1
|
Sanchez-Suarez J, Kim YJ, Miller WP, Kim LA. Recent advances in pharmacological treatments of proliferative vitreoretinopathy. Curr Opin Ophthalmol 2025; 36:253-261. [PMID: 39868554 DOI: 10.1097/icu.0000000000001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
PURPOSE OF REVIEW Proliferative vitreoretinopathy (PVR) is a severe complication of retinal detachment and trauma, posing significant challenges to surgical success and visual prognosis. Despite advancements in vitreoretinal surgery, PVR incidence remains unchanged, this review presents a synthesis of the principal clinical and preclinical research findings from recent years. RECENT FINDINGS Recent research has focused on anti-inflammatory, antiproliferative, and antifibrotic agents. Corticosteroids, such as triamcinolone and dexamethasone, show promise in reducing inflammation but have inconsistent results. Methotrexate and mitomycin C demonstrate efficacy in preclinical and select clinical scenarios. Anti-vascular endothelial growth factor agents and immunotherapies, like infliximab, have shown limited clinical benefits despite promising preclinical data. Novel approaches, including CB2 receptor agonists, exosome-based drug delivery, and nuclear factor kappa B pathway inhibitors, are gaining traction. Additionally, RNA-based and multitargeted therapies highlight the importance of addressing inflammation, fibrosis, and proliferation simultaneously. SUMMARY Effective management of PVR requires multifaceted therapies targeting its complex pathogenesis. While current treatments are limited, ongoing research in precision drug delivery and combination therapies offers hope for improved outcomes. Future strategies should focus on translating promising preclinical findings into robust clinical applications.
Collapse
Affiliation(s)
- Jeysson Sanchez-Suarez
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Harvard Medical School
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts, USA
| | - Yoon Jeon Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Harvard Medical School
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - William P Miller
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Harvard Medical School
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts, USA
| | - Leo A Kim
- Schepens Eye Research Institute of Massachusetts Eye and Ear and Harvard Medical School
- Mass Eye and Ear and the Department of Ophthalmology at Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Meanti R, Bresciani E, Rizzi L, Molteni L, Coco S, Omeljaniuk RJ, Torsello A. Cannabinoid Receptor 2 (CB2R) as potential target for the pharmacological treatment of neurodegenerative diseases. Biomed Pharmacother 2025; 186:118044. [PMID: 40209306 DOI: 10.1016/j.biopha.2025.118044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025] Open
Abstract
The endocannabinoid system (ECS) is a ubiquitous physiological system that plays a crucial role in maintaining CNS homeostasis and regulating its functions. It includes cannabinoid receptors (CBRs), endogenous cannabinoids (eCBs), and the enzymes responsible for their synthesis and degradation. In recent years, growing evidence has highlighted the therapeutic potential of the ECS and CBRs, in a wide range of severe diseases and pathological conditions, including Alzheimer's and Parkinson's diseases, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, Huntington's Disease, HIV-1 associated neurocognitive disorders, neuropathic pain and migraine. Targeting the cannabinoid type 2 receptor (CB2R) has gained attention due to its ability to (i) mitigate neuroinflammatory responses, (ii) regulate mitochondrial function and (iii) provide trophic support, all without eliciting the psychotropic actions associated with CB1R activation. This review aims to explore the potential of CB2R modulation as a strategy for the prevention and treatment of neurologic disorders, exploring both preclinical and clinical findings.
Collapse
Affiliation(s)
- Ramona Meanti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Elena Bresciani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Laura Rizzi
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Laura Molteni
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Silvia Coco
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| | - Robert J Omeljaniuk
- Department of Biology, Lakehead University, 955 Oliver Rd, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, Monza 20900, Italy.
