1
|
Hao X, Shen Y, Liu J, Alexander A, Wu L, Xu Z, Yu L, Gao Y, Liu F, Chan HL, Li CH, Ding Y, Zhang W, Edwards DG, Chen N, Nasrazadani A, Ueno NT, Lim B, Zhang XHF. Solid tumour-induced systemic immunosuppression involves dichotomous myeloid-B cell interactions. Nat Cell Biol 2024; 26:1971-1983. [PMID: 39266726 DOI: 10.1038/s41556-024-01508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024]
Abstract
Solid tumours induce systemic immunosuppression that involves myeloid and T cells. B cell-related mechanisms remain relatively understudied. Here we discover two distinct patterns of tumour-induced B cell abnormality (TiBA; TiBA-1 and TiBA-2), both associated with abnormal myelopoiesis in the bone marrow. TiBA-1 probably results from the niche competition between pre-progenitor-B cells and myeloid progenitors, leading to a global reduction in downstream B cells. TiBA-2 is characterized by systemic accumulation of a unique early B cell population, driven by interaction with excessive neutrophils. Importantly, TiBA-2-associated early B cells foster the systemic accumulation of exhaustion-like T cells. Myeloid and B cells from the peripheral blood of patients with triple-negative breast cancer recapitulate the TiBA subtypes, and the distinct TiBA profile correlates with pathologic complete responses to standard-of-care immunotherapy. This study underscores the inter-patient diversity of tumour-induced systemic changes and emphasizes the need for treatments tailored to different B and myeloid cell abnormalities.
Collapse
Affiliation(s)
- Xiaoxin Hao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yichao Shen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Jun Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Angela Alexander
- Department of Breast Medical Oncology and Morgan Welch IBC Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ling Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Zhan Xu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liqun Yu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Graduate Program in Cancer and Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Hilda L Chan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Che-Hsing Li
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Yunfeng Ding
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - David G Edwards
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nan Chen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Azadeh Nasrazadani
- Department of Breast Medical Oncology and Morgan Welch IBC Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T Ueno
- Department of Breast Medical Oncology and Morgan Welch IBC Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Bora Lim
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
2
|
Thambyrajah R, Maqueda M, Fadlullah MZ, Proffitt M, Neo WH, Guillén Y, Casado-Pelaez M, Herrero-Molinero P, Brujas C, Castelluccio N, González J, Iglesias A, Marruecos L, Ruiz-Herguido C, Esteller M, Mereu E, Lacaud G, Espinosa L, Bigas A. IκBα controls dormancy in hematopoietic stem cells via retinoic acid during embryonic development. Nat Commun 2024; 15:4673. [PMID: 38824124 PMCID: PMC11144194 DOI: 10.1038/s41467-024-48854-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/14/2024] [Indexed: 06/03/2024] Open
Abstract
Recent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs. Loss of IκBα decreases proliferation of HSC and induces a dormancy related gene expression signature instead. Also, IκBα deficient HSCs respond with superior activation to in vitro culture and in serial transplantation. At the molecular level, chromatin regions harboring binding motifs for retinoic acid signaling are hypo-methylated for the PRC2 dependent H3K27me3 mark in IκBα deficient HSCs. Overall, we show that the proliferation index in the developing HSCs is regulated by a IκBα-PRC2 axis, which controls retinoic acid signaling.
Collapse
Grants
- PID2022-137945OB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- PID2019-104695RB-I00 Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
- 2021SGR00039 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- BP2016(00021) Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- BP2018(00034) Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- CA22/00011 Ministry of Economy and Competitiveness | Instituto de Salud Carlos III (Institute of Health Carlos III)
Collapse
Affiliation(s)
- Roshana Thambyrajah
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
| | - Maria Maqueda
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Muhammad Zaki Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Martin Proffitt
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | - Wen Hao Neo
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Yolanda Guillén
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | | | | | - Carla Brujas
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | - Noemi Castelluccio
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Ghent University Hospital, Ghent, Belgium
| | - Jessica González
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Arnau Iglesias
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Laura Marruecos
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Manel Esteller
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | | | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Lluis Espinosa
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Anna Bigas
- Program in Cancer Research, Hospital del Mar Research Institute, Barcelona, Spain.
- Josep Carreras Leukemia Research Institute, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Preston SEJ, Emond A, Pettersson F, Dupéré-Richer D, Abraham MJ, Riva A, Kinal M, Rys RN, Johnson NA, Mann KK, del Rincón SV, Licht JD, Miller WH. Acquired Resistance to EZH2 Inhibitor GSK343 Promotes the Differentiation of Human DLBCL Cell Lines toward an ABC-Like Phenotype. Mol Cancer Ther 2022; 21:511-521. [PMID: 35086959 PMCID: PMC8983450 DOI: 10.1158/1535-7163.mct-21-0216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/30/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) accounts for 40% of non-Hodgkin lymphoma, and 30% to 40% of patients will succumb to relapsed/refractory disease (rrDLBCL). Patients with rrDLBCL generally have low long-term survival rates due to a lack of efficient salvage therapies. Small-molecule inhibitors targeting the histone methyltransferase EZH2 represent an emerging group of novel therapeutics that show promising clinical efficacy in patients with rrDLBCL. The mechanisms that control acquired resistance to this class of targeted therapies, however, remain poorly understood. Here, we develop a model of resistance to the EZH2 inhibitor (EZH2i) GSK343 and use RNA-seq data and in vitro investigation to show that GCB (germinal center B-cell)-DLBCL cell lines with acquired drug resistance differentiate toward an ABC (activated B-cell)-DLBCL phenotype. We further observe that the development of resistance to GSK343 is sufficient to induce cross-resistance to other EZH2i. Notably, we identify the immune receptor SLAMF7 as upregulated in EZH2i-resistant cells, using chromatin immunoprecipitation profiling to uncover the changes in chromatin landscape remodeling that permit this altered gene expression. Collectively, our data reveal a previously unreported response to the development of EZH2i resistance in DLBCL, while providing strong rationale for pursuing investigation of dual-targeting of EZH2 and SLAMF7 in rrDLBCL.
Collapse
Affiliation(s)
- Samuel E J Preston
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Audrey Emond
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Filippa Pettersson
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Daphné Dupéré-Richer
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- University of Florida Health Cancer Centre, Florida, USA
| | - Madelyn Jean Abraham
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Florida, USA
| | - Mena Kinal
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Ryan N Rys
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
| | - Nathalie A Johnson
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Departments of Medicine and Oncology, Jewish General Hospital, Montréal, Québec, Canada
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sonia V del Rincón
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| | | | - Wilson H Miller
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Lady Davis Institute for Medical Research, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Departments of Medicine and Oncology, Jewish General Hospital, Montréal, Québec, Canada
- Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing) 2021; 2:618-653. [PMID: 34977871 PMCID: PMC8706767 DOI: 10.1002/mco2.104] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Since nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) was discovered in 1986, extraordinary efforts have been made to understand the function and regulating mechanism of NF-κB for 35 years, which lead to significant progress. Meanwhile, the molecular mechanisms regulating NF-κB activation have also been illuminated, the cascades of signaling events leading to NF-κB activity and key components of the NF-κB pathway are also identified. It has been suggested NF-κB plays an important role in human diseases, especially inflammation-related diseases. These studies make the NF-κB an attractive target for disease treatment. This review aims to summarize the knowledge of the family members of NF-κB, as well as the basic mechanisms of NF-κB signaling pathway activation. We will also review the effects of dysregulated NF-κB on inflammation, tumorigenesis, and tumor microenvironment. The progression of the translational study and drug development targeting NF-κB for inflammatory diseases and cancer treatment and the potential obstacles will be discussed. Further investigations on the precise functions of NF-κB in the physiological and pathological settings and underlying mechanisms are in the urgent need to develop drugs targeting NF-κB for inflammatory diseases and cancer treatment, with minimal side effects.
