14
|
Zhu J, Yang S, Cao Q, Li X, Jiao L, Shi Y, Yan Y, Xu L, Yang M, Xie X, Madzak C, Yan J. Engineering Yarrowia lipolytica as a Cellulolytic Cell Factory for Production of p-Coumaric Acid from Cellulose and Hemicellulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5867-5877. [PMID: 38446418 DOI: 10.1021/acs.jafc.4c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.
Collapse
Affiliation(s)
- Jiarui Zhu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Shu Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | | | - Xiaoyan Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Liangcheng Jiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yuanxing Shi
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Li Xu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Min Yang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiaoman Xie
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Catherine Madzak
- UMR 782 SayFood, INRAE, AgroParisTech, Paris-Saclay University, Palaiseau 91400, France
| | - Jinyong Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
15
|
Utomo JC, Barrell HB, Kumar R, Smith J, Brant MS, De la Hoz Siegler H, Ro DK. Reconstructing curcumin biosynthesis in yeast reveals the implication of caffeoyl-shikimate esterase in phenylpropanoid metabolic flux. Metab Eng 2024; 82:286-296. [PMID: 38387678 DOI: 10.1016/j.ymben.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Curcumin is a polyphenolic natural product from the roots of turmeric (Curcuma longa). It has been a popular coloring and flavoring agent in food industries with known health benefits. The conventional phenylpropanoid pathway is known to proceed from phenylalanine via p-coumaroyl-CoA intermediate. Although hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) plays a key catalysis in the biosynthesis of phenylpropanoid products at the downstream of p-coumaric acid, a recent discovery of caffeoyl-shikimate esterase (CSE) showed that an alternative pathway exists. Here, the biosynthetic efficiency of the conventional and the alternative pathway in producing feruloyl-CoA was examined using curcumin production in yeast. A novel modular multiplex genome-edit (MMG)-CRISPR platform was developed to facilitate rapid integrations of up to eight genes into the yeast genome in two steps. Using this MMG-CRISPR platform and metabolic engineering strategies, the alternative CSE phenylpropanoid pathway consistently showed higher titers (2-19 folds) of curcumin production than the conventional pathway in engineered yeast strains. In shake flask cultures using a synthetic minimal medium without phenylalanine, the curcumin production titer reached up to 1.5 mg/L, which is three orders of magnitude (∼4800-fold) improvement over non-engineered base strain. This is the first demonstration of de novo curcumin biosynthesis in yeast. Our work shows the critical role of CSE in improving the metabolic flux in yeast towards the phenylpropanoid biosynthetic pathway. In addition, we showcased the convenience and reliability of modular multiplex CRISPR/Cas9 genome editing in constructing complex synthetic pathways in yeast.
Collapse
Affiliation(s)
- Joseph Christian Utomo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hailey Brynn Barrell
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Jessica Smith
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Maximilian Simon Brant
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
16
|
Gao Q, Gao S, Zeng W, Li J, Zhou J. Enhancing (2S)-naringenin production in Saccharomyces cerevisiae by high-throughput screening method based on ARTP mutagenesis. 3 Biotech 2024; 14:85. [PMID: 38379664 PMCID: PMC10874921 DOI: 10.1007/s13205-023-03892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
(2S)-Naringenin, a dihydro-flavonoid, serves as a crucial precursor for flavonoid synthesis due to its extensive medicinal values and physiological functions. A pathway for the synthesis of (2S)-naringenin from glucose has previously been constructed in Saccharomyces cerevisiae through metabolic engineering. However, this synthetic pathway of (2S)-naringenin is lengthy, and the genes involved in the competitive pathway remain unknown, posing challenges in significantly enhancing (2S)-naringenin production through metabolic modification. To address this issue, a novel high-throughput screening (HTS) method based on color reaction combined with a random mutagenesis method called atmospheric room temperature plasma (ARTP), was established in this study. Through this approach, a mutant (B7-D9) with a higher titer of (2S)-naringenin was obtained from 9600 mutants. Notably, the titer was enhanced by 52.3% and 19.8% in shake flask and 5 L bioreactor respectively. This study demonstrates the successful establishment of an efficient HTS method that can be applied to screen for high-titer producers of (2S)-naringenin, thereby greatly improving screening efficiency and providing new insights and solutions for similar product screenings.
Collapse
Affiliation(s)
- Qian Gao
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Song Gao
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
| | - Jianghua Li
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Rd, Wuxi, 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
17
|
Pérez-Valero Á, Serna-Diestro J, Villar CJ, Lombó F. Use of 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate Synthase (DAHP Synthase) to Enhance the Heterologous Biosynthesis of Diosmetin and Chrysoeriol in an Engineered Strain of Streptomyces albidoflavus. Int J Mol Sci 2024; 25:2776. [PMID: 38474023 DOI: 10.3390/ijms25052776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Flavonoids are a large family of polyphenolic compounds with important agro-industrial, nutraceutical, and pharmaceutical applications. Among the structural diversity found in the flavonoid family, methylated flavonoids show interesting characteristics such as greater stability and improved oral bioavailability. This work is focused on the reconstruction of the entire biosynthetic pathway of the methylated flavones diosmetin and chrysoeriol in Streptomyces albidoflavus. A total of eight different genes (TAL, 4CL, CHS, CHI, FNS1, F3'H/CPR, 3'-OMT, 4'-OMT) are necessary for the heterologous biosynthesis of these two flavonoids, and all of them have been integrated along the chromosome of the bacterial host. The biosynthesis of diosmetin and chrysoeriol has been achieved, reaching titers of 2.44 mg/L and 2.34 mg/L, respectively. Furthermore, an additional compound, putatively identified as luteolin 3',4'-dimethyl ether, was produced in both diosmetin and chrysoeriol-producing strains. With the purpose of increasing flavonoid titers, a 3-Deoxy-D-arabino-heptulosonic acid 7-phosphate synthase (DAHP synthase) from an antibiotic biosynthetic gene cluster (BGC) from Amycolatopsis balhimycina was heterologously expressed in S. albidoflavus, enhancing diosmetin and chrysoeriol production titers of 4.03 mg/L and 3.13 mg/L, which is an increase of 65% and 34%, respectively. To the best of our knowledge, this is the first report on the de novo biosynthesis of diosmetin and chrysoeriol in a heterologous host.
Collapse
Affiliation(s)
- Álvaro Pérez-Valero
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Juan Serna-Diestro
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Claudio J Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33011 Oviedo, Spain
| |
Collapse
|
18
|
Zhang S, Liu J, Xiao Z, Tan X, Wang Y, Zhao Y, Jiang N, Shan Y. Systems Metabolic Engineering of Saccharomyces cerevisiae for the High-Level Production of (2 S)-Eriodictyol. J Fungi (Basel) 2024; 10:119. [PMID: 38392791 PMCID: PMC10890390 DOI: 10.3390/jof10020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
(2S)-eriodictyol (ERD) is a flavonoid widely found in citrus fruits, vegetables, and important medicinal plants with neuroprotective, cardioprotective, antidiabetic, and anti-obesity effects. However, the microbial synthesis of ERD is limited by complex metabolic pathways and often results in a low production performance. Here, we engineered Saccharomyces cerevisiae by fine-tuning the metabolism of the ERD synthesis pathway. The results showed that the ERD titer was effectively increased, and the intermediate metabolites levels were reduced. First, we successfully reconstructed the de novo synthesis pathway of p-coumaric acid in S. cerevisiae and fine-tuned the metabolic pathway using promoter engineering and terminator engineering for the high-level production of (2S)-naringenin. Subsequently, the synthesis of ERD was achieved by introducing the ThF3'H gene from Tricyrtis hirta. Finally, by multiplying the copy number of the ThF3'H gene, the production of ERD was further increased, reaching 132.08 mg L-1. Our work emphasizes the importance of regulating the metabolic balance to produce natural products in microbial cell factories.