| |
Collapse
|
3
|
Kalra P, Grewal AK, Khan H, Singh TG. Unscrambling the cellular and molecular threads of Neuroplasticity: Insights into Alzheimer's disease pathogenesis. Neuroscience 2025; 571:74-88. [PMID: 39970983 DOI: 10.1016/j.neuroscience.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Alzheimer's disease (AD) is predominantly the most recurring and devastating neurological condition among the elderly population, characterized by the accumulation of amyloid-β (Aβ) and phosphorylated tau proteins, and is accompanied by progressive decline of learning and memory. Due to its complex and multifactorial etiology, a wide variety of therapeutic interventions have been developed. Despite constant advancements in the field, effective treatments that ameliorate the severity of Alzheimer's symptoms or cease their progression are still insufficient. Mounting evidence suggests that synaptic dysfunction could be an essential component of AD pathogenesis as synapse signaling is impaired in the aging brain, which contributes to synaptic decline. Therefore, improving neuroplasticity such as synaptic plasticity or neurogenesis could be a promising therapeutic approach for alleviating the effects of AD. This article reviews the cellular and molecular threads of neuroplasticity as well as targets that restore neuronal survival and plasticity to provide functional recoveries, including receptors, downstream signaling pathways, ion channels, transporters, enzymes, and neurotrophic factors.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; University School of Pharmaceutical Sciences, Rayat Bahra University, Mohali, Punjab 140103, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
4
|
Huang CC, Wang CH, Yeh HY, Tsai HC, Yang CW, Li TH, Su CW, Yang YY, Lin HC, Hou MC. Peroxisome Proliferator-Activated Receptor α/γ and Cannabinoid Receptor 2 Agonist Attenuated Nonalcoholic Steatohepatitis Exosome-Related Abnormalities in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:188-203. [PMID: 39490440 DOI: 10.1016/j.ajpath.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
This study explored the mechanisms and effects of 1 month of peroxisome proliferator-activated receptor (PPAR)α/γ agonist aleglitazar (10 mg/kg per day) or cannabinoid receptor 2 (CB2R) agonist JWH015 (3 mg/kg per day), alone or combined, on visceral adipose tissue (VAT)-derived extracellular vesicle (EV) release and associated systemic/VAT inflammation, decreased VAT capillary density/fibrosis, and intestinal inflammation/hyperpermeability in nonalcoholic steatohepatitis (NASH) mice. High EV release from VAT of NASH mice was associated with severe systemic/VAT/intestinal inflammation, reduced capillary network of VAT, and intestinal hyperpermeability. Combined JWH015 with aleglitazar treatment suppressed high-fat diet-induced obesity/adiposity, inhibited VAT expansion, reduced VAT inflammation/fibrosis, normalized VAT capillary network, and attenuated intestinal mucosal injury, inflammation, and hyperpermeability in NASH + aleglitazar + JWH015 mice. The inhibition of adipose tissue (AT)-derived EV release and hypoxia-inducible factor (HIF)1α levels in AT-derived EV, normalization of CB2R, PPARα, PPARγ, PPARγ1, PPARγ2, tight junction proteins, vascular endothelial growth factor/CD31 expression, and down-regulation of HIF1α, monocyte chemoattractant protein-1, and transforming growth factor-β1 were observed in the VAT and intestine of the NASH + aleglitazar + jwh015 group. In vitro experiments revealed that PPARα/γ and CB2R activation attenuated NASH AT-derived EV-induced pathogenic changes in the J774/SVEC4-10/Caco2/3T3-L1 cell system. This study suggested that VAT-derived EVs contribute to the pathogenesis of NASH and that combined PPARα/γ and CB2R agonist treatment ameliorated the abovementioned abnormalities of NASH mice.
Collapse
Affiliation(s)
- Chia-Chang Huang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Ching-Hsiang Wang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Hsiao-Yun Yeh
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan
| | - Hung-Cheng Tsai
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan; Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ching-Wen Yang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Tzu-Hao Li
- Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Foundation Hospital, Taipei City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, Taipei City, Taiwan
| | - Chien-Wei Su
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ying-Ying Yang
- Department of Medical Education, Taipei Veterans General Hospital, Taipei City, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan.