Collapse
Affiliation(s)
- Tao Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chao Ma
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science CenterHouston Methodist HospitalHoustonTexasUSA
| | - Huiyuan Zhang
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Cancer Center and Center for Immunology and HematologyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Targeting Nuclear Factor-Kappa B Signaling Pathway by Curcumin: Implications for the Treatment of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34331683 DOI: 10.1007/978-3-030-56153-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system, which involves an auto-immune mechanism that leads to perivascular demyelination. The role of nuclear factor-kappa B (NF-κB) signaling pathway in the pathogenesis of MS has been suggested by genome-wide association studies. Therefore, strategies targeting this pathway could be potentially beneficial. Curcumin is the active component of turmeric and a phenolic phytochemical. This phytochemical has anti-inflammatory properties and has been shown by multiple studies to downregulate NF-κB and its downstream gene targets including cyclooxygenase-2, tumor necrosis factor-α, interleukin-1, and interleukin-6. This review discusses the modulatory effects of curcumin on the NF-κB signaling pathway and its downstream effectors, and the therapeutic implications of this modulation on MS.
Collapse
|
6
|
Constitutive activation of NF-κB during early bone marrow development results in loss of B cells at the pro-B-cell stage. Blood Adv 2021; 5:745-755. [PMID: 33560391 DOI: 10.1182/bloodadvances.2020002932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022] Open
Abstract
There is a considerable body of work exploring the role of NF-κB family of transcription factors in the maturation and functions of later stage B cells; however, their role in the earlier bone marrow stages of development is less well understood despite the demonstration that NF-κB activity is present at all early stages of B-cell development. To explore the consequences of early, B cell-targeted constitutive activation of both NF-κB pathways on B-cell development, we generated mice that have either or both. NF-κB pathways constitutively activated beginning in early pro-B cells. In marked contrast to activating a single pathway, we found mice with both pathways constitutively activated displayed a profound loss of B cells, starting with early pro-B cells and peaking at the late pro-B-cell stage, at least in part as a result of increased apoptosis. This effect was found to be cell autonomous and to have striking phenotypic consequences on the secondary lymphoid organs and circulating antibody levels. This effect was also found to be temporal in nature as similar activation under a Cre expressed later in development did not result in generation of a similar phenotype. Taken together, these findings help to shed further light on the need for tight regulation of the NF-κB family of transcription factors during the various stages of B-cell development in the bone marrow.
Collapse
|
7
|
Liu J, Huang X, Liu H, Wei C, Ru H, Qin H, Lai H, Meng Y, Wu G, Xie W, Mo X, Johnson CH, Zhang Y, Tang W. Immune landscape and prognostic immune-related genes in KRAS-mutant colorectal cancer patients. J Transl Med 2021; 19:27. [PMID: 33413474 PMCID: PMC7789428 DOI: 10.1186/s12967-020-02638-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND KRAS gene is the most common type of mutation reported in colorectal cancer (CRC). KRAS mutation-mediated regulation of immunophenotype and immune pathways in CRC remains to be elucidated. METHODS 535 CRC patients were used to compare the expression of immune-related genes (IRGs) and the abundance of tumor-infiltrating immune cells (TIICs) in the tumor microenvironment between KRAS-mutant and KRAS wild-type CRC patients. An independent dataset included 566 cases of CRC and an in-house RNA sequencing dataset were served as validation sets. An in-house dataset consisting of 335 CRC patients were used to analyze systemic immune and inflammatory state in the presence of KRAS mutation. An immue risk (Imm-R) model consist of IRG and TIICs for prognostic prediction in KRAS-mutant CRC patients was established and validated. RESULTS NF-κB and T-cell receptor signaling pathways were significantly inhibited in KRAS-mutant CRC patients. Regulatory T cells (Tregs) was increased while macrophage M1 and activated CD4 memory T cell was decreased in KRAS-mutant CRC. Prognosis correlated with enhanced Tregs, macrophage M1 and activated CD4 memory T cell and was validated. Serum levels of hypersensitive C-reactive protein (hs-CRP), CRP, and IgM were significantly decreased in KRAS-mutant compared to KRAS wild-type CRC patients. An immune risk model composed of VGF, RLN3, CT45A1 and TIICs signature classified CRC patients with distinct clinical outcomes. CONCLUSIONS KRAS mutation in CRC was associated with suppressed immune pathways and immune infiltration. The aberrant immune pathways and immune cells help to understand the tumor immune microenvironments in KRAS-mutant CRC patients.
Collapse
Affiliation(s)
- Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haizhou Liu
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Chunyin Wei
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haiming Ru
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Haiquan Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hao Lai
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yongsheng Meng
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo Wu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Weishun Xie
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520, USA.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
8
|
The 135 Gene of Goatpox Virus Encodes an Inhibitor of NF-κB and Apoptosis and May Serve as an Improved Insertion Site To Generate Vectored Live Vaccine. J Virol 2018; 92:JVI.00190-18. [PMID: 29950422 DOI: 10.1128/jvi.00190-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/25/2018] [Indexed: 11/20/2022] Open
Abstract
Goatpox virus (GTPV) is an important member of the Capripoxvirus genus of the Poxviridae Capripoxviruses have large and complex DNA genomes encoding many unknown proteins that may contribute to virulence. We identified that the 135 open reading frame of GTPV is an early gene that encodes an ∼18-kDa protein that is nonessential for viral replication in cells. This protein functioned as an inhibitor of NF-κB activation and apoptosis and is similar to the N1L protein of vaccinia virus. In the natural host, sheep, deletion of the 135 gene from the GTPV live vaccine strain AV41 resulted in less attenuation than that induced by deletion of the tk gene, a well-defined nonessential gene in the poxvirus genome. Using the 135 gene as the insertion site, a recombinant AV41 strain expressing hemagglutinin of peste des petits ruminants virus (PPRV) was generated and elicited stronger neutralization antibody responses than those obtained using the traditional tk gene as the insertion site. These results suggest that the 135 gene of GTPV encodes an immunomodulatory protein to suppress host innate immunity and may serve as an optimized insertion site to generate capripoxvirus-vectored live dual vaccines.IMPORTANCE Capripoxviruses are etiological agents of important diseases in sheep, goats, and cattle. There are rare reports about viral protein function related to capripoxviruses. In the present study, we found that the 135 protein of GTPV plays an important role in inhibition of innate immunity and apoptosis in host cells. Use of the 135 gene as the insertion site to generate a vectored vaccine resulted in stronger adaptive immune responses than those obtained using the tk locus as the insertion site. As capripoxviruses are promising virus-vectored vaccines against many important diseases in small ruminants and cattle, the 135 gene may serve as an improved insertion site to generate recombinant capripoxvirus-vectored live dual vaccines.
Collapse
|
9
|
Microenvironment-induced CD44v6 promotes early disease progression in chronic lymphocytic leukemia. Blood 2018; 131:1337-1349. [PMID: 29352038 DOI: 10.1182/blood-2017-08-802462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/11/2018] [Indexed: 01/01/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) outgrowth depends on signals from the microenvironment. We have previously found that in vitro reconstitution of this microenvironment induces specific variant isoforms of the adhesion molecule CD44, which confer human CLL with high affinity to hyaluronan (HA). Here, we determined the in vivo contribution of standard CD44 and its variants to leukemic B-cell homing and proliferation in Tcl1 transgenic mice with a B-cell-specific CD44 deficiency. In these mice, leukemia onset was delayed and leukemic infiltration of spleen, liver, and lungs, but not of bone marrow, was decreased. Competitive transplantation revealed that CLL homing to spleen and bone marrow required functional CD44. Notably, enrichment of CD44v6 variants particularly in spleen enhanced CLL engraftment and proliferation, along with increased HA binding. We recapitulated CD44v6 induction in the human disease and revealed the involvement of MAPK and NF-κB signaling upon CD40 ligand and B-cell receptor stimulation by in vitro inhibition experiments and chromatin immunoprecipitation assays. The investigation of downstream signaling after CD44v6-HA engagement uncovered the activation of extracellular signal-regulated kinase and p65. Consequently, anti-CD44v6 treatment reduced leukemic cell proliferation in vitro in human and mouse, confirming the general nature of the findings. In summary, we propose a CD44-NF-κB-CD44v6 circuit in CLL, allowing tumor cells to gain HA binding capacity and supporting their proliferation.