Collapse
Affiliation(s)
- Siqi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Juan Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Zhiqiang Xiao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yongtong Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yifei Zhao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Ning Jiang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| |
Collapse
|
19
|
Zhu Z, Chen R, Zhang L. Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Nat Prod Rep 2024; 41:6-24. [PMID: 37807808 DOI: 10.1039/d3np00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Covering: 2000 to 2023Simple phenylpropanoids are a large group of natural products with primary C6-C3 skeletons. They are not only important biomolecules for plant growth but also crucial chemicals for high-value industries, including fragrances, nutraceuticals, biomaterials, and pharmaceuticals. However, with the growing global demand for simple phenylpropanoids, direct plant extraction or chemical synthesis often struggles to meet current needs in terms of yield, titre, cost, and environmental impact. Benefiting from the rapid development of metabolic engineering and synthetic biology, microbial production of natural products from inexpensive and renewable sources provides a feasible solution for sustainable supply. This review outlines the biological activities of simple phenylpropanoids, compares their biosynthetic pathways in different species (plants, bacteria, and fungi), and summarises key research on the microbial production of simple phenylpropanoids over the last decade, with a focus on engineering strategies that seem to hold most potential for further development. Moreover, constructive solutions to the current challenges and future perspectives for industrial production of phenylpropanoids are presented.
Collapse
Affiliation(s)
- Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China
- Innovative Drug R&D Centre, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
20
|
Babaei M, Thomsen PT, Pastor MC, Jensen MK, Borodina I. Coupling High-Throughput and Targeted Screening for Identification of Nonobvious Metabolic Engineering Targets. ACS Synth Biol 2024; 13:168-182. [PMID: 38141039 PMCID: PMC10804409 DOI: 10.1021/acssynbio.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Identification of metabolic engineering targets is a fundamental challenge in strain development programs. While high-throughput (HTP) genetic engineering methodologies capable of generating vast diversity are being developed at a rapid rate, a majority of industrially interesting molecules cannot be screened at sufficient throughput to leverage these techniques. We propose a workflow that couples HTP screening of common precursors (e.g., amino acids) that can be screened either directly or by artificial biosensors, with low-throughput targeted validation of the molecule of interest to uncover nonintuitive beneficial metabolic engineering targets and combinations hereof. Using this workflow, we identified several nonobvious novel targets for improving p-coumaric acid (p-CA) and l-DOPA production from two large 4k gRNA libraries each deregulating 1000 metabolic genes in the yeast Saccharomyces cerevisiae. We initially screened yeast cells transformed with gRNA library plasmids for individual regulatory targets improving the production of l-tyrosine-derived betaxanthins, identifying 30 targets that increased intracellular betaxanthin content 3.5-5.7 fold. Hereafter, we screened the targets individually in a high-producing p-CA strain, narrowing down the targets to six that increased the secreted titer by up to 15%. To investigate whether any of the six targets could be additively combined to improve p-CA production further, we created a gRNA multiplexing library and subjected it to our proposed coupled workflow. The combination of regulating PYC1 and NTH2 simultaneously resulted in the highest (threefold) improvement of the betaxanthin content, and an additive trend was also observed in the p-CA strain. Lastly, we tested the initial 30 targets in a l-DOPA producing strain, identifying 10 targets that increased the secreted titer by up to 89%, further validating our screening by proxy workflow. This coupled approach is useful for strain development in the absence of direct HTP screening assays for products of interest.
Collapse
Affiliation(s)
- Mahsa Babaei
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Philip Tinggaard Thomsen
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marc Cernuda Pastor
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael Krogh Jensen
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Irina Borodina
- Novo Nordisk Foundation
Center
for Biosustainability, Technical University
of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
21
|
Mejía-Manzano LA, Ortiz-Alcaráz CI, Parra Daza LE, Suarez Medina L, Vargas-Cortez T, Fernández-Niño M, González Barrios AF, González-Valdez J. Saccharomyces cerevisiae biofactory to produce naringenin using a systems biology approach and a bicistronic vector expression strategy in flavonoid production. Microbiol Spectr 2024; 12:e0337423. [PMID: 38088543 PMCID: PMC10871697 DOI: 10.1128/spectrum.03374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Flavonoids are a group of compounds generally produced by plants with proven biological activity, which have recently beeen recommended for the treatment and prevention of diseases and ailments with diverse causes. In this study, naringenin was produced in adequate amounts in yeast after in silico design. The four genes of the involved enzymes from several organisms (bacteria and plants) were multi-expressed in two vectors carrying each two genes linked by a short viral peptide sequence. The batch kinetic behavior of the product, substrate, and biomass was described at lab scale. The engineered strain might be used in a more affordable and viable bioprocess for industrial naringenin procurement.
Collapse
Affiliation(s)
| | | | - Laura E. Parra Daza
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Lina Suarez Medina
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - Teresa Vargas-Cortez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | - Miguel Fernández-Niño
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Andrés Fernando González Barrios
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de los Andes, Bogotá, Colombia
| | - José González-Valdez
- School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| |
Collapse
|
22
|
Peng B, Zhang L, He S, Oerlemans R, Quax WJ, Groves MR, Haslinger K. Engineering a Plant Polyketide Synthase for the Biosynthesis of Methylated Flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:529-539. [PMID: 38109879 PMCID: PMC10786038 DOI: 10.1021/acs.jafc.3c06785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
Homoeriodictyol and hesperetin are naturally occurring O-methylated flavonoids with many health-promoting properties. They are produced in plants in low abundance and as complex mixtures of similar compounds that are difficult to separate. Synthetic biology offers the opportunity to produce various flavonoids in a targeted, bottom-up approach in engineered microbes with high product titers. However, the production of O-methylated flavonoids is currently still highly inefficient. In this study, we investigated and engineered a combination of enzymes that had previously been shown to support homoeriodictyol and hesperetin production in Escherichia coli from fed O-methylated hydroxycinnamic acids. We determined the crystal structures of the enzyme catalyzing the first committed step of the pathway, chalcone synthase from Hordeum vulgare, in three ligand-bound states. Based on these structures and a multiple sequence alignment with other chalcone synthases, we constructed mutant variants and assessed their performance in E. coli toward producing methylated flavonoids. With our best mutant variant, HvCHS (Q232P, D234 V), we were able to produce homoeriodictyol and hesperetin at 2 times and 10 times higher titers than reported previously. Our findings will facilitate further engineering of this enzyme toward higher production of methylated flavonoids.
