1
|
Lee WJ, Jo JH, Uwamahoro C, Jang SI, Jung EJ, Bae JW, Moon J, Kim DH, Yi JK, Ha JJ, Oh DY, Kwon WS. Role of PI3K/AKT signaling pathway during capacitation. Theriogenology 2025; 235:94-102. [PMID: 39799846 DOI: 10.1016/j.theriogenology.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/29/2024] [Indexed: 01/15/2025]
Abstract
Spermatozoa must undergo a complex maturation process within the female genital tract known as capacitation. This process entails the phosphorylation or dephosphorylation of various proteins, and multiple signaling pathways are recognized to play a role. The present study aims to identify alterations in the expression of proteins related to the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT) signaling pathway and assess sperm functions during capacitation. Mouse spermatozoa were incubated in a medium supplemented with bovine serum albumin to induce capacitation. Subsequently, we evaluated sperm motility, cell viability, capacitation status, and acrosome reaction. Consequently, we observed a significant increase in several kinematic parameters. Additionally, the capacitation status and acrosome reaction exhibited a time-dependent manner. Furthermore, we confirmed a significant increase in the phosphorylation of PI3K, PDK1, and p-AKT (Thr308), along with activation of PKA and tyrosine phosphorylation. These alterations in protein expression were found to correlate with capacitation status, acrosome reaction, and various kinematic parameters. Therefore, our findings show that the phosphorylation of PKA and PI3K/AKT pathway-related proteins during capacitation may plays a crucial role in regulating sperm function. These findings contribute to a better understanding of the molecular mechanisms and interactions of the PI3K/AKT signaling pathway in the capacitation process.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Joonho Moon
- Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dae-Hyun Kim
- Department of Animal Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jun Koo Yi
- School of Animal Life Convergence Science, Hankyong National University, Anseong, 17579, Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, 36052, Republic of Korea
| | - Dong Yep Oh
- Gyeongbuk Livestock Research Institute, Yeongju, 36052, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
2
|
Liu T, Niu J, Huang Y, Chen H, Wu Y, Xu Y. Ultrastructural evidence for the activation of autophagy and analysis of the protective role of autophagy in goat spermatozoa under liquid storage. Front Vet Sci 2025; 12:1543459. [PMID: 40151572 PMCID: PMC11948349 DOI: 10.3389/fvets.2025.1543459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
Liquid storage of semen is a widely used technology for promoting genetic improvement in goat breeding. The short shelf life of spermatozoa greatly limits the application of liquid storage, which urgently needs to explore the underlying regulatory factors. Autophagy as a cellular catabolic process plays critical roles in eliminating damaged material, that thus protects the function and fertilizing ability of spermatozoa. Nevertheless, the regulatory mechanisms of autophagy in goat spermatozoa under liquid storage remain unclear. In this study, the typical morphologic abnormalities and ultrastructural changes in goat spermatozoa, such as plasma membrane swollen and shrunken, acrosome exfoliation, and axoneme exposure, were observed after liquid storage at 4°C. Moreover, assessment of the formation of autophagy in liquid-stored goat spermatozoa was performed by a morphological "gold standard" of electron microscopy. Notably, a large number of vesicles with double-membrane structure indicating autophagosome were found to surround the aberrant spermatozoa, suggesting the activation of autophagy. Several proteins, such as LC3, ATG5, and p62, exhibited differential expression after liquid storage, which further validated the occurrence of autophagy in liquid-stored goat spermatozoa. Furthermore, chloroquine treatment was used to inhibit the autophagy of spermatozoa, which caused a significantly decrease in the quality of liquid-stored spermatozoa, including motility, viability, plasma membrane integrity, and acrosome integrity. Significant increase in ROS and MDA levels of spermatozoa and significant decrease in Ca2+ influx and protein tyrosine phosphorylation of spermatozoa were also detected after chloroquine-induced autophagy inhibition. The ultrastructural observation of double-membrane autophagosome provides strong evidences for the activation of autophagy in goat spermatozoa under liquid storage. The inhibition of autophagy mediated by chloroquine indicated that autophagy plays vital roles in the survival of spermatozoa. These results facilitate understanding the activation of autophagy in spermatozoa and provide valuable references for uncovering the underlying regulatory mechanisms of liquid storage of goat spermatozoa.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jincong Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yuqi Huang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hong Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongjie Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongping Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Cull ME, Winn LM. Bisphenol A and its potential mechanism of action for reproductive toxicity. Toxicology 2025; 511:154040. [PMID: 39725262 DOI: 10.1016/j.tox.2024.154040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Bisphenol A (BPA) is an organic synthetic chemical used worldwide. Billions of pounds of BPA are produced annually through industrial processes to be used in commercial products, making human exposure to BPA ubiquitous. Concerns have been raised due to the potential adverse health effects of BPA, specifically in vulnerable populations, such as pregnant persons and children. BPA is an endocrine-disrupting chemical, and through this function has been linked to reproductive toxicity. We review BPA's historical and current use, health and safety concerns and regulations, sources of exposure, and evidence for male and female reproductive toxicity. Evidence from epidemiological and animal studies idenfity that low- and high-exposure levels of BPA (prenatal, postnatal and adulthood exposure) can adversely affect male and female fertility and reproductive organs. While the cause of BPA-induced reproductive toxicity is not fully understood, we discuss BPA's estrogenic and androgenic activity, and its ability to disrupt the hypothalamic-pituitary-gonadal axis as a potential associated mechanism. There are significant differences in tolerable daily intakes of BPA set by global agencies, making interpretation of previous and emerging research findings challenging and inconsistent. Although BPA is deemed toxic by some government agencies, most do not currently consider it a health risk due to low populational exposure levels. However, we highlight evidence that even at acute, low exposure, BPA can adversely affect reproductive function. We recommend continuing research into the adverse effects of BPA on human health and revisiting the regulatory measures of BPA to limit exposure and promote public awareness of its potential to cause reproductive toxicity.
Collapse
Affiliation(s)
- Megan E Cull
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Louise M Winn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; School of Environmental Studies, Queen's University, Kingston, Canada.
| |
Collapse
|
4
|
Khongkha T, Rattanadechakul A, Surinlert P, Thongsum O, Boonkua S, Kongmanas K, Somrit M, Weerachatyanukul W, Asuvapongpatana S. Role of lipid binding protein, Niemann pick type C-2, in enhancing shrimp sperm physiological function. Heliyon 2025; 11:e41341. [PMID: 39811308 PMCID: PMC11730867 DOI: 10.1016/j.heliyon.2024.e41341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Sperm activation occurring in both male and female reproductive tract involves a highly complex series of biomolecular dynamics, particularly on membrane lipids and proteins. In mammals, the universal anticipation in cholesterol (CHO) sequestration plays a role in mammalian sperm maturation/capacitation, subsequently enhancing sperm fertilizing ability. In shrimp, we have previously shown that the level of cholesterol (CHO) is significantly reduced in vas deferens sperm when compared with sperm in the testes, presumably due to the sequestering action of the lipid-binding protein, one of which is Niemann-Pick Type C-2 (NPC2). Here, we used recombinant MrNPC2 protein to treat testicular sperm (Tsp) and quantitatively compared the amount of CHO with non-treated or 2-OH-β-CD treated sperm. HPTLC of the extracted lipids from Macrobrachium rosenbergii sperm revealed the presence of major phospholipids and CHO. Tsp treated with 2-OH-β-CD or MrNPC2 showed lower CHO levels, which was comparable to that of the vas deferens sperm as verified by the Amplex Red assay. Finally, the enhanced levels of protein tyrosine phosphorylation and ionophore-induced AR levels in the MrNPC2 treated Tsp significantly increased in a concentration-dependent manner, similar to that of the Vsp sperm. Altogether, our results indicated the importance of MrNPC2 as CHO moderator in sperm membrane, leading to an enhancement in sperm fertilizing ability.
Collapse
Affiliation(s)
- Thitiporn Khongkha
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Piyaporn Surinlert
- Chulabhon International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Orawan Thongsum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Supawich Boonkua
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kessiri Kongmanas
- Division of Dengue Hemorrhagic Fever Research/Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Monsicha Somrit
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
5
|
Xiong Y, Yi C, Zheng H, Ni Y, Xue Y, Li K. Protein palmitoylation is involved in regulating mouse sperm motility via the signals of calcium, protein tyrosine phosphorylation and reactive oxygen species. Biol Res 2025; 58:3. [PMID: 39810241 PMCID: PMC11734517 DOI: 10.1186/s40659-024-00580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear. This study aimed to elucidate the mechanism by which protein palmitoylation governs sperm motility. METHODS Protein palmitoylation in situ in mouse sperm was observed using innovative click chemistry. Sperm motility and motion parameters were evaluated using a computer-assisted sperm analyzer (CASA) after treatment with 2-bromopalmitic acid (2BP), a specific inhibitor of protein palmitoylation. Protein palmitoylation levels were confirmed by the acyl-biotin exchange (ABE) method. The interplay between protein palmitoylation, protein tyrosine phosphorylation, and intracellular calcium was investigated using Western blotting, ABE method, and fluorescent probes. The regulation of reactive oxygen species was also examined using fluorescent probes. RESULTS Localized patterns and dynamics of protein palmitoylation in distinct sperm regions were revealed, including the midpiece, post-acrosomal region, acrosome, and head. Alterations in protein palmitoylation in sperm were observed under in vitro physiological conditions. Treatment with 2BP significantly affected sperm motility and motion parameters. The study revealed interactions between protein palmitoylation, including heat shock protein 90, and protein kinase A/protein kinase C-associated protein tyrosine phosphorylation and intracellular calcium. Additionally, protein palmitoylation was found to be involved in reactive oxygen species regulation. CONCLUSIONS Protein palmitoylation regulates sperm motility through calcium signaling, protein tyrosine phosphorylation, and reactive oxygen species. This study revealed the characteristics of protein palmitoylation in sperm and its role in regulating sperm motility, thereby providing novel insights into the causes of asthenozoospermia associated with sperm motility in humans.