Collapse
|
10
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
11
|
Park J, Choe CH, Kim J, Yang JS, Kim JH, Jang H, Jang YS. Heterogeneous Nuclear Ribonucleoprotein A2B1 Exerts a Regulatory Role in Lipopolysaccharide-stimulated 38B9 B Cell Activation. Immune Netw 2018; 17:437-450. [PMID: 29302256 PMCID: PMC5746613 DOI: 10.4110/in.2017.17.6.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 12/01/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules, which are recognized for their primary function of presenting an antigen to the T cell receptor, are involved in various signaling pathways in B cell activation. We identified heterogeneous nuclear ribonucleoprotein (hnRNP) A2B1 as an MHC class II molecule-associated protein involved in MHC class II-mediated signal transduction in lipopolysaccharide (LPS)-stimulated 38B9 B cells. Although the function of hnRNP A2B1 in the nucleus is primarily known, the level of hnRNP A2B1 in the cytoplasm was increased in LPS-stimulated 38B9 cells, while it was not detected in the cytoplasm of non-treated 38B9 cells. The silencing of hnRNP A2B1 expression using siRNA disturbed B cell maturation by regulation of mitogen-activated protein kinase signaling, NF-κB activation, and protein kinase B activation. These results suggest that hnRNP A2B1 is associated with MHC class II molecules and is involved in B cell activation signaling pathways in LPS-stimulated 38B9 cells.
Collapse
Affiliation(s)
- Jisang Park
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea
| | | | - Ju Kim
- Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Jing Shian Yang
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| | - Jin Hyun Kim
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| | - Hyonseok Jang
- Department of Dentistry, Graduate School of Medicine, Korea University, Seoul 02841, Korea.,Department of Oral Maxillofacial Surgery, Korea University Ansan Hospital, Ansan 15355, Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Chonbuk National University, Jeonju 54896, Korea.,Department of Molecular Biology and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
12
|
PTIP chromatin regulator controls development and activation of B cell subsets to license humoral immunity in mice. Proc Natl Acad Sci U S A 2017; 114:E9328-E9337. [PMID: 29078319 PMCID: PMC5676899 DOI: 10.1073/pnas.1707938114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To provide optimal host defense, the full spectrum of antibody-based immunity requires natural antibodies and immunization-induced antigen-specific antibodies. Here we show that the PTIP (Pax transactivation domain-interacting protein) chromatin regulator is induced by B cell activation to potentiate the establishment of steady-state and postimmune serum antibody levels. It does so by promoting activation-associated proliferation and differentiation of all the major B cell subsets, at least in part, through regulating the NF-κB pathway. With the genetic basis still unknown for a majority of patients with common variable immunodeficiency, further work investigating how PTIP controls cell signaling may generate valuable new insight for human health and disease. B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.
Collapse
|
13
|
Solanki A, Lau CI, Saldaña JI, Ross S, Crompton T. The transcription factor Gli3 promotes B cell development in fetal liver through repression of Shh. J Exp Med 2017; 214:2041-2058. [PMID: 28533268 PMCID: PMC5502423 DOI: 10.1084/jem.20160852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 02/28/2017] [Accepted: 04/10/2017] [Indexed: 12/22/2022] Open
Abstract
Solanki et al. show that stromal activity of the transcription factor Gli3 is required for B cell development in the fetal liver. Gli3 functions to repress Shh expression, and Shh signals to developing B cells to regulate their development at multiple developmental stages. Before birth, B cells develop in the fetal liver (FL). In this study, we show that Gli3 activity in the FL stroma is required for B cell development. In the Gli3-deficient FL, B cell development was reduced at multiple stages, whereas the Sonic hedgehog (Hh [Shh])–deficient FL showed increased B cell development, and Gli3 functioned to repress Shh transcription. Use of a transgenic Hh-reporter mouse showed that Shh signals directly to developing B cells and that Hh pathway activation was increased in developing B cells from Gli3-deficient FLs. RNA sequencing confirmed that Hh-mediated transcription is increased in B-lineage cells from Gli3-deficient FL and showed that these cells expressed reduced levels of B-lineage transcription factors and B cell receptor (BCR)/pre-BCR–signaling genes. Expression of the master regulators of B cell development Ebf1 and Pax5 was reduced in developing B cells from Gli3-deficient FL but increased in Shh-deficient FL, and in vitro Shh treatment or neutralization reduced or increased their expression, respectively.
Collapse
Affiliation(s)
- Anisha Solanki
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - Ching-In Lau
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - José Ignacio Saldaña
- Great Ormond Street Institute of Child Health, University College London, London, England, UK.,School of Health, Sport, and Bioscience, University of East London, London, England, UK
| | - Susan Ross
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| | - Tessa Crompton
- Great Ormond Street Institute of Child Health, University College London, London, England, UK
| |
Collapse
|
14
|
Oleksyn D, Zhao J, Vosoughi A, Zhao JC, Misra R, Pentland AP, Ryan D, Anolik J, Ritchlin C, Looney J, Anandarajah AP, Schwartz G, Calvi LM, Georger M, Mohan C, Sanz I, Chen L. PKK deficiency in B cells prevents lupus development in Sle lupus mice. Immunol Lett 2017; 185:1-11. [PMID: 28274793 DOI: 10.1016/j.imlet.2017.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies that can result in damage to multiple organs. It is well documented that B cells play a critical role in the development of the disease. We previously showed that protein kinase C associated kinase (PKK) is required for B1 cell development as well as for the survival of recirculating mature B cells and B-lymphoma cells. Here, we investigated the role of PKK in lupus development in a lupus mouse model. We demonstrate that the conditional deletion of PKK in B cells prevents lupus development in Sle1Sle3 mice. The loss of PKK in Sle mice resulted in the amelioration of multiple classical lupus-associated phenotypes and histologic features of lupus nephritis, including marked reduction in the levels of serum autoantibodies, proteinuria, spleen size, peritoneal B-1 cell population and the number of activated CD4 T cells. In addition, the abundance of autoreactive plasma cells normally seen in Sle lupus mice was also significantly decreased in the PKK-deficient Sle mice. Sle B cells deficient in PKK display defective proliferation responses to BCR and LPS stimulation. Consistently, B cell receptor-mediated NF-κB activation, which is required for the survival of activated B cells, was impaired in the PKK-deficient B cells. Taken together, our work uncovers a critical role of PKK in lupus development and suggests that targeting the PKK-mediated pathway may represent a promising therapeutic strategy for lupus treatment.
Collapse
Affiliation(s)
- D Oleksyn
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Zhao
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A Vosoughi
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J C Zhao
- Department of Biology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - R Misra
- Department of Pediatrics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A P Pentland
- Department of Dermatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - D Ryan
- Department of Pathology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Anolik
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - C Ritchlin
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - J Looney
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - A P Anandarajah
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - G Schwartz
- Department of Pediatrics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - L M Calvi
- Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - M Georger
- Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - C Mohan
- Department Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - I Sanz
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States
| | - L Chen
- Division of Allergy/Immunology and Rheumatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States; Department of Dermatology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
15
|
Kurkewich JL, Klopfenstein N, Hallas WM, Wood C, Sattler RA, Das C, Tucker H, Dahl R, Cowden Dahl KD. Arid3b Is Critical for B Lymphocyte Development. PLoS One 2016; 11:e0161468. [PMID: 27537840 PMCID: PMC4990195 DOI: 10.1371/journal.pone.0161468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/06/2016] [Indexed: 11/18/2022] Open
Abstract
Arid3a and Arid3b belong to a subfamily of ARID (AT-rich interaction domain) transcription factors. The Arid family is involved in regulating chromatin accessibility, proliferation, and differentiation. Arid3a and Arid3b are closely related and share a unique REKLES domain that mediates their homo- and hetero-multimerization. Arid3a was originally isolated as a B cell transcription factor binding to the AT rich matrix attachment regions (MARS) of the immunoglobulin heavy chain intronic enhancer. Deletion of Arid3a results in a highly penetrant embryonic lethality with severe defects in erythropoiesis and hematopoietic stem cells (HSCs). The few surviving Arid3a-/- (<1%) animals have decreased HSCs and early progenitors in the bone marrow, but all mature lineages are normally represented in the bone marrow and periphery except for B cells. Arid3b-/- animals die around E7.5 precluding examination of hematopoietic development. So it is unclear whether the phenotype of Arid3a loss on hematopoiesis is dependent or independent of Arid3b. In this study we circumvented this limitation by also examining hematopoiesis in mice with a conditional allele of Arid3b. Bone marrow lacking Arid3b shows decreased common lymphoid progenitors (CLPs) and downstream B cell populations while the T cell and myeloid lineages are unchanged, reminiscent of the adult hematopoietic defect in Arid3a mice. Unlike Arid3a-/- mice, HSC populations are unperturbed in Arid3b-/- mice. This study demonstrates that HSC development is independent of Arid3b, whereas B cell development requires both Arid3a and Arid3b transcription factors.