Collapse
Affiliation(s)
- Bo Peng
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Lili Zhang
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Siqi He
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Rick Oerlemans
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Wim J. Quax
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Matthew R. Groves
- XB20
Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Kristina Haslinger
- Chemical
and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
23
|
Peng B, Dai L, Iacovelli R, Driessen AJM, Haslinger K. Heterologous Naringenin Production in the Filamentous Fungus Penicillium rubens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20782-20792. [PMID: 38103029 PMCID: PMC10755750 DOI: 10.1021/acs.jafc.3c06755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Naringenin is a natural product with several reported bioactivities and is the key intermediate for the entire class of plant flavonoids. The translation of flavonoids into modern medicine as pure compounds is often hampered by their low abundance in nature and their difficult chemical synthesis. Here, we investigated the possibility to use the filamentous fungus Penicillium rubens as a host for flavonoid production. P. rubens is a well-characterized, highly engineered, traditional "workhorse" for the production of β-lactam antibiotics. We integrated two plant genes encoding enzymes in the naringenin biosynthesis pathway into the genome of the secondary metabolite-deficient P. rubens 4xKO strain. After optimization of the fermentation conditions, we obtained an excellent molar yield of naringenin from fed p-coumaric acid (88%) with a titer of 0.88 mM. Along with product accumulation over 36 h, however, we also observed rapid degradation of naringenin. Based on high-resolution mass spectrometry analysis, we propose a naringenin degradation pathway in P. rubens 4xKO, which is distinct from other flavonoid-converting pathways reported in fungi. Our work demonstrates that P. rubens is a promising host for recombinant flavonoid production, and it represents an interesting starting point for further investigation into the utilization of plant biomass by filamentous fungi.
Collapse
Affiliation(s)
- Bo Peng
- Chemical
and Pharmaceutical Biology, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Lin Dai
- Molecular
Microbiology, Groningen Biomolecular Sciences
and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Riccardo Iacovelli
- Chemical
and Pharmaceutical Biology, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Arnold J. M. Driessen
- Molecular
Microbiology, Groningen Biomolecular Sciences
and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Kristina Haslinger
- Chemical
and Pharmaceutical Biology, Groningen Research
Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
24
|
Gao M, Zhao Y, Yao Z, Su Q, Van Beek P, Shao Z. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production. Nat Commun 2023; 14:7797. [PMID: 38016984 PMCID: PMC10684500 DOI: 10.1038/s41467-023-43049-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Plant-sourced aromatic amino acid (AAA) derivatives are a vast group of compounds with broad applications. Here, we present the development of a yeast consortium for efficient production of (S)-norcoclaurine, the key precursor for benzylisoquinoline alkaloid biosynthesis. A xylose transporter enables the concurrent mixed-sugar utilization in Scheffersomyces stipitis, which plays a crucial role in enhancing the flux entering the highly regulated shikimate pathway located upstream of AAA biosynthesis. Two quinate permeases isolated from Aspergillus niger facilitates shikimate translocation to the co-cultured Saccharomyces cerevisiae that converts shikimate to (S)-norcoclaurine, resulting in the maximal titer (11.5 mg/L), nearly 110-fold higher than the titer reported for an S. cerevisiae monoculture. Our findings magnify the potential of microbial consortium platforms for the economical de novo synthesis of complex compounds, where pathway modularization and compartmentalization in distinct specialty strains enable effective fine-tuning of long biosynthetic pathways and diminish intermediate buildup, thereby leading to increases in production.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Qianhe Su
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Payton Van Beek
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA.
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA.
- Bioeconomy Institute, Iowa State University, Ames, IA, USA.
- The Ames Laboratory, Ames, IA, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
25
|
Yang YH, Song HW, Lai JY, Li RF, Wang ZC, Jia HC, Yang Y. A Rehmannia glutinosa caffeic acid O-methyltransferase functional identification: Reconstitution of the ferulic acid biosynthetic pathway in Saccharomyces cerevisiae using Rehmannia glutinosa enzymes. Biotechnol J 2023; 18:e2300064. [PMID: 37522376 DOI: 10.1002/biot.202300064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Rehmannia glutinosa produces many pharmacological natural components, including ferulic acid (FA) which is also an important precursor of some medicinal ingredients, so it is very significant to explore FA biosynthesis for enhancing the production of FA and its derivations. This study aimed to determine and reconstitute the R. glutinosa FA biosynthetic pathway from phenylalanine (Phe) metabolism in Saccharomyces cerevisiae as a safe host for the biosynthesis of plant-derived products. Although plant caffeic acid O-methyltransferases (COMTs) are thought to be a vital catalytic enzyme in FA biosynthesis pathways, to date, none of the RgCOMTs in R. glutinosa has been characterized. This study identified an RgCOMT and revealed its protein enzymatic activity for FA production in vitro. The RgCOMT overexpression in R. glutinosa significantly increased FA yield, suggesting that its molecular function is involved in FA biosynthesis. Heterologous expression of the RgCOMT and reported R. glutinosa genes, RgPAL2 (encoding phenylalanine ammonia-lyase [PAL] protein), RgC4H (cinnamate 4-hydroxylase [C4H]), and RgC3H (p-coumarate-3-hydroxylase [C3H]), in S. cerevisiae confirmed their catalytic abilities in the reaction steps for the FA biosynthesis. Importantly, in this study, these genes were introduced into S. cerevisiae and coexpressed to reconstitute the R. glutinosa FA biosynthetic pathway from Phe metabolism, thus obtaining an engineered strain that produced an FA titer of 148.34 mg L-1 . This study identified the functional activity of RgCOMT and clarified the R. glutinosa FA biosynthesis pathway in S. cerevisiae, paving the way for the efficient production of FA and its derivatives.
Collapse
Affiliation(s)
- Yan Hui Yang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Hao Wei Song
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Jun Yi Lai
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Rui Fang Li
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Zi Chao Wang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Hui Cong Jia
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| | - Yong Yang
- School of Bioengineering, Zhengzhou High-technology Zone, Henan, University of Technology, Zhengzhou, Henan Province, China
| |
Collapse
|
26
|
Ganesan V, Monteiro L, Pedada D, Stohr A, Blenner M. High-Efficiency Multiplexed Cytosine Base Editors for Natural Product Synthesis in Yarrowia lipolytica. ACS Synth Biol 2023; 12:3082-3091. [PMID: 37768786 DOI: 10.1021/acssynbio.3c00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Yarrowia lipolytica is an industrial host with a high fatty acid flux. Even though CRISPR-based tools have accelerated its metabolic engineering, there remains a need to develop tools for rapid multiplexed strain engineering to accelerate the design-build-test-learn cycle. Base editors have the potential to perform high-efficiency multiplexed gene editing because they do not depend upon double-stranded DNA breaks. Here, we identified that base editors are less toxic than CRISPR-Cas9 for multiplexed gene editing. We increased the editing efficiency by removing the extra nucleotides between tRNA and gRNA and increasing the base editor and gRNA copy number in a Ku70 deficient strain. We achieved five multiplexed gene editing in the ΔKu70 strain at 42% efficiency. Initially, we were unsuccessful at performing multiplexed base editing in NHEJ competent strain; however, we increased the editing efficiency by using a co-selection approach to enrich base editing events. Base editor-mediated canavanine gene (CAN1) knockout provided resistance to the import of canavanine, which enriched the base editing in other unrelated genetic loci. We performed multiplexed editing of up to three genes at 40% efficiency in the Po1f strain through the CAN1 co-selection approach. Finally, we demonstrated the application of multiplexed cytosine base editor for rapid multigene knockout to increase naringenin production by 2-fold from glucose or glycerol as a carbon source.