Collapse
Affiliation(s)
- Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chenchen Yi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haixia Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yamei Xue
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Adnane M, Ahmed M, Chapwanya A. Advances in Molecular Biology and Immunology of Spermatozoa and Fertilization in Domestic Animals: Implications for Infertility and Assisted Reproduction. Curr Mol Med 2025; 25:167-186. [PMID: 39572916 DOI: 10.2174/0115665240306965240802075331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/25/2024] [Accepted: 06/13/2024] [Indexed: 04/11/2025]
Abstract
Unlocking the secrets of reproductive success in domestic animals requires a deep understanding of the molecular biology and immunology of spermatozoa, capacitation, fertilization, and conception. This review highlights the complex processes involved in spermatogenesis and sperm capacitation, including changes in membrane properties, signaling pathways, and the crucial acrosome reaction. The interaction with the zona pellucida in species-specific gamete recognition and binding is emphasized. The implications of fertilization defects for infertility and assisted reproduction are discussed, underscoring the challenges faced in breeding programs. The future directions for research in this field involve advancements in molecular techniques, understanding the immune regulation of spermatozoa, investigating environmental factors' impact, and integrating multi-omics approaches to enhance assisted reproduction techniques in domestic animals. This review contributes to our understanding of the intricate mechanisms underlying successful reproduction and provides insights into potential strategies for improving fertility outcomes in domestic animals.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret 14000, Algeria
| | - Moussa Ahmed
- Department of Animal Health, Institute of Veterinary Sciences, University Ibn Khaldoun of Tiaret, Tiaret, 14000, Algeria
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
7
|
Abdelnour SA, Khalil WA, Hassan MAE, El-Ratel IT, El-Harairy MA, Dessouki SM, Attia KAA. Protective effect of epidermal growth factor on cryopreservation of dromedary camel epididymal spermatozoa: Evidence from in vitro and in silico studies. Anim Reprod Sci 2025; 272:107662. [PMID: 39644764 DOI: 10.1016/j.anireprosci.2024.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Epidermal growth factor (EGF) plays a crucial role in maintaining male reproductive capacity in mammals, however, its protective effects on cryopreserved dromedary camel epididymal spermatozoa have not been thoroughly investigated. This study aims to investigate the potential protective role of EGF on cryopreserved camel epididymal spermatozoa, supported by evidence from a molecular docking study. We assessed sperm motility, kinematics parameters, oxidative stress, ultrastructural changes, apoptosis, and molecular docking markers in camel epididymal spermatozoa following cryopreservation. Camel epididymal spermatozoa (n = 30 pairs of testes) were collected from local slaughterhouses. The epididymal spermatozoa were diluted with a freezing medium (SHOTOR extender) supplemented with different concentrations of EGF; 0 (EGF0), 50 (EGF50), 100 (EGF100), 200 (EGF200), and 400 (EGF400) ng/mL in SHOTOR extender and cryopreserved using a standard protocol. All EGF groups showed significant improvements in sperm progressive motility, viability, and sperm membrane function after equilibration at 5 °C for 24 hours. Regarding frozen-thawed samples, sperm progressive motility and some kinematic parameters (DAP, VSL, VCL and AHL) were significantly higher in the EFG400 group compared to the other groups (P < 0.01). A significant increase in the percentage of live/acrosome-intact sperm was observed, accompanied by a significant decrease in malondialdehyde levels in all EGF groups (P < 0.05). Both the EGF200 and EGF400 groups showed significantly higher sperm viability and significantly lower percentages of apoptotic and necrotic sperm compared to the other groups (P < 0.05). EGF supplementation preserved the ultrastructural integrity and cryotolerance of epididymal camel spermatozoa. The docking analysis indicated that EGF exhibited higher binding affinity with apoptosis sperm markers, including caspase-3 and bcl-2-associated X (Bax) proteins, with binding energies of -502.0 and -621.0 kcal/mol, respectively. In conclusion, the addition of EGF to SHOTOR extender was found to have beneficial effects on sperm motility, kinematics parameters, sperm viability, acrosome integrity, sperm ultrastructural features, and reduced oxidative stress and apoptosis-like changes in cryopreserved epididymal camel spermatozoa.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Wael A Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Mahmoud A E Hassan
- Animal Production Research Institute, Agriculture Research Centre, Ministry of Agriculture, Dokki, Giza 12619, Egypt.
| | - Ibrahim T El-Ratel
- Department of Animal, Poultry and Fish Production, Faculty of Agriculture, Damietta University, Damietta 34517, Egypt.
| | - Mostafa A El-Harairy
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt.
| | - Sherif M Dessouki
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt.
| | - Kandil A A Attia
- Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Minufiya 32897, Egypt.
| |
Collapse
|
8
|
Rodríguez Gil JE, Blanco-Prieto O. Techniques to Determine Mammalian Sperm Capacitation. Methods Mol Biol 2025; 2897:463-495. [PMID: 40202654 DOI: 10.1007/978-1-0716-4406-5_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The detection of the achievement of the capacitation status in a sperm sample is a very important asset for optimizing most reproductive techniques centered on semen, from freezing to "in vitro" fertilization. However, there is not a single, simple test that can determine the precise capacitation of a sample. This implies that a combined panel of separate tests focused on separate aspects of sperm function must be carried out to obtain a precise knowledge of the functional status of the sample. This work deals with a brief explanation of the most important techniques applied at these moments to determine sperm capacitation, with an emphasis not on the description of each technique, but on the advantages, disadvantages, and main purposes taking into account practical aspects such as the precise target by which a laboratory wants to determine capacitation. In this way, the main aim of this work is to give a practical guide for practitioners of laboratories from separate objectives, from standard semen quality analysis to molecular and/or mechanistic studies of sperm function, for choosing the most adequate tests to determine capacitation basing on the intended precise targets chosen in each case.
Collapse
Affiliation(s)
- Joan E Rodríguez Gil
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, University of Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.
| | | |
Collapse
|
9
|
Wang H, Cheng C, Ding J, Qian R, Luo T, Zheng L, Chen Y. Trifluoperazine effect on human sperm: The accumulation of reactive oxygen species and the decrease in the mitochondrial membrane potential. Reprod Toxicol 2024; 130:108730. [PMID: 39369966 DOI: 10.1016/j.reprotox.2024.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
A strong link between antipsychotic drug use and reduced human sperm quality has been reported. Trifluoperazine (TFP), a commonly used antipsychotic, is now being explored for anticancer applications. Although there are hints that TFP might affect the male reproductive system, its impact on human sperm quality remains uncertain. Using a human sperm and TFP in vitro coculture system, we examined the effect of TFP (12.5, 25, 50 and 100 μM) on human sperm function and physiological parameters. The results showed that 50 μM and 100 μM TFP induced the accumulation of reactive oxygen species (ROS) and a decrease in the mitochondrial membrane potential (MMP) of human sperm, leading to decreased sperm viability, while 25 μM TFP inhibited only the penetration ability, total sperm motility, and progressive motility. Although 12.5 μM and 25 μM TFP increased [Ca2+]i in human sperm, they did not affect capacitation or the acrosome reaction. These results may be explained by the observation that 12.5 μM and 25 μM TFP did not increase tyrosine phosphorylation in human sperm, although TFP increased [Ca2+]i in a time-course traces similar to that of progesterone. Our results indicated that TFP could cause male reproductive toxicity by inducing the accumulation of ROS and a decrease in the MMP in human sperm.
Collapse
Affiliation(s)
- Houpeng Wang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, China
| | - Cheng Cheng
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jing Ding
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Ruirui Qian
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Tao Luo
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Liping Zheng
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, China.
| | - Ying Chen
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
10
|
Van de Hoek M, Rickard JP, de Graaf SP. Manipulation of metabolism to improve liquid preservation of mammalian spermatozoa. Anim Reprod Sci 2024; 271:107631. [PMID: 39515267 DOI: 10.1016/j.anireprosci.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Reproductive success in mammals hinges on the ability of sperm to generate sufficient energy through cellular metabolism to perform the energy-intensive processes required for fertilisation, including motility, maturation, and oocyte interactions. It is now widely accepted that sperm exhibit metabolic flexibility, utilising a combination of glycolysis and oxidative phosphorylation (supported by the Krebs cycle and other complementary pathways) to meet their energy demands. However, the preferred pathway for energy production varies significantly among species, making it challenging to map species-specific metabolic strategies, particularly in species with high metabolic flexibility, like the ram. Additionally, differences in methodologies used to measure metabolism have led to biased interpretations of species' metabolic strategies, complicating the development of liquid storage methods aimed at preserving spermatozoa by manipulating energy generation based on species-specific requirements. This review examines sperm energy requirements, current methods for assessing metabolic capacity, and the current research on species-specific metabolism. Future research should focus on establishing a standardised approach for determining metabolic preferences to accurately map species-specific strategies, a critical step before developing effective liquid preservation methods. By identifying species-specific regulatory points, strategies can be designed to temporarily inhibit metabolic pathways, conserving resources and reducing the accumulation of metabolic by-products. Alternatively, supplementation with depleted metabolites can be guided by understanding areas of excessive consumption during prolonged metabolism. Applying this knowledge to develop tailored preservation techniques will help minimise sperm damage and improve survival during in vitro processing and liquid storage, ultimately enhancing the success of artificial breeding programs.
Collapse
Affiliation(s)
| | | | - Simon P de Graaf
- The University of Sydney, Faculty of Science, NSW 2006, Australia
| |
Collapse
|
11
|
Pacheco-Castillo H, Zagal-Huerta EE, Acevedo-Fernández JJ, Negrete-León E, Nishigaki T, Beltrán C. Hyperglycemia adversely affects critical physiological events related to rat sperm capacitation. Biochem Biophys Res Commun 2024; 734:150610. [PMID: 39217810 DOI: 10.1016/j.bbrc.2024.150610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hyperglycemia, the hallmark of diabetes mellitus (DM), is the main cause of DM-related systemic complications, including reproductive issues. Furthermore, the incidence of DM in males of reproductive ages is becoming an increasing concern, as the complexity of sperm capacitation (an essential process for fertilizing the egg) extends beyond conventional sperm parameters such as count, viability, and motility. Capacitation defects cause male infertility, and DM-related hyperglycemia may affect this process. We explore the effects of uncontrolled hyperglycemia on sperm using alloxan-induced hyperglycemic Wistar rats. In addition to assessing conventional sperm parameters, we also evaluated functional indicators, including hyperactivation (HA) with a pharmacological approach and assessed its effects with a computer-assisted sperm analysis (CASA); fluorescence indicators to monitor membrane potential (EmR, DiSC3(5)) and mitochondrial membrane potential (Ψ, JC-1); CatSper activity, using its ability to permeate Na+ ions, and ATP levels with the luciferin-luciferase reaction. We confirmed previous findings with our hyperglycemic model, which replicated the typical reduction on conventional sperm parameters. In sperm from hyperglycemic rats, we observed increased motility and HA levels after pharmacological treatment. Additionally, CatSper activity was unaffected by hyperglycemia, while EmR was hyperpolarized under non-capacitating condition. Finally, we noted a low percentage of hyperpolarized Ψ and reduced ATP content. This study highlights the significance of impact of hyperglycemia on sperm physiology and capacitation. We proposed that low ATP levels perturb energy state, signaling pathways, ion channels activity, motility, and HA. Our findings offer insight into DM-associated infertility and potential treatment strategies.
Collapse
Affiliation(s)
- Hiram Pacheco-Castillo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Erika Elena Zagal-Huerta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Juan José Acevedo-Fernández
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Elizabeth Negrete-León
- Laboratorio de Electrofisiología y Bioevaluación Farmacológica, Facultad de Medicina, Universidad Autónoma del Estado de Morelos (UAEM), Leñeros S/N, Los Volcanes, Cuernavaca, Morelos, 62350, Mexico.