Collapse
Affiliation(s)
- Jeffrey L. Kurkewich
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Harper Cancer Research Institute, South Bend, Indiana, United States of America
| | - Nathan Klopfenstein
- Harper Cancer Research Institute, South Bend, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - William M. Hallas
- Harper Cancer Research Institute, South Bend, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Christian Wood
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Harper Cancer Research Institute, South Bend, Indiana, United States of America
| | - Rachel A. Sattler
- Harper Cancer Research Institute, South Bend, Indiana, United States of America
- Deparment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Chhaya Das
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Haley Tucker
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Richard Dahl
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Harper Cancer Research Institute, South Bend, Indiana, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Karen D. Cowden Dahl
- Harper Cancer Research Institute, South Bend, Indiana, United States of America
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, Indiana, United States of America
- Deparment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
16
|
Kumar V, Rayan NA, Muratani M, Lim S, Elanggovan B, Xin L, Lu T, Makhija H, Poschmann J, Lufkin T, Ng HH, Prabhakar S. Comprehensive benchmarking reveals H2BK20 acetylation as a distinctive signature of cell-state-specific enhancers and promoters. Genome Res 2016; 26:612-23. [PMID: 26957309 PMCID: PMC4864461 DOI: 10.1101/gr.201038.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Although over 35 different histone acetylation marks have been described, the overwhelming majority of regulatory genomics studies focus exclusively on H3K27ac and H3K9ac. In order to identify novel epigenomic traits of regulatory elements, we constructed a benchmark set of validated enhancers by performing 140 enhancer assays in human T cells. We tested 40 chromatin signatures on this unbiased enhancer set and identified H2BK20ac, a little-studied histone modification, as the most predictive mark of active enhancers. Notably, we detected a novel class of functionally distinct enhancers enriched in H2BK20ac but lacking H3K27ac, which was present in all examined cell lines and also in embryonic forebrain tissue. H2BK20ac was also unique in highlighting cell-type-specific promoters. In contrast, other acetylation marks were present in all active promoters, regardless of cell-type specificity. In stimulated microglial cells, H2BK20ac was more correlated with cell-state-specific expression changes than H3K27ac, with TGF-beta signaling decoupling the two acetylation marks at a subset of regulatory elements. In summary, our study reveals a previously unknown connection between histone acetylation and cell-type-specific gene regulation and indicates that H2BK20ac profiling can be used to uncover new dimensions of gene regulation.
Collapse
Affiliation(s)
- Vibhor Kumar
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Nirmala Arul Rayan
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan; Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Stefan Lim
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Bavani Elanggovan
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Lixia Xin
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Tess Lu
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Harshyaa Makhija
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Jeremie Poschmann
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Thomas Lufkin
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore; Department of Biology, Clarkson University, Potsdam, New York 13699, USA
| | - Huck Hui Ng
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| |
Collapse
|
17
|
Cieślik M, Bekiranov S. Genome-wide predictors of NF-κB recruitment and transcriptional activity. BioData Min 2015; 8:37. [PMID: 26617673 PMCID: PMC4661973 DOI: 10.1186/s13040-015-0071-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Inducible transcription factors (TFs) mediate transcriptional responses to environmental cues. In response to multiple inflammatory signals active NF-κB dimers enter the nucleus and trigger cell-type-, and stimulus-specific transcriptional programs. Although much is known about NF-κB inducing pathways and about locus-specific mechanisms of transcriptional control, it is poorly understood how the pre-existing chromatin landscape determines NF-κB target selection and activation. Specifically, it is not known which epigenetic marks and pre-bound TFs serve genome-wide as positive (negative) cues for active NF-κB. RESULTS We applied multivariate and combinatorial data mining techniques on a comprehensive dataset of DNA methylation, DNase I hypersensitivity, eight epigenetic marks, and 34 TFs to arrive at genome-wide patterns that predict NF-κB binding. Strikingly, we observed NF-κB recruitment to accessible and nucleosome-bound sites. Within nucleosomal DNA NF-κB binding was primed by H3K4me1 and H2A.Z, but also hyper-methylated DNA outside of promoters and CpG-islands. Many of these predictors showed combinatorial cooperativity and statistically significant interactions. Recruitment to pre-accessible sites was more frequent and influenced by chromatin-associated TFs. We observed that specific TF-combinations are greatly enriched for (or depleted of) NF-κB binding events. CONCLUSIONS We provide evidence of NF-κB binding within genomic regions that lack classical marks of activity. These pioneer binding events are relatively often associated with transcriptional regulation. Further, our predictive models indicate that specific combinations of epigenetic marks and transcription factors predetermine the NF-κB cistrome, supporting the feasibility of using statistical approaches to identify "histone codes".
Collapse
Affiliation(s)
- Marcin Cieślik
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109 USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia USA
| |
Collapse
|
18
|
Lack of glucocorticoid-induced leucine zipper (GILZ) deregulates B-cell survival and results in B-cell lymphocytosis in mice. Blood 2015; 126:1790-801. [PMID: 26276664 DOI: 10.1182/blood-2015-03-631580] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/09/2015] [Indexed: 12/29/2022] Open
Abstract
Glucocorticoids (GC) are widely used as antiinflammatory/immunosuppressive drugs and antitumor agents in several types of lymphoma and leukemia. Therapeutic doses of GC induce growth-suppressive and cytotoxic effects on various leukocytes including B cells. Molecular mechanisms of GC action include induction of GC target genes. Glucocorticoid-induced leucine zipper (GILZ) is a rapidly, potently, and invariably GC-induced gene. It mediates a number of GC effects, such as control of cell proliferation, differentiation, and apoptosis. Here we show that deletion of GILZ in mice leads to an accumulation of B lymphocytes in the bone marrow, blood, and lymphoid tissues. Gilz knockout (KO) mice develop a progressive nonlethal B lymphocytosis, with expansion of B220(+) cells in the bone marrow and in the periphery, dependent on increased B-cell survival. Decreased B-cell apoptosis in mice lacking GILZ correlates with increased NF-κB transcriptional activity and Bcl-2 expression. B cell-specific gilz KO mice confirmed that the effect of GILZ deletion is B-cell self-intrinsic. These results establish GILZ as an important regulator of B-cell survival and suggest that the deregulation of GILZ expression could be implicated in the pathogenesis of B-cell disorders.