Collapse
Affiliation(s)
- Vijaydev Ganesan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Lummy Monteiro
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dheeraj Pedada
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Anthony Stohr
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Mark Blenner
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
27
|
Laurel M, Mojzita D, Seppänen-Laakso T, Oksman-Caldentey KM, Rischer H. Raspberry Ketone Accumulation in Nicotiana benthamiana and Saccharomyces cerevisiae by Expression of Fused Pathway Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13391-13400. [PMID: 37656963 PMCID: PMC10510385 DOI: 10.1021/acs.jafc.3c02097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Raspberry ketone has generated interest in recent years both as a flavor agent and as a health promoting supplement. Raspberry ketone can be synthesized chemically, but the value of a natural nonsynthetic product is among the most valuable flavor compounds on the market. Coumaroyl-coenzyme A (CoA) is the direct precursor for raspberry ketone but also an essential precursor for flavonoid and lignin biosynthesis in plants and therefore highly regulated. The synthetic fusion of 4-coumaric acid ligase (4CL) and benzalacetone synthase (BAS) enables the channeling of coumaroyl-CoA from the ligase to the synthase, proving to be a powerful tool in the production of raspberry ketone in both N. benthamiana and S. cerevisiae. To the best of our knowledge, the key pathway genes for raspberry ketone formation are transiently expressed in N. benthamiana for the first time in this study, producing over 30 μg/g of the compound. Our raspberry ketone producing yeast strains yielded up to 60 mg/L, which is the highest ever reported in yeast.
Collapse
Affiliation(s)
- Markus Laurel
- VTT Technical Research Centre
of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | - Dominik Mojzita
- VTT Technical Research Centre
of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| | | | | | - Heiko Rischer
- VTT Technical Research Centre
of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
28
|
Mao J, Mohedano MT, Fu J, Li X, Liu Q, Nielsen J, Siewers V, Chen Y. Fine-tuning of p-coumaric acid synthesis to increase (2S)-naringenin production in yeast. Metab Eng 2023; 79:192-202. [PMID: 37611820 DOI: 10.1016/j.ymben.2023.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
(2S)-Naringenin is a key precursor for biosynthesis of various high-value flavonoids and possesses a variety of nutritional and pharmaceutical properties on human health. Systematic optimization approaches have been employed to improve (2S)-naringenin production in different microbial hosts. However, very few studies have focused on the spatiotemporal distribution of (2S)-naringenin and the related pathway intermediate p-coumaric acid, which is an important factor for efficient production. Here, we first optimized the (2S)-naringenin biosynthetic pathway by alleviating the bottleneck downstream of p-coumaric acid and increasing malonyl-CoA supply, which improved (2S)-naringenin production but significant accumulation of p-coumaric acid still existed extracellularly. We thus established a dual dynamic control system through combining a malonyl-CoA biosensor regulator and an RNAi strategy, to autonomously control the synthesis of p-coumaric acid with the supply of malonyl-CoA. Furthermore, screening potential transporters led to identification of Pdr12 for improved (2S)-naringenin production and reduced accumulation of p-coumaric acid. Finally, a titer of 2.05 g/L (2S)-naringenin with negligible accumulation of p-coumaric acid was achieved in a fed batch fermentation. Our work highlights the importance of systematic control of pathway intermediates for efficient microbial production of plant natural products.
Collapse
Affiliation(s)
- Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Marta Tous Mohedano
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jing Fu
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Xiaowei Li
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Quanli Liu
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden; BioInnovation Institute, DK2200, Copenhagen N, Denmark
| | - Verena Siewers
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Yun Chen
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.
| |
Collapse
|
29
|
Konzock O, Tous-Mohedano M, Cibin I, Chen Y, Norbeck J. Cinnamic acid and p-coumaric acid are metabolized to 4-hydroxybenzoic acid by Yarrowia lipolytica. AMB Express 2023; 13:84. [PMID: 37561285 PMCID: PMC10415236 DOI: 10.1186/s13568-023-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Yarrowia lipolytica has been explored as a potential production host for flavonoid synthesis due to its high tolerance to aromatic acids and ability to supply malonyl-CoA. However, little is known about its ability to consume the precursors cinnamic and p-coumaric acid. In this study, we demonstrate that Y. lipolytica can consume these precursors through multiple pathways that are partially dependent on the cultivation medium. By monitoring the aromatic acid concentrations over time, we found that cinnamic acid is converted to p-coumaric acid. We identified potential proteins with a trans-cinnamate 4-monooxygenase activity in Y. lipolytica and constructed a collection of 15 knock-out strains to identify the genes responsible for the reaction. We identified YALI1_B28430g as the gene encoding for a protein that converts cinnamic acid to p-coumaric acid (designated as TCM1). By comparing different media compositions we found that complex media components (casamino acids and yeast extract) induce this pathway. Additionally, we discover the conversion of p-coumaric acid to 4-hydroxybenzoic acid. Our findings provide new insight into the metabolic capabilities of Y. lipolytica and hold great potential for the future development of improved strains for flavonoid production.
Collapse
Affiliation(s)
- Oliver Konzock
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden.
| | - Marta Tous-Mohedano
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Irene Cibin
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Yun Chen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Joakim Norbeck
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
30
|
Tramontina R, Ciancaglini I, Roman EKB, Chacón MG, Corrêa TLR, Dixon N, Bugg TDH, Squina FM. Sustainable biosynthetic pathways to value-added bioproducts from hydroxycinnamic acids. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12571-8. [PMID: 37212882 DOI: 10.1007/s00253-023-12571-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.
Collapse
Affiliation(s)
- Robson Tramontina
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Iara Ciancaglini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ellen K B Roman
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Micaela G Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Thamy L R Corrêa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
31
|
Tu S, Xiao F, Mei C, Li S, Qiao P, Huang Z, He Y, Gong Z, Zhong W. De novo biosynthesis of sakuranetin from glucose by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12564-7. [PMID: 37148336 DOI: 10.1007/s00253-023-12564-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Sakuranetin is a plant-natural product, which has increasingly been utilized in cosmetic and pharmaceutical industries for its extensive anti-inflammatory, anti-tumor, and immunomodulatory effects. Sakuranetin was mostly produced by extraction technology from plants, which is limited to natural conditions and biomass supply. In this study, a de novo biosynthesis pathway of sakuranetin by engineered S. cerevisiae was constructed. After a series of heterogenous gene integration, a biosynthetic pathway of sakuranetin from glucose was successfully constructed in S. cerevisiae whose sakuranetin yield reached only 4.28 mg/L. Then, a multi-module metabolic engineering strategy was applied for improving sakuranetin yield in S. cerevisiae: (1) adjusting the copy number of sakuranetin synthesis genes, (2) removing the rate-limiting factor of aromatic amino acid pathway and optimizing the synthetic pathway of aromatic amino acids to enhance the supply of carbon flux for sakuranetin, and (3) introducing acetyl-CoA carboxylase mutants ACC1S659A,S1157A and knocking out YPL062W to strengthen the supply of malonyl-CoA which is another synthetic precursor of sakuranetin. The resultant mutant S. cerevisiae exhibited a more than tenfold increase of sakuranetin titer (50.62 mg/L) in shaking flasks. Furthermore, the sakuranetin titer increased to 158.65 mg/L in a 1-L bioreactor. To our knowledge, it is the first report on the sakuranetin de novo synthesis from glucose in S. cerevisiae. KEY POINTS: • De novo biosynthesis of sakuranetin was constructed by engineered S. cerevisiae. • Sakuranetin production was enhanced by multi-module metabolic engineering strategy. • It is the first report on the sakuranetin de novo synthesis in S. cerevisiae.