| | - Han-Chieh Lin
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| | - Ming-Chih Hou
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei City, Taiwan; Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei City, Taiwan
| |
Collapse
|
5
|
Ma S, Nakamura Y, Uemoto S, Yamamoto K, Hisaoka-Nakashima K, Morioka N. Intranasal Treatment with Cannabinoid 2 Receptor Agonist HU-308 Ameliorates Cold Sensitivity in Mice with Traumatic Trigeminal Neuropathic Pain. Cells 2024; 13:1943. [PMID: 39682692 PMCID: PMC11640163 DOI: 10.3390/cells13231943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Post-traumatic trigeminal neuropathy (PTTN) is a sensory abnormality caused by injury to the trigeminal nerve during orofacial surgery. However, existing analgesics are ineffective against PTTN. Abnormal microglial activation in the caudal part of the spinal trigeminal nucleus caudal part (Sp5C), where the central trigeminal nerve terminals reside, plays an important role in PTTN pathogenesis. Therefore, regulating microglial activity in Sp5C appears to be an important approach to controlling pain in PTTN. Cannabinoid receptor 2 (CB2) is expressed in immune cells including microglia, and its activation has anti-inflammatory effects. The current study demonstrates that the repeated intranasal administration of CB2 agonist HU-308 ameliorates the infraorbital nerve cut (IONC)-induced hyperresponsiveness to acetone (cutaneous cooling). The therapeutic efficacy of oral HU-308 was found to be less pronounced in alleviating cold hypersensitivity in IONC mice compared to intranasal administration, indicating the potential advantages of the intranasal route. Furthermore, repeated intranasal administration of HU-308 suppressed the activation of Sp5C microglia in IONC mice. Additionally, pretreatment with the CB2 antagonist, SR 144528, significantly blocked the anti-nociceptive effect of repeated intranasal administration of HU-308 on cold hypersensitization in IONC mice. These data suggest that the continuous stimulation of CB2 ameliorates PTTN-induced pain via the inhibition of microglial activation. Thus, CB2 agonists are potential candidates for novel therapeutic agents against PTTN.
Collapse
Affiliation(s)
| | - Yoki Nakamura
- Correspondence: (Y.N.); (N.M.); Tel.: +81-082-257-5312 (Y.N.); +81-082-257-5310 (N.M.)
| | | | | | | | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan; (S.M.); (S.U.); (K.Y.); (K.H.-N.)
| |
Collapse
|
6
|
Patil N, Patil K, Jain M, Mohammed A, Yadav A, Dhanda PS, Kole C, Dave K, Kaushik P, Azhar Abdul Razab MK, Hamzah Z, Nawi NM. A systematic study of molecular targets of cannabidiol in Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1339-1360. [PMID: 40034365 PMCID: PMC11863746 DOI: 10.1177/25424823241284464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/27/2024] [Indexed: 03/05/2025] Open
Abstract
Background Alzheimer's disease (AD) is a prevalent, incurable, and chronic neurodegenerative condition characterized by the accumulation of amyloid-β protein (Aβ), disrupting various bodily systems. Despite the lack of a cure, phenolic compounds like cannabidiol (CBD), a non-psychoactive component of cannabis, have emerged as potential therapeutic agents for AD. Objective This systematic review explores the impact of different types of cannabidiol on AD, unveiling their neuroprotective mechanisms. Methods The research used PubMed, Scopus, and Web of Science databases with keywords like "Alzheimer's disease" and "Cannabidiol." Studies were evaluated based on title, abstract, and relevance to treating AD with CBD. No restrictions on research type or publication year. Excluded were hypothesis papers, reviews, books, unavailable articles, etc. Results Microsoft Excel identified 551 articles, with 92 included in the study, but only 22 were thoroughly evaluated. In-vivo and in-silico studies indicate that CBD may disrupt Aβ42, reduce pro-inflammatory molecule release, prevent reactive oxygen species formation, inhibit lipid oxidation, and counteract Aβ-induced increases in intracellular calcium, thereby protecting neurons from apoptosis. Conclusions In summary, the study indicates that CBD and its analogs reduce the production of Aβ42. Overall, these findings support the potential of CBD in alleviating the underlying pathology and symptoms associated with AD, underscoring the crucial need for further rigorous scientific investigation to elucidate the therapeutic applications and mechanisms of CBD in AD.