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Beltrán
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
12
|
Moustakli E, Zikopoulos A, Skentou C, Katopodis P, Domali E, Potiris A, Stavros S, Zachariou A. Impact of Reductive Stress on Human Infertility: Underlying Mechanisms and Perspectives. Int J Mol Sci 2024; 25:11802. [PMID: 39519353 PMCID: PMC11547078 DOI: 10.3390/ijms252111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Antioxidants have a well-established effect on general health and are essential in preventing oxidative damage to cells by scavenging free radicals. Free radicals are thought to be neutralized by these substances, which include polyphenols, β-carotene, and vitamins C and E, reducing cellular damage. On the other hand, recent data indicates that consuming excessive amounts of antioxidants may have side effects. Apoptosis and cell signaling are two beneficial physiological processes that are affected by excessive supplementation. Other negative effects include paradoxical enhancement of oxidative stress and unbalanced cellular redox potential. Overdosing on particular antioxidants has been associated with increased medication interactions, cancer progression, and fatality risks. Additionally, the complex impacts they may have on fertility might be both useful and adverse, depending on the quantity and duration of usage. This review delves into the dual role of antioxidants and emphasizes the importance of employing antioxidants in moderation. Antioxidant overconsumption may disrupt the oxidative balance necessary for normal sperm and oocyte function, which is one of the potential negative effects of antioxidants on fertility in both males and females that are also investigated. Although modest usage of antioxidants is generally safe and useful, high levels of antioxidants can upset hormonal balance, impair sperm motility, and negatively impact the outcomes of assisted reproductive technologies (ART). The findings emphasize the need to use antioxidant supplements in a balanced way, the importance of further research to optimize their use in fertility treatments, and the importance of supporting reproductive health to avoid adverse effects.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zikopoulos
- Obstetrics and Gynecology, Royal Devon and Exeter Hospital Barrack Rd, Exeter EX 25 DW, UK;
| | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Periklis Katopodis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ekaterini Domali
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University General Hospital “ATTIKON”, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.P.); (S.S.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
13
|
Fuentes F, Contreras MJ, Arroyo-Salvo C, Cabrera P P, Silva M, Merino O, Arias ME, Felmer R. Effect of exogenous sperm capacitation inducers on stallion sperm. Theriogenology 2024; 226:29-38. [PMID: 38824691 DOI: 10.1016/j.theriogenology.2024.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Although under appropriate laboratory conditions, sperm from different mammalian species can be capacitated in vitro, the optimal conditions for sperm capacitation in the stallion have been elusive. This study evaluated the effect of different capacitating inducers in Whitten and Tyrode media and assessed their impact on capacitation-related factors. Stallion sperm were incubated with different combinations of capacitating inducers at 38.5 °C in an air atmosphere. Sperm quality variables such as motility, mitochondrial membrane potential, and lipid peroxidation were assessed. Membrane fluidity and intracellular calcium levels were evaluated as early markers of capacitation, while tyrosine phosphorylation events and the sperm's ability to perform acrosomal exocytosis were used as late capacitation markers. Finally, these sperm were evaluated using a heterologous zona pellucida binding assay. The findings confirm that capacitating conditions evaluated increase intracellular calcium levels and membrane fluidity in both media. Similarly, including 2 or 3 inducers in both media increased tyrosine phosphorylation levels and acrosomal exocytosis after exposure to progesterone, confirming that stallion sperm incubated in these conditions shows cellular and molecular changes consistent with sperm capacitation. Furthermore, the zona pellucida binding assay confirmed the binding capacity of sperm incubated in capacitation conditions, a key step for stallion in vitro fertilization success. Further studies are needed to evaluate the effect of these conditions on in vitro fertilization in the horse.
Collapse
Affiliation(s)
- Fernanda Fuentes
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco, Chile
| | - Maria Jose Contreras
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Camila Arroyo-Salvo
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Paulina Cabrera P
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Silva
- Department of Veterinary Sciences and Public Health, Universidad Catolica de Temuco, Temuco, Chile
| | - Osvaldo Merino
- Department of Basic Sciences, Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
| | - Maria Elena Arias
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
14
|
Kumaresan A, Yadav P, Sinha MK, Nag P, John Peter ESK, Mishra JS, Kumar S. Male infertility and perfluoroalkyl and poly-fluoroalkyl substances: evidence for alterations in phosphorylation of proteins and fertility-related functional attributes in bull spermatozoa†. Biol Reprod 2024; 111:723-739. [PMID: 38847481 PMCID: PMC11402523 DOI: 10.1093/biolre/ioae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Perfluoroalkyl and poly-fluoroalkyl substances (PFAS) are pervasive environmental pollutants and potential threats to reproductive health. Epidemiological studies have established an association between PFAS and male infertility, but the underlying mechanisms are unclear. OBJECTIVES Investigate the effect of perfluorooctane sulfonic acid (PFOS), the most prevalent and representative PFAS, on bull sperm protein phosphorylation and function. METHODS We exposed bull sperm to PFOS at 10 (average population exposure) and 100 μM (high-exposure scenario), and analyzed global proteomic and phosphoproteomic analysis by TMT labeling and Nano LC-MS/MS. We also measured sperm fertility functions by flow cytometry. RESULTS PFOS at 10-μM altered sperm proteins linked to spermatogenesis and chromatin condensation, while at 100 μM, PFOS affected proteins associated with motility and fertility. We detected 299 phosphopeptides from 116 proteins, with 45 exhibiting differential expression between control and PFOS groups. PFOS dysregulated phosphorylation of key proteins (ACRBP, PRKAR2A, RAB2B, SPAG8, TUBB4B, ZPBP, and C2CD6) involved in sperm capacitation, acrosome reaction, sperm-egg interaction, and fertilization. PFOS also affected phosphorylation of other proteins (AQP7, HSBP9, IL4I1, PRKAR1A, and CCT8L2) related to sperm stress resistance and cryotolerance. Notably, four proteins (PRM1, ACRBP, TSSK1B, and CFAP45) exhibited differential regulation at both proteomic and phosphoproteomic levels. Flow cytometric analysis confirmed that PFOS increased protein phosphorylation in sperm and also decreased sperm motility, viability, calcium, and mitochondrial membrane potential and increased mitochondrial ROS in a dose-dependent manner. CONCLUSIONS This study demonstrates that PFOS exposure negatively affects phosphorylation of proteins vital for bull sperm function and fertilization.
Collapse
Affiliation(s)
- Arumugam Kumaresan
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Manish Kumar Sinha
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Pradeep Nag
- Department of Animal Sciences, University of Missouri, Columbia, WI 65211, USA
| | - Ebenezer Samuel King John Peter
- Theriogenology Laboratory, Southern Regional Station of ICAR National Dairy Research Institute, Bengaluru, Karnataka 560030, India
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
15
|
Jung EJ, Jo JH, Uwamahoro C, Jang SI, Hwang JM, Lee WJ, Bae JW, Ryu DY, Kwon WS. Nirmatrelvir has detrimental effects on sperm function by altering the PI3K/PDK1/AKT signaling pathway. Toxicol In Vitro 2024; 99:105848. [PMID: 38772495 DOI: 10.1016/j.tiv.2024.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Nirmatrelvir (NMV) is a recently developed selective inhibitor of the main protease of Sars-Cov-2 that reduces the severity of infection. Despite its widespread use and various side effects, NMV's effect on male fertility is still unclear. This study was thus established to investigate how NMV affects male fertility. For experiments, Duroc spermatozoa were incubated with various concentrations of NMV (0, 0.1, 1, 10, 50, and 100 μM). Then, sperm motility, motion kinematics, capacitation status, intracellular ATP level, and cell viability were evaluated. In addition, the expression levels of phospho-PKA substrates, tyrosine-phosphorylated proteins, and PI3K/PDK1/AKT signaling pathway-related proteins were measured by western blotting. Our results showed that sperm motility, motion kinematics, proportion of capacitated spermatozoa, and intracellular ATP level were significantly decreased by NMV in a dose-dependent manner. Moreover, PKA activation was significantly suppressed by NMV, and expression levels of PI3K, phospho-PDK1, AKT, and phospho-AKT (Thr308 and Ser473) were significantly increased in a dose-dependent manner. Combining these findings, it is suggested that NMV has detrimental effects on sperm function by inducing abnormal changes in the PI3K/PDK1/AKT signaling pathway, resulting in PKA deactivation. Therefore, there is a need to pay particular attention to its male reproductive toxicity when NMV is administered.
Collapse
Affiliation(s)
- Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Do-Yeal Ryu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
16
|
Tian Y, Wang H, Pan T, Hu X, Ding J, Chen Y, Li J, Chen H, Luo T. Global proteomic analyses of lysine acetylation, malonylation, succinylation, and crotonylation in human sperm reveal their involvement in male fertility. J Proteomics 2024; 303:105213. [PMID: 38797435 DOI: 10.1016/j.jprot.2024.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Protein lysine modifications (PLMs) are hotspots of post-translational modifications and are involved in many diseases; however, their role in human sperm remains obscure. This study examined the presence and functional roles of a classical PLM (lysine acetylation, Kac) and three novel PLMs (lysine malonylation, Kmal; lysine succinylation, Ksucc; lysine crotonylation, Kcr) in human sperm. Immunoblotting and immunofluorescence assays revealed modified proteins (15-150 kDa) in the tails of human sperm. An immunoaffinity approach coupled with liquid chromatography/tandem mass spectrometry revealed 1423 Kac sites in 680 proteins, 196 Kmal sites in 118 proteins, 788 Ksucc sites in 251 proteins, and 1836 Kcr sites in 645 proteins. These modified proteins participate in a variety of biological processes and metabolic pathways. Crosstalk analysis demonstrated that proteins involved in the sperm energy pathways of glycolysis, oxidative phosphorylation, the citrate cycle, fatty acid oxidation, and ketone body metabolism were modified by at least one of these modifications. In addition, these modifications were found in 62 male fertility-related proteins that weave a protein-protein interaction network associated with asthenoteratozoospermia, asthenozoospermia, globozoospermia, spermatogenic failure, hypogonadotropic hypogonadism, and polycystic kidney disease. Our findings shed light on the functional role of PLMs in male reproduction. SIGNIFICANCE: Protein lysine modifications (PLMs) are hotspots of posttranslational modifications and are involved in many diseases. This study revealed the presence of a classical PLM (lysine acetylation) and three novel PLMs (lysine malonylation, lysine succinylation, and lysine crotonylation) in human sperm tails. The modified proteins participate in a variety of biological processes and metabolic pathways. In addition, these modifications were found in 62 male infertility-associated proteins and could serve as potential diagnostic markers and therapeutic targets for male infertility.
Collapse
Affiliation(s)
- Yan Tian
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hao Wang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Tingting Pan
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaonian Hu
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jing Ding
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying Chen
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jia Li
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, Jiangxi, China.
| | - Tao Luo
- Institute of Biomedical Innovation and School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China; Jiangxi Key Laboratory of Reproductive Health, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
17
|
Ortiz-Vallecillo A, Santamaría-López E, García-Ruiz D, Martín-Lozano D, Candenas L, Pinto FM, Fernández-Sánchez M, González-Ravina C. Influence of BMI, Cigarette Smoking and Cryopreservation on Tyrosine Phosphorylation during Sperm Capacitation. Int J Mol Sci 2024; 25:7582. [PMID: 39062825 PMCID: PMC11276716 DOI: 10.3390/ijms25147582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Capacitation involves tyrosine phosphorylation (TP) as a key marker. Lifestyle-related factors, such as obesity and smoking, are recognized for their adverse effects on semen quality and male fertility, yet the underlying mechanisms, including their potential impact on TP, remain unclear. Moreover, the effect of sperm cryopreservation on TP at the human sperm population level is unexplored. Flow cytometry analysis of global TP was performed on pre-capacitated, post-capacitated and 1- and 3-hours' incubated fresh and frozen-thawed samples from sperm donors (n = 40). Neither being overweight nor smoking (or both) significantly affected the percentage of sperm showing TP. However, elevated BMI and smoking intensity correlated with heightened basal TP levels (r = 0.226, p = 0.003) and heightened increase in TP after 3 h of incubation (r = 0.185, p = 0.017), respectively. Cryopreservation resulted in increased global TP levels after capacitation but not immediately after thawing. Nonetheless, most donors' thawed samples showed increased TP levels before and after capacitation as well as after incubation. Additionally, phosphorylation patterns in fresh and frozen-thawed samples were similar, indicating consistent sample response to capacitation stimuli despite differences in TP levels. Overall, this study sheds light on the potential impacts of lifestyle factors and cryopreservation on the dynamics of global TP levels during capacitation.