Collapse
Affiliation(s)
- Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng Xiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Chengyu Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyan Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhixing Gong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
32
|
Parra Daza LE, Suarez Medina L, Tafur Rangel AE, Fernández-Niño M, Mejía-Manzano LA, González-Valdez J, Reyes LH, González Barrios AF. Design and Assembly of a Biofactory for (2 S)-Naringenin Production in Escherichia coli: Effects of Oxygen Transfer on Yield and Gene Expression. Biomolecules 2023; 13:biom13030565. [PMID: 36979500 PMCID: PMC10046166 DOI: 10.3390/biom13030565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
The molecule (2S)-naringenin is a scaffold molecule with several nutraceutical properties. Currently, (2S)-naringenin is obtained through chemical synthesis and plant isolation. However, these methods have several drawbacks. Thus, heterologous biosynthesis has emerged as a viable alternative to its production. Recently, (2S)-naringenin production studies in Escherichia coli have used different tools to increase its yield up to 588 mg/L. In this study, we designed and assembled a bio-factory for (2S)-naringenin production. Firstly, we used several parametrized algorithms to identify the shortest pathway for producing (2S)-naringenin in E. coli, selecting the genes phenylalanine ammonia lipase (pal), 4-coumarate: CoA ligase (4cl), chalcone synthase (chs), and chalcone isomerase (chi) for the biosynthetic pathway. Then, we evaluated the effect of oxygen transfer on the production of (2S)-naringenin at flask (50 mL) and bench (4 L culture) scales. At the flask scale, the agitation rate varied between 50 rpm and 250 rpm. At the bench scale, the dissolved oxygen was kept constant at 5% DO (dissolved oxygen) and 40% DO, obtaining the highest (2S)-naringenin titer (3.11 ± 0.14 g/L). Using genome-scale modeling, gene expression analysis (RT-qPCR) of oxygen-sensitive genes was obtained.
Collapse
Affiliation(s)
- Laura E Parra Daza
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
| | - Lina Suarez Medina
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
| | - Albert E Tafur Rangel
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
| | - Miguel Fernández-Niño
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Luis Alberto Mejía-Manzano
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - José González-Valdez
- Tecnológico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Luis H Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de Los Andes, Bogotá 110311, Colombia
| |
Collapse
|
33
|
Bian Q, Jiao X, Chen Y, Yu H, Ye L. Hierarchical dynamic regulation of Saccharomyces cerevisiae for enhanced lutein biosynthesis. Biotechnol Bioeng 2023; 120:536-552. [PMID: 36369967 DOI: 10.1002/bit.28286] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Lutein, as a carotenoid with strong antioxidant capacity and an important component of macular pigment in the retina, has wide applications in pharmaceutical, food, feed, and cosmetics industries. Besides extraction from plant and algae, microbial fermentation using engineered cell factories to produce lutein has emerged as a promising route. However, intra-pathway competition between the lycopene cyclases and the conflict between cell growth and production are two major challenges. In our previous study, de novo synthesis of lutein had been achieved in Saccharomyces cerevisiae by dividing the pathway into two stages (δ-carotene formation and conversion) using temperature as the input signal to realize sequential cyclation of lycopene. However, lutein production was limited to microgram level, which is still too low to meet industrial demand. In this study, a dual-signal hierarchical dynamic regulation system was developed and applied to divide lutein biosynthesis into three stages in response to glucose concentration and culture temperature. By placing the genes involved in δ-carotene formation under the glucose-responsive ADH2 promoter and genes involved in the conversion of δ-carotene to lutein under temperature-responsive GAL promoters, the growth-production conflict and intra-pathway competition were simultaneously resolved. Meanwhile, the rate-limiting lycopene ε-cyclation and carotene hydroxylation reactions were improved by screening for lycopene ε-cyclase with higher activity and fine tuning of the P450 enzymes and their redox partners. Finally, a lutein titer of 19.92 mg/L (4.53 mg/g DCW) was obtained in shake-flask cultures using the engineered yeast strain YLutein-3S-6, which is the highest lutein titer ever reported in heterologous production systems.
Collapse
Affiliation(s)
- Qi Bian
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xue Jiao
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ye Chen
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, Zhejiang University, Hangzhou, China
| | - Hongwei Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Lidan Ye
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
34
|
Peng Q, Zhang Y, Zhu M, Bao F, Deng J, Li W. Polymethoxyflavones from citrus peel: advances in extraction methods, biological properties, and potential applications. Crit Rev Food Sci Nutr 2022; 64:5618-5630. [PMID: 36530054 DOI: 10.1080/10408398.2022.2156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus peel, as an effective component of citrus by-products, contains a large number of natural active components, including pectin, vitamins, dietary fiber, essential oil, phenolic compounds, flavonoids, and so on. With the development of the circular economy, citrus peel has attracted extensive concern in the food industry. The exploitation of citrus peel would assist in excavating potential properties and alleviating the environmental burden. Polymethoxyflavones (PMFs) exist almost in citrus peel, which have remarkable biological activities including antioxidant, anti-inflammatory, anti-cancer, and anti-obesity. Therefore, PMFs from citrus peel have the potential to develop as dietary supplements in the near future. Collectively, it is essential to take action to optimize the extraction conditions of PMFs and make the most of the extracts. This review mainly compiles several extraction methods and bioactivities of PMFs from citrus peel and introduces different applications including food processing, pharmaceutical industry, and plant rhizosphere to develop better utilization of citrus PMFs.
Collapse
Affiliation(s)
- Qiong Peng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yao Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Mingxuan Zhu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Feng Bao
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance, and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance, and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Zhang Q, Li N, Lyv Y, Yu S, Zhou J. Engineering caveolin-mediated endocytosis in Saccharomyces cerevisiae. Synth Syst Biotechnol 2022; 7:1056-1063. [PMID: 35845314 PMCID: PMC9263866 DOI: 10.1016/j.synbio.2022.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022] Open
Abstract
As a potential substitute for fatty acids, common low-cost oils could be used to produce acetyl-CoA derivatives, which meet the needs of low-cost industrial production. However, oils are hydrophobic macromolecules and cannot be directly transported into cells. In this study, caveolin was expressed in Saccharomyces cerevisiae to absorb exogenous oils. The expression of caveolin fused with green fluorescent protein showed that caveolin mediated the formation of microvesicles in S. cerevisiae and the addition of 5,6-carboxyfluorescein showed that caveolae had the ability to transport exogenous substances into cells. The intracellular and extracellular triacylglycerol levels were then detected after the addition of soybean oil pre-stained with Nile Red, which proved that caveolae had the ability to absorb the exogenous oils. Lastly, caveolin for oils absorption and lipase from Bacillus pumilus for oil hydrolysis were co-expressed in the naringenin-producing Saccharomyces cerevisiae strain, resulting in naringenin production increasing from 222 mg/g DCW (dry cell weight) (231 mg/L) to 269 mg/g DCW (241 mg/L). These results suggested that the caveolin-mediated transporter independent oil transport system would provide a promising strategy for the transport of hydrophobic substrates.