Collapse
|
19
|
Blombery PA, Wall M, Seymour JF. The molecular pathogenesis of B-cell non-Hodgkin lymphoma. Eur J Haematol 2015; 95:280-93. [DOI: 10.1111/ejh.12589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2015] [Indexed: 12/17/2022]
Affiliation(s)
| | - Meaghan Wall
- Victorian Cancer Cytogenetics Service; St Vincent's Hospital Melbourne; University of Melbourne; Fitzroy Vic. Australia
| | | |
Collapse
|
20
|
Feng R, Milcarek CA, Xie XQ. Antagonism of cannabinoid receptor 2 pathway suppresses IL-6-induced immunoglobulin IgM secretion. BMC Pharmacol Toxicol 2014; 15:30. [PMID: 24913620 PMCID: PMC4062519 DOI: 10.1186/2050-6511-15-30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/21/2014] [Indexed: 12/23/2022] Open
Abstract
Background Cannabinoid receptor 2 (CB2) is expressed predominantly in the immune system, particularly in plasma cells, raising the possibility that targeting the CB2 pathway could yield an immunomodulatory effect. Although the role of CB2 in mediating immunoglobulin class switching has been reported, the effects of targeting the CB2 pathway on immunoglobulin secretion per se remain unclear. Methods Human B cell line SKW 6.4, which is capable of differentiating into IgM-secreting cells once treated with human IL-6, was employed as the cell model. SKW 6.4 cells were incubated for 4 days with CB2 ligands plus IL-6 (100 U/ml). The amount of secreted IgM was determined by an ELISA. Cell proliferation was determined by the 3H-Thymidine incorporation assay. Signal molecules involved in the modulation of IgM secretion were examined by real-time RT-PCR and Western blot analyses or by using their specific inhibitors. Results We demonstrated that CB2 inverse agonists SR144528 and AM630, but not CB2 agonist HU308 or CB1 antagonist SR141716, effectively inhibited IL-6-induced secretion of soluble IgM without affecting cell proliferation as measured by thymidine uptake. SR144528 alone had no effects on the basal levels of IgM in the resting cells. These effects were receptor mediated, as pretreatment with CB2 agonist abrogated SR144528-mediated inhibition of IL-6 stimulated IgM secretion. Transcription factors relevant to B cell differentiation, Bcl-6 and PAX5, as well as the protein kinase STAT3 pathway were involved in the inhibition of IL-6-induced IgM by SR144528. Conclusions These results uncover a novel function of CB2 antagonists and suggest that CB2 ligands may be potential modulators of immunoglobulin secretion.
Collapse
Affiliation(s)
| | | | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Olive (Olea europaea) leaf extract induces apoptosis and monocyte/macrophage differentiation in human chronic myelogenous leukemia K562 cells: insight into the underlying mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:927619. [PMID: 24803988 PMCID: PMC3997986 DOI: 10.1155/2014/927619] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/16/2014] [Indexed: 01/01/2023]
Abstract
Differentiation therapy is an attractive approach aiming at reversing malignancy and reactivating endogenous differentiation programs in cancer cells. Olive leaf extract, known for its antioxidant activity, has been demonstrated to induce apoptosis in several cancer cells. However, its differentiation inducing properties and the mechanisms involved are still poorly understood. In this study, we investigated the effect of Chemlali Olive Leaf Extract (COLE) for its potential differentiation inducing effect on multipotent leukemia K562 cells. Results showed that COLE inhibits K562 cells proliferation and arrests the cell cycle at G0/G1, and then at G2/M phase over treatment time. Further analysis revealed that COLE induces apoptosis and differentiation of K562 cells toward the monocyte lineage. Microarray analysis was conducted to investigate the underlying mechanism of COLE differentiation inducing effect. The differentially expressed genes such as IFI16, EGR1, NFYA, FOXP1, CXCL2, CXCL3, and CXCL8 confirmed the commitment of K562 cells to the monocyte/macrophage lineage. Thus our results provide evidence that, in addition to apoptosis, induction of differentiation is one of the possible therapeutic effects of olive leaf in cancer cells.
Collapse
|
22
|
Sandhya P, Danda D. Role of vacuolar ATPase and Skp1 in Sjögren's syndrome. Med Hypotheses 2014; 82:319-25. [PMID: 24480435 DOI: 10.1016/j.mehy.2013.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/23/2022]
Abstract
Immune mechanisms alone cannot directly account for exocrine gland dysfunction and extraglandular features such as renal tubular acidosis, neuropathy, hearing loss and fatigue in Sjögren's syndrome (SS). Absence of Vacuolar ATPase (V-ATPase) has been reported in SS related renal tubular acidosis (RTA). We hypothesise how defect in V-ATPase could account for decreased neurotransmitter release leading onto exocrine dysfunction, neuroendocrine manifestations and hearing loss which are well described manifestations in SS. S-phase-kinase-associated protein-1 (Skp1) is a constituent of RAVE which is involved in V-ATPase assembly. It is also a component of SCF ligase which is crucial in NFκB signalling. SKP1 also interacts with TRIM 21/Ro 52 which is an autoantigen in SS. By virtue of these interactions, we postulate how a defective skp1 could fit into the existing pathogenesis of SS and also account for increased risk of lymphoma in SS as well as congenital heart block in fetus of mothers with SS.
Collapse
Affiliation(s)
- Pulukool Sandhya
- Department of Clinical Immunology and Rheumatology, Christian Medical College and Hospital, Vellore 632004, India.
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College and Hospital, Vellore 632004, India
| |
Collapse
|
23
|
Sayan O, Kilicaslan E, Celik S, Tangi F, Erikci AA, Ipcioglu O, Sanisoglu YS, Nalbant S, Oktenli C. High Frequency of Inherited Variants in the MEFV Gene in Acute Lymphocytic Leukemia. Indian J Hematol Blood Transfus 2012; 27:164-8. [PMID: 22942567 DOI: 10.1007/s12288-011-0095-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 07/07/2011] [Indexed: 12/21/2022] Open
Abstract
In the present study, we aimed to determine the frequency of inherited variants in the MEFV (Mediterranean FeVer), the gene responsible for familial Mediterranean fever (FMF), gene in patients with acute lymphocytic leukemia (ALL). The eight MEFV gene variants (M694I, M694V, M680I (G/C-A), V726A, R761H, E148Q and P369S) were detected in 36 patients with ALL and 65 healthy controls; none had own and/or family history compatible with FMF. We identified 11 heterozygous inherited variants in the MEFV gene in both ALL patients and controls. The mean overall frequency of inherited variants in the MEFV gene rate was higher in ALL patients than healthy controls (P = 0.040). It is interesting to note that M680I/0 is predominant variant in patients with ALL. In addition, E148Q variant frequency was also significantly higher in the patient group than the controls (P = 0.012). In conclusion, overall frequency of inherited variants in the MEFV gene was found to be higher in patients with ALL. Based on the present data, it is difficult to reach a definitive conclusion regarding the possibility that inherited variants in the MEFV gene could represent a causative role in ALL. However, the data of our study may provide some new insights in understanding of individual genetic differences in susceptibility to these neoplasms. Further investigations are needed to determine the actual role of inherited variants in the MEFV gene in pathogenesis of ALL.
Collapse
|
24
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:39-46. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04558.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Multiple transcription factors regulate B-cell commitment, which is coordinated with myeloid-erythroid lineage differentiation. NF-κB has long been speculated to regulate early B-cell development; however, this issue remains controversial. IκB kinase-α (IKKα) is required for splenic B-cell maturation but not for BM B-cell development. In the present study, we unexpectedly found defective BM B-cell development and increased myeloid-erythroid lineages in kinase-dead IKKα (KA/KA) knock-in mice. Markedly increased cytosolic p100, an NF-κB2-inhibitory form, and reduced nuclear NF-κB p65, RelB, p50, and p52, and IKKα were observed in KA/KA splenic and BM B cells. Several B- and myeloid-erythroid-cell regulators, including Pax5, were deregulated in KA/KA BM B cells. Using fetal liver and BM congenic transplantations and deleting IKKα from early hematopoietic cells in mice, this defect was identified as being B cell-intrinsic and an early event during hematopoiesis. Reintroducing IKKα, Pax5, or combined NF-κB molecules promoted B-cell development but repressed myeloid-erythroid cell differentiation in KA/KA BM B cells. The results of the present study demonstrate that IKKα regulates B-lineage commitment via combined canonical and noncanonical NF-κB transcriptional activities to target Pax5 expression during hematopoiesis.