Collapse
Affiliation(s)
- Ana Ortiz-Vallecillo
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain; (A.O.-V.); (C.G.-R.)
| | | | - Diego García-Ruiz
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain; (A.O.-V.); (C.G.-R.)
| | - David Martín-Lozano
- Instituto de Investigaciones Químicas, CSIC, Calle Américo Vespucio, 49, 41092 Seville, Spain; (D.M.-L.); (L.C.); (F.M.P.)
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Calle Américo Vespucio, 49, 41092 Seville, Spain; (D.M.-L.); (L.C.); (F.M.P.)
| | - Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC, Calle Américo Vespucio, 49, 41092 Seville, Spain; (D.M.-L.); (L.C.); (F.M.P.)
| | - Manuel Fernández-Sánchez
- VIDA RECOLETAS Seville, Calle Américo Vespucio, 19, 41092 Seville, Spain;
- Departamento de Cirugía, Universidad de Sevilla, Avenida Sánchez Pizjuán, S/N, 41009 Seville, Spain
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, 1, 41013 Seville, Spain
| | - Cristina González-Ravina
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106-Torre A, Planta 1ª, 46026 Valencia, Spain; (A.O.-V.); (C.G.-R.)
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Carretera de Utrera, 1, 41013 Seville, Spain
- IVI-RMA Global Headquarters, Calle Américo Vespucio, 5, 41092 Seville, Spain
| |
Collapse
|
18
|
Hojjat iFar M, Keshtgar S, Karbalaei N. The Impact of NADPH Oxidase 5 Activity and Reactive Oxygen Species on Capacitated Human Sperm. J Reprod Infertil 2024; 25:193-200. [PMID: 39830321 PMCID: PMC11736272 DOI: 10.18502/jri.v25i3.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/23/2024] [Indexed: 01/22/2025] Open
Abstract
Background Progesterone (P4) activates sperm calcium channels (CatSper), allowing calcium to enter the cell, which activates NADPH Oxidase-5 (NOX5) and produces reactive oxygen species (ROS). While calcium and ROS are essential for sperm capacitation, the role of NOX5 in capacitated sperm is unclear. This study investigated NOX5 activity in capacitated human sperm. Methods Forty semen samples from fertile men were processed, with motile sperm separated and divided into nine groups: control (Ham's F-10), solvent (DMSO), progesterone, diphenyleneiodonium chloride (DPI, NOX5 inhibitor), phorbol-12-myristate 13-acetate (PMA, NOX5 activator), P4+DPI, P4+PMA, Trolox, and P4+ Trolox. Sperm kinematics, membrane integrity, survival rate, and ROS production was evaluated. Data were analyzed using ANOVA and Kruskal-Wallis tests, p≤ 0.05 considered statistically significant. Results Progressive motility significantly decreased with DPI (56.2±2.1%) and PMA (56.5±2.1%), both alone and combined with progesterone (58.0±2.0% and 57.4±2.2%), compared to the progesterone group (66.0±1.9%). No significant change was observed in the Trolox groups. Progesterone, alone or combined with DPI, PMA, and Trolox, significantly reduced sperm linearity from 0.6±0.01 to 0.5±0.01%. Straight-line velocity decreased in P4+PMA and P4+Trolox groups (88.2±4.4 and 89.7±3.9 μm/s) compared to the control group (105.0±5.5 μm/s). Trolox reduced ROS content, while other treatments had no effect on ROS levels. Conclusion NOX5 does not play a prominent role in capacitated sperm. The negative effects of PMA and DPI on sperm motility appear independent of their actions on NOX5 and ROS production. Trolox did not affect sperm motility and survival, indicating that capacitated sperm require little or no ROS.
Collapse
Affiliation(s)
- Mohammad Hojjat iFar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Seraj H, Nazari MA, Atai AA, Amanpour S, Azadi M. A Review: Biomechanical Aspects of the Fallopian Tube Relevant to its Function in Fertility. Reprod Sci 2024; 31:1456-1485. [PMID: 38472710 DOI: 10.1007/s43032-024-01479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
The fallopian tube (FT) plays a crucial role in the reproductive process by providing an ideal biomechanical and biochemical environment for fertilization and early embryo development. Despite its importance, the biomechanical functions of the FT that originate from its morphological aspects, and ultrastructural aspects, as well as the mechanical properties of FT, have not been studied nor used sufficiently, which limits the understanding of fertilization, mechanotrasduction, and mechanobiology during embryo development, as well as the replication of the FT in laboratory settings for infertility treatments. This paper reviews and revives valuable information on human FT reported in medical literature in the past five decades relevant to the biomechanical aspects of FT. In this review, we summarized the current state of knowledge concerning the morphological, ultrastructural aspects, and mechanical properties of the human FT. We also investigate the potential arising from a thorough consideration of the biomechanical functions and exploring often neglected mechanical aspects. Our investigation encompasses both macroscopic measurements (such as length, diameter, and thickness) and microscopic measurements (including the height of epithelial cells, the percentage of ciliated cells, cilia structure, and ciliary beat frequency). Our primary focus has been on healthy women of reproductive age. We have examined various measurement techniques, encompassing conventional metrology, 2D histological data as well as new spatial measurement techniques such as micro-CT.
Collapse
Affiliation(s)
- Hasan Seraj
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Ali Nazari
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
- Department of Speech and Cognition, CNRS UMR 5216, Grenoble Institute of Technology, Grenoble, France.
| | - Ali Asghar Atai
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saeid Amanpour
- Vali-E-Asr Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Azadi
- School of Engineering, College of Science and Engineering, San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
20
|
Spanner EA, de Graaf SP, Rickard JP. Factors affecting the success of laparoscopic artificial insemination in sheep. Anim Reprod Sci 2024; 264:107453. [PMID: 38547814 DOI: 10.1016/j.anireprosci.2024.107453] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/06/2024] [Accepted: 03/10/2024] [Indexed: 05/01/2024]
Abstract
Successful artificial breeding underpins rapid genetic and production gains in animal agriculture. In sheep, artificial insemination with frozen semen is performed via intrauterine laparoscopy as frozen-thawed spermatozoa do not traverse the cervix in sufficient numbers for high fertility and transcervical insemination is anatomically impossible in most ewes. Historically, laparoscopic artificial insemination has always been considered reasonably successful, but recent anecdotal reports of poor fertility place it at risk of warning adoption. Understanding the male, female and environmental factors that influence the fertility of sheep is warranted if the success of artificial insemination is to be improved and genetic progress maximised for the sheep industry. This review details the current practice of laparoscopic AI in sheep. It explores the effects of semen quantity and quality, the ewe, her preparation, and environmental conditions, on the fertility obtained following laparoscopic artificial insemination.
Collapse
Affiliation(s)
- E A Spanner
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia.
| | - S P de Graaf
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia
| | - J P Rickard
- The University of Sydney, Faculty of Science, School of Life and Environmental Sciences, NSW 2006, Australia
| |
Collapse
|
21
|
Lee WJ, Hwang JM, Jo JH, Jang SI, Jung EJ, Bae JW, Ha JJ, Kim DH, Kwon WS. Adverse Effects of Avobenzone on Boar Sperm Function: Disruption of Protein Kinase A Activity and Tyrosine Phosphorylation. Reprod Toxicol 2024; 125:108559. [PMID: 38378073 DOI: 10.1016/j.reprotox.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Avobenzone (AVO), an ultraviolet (UV) filter, is frequently used as an ingredient in personal cosmetics. This UV filter has been found to be easily exposed in swimming pools and beaches, and it has been detected in human urine and blood. Moreover, numerous studies have demonstrated that AVO exhibits endocrine-disrupting properties. Nevertheless, the effects of AVO on male fertility have not yet fully understood. Therefore, this study aimed to assess the effects of AVO on various sperm functions during capacitation. First, boar spermatozoa were treated with various AVO concentrations. After treatment, sperm motility and kinetic characteristics, capacitation status, intracellular adenosine triphosphate (ATP) levels, and sperm viability were evaluated. Moreover, Western blot analysis w.as conducted to evaluate protein kinase A (PKA) activity and tyrosine phosphorylation. As a result, AVO treatment significantly decreased total motility, progressive motility, and several kinetic characteristics at high concentrations (50 and 100 μM). Furthermore, the capacitation status dose-dependently decreased. Conversely, no significant differences in acrosome reaction, cell viability, and intracellular ATP levels were observed. However, the intracellular ATP level tended to decrease. In addition, AVO dose-dependently induced abnormal changes in PKA activity and tyrosine phosphorylation. Although AVO did not directly exert a toxic effect on cell viability, it ultimately negatively affected sperm functions through abnormal alterations in PKA activity and tyrosine phosphorylation. Thus, the potential implications on male fertility must be considered when contemplating the safe utilization of AVO.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, Gyeongsangbuk-do 36052, Republic of Korea
| | - Dae-Hyun Kim
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
22
|
McPherson NO, Nottle M, McIlfatrick S, Saini A, Hamilton H, Bowman E, Tully CA, Pacella-Ince L, Zander-Fox D, Bakos HW. Clinical use of progesterone in human sperm preparation media for increasing IVF success. Reprod Biomed Online 2024; 48:103625. [PMID: 38402675 DOI: 10.1016/j.rbmo.2023.103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 02/27/2024]
Abstract
RESEARCH QUESTION Can the addition of progesterone and neurotensin, molecular agents found in the female reproductive tract, after sperm washing increase the fertilization potential of human spermatozoa? DESIGN (i) Cohort study of 24 men. Spermatozoa selected by swim-up were incubated in either progesterone or neurotensin (0.1-100 µM) for 1-4 h, and hyperactive motility and binding to hyaluronan (0.1-100 µM) were assessed. The effect of progesterone 10 µM on sperm function was assessed in a blinded manner, including: hyperactive motility, binding to hyaluronan, tyrosine phosphorylation, acrosome reaction and oxidative DNA damage. (i) Embryo safety testing [one-cell mouse embryo assay (MEA), endotoxin and sterility counts (n = 3)] in preclinical embryo models of IVF (murine and porcine, n = 7 each model) and a small preliminary human study (n = 4) of couples undergoing standard IVF with oocytes inseminated with spermatozoa ± 10 µM progesterone. RESULTS Progesterone 10 µM increased sperm binding to hyaluronan, hyperactive motility and tyrosine phosphorylation (all P < 0.05). Neurotensin had no effect (P > 0.05). Progesterone 10 µM in human embryo culture media passed embryo safety testing (MEA, endotoxin concentration and sterility plate count). In preclinical models of IVF, the exposure of spermatozoa to progesterone 10 µM and oocytes to progesterone 1 µM was not detrimental, and increased the fertilization rate in mice and the blastocyst cell number in mice and pigs (all P ≤ 0.03). In humans, every transferred blastocyst that had been produced from spermatozoa exposed to progesterone resulted in a live birth. CONCLUSION The addition of progesterone to sperm preparation media shows promise as an adjunct to current methods for increasing fertilization potential. Randomized controlled trials are required to determine the clinical utility of progesterone for improving IVF outcomes.