Collapse
|
36
|
Wiles D, Shanbhag BK, O'Brien M, Doblin MS, Bacic A, Beddoe T. Heterologous production of Cannabis sativa-derived specialised metabolites of medicinal significance - Insights into engineering strategies. PHYTOCHEMISTRY 2022; 203:113380. [PMID: 36049526 DOI: 10.1016/j.phytochem.2022.113380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cannabis sativa L. has been known for at least 2000 years as a source of important, medically significant specialised metabolites and several bio-active molecules have been enriched from multiple chemotypes. However, due to the many levels of complexity in both the commercial cultivation of cannabis and extraction of its specialised metabolites, several heterologous production approaches are being pursued in parallel. In this review, we outline the recent achievements in engineering strategies used for heterologous production of cannabinoids, terpenes and flavonoids along with their strength and weakness. We provide an overview of the specialised metabolism pathway in C. sativa and a comprehensive list of the specialised metabolites produced along with their medicinal significance. We highlight cannabinoid-like molecules produced by other species. We discuss the key biosynthetic enzymes and their heterologous production using various hosts such as microbial and eukaryotic systems. A brief discussion on complementary production strategies using co-culturing and cell-free systems is described. Various approaches to optimise specialised metabolite production through co-expression, enzyme engineering and pathway engineering are discussed. We derive insights from recent advances in metabolic engineering of hosts with improved precursor supply and suggest their application for the production of C. sativa speciality metabolites. We present a collation of non-conventional hosts with speciality traits that can improve the feasibility of commercial heterologous production of cannabis-based specialised metabolites. We provide a perspective of emerging research in synthetic biology, allied analytical techniques and plant heterologous platforms as focus areas for heterologous production of cannabis specialised metabolites in the future.
Collapse
Affiliation(s)
- Danielle Wiles
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Bhuvana K Shanbhag
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Martin O'Brien
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Monika S Doblin
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia; La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences and AgriBio Centre for AgriBioscience, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3083, Australia; Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Centre for AgriBioscience, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
37
|
Liu D, Sica MS, Mao J, Chao LFI, Siewers V. A p-Coumaroyl-CoA Biosensor for Dynamic Regulation of Naringenin Biosynthesis in Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:3228-3238. [PMID: 36137537 PMCID: PMC9594313 DOI: 10.1021/acssynbio.2c00111] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In vivo biosensors that can convert metabolite concentrations into measurable output signals are valuable tools for high-throughput screening and dynamic pathway control in the field of metabolic engineering. Here, we present a novel biosensor in Saccharomyces cerevisiae that is responsive to p-coumaroyl-CoA, a central precursor of many flavonoids. The sensor is based on the transcriptional repressor CouR from Rhodopseudomonas palustris and was applied in combination with a previously developed malonyl-CoA biosensor for dual regulation of p-coumaroyl-CoA synthesis within the naringenin production pathway. Using this approach, we obtained a naringenin titer of 47.3 mg/L upon external precursor feeding, representing a 15-fold increase over the nonregulated system.
Collapse
|
38
|
Vasilev N. Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products. PLANTA MEDICA 2022; 88:1175-1189. [PMID: 34521134 DOI: 10.1055/a-1576-4148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants play an important dual role in the context of the heterologous expression of high-value pharmaceutical products. On the one hand, the classical biochemical and modern omics approaches allowed for the discovery of various genes encoding biosynthetic pathways in medicinal plants. Recombinant DNA technology enabled introducing these genes and regulatory elements into host organisms and enhancing the heterologous production of the corresponding secondary metabolites. On the other hand, the transient expression of foreign DNA in plants facilitated the production of numerous proteins of pharmaceutical importance. This review summarizes several success stories of the engineering of plant metabolic pathways in heterologous hosts. Likewise, a few examples of recombinant protein expression in plants for therapeutic purposes are also highlighted. Therefore, the importance of medicinal plants has grown immensely as sources for valuable products of low and high molecular weight. The next step ahead for bioengineering is to achieve more success stories of industrial-scale production of secondary plant metabolites in microbial systems and to fully exploit plant cell factories' commercial potential for recombinant proteins.
Collapse
Affiliation(s)
- Nikolay Vasilev
- TU Dortmund University, Biochemical and Chemical Engineering, Technical Biochemistry, Dortmund, Germany
| |
Collapse
|
39
|
Abstract
Saccharomyces cerevisiae, whose evolutionary past includes a whole-genome duplication event, is characterized by a mosaic genome configuration with substantial apparent genetic redundancy. This apparent redundancy raises questions about the evolutionary driving force for genomic fixation of “minor” paralogs and complicates modular and combinatorial metabolic engineering strategies. While isoenzymes might be important in specific environments, they could be dispensable in controlled laboratory or industrial contexts. The present study explores the extent to which the genetic complexity of the central carbon metabolism (CCM) in S. cerevisiae, here defined as the combination of glycolysis, the pentose phosphate pathway, the tricarboxylic acid cycle, and a limited number of related pathways and reactions, can be reduced by elimination of (iso)enzymes without major negative impacts on strain physiology. Cas9-mediated, groupwise deletion of 35 of the 111 genes yielded a “minimal CCM” strain which, despite the elimination of 32% of CCM-related proteins, showed only a minimal change in phenotype on glucose-containing synthetic medium in controlled bioreactor cultures relative to a congenic reference strain. Analysis under a wide range of other growth and stress conditions revealed remarkably few phenotypic changes from the reduction of genetic complexity. Still, a well-documented context-dependent role of GPD1 in osmotolerance was confirmed. The minimal CCM strain provides a model system for further research into genetic redundancy of yeast genes and a platform for strategies aimed at large-scale, combinatorial remodeling of yeast CCM.
Collapse
|
40
|
Clarence DD, Paudel KR, Manandhar B, Singh SK, Devkota HP, Panneerselvam J, Gupta V, Chitranshi N, Verma N, Saad S, Gupta G, Hansbro PM, Oliver BG, Madheswaran T, Dua K, Chellappan DK. Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases. Nutrients 2022; 14:3828. [PMID: 36145202 PMCID: PMC9503475 DOI: 10.3390/nu14183828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/04/2022] [Accepted: 09/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), Kuala Lumpur 57000, Malaysia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara 144411, India
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Verma
- Chitkara School of Pharmacy, Chitkara University, Atal Nagar 174103, India
| | - Sonia Saad
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur 302017, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - Philip Michael Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2006, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
41
|
Malcı K, Watts E, Roberts TM, Auxillos JY, Nowrouzi B, Boll HO, Nascimento CZSD, Andreou A, Vegh P, Donovan S, Fragkoudis R, Panke S, Wallace E, Elfick A, Rios-Solis L. Standardization of Synthetic Biology Tools and Assembly Methods for Saccharomyces cerevisiae and Emerging Yeast Species. ACS Synth Biol 2022; 11:2527-2547. [PMID: 35939789 PMCID: PMC9396660 DOI: 10.1021/acssynbio.1c00442] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
As redesigning organisms using engineering principles
is one of
the purposes of synthetic biology (SynBio), the standardization of
experimental methods and DNA parts is becoming increasingly a necessity.