Collapse
|
26
|
Oktenli C, Celik S. High frequency of inherited variants in the MEFV gene in patients with hematologic neoplasms: a genetic susceptibility? Int J Hematol 2012; 95:380-5. [PMID: 22453916 DOI: 10.1007/s12185-012-1061-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 03/14/2012] [Accepted: 03/14/2012] [Indexed: 12/26/2022]
Abstract
Familial Mediterranean fever is an autosomal recessive disease occurring in populations originating from the Mediterranean basin. This autoinflammatory syndrome is caused by mutations in the Mediterranean FeVer (MEFV) gene. MEFV encodes a 781 amino acid protein known as pyrin. Pyrin is an important modulator of apoptosis, inflammation, and cytokine processing. In more recent pilot studies, inherited variant analysis of the MEFV gene in patients with hematologic neoplasm showed an unexpectedly high frequency of these variants in the gene. Here, we summarize the current state of knowledge of the relationship between inherited variants in the MEFV gene and hematologic neoplasms. Although no single underlying defect could be targeted in all hematologic neoplasms, it will be important to fully exploit the mechanisms underlying the neoplasm promoting role of inherited variants in MEFV. However, it is unclear how inherited variants in the MEFV gene are associated with tumor susceptibility or promotion in hematologic neoplasms. Further investigations are needed to determine the actual role of the MEFV gene in pathogenesis of these neoplasms.
Collapse
Affiliation(s)
- Cagatay Oktenli
- Department of Internal Medicine and Geriatrics, Anadolu Medical Center, 41400 Kocaeli, Turkey.
| | | |
Collapse
|
27
|
|
28
|
Phosphorylation of threonine 154 in p40phox is an important physiological signal for activation of the neutrophil NADPH oxidase. Blood 2010; 116:6027-36. [PMID: 20861461 DOI: 10.1182/blood-2010-08-300889] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neutrophil nicotinamide adenine dinucleotide phosphate-oxidase is a multisubunit enzyme (comprising gp91(phox), p22(phox), p67(phox), p40(phox), p47(phox), and Rac) that plays a vital role in microbial killing. The recent discovery of a chronic granulomatous disease patient who expresses a mutant p40(phox) subunit, together with the development of mouse models of p40(phox) function, indicate phosphatidylinositol 3-phosphate binding to the PX domain of p40(phox) is an important signal for oxidase activation. However, the presence of other conserved residues and domains in p40(phox) suggest further regulatory roles for this protein. To test this, we introduced wild-type and mutated versions of p40(phox) into fully differentiated mouse neutrophils by retroviral transduction of p40(phox)(-/-) bone marrow progenitors and repopulation of the bone marrow compartment in radiation chimaeras. Phosphorylation of p40(phox) on threonine 154, but not serine 315, was required for full oxidase activation in response to formylated bacterial peptide fMLP, serum-opsonized S aureus, and immunoglobulin-opsonized sheep red blood cells. A functional SH3 domain was not required for oxidase activation, and deletion of the entire domain resulted in enhanced oxidase responses. Phosphorylation of threonine 154 in response to S aureus was mediated by protein kinase Cδ and was required for full translocation of p47(phox) to phagosomes. These results define an important new element in the physiological activation of the oxidase.
Collapse
|
29
|
Veeranki S, Choubey D. Systemic lupus erythematosus and increased risk to develop B cell malignancies: role of the p200-family proteins. Immunol Lett 2010; 133:1-5. [PMID: 20599558 DOI: 10.1016/j.imlet.2010.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/20/2010] [Indexed: 11/29/2022]
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease, develops at a female-to-male ratio of 10:1. Increased serum levels of type I interferons (IFN-alpha/beta) and induction of "IFN-signature" genes are associated with an active SLE disease in patients. Moreover, SLE patients exhibit three- to four-fold increase in the risk of developing malignancies involving B cells, including non-Hodgkin lymphoma (NHL) and Hodgkin's lymphoma (HL). Interestingly, homozygous mice expressing a deletion mutant (the proline-rich domain deleted) of the p53 develop various types of spontaneous tumors, particularly of B cell origin upon aging. The deletion is associated with defects in transcriptional activation of genes by p53 and inhibition of DNA damage-induced apoptosis. Notably, increased levels of the p202 protein, which is encoded by the p53-repressible interferon-inducible Ifi202 gene, in B cells of female mice are associated with defects in B cell apoptosis, inhibition of the p53-mediated transcription of pro-apoptotic genes, and increased lupus susceptibility. In this review we discuss how increased levels of the p202 protein (and its human functional homologue IFI16 protein) in B cells increase lupus susceptibility and are likely to increase the risk of developing certain B cell malignancies. A complete understanding of the molecular mechanisms that regulate B cell homeostasis is necessary to identify SLE patients with an increased risk to develop B cell malignancies.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Environmental Health, University of Cincinnati, 3223 Eden Avenue, PO Box 670056, Cincinnati, OH 45267, United States
| | | |
Collapse
|
30
|
Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:775-87. [PMID: 20493977 DOI: 10.1016/j.bbagrm.2010.05.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/08/2010] [Indexed: 12/21/2022]
Abstract
Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitination, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50-p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitination, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Because of the critical role of NF-κB in cancer and various chronic diseases, numerous inhibitors of NF-κB have been identified. In this review, however, we describe only small molecules that suppress NF-κB activation, and the mechanism by which they block this pathway.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
31
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
32
|
Cadera EJ, Wan F, Amin RH, Nolla H, Lenardo MJ, Schlissel MS. NF-kappaB activity marks cells engaged in receptor editing. ACTA ACUST UNITED AC 2009; 206:1803-16. [PMID: 19581408 PMCID: PMC2722169 DOI: 10.1084/jem.20082815] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because of the extreme diversity in immunoglobulin genes, tolerance mechanisms are necessary to ensure that B cells do not respond to self-antigens. One such tolerance mechanism is called receptor editing. If the B cell receptor (BCR) on an immature B cell recognizes self-antigen, it is down-regulated from the cell surface, and light chain gene rearrangement continues in an attempt to edit the autoreactive specificity. Analysis of a heterozygous mutant mouse in which the NF-κB–dependent IκBα gene was replaced with a lacZ (β-gal) reporter complementary DNA (cDNA; IκBα+/lacZ) suggests a potential role for NF-κB in receptor editing. Sorted β-gal+ pre–B cells showed increased levels of various markers of receptor editing. In IκBα+/lacZ reporter mice expressing either innocuous or self-specific knocked in BCRs, β-gal was preferentially expressed in pre–B cells from the mice with self-specific BCRs. Retroviral-mediated expression of a cDNA encoding an IκBα superrepressor in primary bone marrow cultures resulted in diminished germline κ and rearranged λ transcripts but similar levels of RAG expression as compared with controls. We found that IRF4 transcripts were up-regulated in β-gal+ pre–B cells. Because IRF4 is a target of NF-κB and is required for receptor editing, we suggest that NF-κB could be acting through IRF4 to regulate receptor editing.
Collapse
Affiliation(s)
- Emily J Cadera
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
33
|
Claudio E, Saret S, Wang H, Siebenlist U. Cell-autonomous role for NF-kappa B in immature bone marrow B cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3406-13. [PMID: 19265118 DOI: 10.4049/jimmunol.0803360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NF-kappaB transcription factors have many essential functions in B cells, such as during differentiation and proliferation of Ag-challenged mature B cells, but also during final maturation of developing B cells in the spleen. Among the various specific functions NF-kappaB factors carry out in these biologic contexts, their ability to assure the survival of mature and maturing B cells in the periphery stands out. Less clear is what if any roles NF-kappaB factors play during earlier stages of B cell development in the bone marrow. Using mice deficient in both NF-kappaB1 and NF-kappaB2, which are thus partially compromised in both the classical and alternative activation pathways, we demonstrate a B cell-autonomous contribution of NF-kappaB to the survival of immature B cells in the bone marrow. NF-kappaB1 and NF-kappaB2 also play a role during the earlier transition from proB to late preB cells; however, in this context these factors do not act in a B cell-autonomous fashion. Although NF-kappaB1 and NF-kappaB2 are not absolutely required for survival and progression of immature B cells in the bone marrow, they nevertheless make a significant contribution that marks the beginning of the profound cell-autonomous control these factors exert during all subsequent stages of B cell development. Therefore, the lifelong dependency of B cells on NF-kappaB-mediated survival functions is set in motion at the time of first expression of a full BCR.