Collapse
Affiliation(s)
- Nicole O McPherson
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia; Monash IVF Group, Clayton, Australia.
| | - Mark Nottle
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Stephan McIlfatrick
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Anmol Saini
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | | | | | - Cathryn A Tully
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia; Repromed, Dulwich, Australia
| | - Leanne Pacella-Ince
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Robinson Research Institute, University of Adelaide, Adelaide, Australia; Repromed, Dulwich, Australia
| | - Deirdre Zander-Fox
- Discipline of Reproduction and Development, School of Biomedicine, University of Adelaide, Adelaide, Australia; Monash IVF Group, Clayton, Australia; Monash University, Clayton, Australia
| | - Hassan W Bakos
- Monash IVF Group, Clayton, Australia; University of Newcastle, Newcastle, Australia; Memphasys Ltd, Homebush, Australia
| |
Collapse
|
23
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
24
|
Iamsaard S, Kietinun S, Sattayasai J, Bunluepuech K, Wu ATH, Choowong-In P. Prevention of seminal vesicle damage by Mucuna pruriens var. pruriens seed extract in chronic unpredictable mild stress mice. PHARMACEUTICAL BIOLOGY 2023; 61:89-99. [PMID: 36565036 PMCID: PMC9793912 DOI: 10.1080/13880209.2022.2157018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Thai Mucuna pruriens (L.) DC. var. pruriens (Fabaceae) or T-MP seed extract has been shown to improve sexual performance and sperm quality. OBJECTIVE This study investigates the preventive effects of T-MP against seminal vesicle damage, apoptotic and Nrf2 protein expression in mice under chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS Forty-eight male ICR mice were divided into four groups: control, CUMS, T-MP300 + CUMS and T-MP600 + CUMS. Mice in control and CUMS groups received distilled water, while those in treated groups were pretreated with T-MP extract (300 or 600 mg/kg BW) for 14 consecutive days. The CMUS and co-treated groups were exposed to one random stressor (of 12 total) each day for 43 days. Components and histopathology of the seminal vesicle were examined, along with localization of androgen receptor (AR) and caspase 3. Expression of seminal AR, tyrosine phosphorylated (TyrPho), heat shock protein 70 (Hsp70), caspases (3 and 9) and nuclear factor erythroid 2-related factor 2 (Nrf2) proteins was investigated. RESULTS T-MP extract at a dose of 600 mg/kg BW improved seminal epithelial damage and secretion of fluid containing essential substances and proteins in CUMS mice. It also increased the expression of AR and TyrPho proteins. Additionally, T-MP increased expression of Nrf2 and inhibited seminal vesicular apoptosis through the suppression of Hsp70 and caspase expression. CONCLUSION T-MP seeds have an antiapoptotic property in chronic stress seminal vesicle. It is possible to apply this extract for the enhancement of seminal plasma quality.
Collapse
Affiliation(s)
- Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| | - Somboon Kietinun
- Department of Integrative Medicine, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Jintana Sattayasai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kingkan Bunluepuech
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Alexander Tsang-Hsien Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pannawat Choowong-In
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
25
|
Vicente-Carrillo A, Álvarez-Rodríguez M, Rodriguez-Martinez H. The Cation/Calcium Channel of Sperm (CatSper): A Common Role Played Despite Inter-Species Variation? Int J Mol Sci 2023; 24:13750. [PMID: 37762052 PMCID: PMC10531172 DOI: 10.3390/ijms241813750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The main cation/calcium channel of spermatozoa (CatSper), first identified in 2001, has been thoroughly studied to elucidate its composition and function, while its distribution among species and sperm sources is yet incomplete. CatSper is composed of several subunits that build a pore-forming calcium channel, mainly activated in vivo in ejaculated sperm cells by intracellular alkalinization and progesterone, as suggested by the in vitro examinations. The CatSper channel relevance is dual: to maintain sperm homeostasis (alongside the plethora of membrane channels present) as well as being involved in pre-fertilization events, such as sperm capacitation, hyperactivation of sperm motility and the acrosome reaction, with remarkable species differences. Interestingly, the observed variations in CatSper localization in the plasma membrane seem to depend on the source of the sperm cells explored (i.e., epididymal or ejaculated, immature or mature, processed or not), the method used for examination and, particularly, on the specificity of the antibodies employed. In addition, despite multiple findings showing the relevance of CatSper in fertilization, few studies have studied CatSper as a biomarker to fine-tune diagnosis of sub-fertility in livestock or even consider its potential to control fertilization in plague animals, a more ethically defensible strategy than implicating CatSper to pharmacologically modify male-related fertility control in humans, pets or wild animals. This review describes inter- and intra-species differences in the localization, structure and function of the CatSper channel, calling for caution when considering its potential manipulation for fertility control or improvement.
Collapse
Affiliation(s)
- Alejandro Vicente-Carrillo
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Manuel Álvarez-Rodríguez
- Department Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Consejo Superior de Investigaciones Científicas (INIA-CSIC), 28040 Madrid, Spain
| | | |
Collapse
|
26
|
Lee WJ, Jo JH, Jang SI, Jung EJ, Hwang JM, Bae JW, Ha JJ, Kim DH, Kwon WS. The natural flavonoid compound deguelin suppresses sperm (Sus Scrofa) functions through abnormal activation of the PI3K/AKT pathway. Reprod Toxicol 2023; 120:108426. [PMID: 37353039 DOI: 10.1016/j.reprotox.2023.108426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Deguelin is a natural flavonoid extracted from plants belonging to the Lonchocarpus, Derris, or Tephrosia genera. It inhibits AKT activity in tumors and has the potential to be used as a treatment for malignant tumors. However, the risks associated with the use of deguelin on male fertility have not yet been explained in detail. Therefore, this study was conducted to investigate the effects of deguelin on sperm functions during capacitation. First, boar spermatozoa were exposed to different concentrations of deguelin (0.1, 1, 10, 50, and 100 μM). Next, sperm functional assessments, such as sperm motility, capacitation status, intracellular ATP level, and cell viability, were performed. The expression levels of PI3K/AKT-related proteins and the phosphorylation of their tyrosine residues were also evaluated by western blotting. No significant difference was observed in cell viability; however, deguelin considerably decreased sperm motility and motion kinematics in a dose-dependent manner. Although no significant difference was observed in the capacitation status, acrosome reaction decreased at high concentrations of deguelin (50 and 100 μM). Furthermore, intracellular ATP levels were significantly decreased in all deguelin treatment groups compared with those in the control group. Results of western blotting revealed that deguelin substantially diminished tyrosine phosphorylation. Interestingly, in contrast to previous studies showing that deguelin inhibits AKT activity, our results showed that it increased the expression of PI3K/AKT pathway-related proteins. Collectively, these findings indicate that deguelin exerts negative effects on sperm functions due to abnormal PI3K/AKT signaling activation. We believe that this is the first study to provide evidence that deguelin can regulate sperm functions independent of PI3K/AKT pathway inhibition. Furthermore, its detrimental effects on male fertility should be considered while developing or using deguelin as a therapeutic agent.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea
| | - Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea
| | - Jae Jung Ha
- Gyeongbuk Livestock Research Institute, Yeongju, Gyeongsangbuk-do 36052, the Republic of Korea
| | - Dae-Hyun Kim
- Gyeongbuk Livestock Research Institute, Yeongju, Gyeongsangbuk-do 36052, the Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea; Department of Animal Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea; Research Center for Horse Industry, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, the Republic of Korea.
| |
Collapse
|
27
|
Andretta RR, de Castro LS, de Carvalho RC, Moura JACD, Fraietta R, Okada FK, Bertolla RP. Understanding the impact of varicocele on sperm capacitation. F&S SCIENCE 2023; 4:229-238. [PMID: 37169221 DOI: 10.1016/j.xfss.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To study the relationship between the seminal sample quality of men with varicocele and sperm capacitation. DESIGN Cross-sectional observational study. SETTING Academic hospital. PATIENT(S) Seventy-six men (19 control and 57 with varicocele) were analyzed. INTERVENTION(S) Semen samples were submitted to a discontinuous density gradient for sperm selection. Sperm capacitation was induced using a human tubal fluid medium supplemented with bovine serum albumin. MAIN OUTCOME MEASURE(S) After capacitation induction, the sperm were assessed by capacitation state, computer-assisted sperm motility, mitochondrial activity, membrane integrity, acrosome reaction, and intracellular oxidative stress. RESULT(S) The capacitation period increased sperm motility, showing an increase in the average path velocity and a decrease in the straightness compared with sperm before capacitation (paired analysis). After capacitation, the rate of capacitated sperm, motility, and mitochondrial activity showed differences between groups (control and varicocele). The varicocele group showed lower mitochondrial activity and capacitation than the control group. On the other hand, no significant differences were observed in the other variables evaluated. CONCLUSION(S) Varicocele men showed less viable sperm and mitochondrial activity than control men after capacitation sperm. The induction of capacitation altered motility by increasing path velocity and decreasing straightness in all of the studied groups, evidencing the occurrence of hyperactivation.
Collapse
Affiliation(s)
- Rhayza Roberta Andretta
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Letícia Signori de Castro
- Laboratory of Spermatozoa Biology, Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Cristina de Carvalho
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Renato Fraietta
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Fatima Kazue Okada
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil; Laboratory of Developmental Biology, Department of Morphology and Genetics, Federal University of Sao Paulo, Sao Paulo, Brazil.
| | - Ricardo Pimenta Bertolla
- Human Reproduction Section, Division of Urology, Department of Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
28
|
Tan WLA, Neto LRP, Reverter A, McGowan M, Fortes MRS. Sequence level genome-wide associations for bull production and fertility traits in tropically adapted bulls. BMC Genomics 2023; 24:365. [PMID: 37386436 DOI: 10.1186/s12864-023-09475-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/21/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The genetics of male fertility is complex and not fully understood. Male subfertility can adversely affect the economics of livestock production. For example, inadvertently mating bulls with poor fertility can result in reduced annual liveweight production and suboptimal husbandry management. Fertility traits, such as scrotal circumference and semen quality are commonly used to select bulls before mating and can be targeted in genomic studies. In this study, we conducted genome-wide association analyses using sequence-level data targeting seven bull production and fertility traits measured in a multi-breed population of 6,422 tropically adapted bulls. The beef bull production and fertility traits included body weight (Weight), body condition score (CS), scrotal circumference (SC), sheath score (Sheath), percentage of normal spermatozoa (PNS), percentage of spermatozoa with mid-piece abnormalities (MP) and percentage of spermatozoa with proximal droplets (PD). RESULTS After quality control, 13,398,171 polymorphisms were tested for their associations with each trait in a mixed-model approach, fitting a multi-breed genomic relationship matrix. A Bonferroni genome-wide significance threshold of 5 × 10- 8 was imposed. This effort led to identifying genetic variants and candidate genes underpinning bull fertility and production traits. Genetic variants in Bos taurus autosome (BTA) 5 were associated with SC, Sheath, PNS, PD and MP. Whereas chromosome X was significant for SC, PNS, and PD. The traits we studied are highly polygenic and had significant results across the genome (BTA 1, 2, 4, 6, 7, 8, 11, 12, 14, 16, 18, 19, 23, 28, and 29). We also highlighted potential high-impact variants and candidate genes associated with Scrotal Circumference (SC) and Sheath Score (Sheath), which warrants further investigation in future studies. CONCLUSION The work presented here is a step closer to identifying molecular mechanisms that underpin bull fertility and production. Our work also emphasises the importance of including the X chromosome in genomic analyses. Future research aims to investigate potential causative variants and genes in downstream analyses.
Collapse
Affiliation(s)
- Wei Liang Andre Tan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Bld, 68 Cooper Rd, Brisbane City, QLD, 4072, Australia.
| | | | - Antonio Reverter
- CSIRO Agriculture and Food, 306 Carmody Road, St Lucia, QLD, 4067, Australia
| | - Michael McGowan
- School of Veterinary Science, The University of Queensland, Gatton, QLD, 4343, Australia
| | - Marina Rufino Salinas Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Chemistry Bld, 68 Cooper Rd, Brisbane City, QLD, 4072, Australia
| |
Collapse
|
29
|
Zhou L, Liu H, Liu S, Yang X, Dong Y, Pan Y, Xiao Z, Zheng B, Sun Y, Huang P, Zhang X, Hu J, Sun R, Feng S, Zhu Y, Liu M, Gui M, Wu J. Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell 2023; 186:2897-2910.e19. [PMID: 37295417 DOI: 10.1016/j.cell.2023.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.