Collapse
Affiliation(s)
- Nil Patil
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Khushalika Patil
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Mukul Jain
- Cell & Developmental Biology Lab, Research & Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Alpa Yadav
- Department of Botany, Indra Gandhi University, Meerpur, Rewari, India
| | | | | | - Kirtan Dave
- Bioinformatics Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | | | - Zulhazman Hamzah
- Faculty of Earth Science, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Norazlina Mat Nawi
- Department of Nuclear Medicine, Radiotherapy & Oncology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
7
|
Bala K, Porel P, Aran KR. Emerging roles of cannabinoid receptor CB2 receptor in the central nervous system: therapeutic target for CNS disorders. Psychopharmacology (Berl) 2024; 241:1939-1954. [PMID: 39264450 DOI: 10.1007/s00213-024-06683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
RATIONALE The endocannabinoid system (ECS) belongs to the G protein-coupled receptor family of cell membranes and is associated with neuropsychiatric conditions, and neurodegenerative diseases. Cannabinoid 2 receptors (CB2) are expressed in the central nervous system (CNS) on microglia and subgroups of neurons and are involved in various behavioural processes via immunological and neural regulation. OBJECTIVE The objective of this paper is to summarize and explore the impact of CB2 receptors on neuronal modulation, their involvement in various neurological disorders, and their influence on mood, behavior, and cognitive function. RESULTS The activation of CB2 appears to protect the brain and its functions from damage under neuroinflammatory actions, making it an attractive target in a variety of neurological conditions such as Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), and Huntington's disease (HD). During inflammation, there is an overexpression of CB2 receptors, and CB2 agonists show a strong anti-inflammatory effect. These results have sparked interest in the CB2 receptors as a potential target for neurodegenerative and neuroinflammatory disease treatment. CONCLUSION In conclusion, CB2 receptors signalling shows promise for developing targeted interventions that could positively affect both immune and neuronal functions, ultimately influencing behavioral outcomes in both health and disease.
Collapse
Affiliation(s)
- Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Pratyush Porel
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
8
|
Maes M, Rachayon M, Jirakran K, Sughondhabirom A, Almulla AF, Sodsai P. Role of T and B lymphocyte cannabinoid type 1 and 2 receptors in major depression and suicidal behaviours. Acta Neuropsychiatr 2024; 36:287-298. [PMID: 37681553 DOI: 10.1017/neu.2023.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Early flow cytometry studies revealed T cell activation in major depressive disorder (MDD). MDD is characterised by activation of the immune-inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS), including deficits in T regulatory (Treg) cells. This study examines the number of cannabinoid type 1 (CB1) and type 2 (CB2) receptor-bearing T/B lymphocytes in MDD, and the effects of in vitro cannabidiol (CBD) administration on CB1/CB2-bearing immunocytes. Using flow cytometry, we determined the percentage of CD20+CB2+, CD3+CB2+, CD4+CB2+, CD8+CB2+ and FoxP3+CB1+ cells in 19 healthy controls and 29 MDD patients in 5 conditions: baseline, stimulation with anti-CD3/CD28 with or without 0.1 µg/mL, 1.0 µg/mL, or 10.0 µg/mL CBD. CB2+ was significantly higher in CD20+ than CD3+ and CD4+ and CD 8+ cells. Stimulation with anti-CD3/CD8 increases the number of CB2-bearing CD3+, CD4+ and CD8+ cells, as well as CB1-bearing FoxP3+ cells. There was an inverse association between the number of reduced CD4+ CB2+ and IRS profiles, including M1 macrophage, T helper-(Th)-1 and Th-17 phenotypes. MDD is characterised by lowered basal FoxP3+ CB1+% and higher CD20+ CB2+%. 33.2% of the variance in the depression phenome (including severity of depression, anxiety and current suicidal behaviours) is explained by CD20+ CB2+ % (positively) and CD3+ CB2+% (inversely). All five immune cell populations were significantly increased by 10 µg/mL of CBD administration. Reductions in FoxP3+ CB1+% and CD3+ /CD4+ CB2+% contribute to deficits in immune homoeostasis in MDD, while increased CD20+CB2+% may contribute to the pathophysiology of MDD by activating T-independent humoral immunity.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China,Chengdu610072, China
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Korea
| | - Muanpetch Rachayon
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Ketsupar Jirakran
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine, Maximizing Thai Children's Developmental Potential Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Atapol Sughondhabirom