Collapse
Affiliation(s)
- Estefania Claudio
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
34
|
Derudder E, Cadera EJ, Vahl JC, Wang J, Fox CJ, Zha S, van Loo G, Pasparakis M, Schlissel MS, Schmidt-Supprian M, Rajewsky K. Development of immunoglobulin lambda-chain-positive B cells, but not editing of immunoglobulin kappa-chain, depends on NF-kappaB signals. Nat Immunol 2009; 10:647-54. [PMID: 19412180 PMCID: PMC2742984 DOI: 10.1038/ni.1732] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/27/2009] [Indexed: 01/05/2023]
Abstract
By genetically ablating IκB kinase (IKK)-mediated NF-κB activation in the B cell lineage, and by analyzing a mouse mutant in which Igλ+ B cells are generated in the absence of rearrangements in Igk, we define two distinct, consecutive phases of early B cell development that differ in their dependence on IKK-mediated NF-κB signaling. During the first phase, in which NF-κB signaling is dispensable, predominantly Igκ+ B cells are generated and undergo efficient receptor editing. In the second phase, predominantly Igλ+ B cells are generated, whose development is ontogenetically timed to occur after Igk rearrangements. This second phase of development is dependent on NF-κB signals, which can be substituted by transgenic expression of the pro-survival factor Bcl2.
Collapse
|
35
|
Tian W, Liou HC. RNAi-mediated c-Rel silencing leads to apoptosis of B cell tumor cells and suppresses antigenic immune response in vivo. PLoS One 2009; 4:e5028. [PMID: 19347041 PMCID: PMC2661141 DOI: 10.1371/journal.pone.0005028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 03/05/2009] [Indexed: 12/13/2022] Open
Abstract
c-Rel is a member of the Rel/NF-κB transcription factor family and is predominantly expressed in lymphoid and myeloid cells, playing a critical role in lymphocyte proliferation and survival. Persistent activation of the c-Rel signal transduction pathway is associated with allergies, inflammation, autoimmune diseases, and a variety of human malignancies. To explore the potential of targeting c-Rel as a therapeutic agent for these disorders, we designed a small interfering RNA (siRNA) to silence c-Rel expression in vitro and in vivo. C-Rel-siRNA expression via a retroviral vector in a B cell tumor cell line leads to growth arrest and apoptosis of the tumor cells. Silencing c-Rel in primary B cells in vitro compromises their proliferative and survival response to CD40 activation signals, similar to the impaired response of c-Rel knockout B cells. Most important, in vivo silencing of c-Rel results in significant impairment in T cell-mediated immune responses to antigenic stimulation. Our study thus validates the efficacy of c-Rel-siRNA, and suggests the development of siRNA-based therapy, as well as small molecular inhibitors for the treatment of B cell tumors as well as autoimmune diseases.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Hsiou-Chi Liou
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Cheng S, Hsia CY, Feng B, Liou ML, Fang X, Pandolfi PP, Liou HC. BCR-mediated apoptosis associated with negative selection of immature B cells is selectively dependent on Pten. Cell Res 2009; 19:196-207. [PMID: 18781138 DOI: 10.1038/cr.2008.284] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The molecular basis of B cell receptor (BCR)-induced apoptosis during the negative selection of immature B cells is largely unknown. We use transitional immature B cells that are highly susceptible to BCR-induced apoptosis to show that Pten is selectively required for BCR-mediated initiation of the mitochondrial death pathway. Specifically, deleting Pten, but not other pro-apoptotic molecules, abrogates BCR-elicited apoptosis and improves viability in wild-type immature B cells. We further identify a physiologically and significantly higher intracellular Pten level in immature B cells, as compared to mature B cells, which is responsible for low AKT activity and the propensity towards death in immature B cells. Restoration of AKT activity using a constitutive form of AKT or reduction of Pten to a level comparable with that seen in mature B cells rescues immature B cells from BCR-induced apoptosis. Thus, we provide evidence that Pten is an essential mediator of BCR-induced cell death, and that differential regulation of intracellular Pten levels determines whether BCR ligation promotes cell death or survival. Our findings provide a valuable insight into the mechanisms underlying negative selection and clonal deletion of immature B cells.
Collapse
Affiliation(s)
- Shuhua Cheng
- Department of Medicine, Division of Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
NF-kappaB p50 plays distinct roles in the establishment and control of murine gammaherpesvirus 68 latency. J Virol 2009; 83:4732-48. [PMID: 19264770 DOI: 10.1128/jvi.00111-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB signaling is critical to the survival and transformation of cells infected by the human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. Here we have examined how elimination of the NF-kappaB transcription factor p50 from mice affects the life cycle of murine gammaherpesvirus 68 (MHV68). Notably, mice lacking p50 in every cell type were unable to establish a sufficiently robust immune response to control MHV68 infection, leading to high levels of latently infected B cells detected in the spleen and persistent virus replication in the lungs. The latter correlated with very low levels of virus-specific immunoglobulin G (IgG) in the infected p50(-/-) mice at day 48 postinfection. Because the confounding impact of the loss of p50 on the host response to MHV68 infection prevented a direct analysis of the role of this NF-kappaB family member on MHV68 latency in B cells, we generated and infected mixed p50(+/+)/p50(-/-) bone marrow chimeric mice. We show that the chimeric mice were able to control acute virus replication and exhibited normal levels of virus-specific IgG at 3 months postinfection, indicating the induction of a normal host immune response to MHV68 infection. However, in p50(+/+)/p50(-/-) chimeric mice the p50(-/-) B cells exhibited a significant defect compared to p50(+/+) B cells in supporting MHV68 latency. In addition to identifying a role for p50 in the establishment of latency, we determined that the absence of p50 in a subset of the hematopoietic compartment led to persistent virus replication in the lungs of the chimeric mice, providing evidence that p50 is required for controlling virus reactivation. Taken together, these data demonstrate that p50 is required for immune control by the host and has distinct tissue-dependent roles in the regulation of murine gammaherpesvirus latency during chronic infection.
Collapse
|
38
|
Abstract
Nuclear factor-kappaB (NF-kappaB) transcription factors regulate B-cell development and survival. However, whether they also have a role during early steps of B-cell differentiation is largely unclear. Here, we show that constitutive activation of the alternative NF-kappaB pathway in p100(-/-) knockin mice resulted in a block of early B-cell development at the transition from the pre-pro-B to the pro-B-cell stage due to enhanced RelB activity. Expression of the essential B-cell transcription factors EBF and in particular Pax5 was reduced in p100(-/-) B-cell precursors in a RelB-dependent manner, resulting in reduced mRNA levels of B lineage-specific genes. Moreover, enhanced RelB function in p100(-/-) B-cell precursors was accompanied by increased expression of B lineage-inappropriate genes, such as C/EBP alpha, correlating with a markedly increased myeloid differentiation potential of p100(-/-) progenitor B cells. Ectopic expression of Pax5 in hematopoietic progenitors restored early B-cell development in p100(-/-) bone marrow, suggesting that impaired early B lymphopoiesis in mice lacking the p100 inhibitor may be due to down-regulation of Pax5 expression. Thus, tightly controlled p100 processing and RelB activation is essential for normal B lymphopoiesis and lymphoid/myeloid lineage decision in bone marrow.