The synthetic biology community focusing on the engineering of Saccharomyces cerevisiae has been in the foreground in this
area, conceiving several well-characterized SynBio toolkits widely
adopted by the community. In this review, the molecular methods and
toolkits developed for S. cerevisiae are discussed
in terms of their contributions to the required standardization efforts.
In addition, the toolkits designed for emerging nonconventional yeast
species including Yarrowia lipolytica, Komagataella
phaffii, and Kluyveromyces marxianus are
also reviewed. Without a doubt, the characterized DNA parts combined
with the standardized assembly strategies highlighted in these toolkits
have greatly contributed to the rapid development of many metabolic
engineering and diagnostics applications among others. Despite the
growing capacity in deploying synthetic biology for common yeast genome
engineering works, the yeast community has a long journey to go to
exploit it in more sophisticated and delicate applications like bioautomation.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Emma Watts
- School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3JW Edinburgh, United Kingdom
| | | | - Jamie Yam Auxillos
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Heloísa Oss Boll
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília, Federal District 70910-900, Brazil
| | | | - Andreas Andreou
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Peter Vegh
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sophie Donovan
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Rennos Fragkoudis
- Edinburgh Genome Foundry, University of Edinburgh, Kings Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Edward Wallace
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Kings Buildings, EH9 3FF Edinburgh, United Kingdom
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Kings Buildings, EH9 3BF Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Kings Buildings, EH9 3BD Edinburgh, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
42
|
Isogai S, Tominaga M, Kondo A, Ishii J. Plant Flavonoid Production in Bacteria and Yeasts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.880694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flavonoids, a major group of secondary metabolites in plants, are promising for use as pharmaceuticals and food supplements due to their health-promoting biological activities. Industrial flavonoid production primarily depends on isolation from plants or organic synthesis, but neither is a cost-effective or sustainable process. In contrast, recombinant microorganisms have significant potential for the cost-effective, sustainable, environmentally friendly, and selective industrial production of flavonoids, making this an attractive alternative to plant-based production or chemical synthesis. Structurally and functionally diverse flavonoids are derived from flavanones such as naringenin, pinocembrin and eriodictyol, the major basic skeletons for flavonoids, by various modifications. The establishment of flavanone-producing microorganisms can therefore be used as a platform for producing various flavonoids. This review summarizes metabolic engineering and synthetic biology strategies for the microbial production of flavanones. In addition, we describe directed evolution strategies based on recently-developed high-throughput screening technologies for the further improvement of flavanone production. We also describe recent progress in the microbial production of structurally and functionally complicated flavonoids via the flavanone modifications. Strategies based on synthetic biology will aid more sophisticated and controlled microbial production of various flavonoids.
Collapse
|
43
|
Xu H, Lan Y, Xing J, Li Y, Liu L, Wang Y. AfCHIL, a Type IV Chalcone Isomerase, Enhances the Biosynthesis of Naringenin in Metabolic Engineering. FRONTIERS IN PLANT SCIENCE 2022; 13:891066. [PMID: 35665193 PMCID: PMC9158529 DOI: 10.3389/fpls.2022.891066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Naringenin is an essential precursor for all flavonoids, and effectively promoting naringenin production is crucial in metabolic engineering. The interaction between plant metabolic enzymes ensures metabolic flux. The effect can effectively improve the natural product synthesis of engineering microbial systems. In this study, chalcone isomerase genes in Allium fistulosum have been identified. The expression of AfCHIL is closely related to the accumulation of anthocyanins, and the expression of AfCHIL and AfCHS was highly synchronized. Yeast two-hybrid and firefly luciferase complementation imaging assay further confirmed AfCHIL physically interacted with AfCHS/AfCHI. The bioconversion experiment confirmed that AfCHIL reduced the derailment produced by AfCHS and increased the yield of naringenin. In addition, a system of biosynthesis naringenin involved in AfCHS was constructed, and these results suggested that the potential function between CHS with CHIL advanced naringenin production effectively. In conclusion, this study illustrated the function of AfCHIs in Allium fistulosum and provided new insight into improving the synthesis efficiency of naringenin.
Collapse
Affiliation(s)
- Huanhuan Xu
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yanping Lan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiayi Xing
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Department of Horticulture, College of Agronomy, Shihezi University, Shihezi, China
| | - Yi Li
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Yongqin Wang
- Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
44
|
Qi H, Yu L, Li Y, Cai M, He J, Liu J, Hao L, Xu H, Qiao M. Developing Multi-Copy Chromosomal Integration Strategies for Heterologous Biosynthesis of Caffeic Acid in Saccharomyces cerevisiae. Front Microbiol 2022; 13:851706. [PMID: 35300487 PMCID: PMC8923693 DOI: 10.3389/fmicb.2022.851706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Caffeic acid, a plant-sourced phenolic compound, has a variety of biological activities, such as antioxidant and antimicrobial properties. The caffeic acid biosynthetic pathway was initially constructed in S. cerevisiae, using codon-optimized TAL (coTAL, encoding tyrosine ammonia lyase) from Rhodobacter capsulatus, coC3H (encoding p-coumaric acid 3-hydroxylase) and coCPR1 (encoding cytochrome P450 reductase 1) from Arabidopsis thaliana in 2 μ multi-copy plasmids to produce caffeic acid from glucose. Then, integrated expression of coTAL via delta integration with the POT1 gene (encoding triose phosphate isomerase) as selection marker and episomal expression of coC3H, coCPR1 using the episomal plasmid pLC-c3 were combined, and caffeic acid production was proved to be improved. Next, the delta and rDNA multi-copy integration methods were applied to integrate the genes coC3H and coCPR1 into the chromosome of high p-coumaric acid yielding strain QT3-20. The strain D9 constructed via delta integration outperformed the other strains, leading to 50-fold increased caffeic acid production in optimized rich media compared with the initial construct. The intercomparison between three alternative multi-copy strategies for de novo synthesis of caffeic acid in S. cerevisiae suggested that delta-integration was effective in improving caffeic acid productivity, providing a promising strategy for the production of valuable bio-based chemicals in recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Hang Qi
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Long Yu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanzi Li
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Miao Cai
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaze He
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiayu Liu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Luyao Hao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
45
|
De novo biosynthesis of diverse plant-derived styrylpyrones in Saccharomyces cerevisiae. Metab Eng Commun 2022; 14:e00195. [PMID: 35287355 PMCID: PMC8917298 DOI: 10.1016/j.mec.2022.e00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/28/2022] Open
Abstract
Plant styrylpyrones exerting well-established neuroprotective properties have attracted increasing attention in recent years. The ability to synthesize each individual styrylpyrone in engineered microorganisms is important to understanding the biological activity of medicinal plants and the complex mixtures they produce. Microbial biomanufacturing of diverse plant-derived styrylpyrones also provides a sustainable and efficient approach for the production of valuable plant styrylpyrones as daily supplements or potential drugs complementary to the prevalent agriculture-based approach. In this study, we firstly demonstrated the heterogenous biosynthesis of two 7,8-saturated styrylpyrones (7,8-dihydro-5,6-dehydrokavain (DDK) and 7,8-dihydroyangonin (DHY)) and two 7,8-unsaturated styrylpyrones (desmethoxyyangonin (DMY) and yangonin (Y)), in Saccharomyces cerevisiae. Although plant styrylpyrone biosynthetic pathways have not been fully elucidated, we functionally reconstructed the recently discovered kava styrylpyrone biosynthetic pathway that has high substrate promiscuity in yeast, and combined it with upstream hydroxycinnamic acid biosynthetic pathways to produce diverse plant-derived styrylpyrones without the native plant enzymes. We optimized the de novo pathways by engineering yeast endogenous aromatic amino acid metabolism and endogenous double bond reductases and by CRISPR-mediated δ-integration to overexpress the rate-limiting pathway genes. These combinatorial engineering efforts led to the first three yeast strains that can produce diverse plant-derived styrylpyrones de novo, with the titers of DDK, DMY and Y at 4.40 μM, 1.28 μM and 0.10 μM, respectively. This work has laid the foundation for larger-scale styrylpyrone biomanufacturing and the complete biosynthesis of more complicated plant styrylpyrones. Complete biosynthesis of plant styrylpyrones was firstly achieved in yeast. Yeast enzyme replaces unknown plant enzymes to produce 7,8-saturated styrylpyrones. CRISPR-based δ-integration led to stable styrylpyrone overproduction in rich medium.