Collapse
Affiliation(s)
- Lunni Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Haobin Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Siyu Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Center for Clinical Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yue Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yun Pan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhuang Xiao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Beihong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Yan Sun
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Pengyu Huang
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Xixi Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China
| | - Jin Hu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Rui Sun
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shan Feng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Miao Gui
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, Zhejiang, China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Jianping Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
30
|
Gómez-Torres MJ, Huerta-Retamal N, Sáez-Espinosa P, Robles-Gómez L, Avilés M, Aizpurua J. Molecular Chaperone HSPA2 Distribution During Hyaluronic Acid Selection in Human Sperm. Reprod Sci 2023; 30:1176-1185. [PMID: 35819578 PMCID: PMC10160204 DOI: 10.1007/s43032-022-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
During fertilization, sperm hyaluronidase activity is essential for spermatozoa to successfully penetrate the hyaluronic acid-enriched extracellular matrix of the cumulus cells. Since molecular chaperones, as the heat shock protein A2, are typically involved in bringing hyaluronic acid receptors to the cell surface, here we evaluated the presence and spatial location of HSPA2 on human spermatozoa based on its hyaluronic acid binding capacity. This study included 16 normozoospermic sperm samples from volunteering donors. The location of HSPA2 was studied in cells before and after 1-h incubation under capacitating conditions, as well as in spermatozoa selected according to their ability of binding to hyaluronic acid. Our results showed no significant differences in HSPA2 immunofluorescent cells before and after 1 h of incubation in capacitating conditions. Nevertheless, after hyaluronic acid selection, the percentage of HSPA2-labelled cells increased significantly, indicating that the interaction with hyaluronic acid may induce the unmasking of HSPA2 epitopes. Furthermore, after swim-up and hyaluronic acid selection, spermatozoa presented a highly immunostained equatorial band with a homogeneous fluorescence throughout the acrosomal region. This distribution has been previously suggested to have important implications in male fertility. Noteworthy, a homogeneous fluorescence among the acrosomal region with a more intense labelling at the apical region was observed only in hyaluronic acid bound sperm cells, which may be associated with primary gamete recognition. Our findings suggest that the hyaluronic acid selection technique and HSPA2 biomarker should be considered candidates to complement the classic seminal analysis before recommending an appropriate assisted reproduction technique.
Collapse
Affiliation(s)
- María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, 03690, Alicante, Spain.
- Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain.
| | | | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, 03690, Alicante, Spain
| | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, 03690, Alicante, Spain
| | - Manuel Avilés
- Departamento de Biología Celular E Histología, Universidad de Murcia, Instituto Murciano de Investigación Sociosanitaria (IMIB-Arrixaca), 30003, Murcia, Spain
| | - Jon Aizpurua
- IVF Spain, Medicina Reproductiva, 03540, Alicante, Spain
- Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
31
|
Wang HY, Shen YR, Tsai YC, Wu SR, Wang CY, Kuo PL. Proper phosphorylation of septin 12 regulates septin 4 and soluble adenylyl cyclase expression to induce sperm capacitation. J Cell Physiol 2023; 238:597-609. [PMID: 36715674 DOI: 10.1002/jcp.30951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Septin-based ring complexes maintain the sperm annulus. Defective annular structures are observed in the sperm of Sept12- and Sept4-null mice. In addition, sperm capacitation, a process required for proper fertilization, is inhibited in Sept4-null mice, implying that the sperm annulus might play a role in controlling sperm capacitation. Hence, we analyzed sperm capacitation of sperm obtained from SEPT12 Ser196 phosphomimetic (S196E), phosphorylation-deficient (S196A), and SEPT4-depleted mutant mice. Capacitation was reduced in the sperm of both the Sept12 S196E- and Sept12 S196A-knock-in mice. The protein levels of septins, namely, SEPT4 and SEPT12, were upregulated, and these proteins were concentrated in the sperm annulus during capacitation. Importantly, the expression of soluble adenylyl cyclase (sAC), a key enzyme that initiates capacitation, was upregulated, and sAC was recruited to the sperm annulus following capacitation stimulation. We further found that SEPT12, SEPT4, and sAC formed a complex and colocalized to the sperm annulus. Additionally, sAC expression was reduced and disappeared in the annulus of the SEPT12 S196E- and S196A-mutant mouse sperm. In the sperm of the SEPT4-knockout mice, sAC did not localize to the annulus. Thus, our data demonstrate that SEPT12 phosphorylation status and SEPT4 activity jointly regulate sAC protein levels and annular localization to induce sperm capacitation.
Collapse
Affiliation(s)
- Han-Yu Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ru Shen
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Chieh Tsai
- Department of Obstetrics and Gynecology, Sport Management, and Biotechnology, Chi-Mei Medical Center, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Shang-Rung Wu
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pao-Lin Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
Extracellular vesicles-encapsulated microRNA in mammalian reproduction: A review. Theriogenology 2023; 196:174-185. [PMID: 36423512 DOI: 10.1016/j.theriogenology.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale cell-derived lipid vesicles that participate in cell-cell communication by delivering cargo, including mRNAs, proteins and non-coding RNAs, to recipient cells. MicroRNA (miRNA), a non-coding RNA typically 22 nucleotides long, is crucial for nearly all developmental and pathophysiological processes in mammals by regulating recipient cells gene expression. Infertility is a worldwide health issue that affects 10-15% of couples during their reproductive years. Although assisted reproductive technology (ART) gives infertility couples hope, the failure of ART is mainly unknown. It is well accepted that EVs-encapsulated miRNAs have a role in different reproductive processes, implying that these EVs-encapsulated miRNAs could optimize ART, improve reproductive rate, and treat infertility. As a result, in this review, we describe the present understanding of EVs-encapsulated miRNAs in reproduction regulation.
Collapse
|
33
|
Štiavnická M, Hošek P, Abril-Parreño L, Kenny DA, Lonergan P, Fair S. Membrane remodulation and hyperactivation are impaired in frozen-thawed sperm of low-fertility bulls. Theriogenology 2023; 195:115-121. [DOI: 10.1016/j.theriogenology.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
|
34
|
Influence of Two Widely Used Solvents, Ethanol and Dimethyl Sulfoxide, on Human Sperm Parameters. Int J Mol Sci 2022; 24:ijms24010505. [PMID: 36613946 PMCID: PMC9820180 DOI: 10.3390/ijms24010505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
To study mechanisms involved in fertility, many experimental assays are conducted by incubating spermatozoa in the presence of molecules dissolved in solvents such as ethanol (EtOH) or dimethyl sulfoxide (DMSO). Although a vehicle control group is usually included in such studies, it does not allow to evaluate the intrinsic effect of the solvent on sperm parameters and its potential influence on the outcome of the experiment. In the present study, we incubated human spermatozoa for 4 h in a capacitation medium in the absence or the presence of different concentrations of EtOH and DMSO (0.1, 0.5, 1.0, and 2.0%) to assess the impact of these solvents on sperm motility, vitality, capacitation, and acrosome integrity. The presence of statistically significant relationships between increasing solvent concentrations and the investigated parameters was assessed using linear mixed models. A significant effect was observed with both solvents for total and progressive sperm motilities. We also evaluated the effect of time for these parameters and showed that the influence of the solvents was stable between 0 and 4 h, indicating an almost direct impact of the solvents. While EtOH did not influence sperm vitality and acrosome integrity, a significant effect of increasing DMSO concentrations was observed for these parameters. Finally, regarding capacitation, measured via phosphotyrosine content, although a dose-dependent effect was observed with both solvents, the statistical analysis did not allow to precisely evaluate the intensity of the effect. Based on the results obtained in the present study, and the corresponding linear mixed models, we calculated the concentration of both solvents which would result in a 5% decline in sperm parameters. For EtOH, these concentrations are 0.9, 0.7, and 0.3% for total motility, progressive motility, and capacitation, respectively, while for DMSO they are 1.5, 1.1, >2, 0.3 and >2% for total motility, progressive motility, vitality, capacitation, and acrosome integrity, respectively. We recommend using solvent concentrations below these values to dissolve molecules used to study sperm function in vitro, to limit side effects.
Collapse
|
35
|
Sawatpanich T, Chaimontri C, Wu ATH, Iamsaard S, Yannasithinon S. Dolichandrone serrulata flower improves seminal biochemical parameters and proteins in T2DM rats induced by a high-fat diet and streptozotocin. PHARMACEUTICAL BIOLOGY 2022; 60:1935-1943. [PMID: 36205598 PMCID: PMC9553168 DOI: 10.1080/13880209.2022.2124279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Although Dolichandrone serrulata (Wall. ex DC.) Seem (Bignoniaceae) flower (DSF) improves hyperglycaemia, testicular damage and sperm quality in type 2 diabetes mellitus (T2DM) animals, its effects on the seminal vesicles, secreting seminal plasma, are unknown. OBJECTIVE This study reports the protective effects of DSF on seminal dysfunction in T2DM rats. MATERIALS AND METHODS Male Sprague-Dawley rats were divided into four groups (control, T2DM, T2DM + DSF200 and T2DM + DSF600; 10 animals/group). The control group was fed a low-fat diet for 14 days prior to single saline injection, whereas T2DM group was given a high-fat diet and injected with streptozocin (50 mg/kg body weight). The T2DM-induced rats were fed DSF orogastrically (200 and 600 mg/kg body weight) for 28 consecutive days. At the end of the experiment, biochemical components, malondialdehyde (MDA), histology and protein expression in seminal lysate were evaluated. RESULTS DSF increased the levels of serum phosphorus (13.66 ± 0.59 mg/dL), ALP (11.85 ± 0.99 U/L), GOT (3938.23 ± 251.41 U/L) and GPT (34.16 ± 4.93), decreased MDA levels in seminal tissue, and elevated the serum testosterone in the T2DM rats. Treatment with DSF ameliorated histological damage, significantly increased seminal 44 and 31 kDa TyrPho protein expression, and decreased that of caspase 3 and 9. CONCLUSIONS DSF extract was able to mitigate seminal dysfunction in T2DM rats via improvements of tyrosine phosphorylation, testosterone level and biochemical substances, as well as reductions of caspase proteins. DSF may be developed as an alternative medicine in treating of T2DM male subfertility and progressive complications.
Collapse
Affiliation(s)
- Tarinee Sawatpanich
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chadaporn Chaimontri
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Alexander Tsang-Hsien Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| | | |
Collapse
|
36
|
Jung EJ, Lee WJ, Hwang JM, Bae JW, Kwon WS. Reproductive Toxicity of Ritonavir in Male: insight into mouse sperm capacitation. Reprod Toxicol 2022; 114:1-6. [PMID: 36198369 PMCID: PMC9527077 DOI: 10.1016/j.reprotox.2022.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Since COVID-19 began in 2019, therapeutic agents are being developed for its treatment. Among the numerous potential therapeutic agents, ritonavir (RTV), an anti-viral agent, has recently been identified as an important element of the COVID-19 treatment. Moreover, RTV has also been applied in the drug repurposing of cancer cells. However, previous studies have shown that RTV has toxic effects on various cell types. In addition, RTV regulates AKT phosphorylation within cancer cells, and AKT is known to control sperm functions (motility, capacitation, and so on). Although deleterious effects of RTV have been reported, it is not known whether RTV has male reproduction toxicity. Therefore, in this study, we aimed to investigate the effects of RTV on sperm function and male fertility. In the present study, sperm collected from the cauda epididymis of mice were incubated with various concentrations of RTV (0, 0.1, 1, 10, and 100 μM). The expression levels of AKT, phospho-AKT (Thr308 and Ser473), and phospho-tyrosine proteins, sperm motility, motion kinematics, capacitation status, and cell viability were assessed after capacitation. The results revealed that AKT phosphorylation at Thr308 and Ser473 was significantly increased, and the levels of tyrosine-phosphorylated proteins (at approximately 25 and 100 kDa) were significantly increased in a dose-dependent manner. In addition, RTV adversely affected sperm motility, motion kinematics, and cell viability. Taken together, RTV may have negative effects on sperm function through an abnormal increase in tyrosine phosphorylation and phospho-AKT levels. Therefore, individuals taking or prescribing RTV should be aware of its reproductive toxicity.