Collapse
|
39
|
Maseda D, Meister S, Neubert K, Herrmann M, Voll RE. Proteasome inhibition drastically but reversibly impairs murine lymphocyte development. Cell Death Differ 2008; 15:600-12. [DOI: 10.1038/sj.cdd.4402297] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
40
|
Chang WC, Di Capite J, Nelson C, Parekh AB. All-or-none activation of CRAC channels by agonist elicits graded responses in populations of mast cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:5255-63. [PMID: 17911611 DOI: 10.4049/jimmunol.179.8.5255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In nonexcitable cells, receptor stimulation evokes Ca(2+) release from the endoplasmic reticulum stores followed by Ca(2+) influx through store-operated Ca(2+) channels in the plasma membrane. In mast cells, store-operated entry is mediated via Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we find that stimulation of muscarinic receptors in cultured mast cells results in Ca(2+)-dependent activation of protein kinase Calpha and the mitogen activated protein kinases ERK1/2 and this is required for the subsequent stimulation of the enzymes Ca(2+)-dependent phospholipase A(2) and 5-lipoxygenase, generating the intracellular messenger arachidonic acid and the proinflammatory intercellular messenger leukotriene C(4). In cell population studies, ERK activation, arachidonic acid release, and leukotriene C(4) secretion were all graded with stimulus intensity. However, at a single cell level, Ca(2+) influx was related to agonist concentration in an essentially all-or-none manner. This paradox of all-or-none CRAC channel activation in single cells with graded responses in cell populations was resolved by the finding that increasing agonist concentration recruited more mast cells but each cell responded by generating all-or-none Ca(2+) influx. These findings were extended to acutely isolated rat peritoneal mast cells where muscarinic or P2Y receptor stimulation evoked all-or-none activation of Ca(2+)entry but graded responses in cell populations. Our results identify a novel way for grading responses to agonists in immune cells and highlight the importance of CRAC channels as a key pharmacological target to control mast cell activation.
Collapse
Affiliation(s)
- Wei-Chiao Chang
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
41
|
Abstract
This review will focus on the role of nuclear factor kappaB (NF-kappaB) signaling in hematopoietic differentiation. We will also discuss several hematopoietic pathologies associated with deregulation of NF-kappaB and their potential therapies.
Collapse
Affiliation(s)
- V Bottero
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
42
|
Claudio E, Brown K, Siebenlist U. NF-kappaB guides the survival and differentiation of developing lymphocytes. Cell Death Differ 2006; 13:697-701. [PMID: 16528380 DOI: 10.1038/sj.cdd.4401894] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
43
|
Keutgens A, Robert I, Viatour P, Chariot A. Deregulated NF-kappaB activity in haematological malignancies. Biochem Pharmacol 2006; 72:1069-80. [PMID: 16854381 DOI: 10.1016/j.bcp.2006.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 01/22/2023]
Abstract
The NF-kappaB family of transcription factors plays key roles in the control of cell proliferation and apoptosis. Constitutive NF-kappaB activation is a common feature for most haematological malignancies and is therefore believed to be a crucial event for enhanced proliferation and survival of these malignant cells. In this review, we will describe the molecular mechanisms underlying NF-kappaB deregulation in haematological malignancies and will highlight what is still unclear in this field, 20 years after the discovery of this transcription factor.
Collapse
Affiliation(s)
- Aurore Keutgens
- Laboratory of Medical Chemistry, Center for Cellular and Molecular Therapy, Center for Biomedical Integrative Genoproteomics, University of Liege, Tour de Pathologie, +3 B23, CHU Sart-Tilman, 4000 Liège, Belgium
| | | | | | | |
Collapse
|
44
|
Cao S, Zhang X, Edwards JP, Mosser DM. NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J Biol Chem 2006; 281:26041-50. [PMID: 16835236 PMCID: PMC2642587 DOI: 10.1074/jbc.m602222200] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
NF-kappaB/Rel is a family of transcription factors whose activation has long been linked to the production of inflammatory cytokines. Here, we studied NF-kappaB signaling in the regulation of the anti-inflammatory cytokine, interleukin-10 (IL-10). We identified a role for a single NF-kappaB family member, NF-kappaB1 (p50), in promoting the transcription of IL-10. The NF-kappaB ciselement on IL-10 proximal promoter was located to -55/-46, where p50 can homodimerize and form a complex with the transcriptional co-activator CREB-binding protein to activate transcription. The other Rel family members appear to play a negligible role in IL-10 transcription. Mice lacking p50 were more susceptible to lethal endotoxemia, and macrophages taken from p50-/- mice exhibit skewed cytokine responses to lipopolysaccharide, characterized by decreased IL-10 and increased tumor necrosis factor and IL-12. Taken together, our studies demonstrate that NF-kappaB1 (p50) homodimers can be transcriptional activators of IL-10. The reciprocal regulation of pro- and anti-inflammatory cytokine production by NF-kappaB1 (p50) may provide potential new ways to manipulate the innate immune response.
Collapse
Affiliation(s)
| | | | | | - David M. Mosser
- To whom correspondence should be addressed: Dept. of Cell Biology and Molecular Genetics, University of Maryland, 1103 Microbiology Bldg., College Park, MD 20742. Tel.: 301-314-2594; Fax: 301-314-9489; E-mail:
| |
Collapse
|
45
|
Igarashi H, Baba Y, Nagai Y, Jimi E, Ghosh S, Kincade PW. NF-kappaB is dispensable for normal lymphocyte development in bone marrow but required for protection of progenitors from TNFalpha. Int Immunol 2006; 18:653-9. [PMID: 16571606 DOI: 10.1093/intimm/dxl002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Levels of the nuclear factor-kappa B (NF-kappaB)/Rel family of proteins are carefully modulated in differentiating lymphocytes, where these transcription factors are thought to be important for survival and fate decisions. In contrast, gene-targeting experiments have not revealed clear roles for these transcription factors in lymphopoiesis within bone marrow. Inhibition of NF-kappaB by introduction of mutated I kappa B alpha, a 'superinhibitor' of NF-kappaB, into hematopoietic stem cells or early progenitors suppressed B as well as T lymphopoiesis following transplantation into immunodeficient mice. Furthermore, a NF-kappaB essential modifier-binding domain (NBD) peptide that blocks IKB kinase (IKK) activity selectively impaired the generation of adult B lineage cells. However, this suppression did not occur when a neutralizing antibody to tumor necrosis factor alpha (TNFalpha) was added to the cultures, or in circumstances where few non-lymphoid cells were present. We conclude that while NF-kappaB plays a survival-promoting role in lymphoid progenitors, this may only be significant in circumstances such as transplantation when levels of TNFalpha are high.
Collapse
Affiliation(s)
- Hideya Igarashi
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
46
|
Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol 2005; 5:435-45. [PMID: 15905862 DOI: 10.1038/nri1629] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The evolutionarily conserved nuclear factor-kappaB family of transcription factors is known to have a crucial role in rapid responses to stress and pathogens, inducing transcription of many genes that are essential for host defence. Now, studies of mice that are deficient in nuclear factor-kappaB-family members (or deficient in the activation of these factors) reveal that nuclear factor-kappaB is extensively involved in the development of T cells and B cells. And, as we review here, although these factors have several roles, their primary cell-autonomous function is to ensure lymphocyte survival at various developmental stages. This function is subverted in numerous diseases and can lead, for example, to survival of self-reactive lymphocytes or tumour cells.
Collapse
Affiliation(s)
- Ulrich Siebenlist
- Immune Activation Section, Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1876, USA.
| | | | | |
Collapse
|
47
|
Tian W, Feng B, Liou HC. Silencing OCILRP2 leads to intrinsic defects in T cells in response to antigenic stimulation. Cell Immunol 2005; 235:72-84. [PMID: 16143319 DOI: 10.1016/j.cellimm.2005.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/01/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
We have previously demonstrated that OCILRP2 interaction with its ligand NKRP1f provides a co-stimulatory signal for optimal T cell proliferation and IL-2 production. Here, using RNA interference technology, we will demonstrate that silencing OCILRP2 in vivo leads to intrinsic impairment in T cell response to CD3- and CD28-cross-linking as well as antigenic stimulation. OCILRP2-silenced T cells have reduced cell proliferation and IL-2 production, which can be bypassed by PMA and ionomycin treatment. OCILRP2-silenced T cells also failed to undergo TCR capping and had impaired cytoskeleton reorganization. Moreover, in OCILRP2-silenced T cells, tyrosine phosphorylation of Lck was diminished, while tyrosine phosphorylation of linkers for activation of T cells was unchanged. Interestingly, NF-kappaB activation was also impaired as the result of OCILRP2 silencing. Together, our data strongly support a novel role for OCILRP2 C-type lectin in TCR-mediated signal transduction. The observation that OCILRP2 is involved in TCR capping and cytoskeletal organization suggests that OCILRP2-NKRP1f may facilitate lipid rafts and immunological synapse formation during T cell interaction with antigen presenting cells.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|