Collapse
|
46
|
Xiao F, Lian J, Tu S, Xie L, Li J, Zhang F, Linhardt RJ, Huang H, Zhong W. Metabolic Engineering of Saccharomyces cerevisiae for High-Level Production of Chlorogenic Acid from Glucose. ACS Synth Biol 2022; 11:800-811. [PMID: 35107250 DOI: 10.1021/acssynbio.1c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chlorogenic acid (CGA), a major dietary phenolic compound, has been increasingly used in the food and pharmaceutical industries because of its ready availability and extensive biological and pharmacological activities. Traditionally, extraction from plants has been the main approach for the commercial production of CGA. This study reports the first efficient microbial production of CGA by engineering the yeast, Saccharomyces cerevisiae, on a simple mineral medium. First, an optimized de novo biosynthetic pathway for CGA was reconstructed in S. cerevisiae from glucose with a CGA titer of 36.6 ± 2.4 mg/L. Then, a multimodule engineering strategy was employed to improve CGA production: (1) unlocking the shikimate pathway and optimizing carbon distribution; (2) optimizing the l-Phe branch and pathway balancing; and (3) increasing the copy number of CGA pathway genes. The combination of these interventions resulted in an about 6.4-fold improvement of CGA titer up to 234.8 ± 11.1 mg/L in shake flask cultures. CGA titers of 806.8 ± 1.7 mg/L were achieved in a 1 L fed-batch fermenter. This study opens a route to effectively produce CGA from glucose in S. cerevisiae and establishes a platform for the biosynthesis of CGA-derived value-added metabolites.
Collapse
Affiliation(s)
- Feng Xiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
| | - Shuai Tu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linlin Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Haichan Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
47
|
Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 2022; 106:1783-1798. [PMID: 35171341 DOI: 10.1007/s00253-022-11835-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022]
Abstract
Anthocyanins are the phenolic compounds responsible for coloring pigments in fruits and vegetables. Anthocyanins offer a wide range of health benefits to human health. Their scope has expanded dramatically in the past decade, making anthocyanin control, influx, and outflow regulation fascinating for many researchers. The main culprit is anthocyanin stability and concentration form, which demands novel ways because these are critical in the food industry. This review aims to examine anthocyanin synthesis via triggering transcription genes that code for anthocyanin-producing enzymes. The balance between production and breakdown determines anthocyanin accumulation. Thus, increasing the anthocyanin content in food requires the stability of molecules in the vacuolar lumen, the pigment fading process, and a better understanding of the mechanism. The promising option is biosynthesis by metabolically engineered microorganisms with a lot of success. This study aims to look into and evaluate the existing literature on anthocyanin production, namely the biosynthesis of anthocyanin pathway genes, production by microbial cell factories, and the regulatory factors that can modulate the production of anthocyanins. Understanding these mechanisms will provide new biotechnological approaches.Key points• Factors affecting the regulation of anthocyanins• Focus on degradation, biosynthesis pathway genes, and alternative systems for the production of anthocyanins• Microbial cell factories can be used to produce large amounts of anthocyanins.
Collapse
|
48
|
Wang Q, Liu X, Liu H, Fu Y, Cheng Y, Zhang L, Shi W, Zhang Y, Chen J. Transcriptomic and Metabolomic Analysis of Wheat Kernels in Response to the Feeding of Orange Wheat Blossom Midges ( Sitodiplosis mosellana) in the Field. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1477-1493. [PMID: 35090120 DOI: 10.1021/acs.jafc.1c06239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The orange wheat blossom midge (Sitodiplosis mosellana Géhin) is an insect pest that feeds on wheat (Triticum aestivum L.). The resistance mechanisms of wheat to S. mosellana infestation are largely unknown. In this study, the wheat varieties LX99 and 6218 were identified as highly resistant and susceptible, respectively, via field investigations conducted over two consecutive years. Morphological and microstructural observations of mature wheat kernels following S. mosellana infestation revealed that the degree of cell structure damage in resistant LX99 grains was less than that in susceptible 6218 grains. Transcriptomic and metabolomic analyses of seeds following S. mosellana feeding showed that the differentially expressed genes and differentially accumulated metabolites from LX99 were mostly enriched in several primary and secondary metabolic pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine biosynthesis. Additionally, phenylpropanoid- and flavonoid-related gene expression was significantly upregulated following S. mosellana infestation in LX99 relative to that in 6218. Some metabolites involved in phenylpropanoid/flavonoid pathways, such as cinnamic acid, coumarin, epigallocatechin, and naringenin, were only induced in infested LX99 kernels. These results suggest that phenylpropanoid/flavonoid pathways play important roles in wheat kernel resistance to S. mosellana attack and provide useful insights for the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lijiao Zhang
- Plant Protection and Epidemic Station of Luquan District, Hebei 050299, P. R. China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
49
|
Liu J, Tian M, Wang Z, Xiao F, Huang X, Shan Y. Production of hesperetin from naringenin in an engineered Escherichia coli consortium. J Biotechnol 2022; 347:67-76. [DOI: 10.1016/j.jbiotec.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
50
|
Gomes D, Rodrigues LR, Rodrigues JL. Perspectives on the design of microbial cell factories to produce prenylflavonoids. Int J Food Microbiol 2022; 367:109588. [DOI: 10.1016/j.ijfoodmicro.2022.109588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
|