Collapse
Affiliation(s)
- Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Ju-Mi Hwang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
37
|
Xie Y, Xu Z, Wu C, Zhou C, Zhang X, Gu T, Yang J, Yang H, Zheng E, Xu Z, Cai G, Li Z, Liu D, Wu Z, Hong L. Extracellular vesicle-encapsulated miR-21-5p in seminal plasma prevents sperm capacitation via Vinculin inhibition. Theriogenology 2022; 193:103-113. [PMID: 36156422 DOI: 10.1016/j.theriogenology.2022.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 07/11/2022] [Accepted: 09/10/2022] [Indexed: 10/31/2022]
Abstract
To penetrate the zona pellucida before sperm-egg binding, sperm must undergo highly time-controlled capacitation and acrosome reaction in the female reproductive tract. Our previous study demonstrated that miR-21-5p is the most abundant miRNA in boar seminal plasma (SP)-derived extracellular vesicles (EVs) and can target Vinculin (VCL) gene, which may participate in boar sperm capacitation. Thus, this study aims to explore the potential role of miR-21-5p from SP-derived EVs in preventing sperm capacitation and its underlying mechanism. We observed that sperm could incorporate miR-21-5p from SP-derived EVs. The roles of SP-derived EVs miR-21-5p in sperm capacitation were then determined using gain- and loss-of-function analyses. In addition, the expression levels of miR-21-5p, VCL, and VCL protein in liquid-preserved boar sperm following transfection were determined using RT-qPCR and Western blotting. Our results revealed that miR-21-5p overexpression inhibited sperm capacitation and acrosome reaction. Similarly, miR-21-5p expression was significantly lower (P < 0.05) in capacitated sperm than un-capacitated sperm. However, the protein level of VCL was also significantly lower (P < 0.05) in capacitated sperm than un-capacitated sperm. Furthermore, immunofluorescence analysis showed that VCL protein mainly located in sperm head and sperm capacitation was inhibited after treating with VCL protein inhibitor (Chrysin). In conclusion, our study provides reasonable evidence that miR-21-5p expression in SP-derived EVs could prevent sperm capacitation via VCL inhibition.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | | | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, 510642, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, 510642, China.
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China.
| |
Collapse
|
38
|
Bisconti M, Leroy B, Gallagher MT, Senet C, Martinet B, Arcolia V, Wattiez R, Kirkman-Brown JC, Simon JF, Hennebert E. The ribosome inhibitor chloramphenicol induces motility deficits in human spermatozoa: A proteomic approach identifies potentially involved proteins. Front Cell Dev Biol 2022; 10:965076. [PMID: 36120567 PMCID: PMC9478589 DOI: 10.3389/fcell.2022.965076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mature spermatozoa are almost completely devoid of cytoplasm; as such it has long been believed that they do not contain ribosomes and are therefore not capable of synthesising proteins. However, since the 1950s, various studies have shown translational activity within spermatozoa, particularly during their in vitro capacitation. But the type of ribosomes involved (cytoplasmic or mitochondrial) is still debated. Here, we investigate the presence and activity of the two types of ribosomes in mature human spermatozoa. By targeting ribosomal RNAs and proteins, we show that both types of ribosomes are localized in the midpiece as well as in the neck and the base of the head of the spermatozoa. We assessed the impact of cycloheximide (CHX) and chloramphenicol (CP), inhibitors of cytoplasmic and mitochondrial ribosomes, respectively, on different sperm parameters. Neither CHX, nor CP impacted sperm vitality, mitochondrial activity (measured through the ATP content), or capacitation (measured through the content in phosphotyrosines). However, increasing CP concentrations induced a decrease in total and progressive motilities as well as on some kinematic parameters while no effect was observed with CHX. A quantitative proteomic analysis was performed by mass spectrometry in SWATH mode to compare the proteomes of spermatozoa capacitated in the absence or presence of the two ribosome inhibitors. Among the ∼700 proteins identified in the different tested conditions, 3, 3 and 25 proteins presented a modified abundance in the presence of 1 and 2 mg/ml of CHX, and 1 mg/ml of CP, respectively. The observed abundance variations of some CP-down regulated proteins were validated using Multiple-Reaction Monitoring (MRM). Taken together, our results are in favor of an activity of mitochondrial ribosomes. Their inhibition by CP results in a decrease in the abundance of several proteins, at least FUNDC2 and QRICH2, and consequently induces sperm motility deficits.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Coralie Senet
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Martinet
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Vanessa Arcolia
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Jackson C. Kirkman-Brown
- Institute of Metabolism and Systems Research, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Jean-François Simon
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- *Correspondence: Elise Hennebert,
| |
Collapse
|
39
|
Soria-Tiedemann M, Michel G, Urban I, Aldrovandi M, O’Donnell VB, Stehling S, Kuhn H, Borchert A. Unbalanced Expression of Glutathione Peroxidase 4 and Arachidonate 15-Lipoxygenase Affects Acrosome Reaction and In Vitro Fertilization. Int J Mol Sci 2022; 23:ijms23179907. [PMID: 36077303 PMCID: PMC9456195 DOI: 10.3390/ijms23179907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
Glutathione peroxidase 4 (Gpx4) and arachidonic acid 15 lipoxygenase (Alox15) are counterplayers in oxidative lipid metabolism and both enzymes have been implicated in spermatogenesis. However, the roles of the two proteins in acrosomal exocytosis have not been explored in detail. Here we characterized Gpx4 distribution in mouse sperm and detected the enzyme not only in the midpiece of the resting sperm but also at the anterior region of the head, where the acrosome is localized. During sperm capacitation, Gpx4 translocated to the post-acrosomal compartment. Sperm from Gpx4+/Sec46Ala mice heterozygously expressing a catalytically silent enzyme displayed an increased expression of phosphotyrosyl proteins, impaired acrosomal exocytosis after in vitro capacitation and were not suitable for in vitro fertilization. Alox15-deficient sperm showed normal acrosome reactions but when crossed into a Gpx4-deficient background spontaneous acrosomal exocytosis was observed during capacitation and these cells were even less suitable for in vitro fertilization. Taken together, our data indicate that heterozygous expression of a catalytically silent Gpx4 variant impairs acrosomal exocytosis and in vitro fertilization. Alox15 deficiency hardly impacted the acrosome reaction but when crossed into the Gpx4-deficient background spontaneous acrosomal exocytosis was induced. The detailed molecular mechanisms for the observed effects may be related to the compromised redox homeostasis.
Collapse
Affiliation(s)
- Mariana Soria-Tiedemann
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Geert Michel
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Iris Urban
- Department of Transgenic Technologies, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, D-13125 Berlin, Germany
| | - Maceler Aldrovandi
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Sabine Stehling
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Hartmut Kuhn
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | - Astrid Borchert
- Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, D-10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-034
| |
Collapse
|
40
|
Carboxypeptidase E protein regulates porcine sperm Ca 2+ influx to affect capacitation and fertilization. Theriogenology 2022; 192:28-37. [PMID: 36041383 DOI: 10.1016/j.theriogenology.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/22/2022]
Abstract
Mammalian spermatozoa acquire their fertilizing ability in the epididymis, which is important for sperm maturation and capacitation. Carboxypeptidase E (CPE) is a prohormone-processing enzyme and sorting receptor that functions intracellularly. Recently, CPE was identified to exist in the seminal plasma. However, little is known about the effects of CPE on reproductive function. This study focused on the effects of CPE on sperm function and fertilization. Herein, CPE was identified to be localized in the boar sperm, testis, epididymis, accessory gonad and seminal plasma, with high expression found in the bulbourethral glands and cauda epididymis. Furthermore, compared with high motility spermatozoa, a decrease in CPE abundance was observed in low motile spermatozoa by Western blot analysis. The use of specific antibody to inhibit the CPE in spermatozoa led to a decrease in sperm motility, followed by an expected decrease in acrosome exocytosis and tyrosine phosphorylation in the capacitation process. These changes were accompanied by a decrease in intracellular Ca2+ ([Ca2+]i) influx, which resulted in a significant decrease in the cleavage rate during in vitro fertilization (IVF). Based on these observations, we suggest that CPE might affect porcine sperm Ca2+ influx to participate in the regulation of sperm function during capacitation.
Collapse
|
41
|
Vanderkooi SC, Zhao Y, Lima PDA, Kan FWK. Recombinant human OVGP1 increases intracellular calcium and further potentiates the effects of progesterone on human sperm. J Assist Reprod Genet 2022; 39:2287-2301. [PMID: 35972586 PMCID: PMC9596666 DOI: 10.1007/s10815-022-02591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose To investigate the effects of recombinant human oviduct–specific glycoprotein (rHuOVGP1) alone and in combination with progesterone (P4) on intracellular Ca2+ concentration [Ca2+]i and to investigate if rHuOVGP1 in combination with P4 can further enhance tyrosine phosphorylation (pY) of sperm proteins during human sperm capacitation. Methods Fluorometric flow cytometry was performed to examine the effects of rHuOVGP1 on [Ca2+]i in human sperm during capacitation. Confocal microscopy was used in conjunction with live cell imaging to analyze the influence of rHuOVGP1 and P4 on [Ca2+]i in the sperm tail and to examine the involvement of CatSper channels in their effect on [Ca2+]i. Western blot analysis was performed to assess the protein levels of p105, a major tyrosine-phosphorylated sperm protein. Results rHuOVGP1 increases [Ca2+]i in human sperm at the beginning of capacitation and further increases and sustains the level of [Ca2+]i in the sperm tail following the addition of P4. Inhibition of CatSper channels impedes the effects of rHuOVGP1 on [Ca2+]i in the sperm tail. P4 alone can increase pY of a major human sperm protein, p105, yet yields a further increase when used in combination with rHuOVGP1. Conclusion The present study revealed that rHuOVGP1 may work with P4 to upregulate [Ca2+]i at the beginning of capacitation in part through CatSper channels which, in turn, leads to the downstream event of pY of sperm proteins and enhancement of sperm capacitation. Supplementary information The online version contains supplementary material available at 10.1007/s10815-022-02591-0.
Collapse
Affiliation(s)
- Sydney C Vanderkooi
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Yuewen Zhao
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
- Yale Fertility Center, Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University, Orange, Connecticut, 06477, USA
| | - Patricia D A Lima
- Queen's CardioPulmonary Unit, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
42
|
Targeted Analysis of HSP70 Isoforms in Human Spermatozoa in the Context of Capacitation and Motility. Int J Mol Sci 2022; 23:ijms23126497. [PMID: 35742939 PMCID: PMC9224233 DOI: 10.3390/ijms23126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
HSP70s constitute a family of chaperones, some isoforms of which appear to play a role in sperm function. Notably, global proteomic studies analyzing proteins deregulated in asthenozoospermia, a main cause of male infertility characterized by low sperm motility, showed the dysregulation of some HSP70 isoforms. However, to date, no clear trend has been established since the variations in the abundance of HSP70 isoforms differed between studies. The HSPA2 isoform has been reported to play a key role in fertilization, but its dysregulation and possible relocation during capacitation, a maturation process making the spermatozoon capable of fertilizing an oocyte, is debated in the literature. The aim of the present study was to investigate the fate of all sperm HSP70 isoforms during capacitation and in relation to sperm motility. Using Multiple-Reaction Monitoring (MRM) mass spectrometry, we showed that the relative abundance of all detected isoforms was stable between non-capacitated and capacitated spermatozoa. Immunofluorescence using two different antibodies also demonstrated the stability of HSP70 isoform localization during capacitation. We also investigated spermatozoa purified from 20 sperm samples displaying various levels of total and progressive sperm motility. We showed that the abundance of HSP70 isoforms is not correlated to sperm total or progressive motility.
Collapse
|
43
|
Mirihagalle S, Hughes JR, Miller DJ. Progesterone-Induced Sperm Release from the Oviduct Sperm Reservoir. Cells 2022; 11:1622. [PMID: 35626659 PMCID: PMC9139440 DOI: 10.3390/cells11101622] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
In mammalian females, after sperm are deposited in the reproductive tract, a fraction of sperm migrates to the lower oviduct (isthmus) and forms a sperm storage site known as the functional sperm reservoir. The interactions between sperm membrane proteins and oviduct epithelial cells facilitate sperm binding to the oviductal epithelium and retention in the reservoir. Sperm are bound by glycans that contain specific motifs present on isthmic epithelial cells. Capacitated sperm are released from the reservoir and travel further in the oviduct to the ampulla where fertilization occurs. For decades, researchers have been studying the molecules and mechanisms of sperm release from the oviductal sperm reservoir. However, it is still not clear if the release of sperm is triggered by changes in sperm, oviduct cells, oviduct fluid, or a combination of these. While there is a possibility that more than one of these events are involved in the release of sperm from the reservoir, one activator of sperm release has the largest accumulation of supporting evidence. This mechanism involves the steroid hormone, progesterone, as a signal that induces the release of sperm from the reservoir. This review gathers and synthesizes evidence for the role of progesterone in inducing sperm release from the oviduct functional sperm reservoir.
Collapse
Affiliation(s)
| | | | - David Joel Miller
- Department of Animal Sciences, Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA; (S.M.); (J.R.H.)
| |
Collapse
|
44
|
Yanagimachi R. Mysteries and unsolved problems of mammalian fertilization and related topics. Biol Reprod 2022; 106:644-675. [PMID: 35292804 PMCID: PMC9040664 DOI: 10.1093/biolre/ioac037] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian fertilization is a fascinating process that leads to the formation of a new individual. Eggs and sperm are complex cells that must meet at the appropriate time and position within the female reproductive tract for successful fertilization. I have been studying various aspects of mammalian fertilization over 60 years. In this review, I discuss many different aspects of mammalian fertilization, some of my laboratory's contribution to the field, and discuss enigmas and mysteries that remain to be solved.
Collapse
Affiliation(s)
- Ryuzo Yanagimachi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii Medical School, Honolulu, HI 96822, USA
| |
Collapse
|
45
|
Numata S, McDermott JP, Sanchez G, Mitra A, Blanco G. The sodium-glucose cotransporter isoform 1 (SGLT-1) is important for sperm energetics, motility, and fertility†. Biol Reprod 2022; 106:1206-1217. [PMID: 35420639 PMCID: PMC9199017 DOI: 10.1093/biolre/ioac052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 01/10/2023] Open
Abstract
Glucose is a key substrate for supporting sperm energy production and function. Previous studies have demonstrated that sperm glucose uptake is facilitated by several isoforms of the glucose transporters (GLUT). Here, we report that sperm also expresses the Na+-dependent sodium glucose cotransporter (SGLT). This was first suggested by our observation that genetic deletion of the testis-specific Na,K-ATPase α4, which impairs the sperm plasma membrane Na+ gradient, reduces glucose uptake and ATP production. Immunoblot analysis revealed the presence of an SGLT in sperm, with specific expression of isoform 1 (SGLT-1), but not of isoform 2 (SGLT-2). Immunocytochemistry identified SGLT-1 in the mid- and principal piece of the sperm flagellum. Inhibition of SGLT-1 with the isotype-selective inhibitor phlorizin significantly reduced glucose uptake, glycolytic activity, and ATP production in noncapacitated and capacitated sperm from wild-type mice. Phlorizin also decreased total sperm motility, as well as other parameters of sperm movement. In contrast, inhibition of SGLT-1 had no significant effect on sperm hyperactivation, protein tyrosine phosphorylation, or acrosomal reaction. Importantly, phlorizin treatment impaired the fertilizing capacity of sperm. Altogether, these results demonstrate that mouse sperm express a functional SGLT transport system that is important for supporting sperm energy production, motility, and fertility.
Collapse
Affiliation(s)
- September Numata
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeff P McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gladis Sanchez
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Amrita Mitra
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
46
|
Chen X, Li Z, Lv Y, Han Y, Qu X, Zhang Y, Jin Y. Comparative proteomic identification of capacitated and non-capacitated sperm of Yanbian Yellow Cattle. Theriogenology 2022; 186:12-20. [DOI: 10.1016/j.theriogenology.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
|
47
|
Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:822257. [PMID: 36303652 PMCID: PMC9580735 DOI: 10.3389/frph.2022.822257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Male fertility potential can be influenced by a variety of conditions that frequently coincide. Spermatozoa are particularly susceptible to oxidative damage due to their limited antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs). The role of oxidative stress (OS) in the etiology of male infertility has been the primary focus of our Stellenbosch University Reproductive Research Group (SURRG) over the last 10 years. This review aims to provide a novel insight into the impact of OS on spermatozoa and male reproductive function by reviewing the OS-related findings from a wide variety of studies conducted in our laboratory, along with those emerging from other investigators. We will provide a concise overview of the production of reactive oxygen species (ROS) and the development of OS in the male reproductive tract along with the physiological and pathological effects thereof on male reproductive functions. Recent advances in methods and techniques used for the assessment of OS will also be highlighted. We will furthermore consider the current evidence regarding the association between OS and ejaculatory abstinence period, as well as the potential mechanisms involved in the pathophysiology of various systemic diseases such as obesity, insulin resistance, hypertension, and certain mental health disorders which have been shown to cause OS induced male infertility. Finally, special emphasis will be placed on the potential for transferring and incorporating research findings emanating from different experimental studies into clinical practice.
Collapse
Affiliation(s)
- Bashir Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misrata, Libya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Temidayo S. Omolaoye
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nicola Louw
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter I. Oyeipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
48
|
Morcillo i Soler P, Hidalgo C, Fekete Z, Zalanyi L, Khalil ISM, Yeste M, Magdanz V. Bundle formation of sperm: Influence of environmental factors. Front Endocrinol (Lausanne) 2022; 13:957684. [PMID: 36299459 PMCID: PMC9591104 DOI: 10.3389/fendo.2022.957684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cooperative behaviour of sperm is one of the mechanisms that plays a role in sperm competition. It has been observed in several species that spermatozoa interact with each other to form agglomerates or bundles. In this study, we investigate the effect of physical and biochemical factors that will most likely promote bundle formation in bull sperm. These factors include fluid viscosity, swim-up process, post-thaw incubation time and media additives which promote capacitation. While viscosity does not seem to influence the degree of sperm bundling, swim-up, post-thaw migration time and suppressed capacitation increase the occurrence of sperm bundles. This leads to the conclusion that sperm bundling is a result of hydrodynamic and adhesive interactions between the cells which occurs frequently during prolonged incubation times.
Collapse
Affiliation(s)
| | - Carlos Hidalgo
- Centro de Biotecnológia Animal SERIDA-DEVA-GIJON, Gijón, Spain
| | - Zoltán Fekete
- ONGO Vettech Ltd., Martonvásár, Hungary
- Faculty of Information Technology & Bionics, Pazmany Peter Catholic University, Budapest, Hungary
| | - Laszlo Zalanyi
- ONGO Vettech Ltd., Martonvásár, Hungary
- Department of Computational Sciences, Wigner Research Centre for Physics, Budapest, Hungary
| | - Islam S. M. Khalil
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Marc Yeste
- University of Girona, Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Veronika Magdanz
- Smart Nanobiodevices Group, Institute for Bioengineering of Catalonia, Barcelona, Spain
- Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Veronika Magdanz,
| |
Collapse
|
49
|
Maurya S, Kesari KK, Roychoudhury S, Kolleboyina J, Jha NK, Jha SK, Sharma A, Kumar A, Rathi B, Kumar D. Metabolic Dysregulation and Sperm Motility in Male Infertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:257-273. [DOI: 10.1007/978-3-030-89340-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Bovine Follicular Fluid Derived Extracellular Vesicles Modulate the Viability, Capacitation and Acrosome Reaction of Bull Spermatozoa. BIOLOGY 2021; 10:biology10111154. [PMID: 34827147 PMCID: PMC8614796 DOI: 10.3390/biology10111154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Before the union of an egg and spermatozoon, several vital processes occur for fertilization in the female reproductive system. One of these processes is the maturation of spermatozoa which occurs in the female reproductive tract. Spermatozoa not undergoing maturation in the female reproductive tract are unable to penetrate the egg. Many reports have suggested the involvement of different factors in mediating the functional maturation of spermatozoa. Follicular fluid (FF) is named as one of those factors. FF is an ovarian fluid that plays an essential role in egg maturation and sources extracellular vesicles (EVs). EVs are nano-containers that are released from different cells and are present in all body fluids. Several studies have reported that FF supports the functional maturation of spermatozoa. Therefore, we hypothesized that FF EVs might have a role in inducing functional maturation in spermatozoa. Surprisingly, the FF-derived EVs were able to aid vital functional parameters of spermatozoa and the effects from EVs were species- and source-specific. Therefore, deciphering the cargo of FF EVs responsible for modulating spermatozoa’s functions can potentially prove beneficial in diagnosing and treating male infertility and improving the current assisted reproductive technology protocols. Abstract While follicular fluid (FF) is known to enhance the functional properties of spermatozoa, the role of FF-derived extracellular vesicles (EVs) in this respect is unknown. We hypothesized that bovine FF EVs convey signals to spermatozoa supporting sperm viability, inducing sperm capacitation and acrosome reaction. In this study, the effects of bovine FF EVs on sperm functions are evaluated. Irrespective of the size of the follicles which FF EVs had originated from, they were capable of supporting sperm viability, inducing capacitation and acrosome reaction. These effects were specific to the source of bovine FF EVs, as human-cell-line-derived or porcine FF EVs did not affect spermatozoa viability or induced capacitation and acrosome reaction. A minimum of 5 × 105 EVs/mL was adequate to maintain sperm viability and induce capacitation and acrosome reaction in spermatozoa. Interestingly, with FF EV trypsin treatment, FF EVs lost their ability to support sperm functions. In conclusion, this study demonstrates that bovine FF EVs can support spermatozoa function and may contribute to a favorable periconceptional microenvironment. This is an important aspect of the interactions between different sexes at the earliest stages of reproduction and helps to understand molecular mechanisms modulating processes such as sperm competition and female cryptic choice.
Collapse
|