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Pimpayao Sodsai
- Department of Immunology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
9
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
10
|
Armeli F, Mengoni B, Laskin DL, Businaro R. Interplay among Oxidative Stress, Autophagy, and the Endocannabinoid System in Neurodegenerative Diseases: Role of the Nrf2- p62/SQSTM1 Pathway and Nutraceutical Activation. Curr Issues Mol Biol 2024; 46:6868-6884. [PMID: 39057052 PMCID: PMC11276139 DOI: 10.3390/cimb46070410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
The onset of neurodegenerative diseases involves a complex interplay of pathological mechanisms, including protein aggregation, oxidative stress, and impaired autophagy. This review focuses on the intricate connection between oxidative stress and autophagy in neurodegenerative disorders, highlighting autophagy as pivotal in disease pathogenesis. Reactive oxygen species (ROS) play dual roles in cellular homeostasis and autophagy regulation, with disruptions of redox signaling contributing to neurodegeneration. The activation of the Nrf2 pathway represents a critical antioxidant mechanism, while autophagy maintains cellular homeostasis by degrading altered cell components. The interaction among p62/SQSTM1, Nrf2, and Keap1 forms a regulatory pathway essential for cellular stress response, whose dysregulation leads to impaired autophagy and aggregate accumulation. Targeting the Nrf2-p62/SQSTM1 pathway holds promise for therapeutic intervention, mitigating oxidative stress and preserving cellular functions. Additionally, this review explores the potential synergy between the endocannabinoid system and Nrf2 signaling for neuroprotection. Further research is needed to elucidate the involved molecular mechanisms and develop effective therapeutic strategies against neurodegeneration.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Beatrice Mengoni
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (B.M.)
| |
Collapse
|
11
|
Guadalupi L, Mandolesi G, Vanni V, Balletta S, Caioli S, Pavlovic A, De Vito F, Fresegna D, Sanna K, Vitiello L, Nencini M, Tartacca A, Mariani F, Rovella V, Schippling S, Ruf I, Collin L, Centonze D, Musella A. Pharmacological blockade of 2-AG degradation ameliorates clinical, neuroinflammatory and synaptic alterations in experimental autoimmune encephalomyelitis. Neuropharmacology 2024; 252:109940. [PMID: 38570068 DOI: 10.1016/j.neuropharm.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.
Collapse
Affiliation(s)
- Livia Guadalupi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Sara Balletta
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Silvia Caioli
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Anto Pavlovic
- Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Francesca De Vito
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Diego Fresegna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Vitiello
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy; Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Monica Nencini
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Alice Tartacca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizio Mariani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sven Schippling
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Iris Ruf
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Ludovic Collin
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy.
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy
| |
Collapse
|
12
|
Xie G, Gao X, Guo Q, Liang H, Yao L, Li W, Ma B, Wu N, Han X, Li J. Cannabidiol ameliorates PTSD-like symptoms by inhibiting neuroinflammation through its action on CB2 receptors in the brain of male mice. Brain Behav Immun 2024; 119:945-964. [PMID: 38759736 DOI: 10.1016/j.bbi.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/05/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating mental health disease related to traumatic experience, and its treatment outcomes are unsatisfactory. Accumulating research has indicated that cannabidiol (CBD) exhibits anti-PTSD effects, however, the underlying mechanism of CBD remains inadequately investigated. Although many studies pertaining to PTSD have primarily focused on aberrations in neuronal functioning, the present study aimed to elucidate the involvement and functionality of microglia/macrophages in PTSD while also investigated the modulatory effects of CBD on neuroinflammation associated with this condition. We constructed a modified single-prolonged stress (SPS) mice PTSD model and verified the PTSD-related behaviors by various behavioral tests (contextual freezing test, elevated plus maze test, tail suspension test and novel object recognition test). We observed a significant upregulation of Iba-1 and alteration of microglial/macrophage morphology within the prefrontal cortex and hippocampus, but not the amygdala, two weeks after the PTSD-related stress, suggesting a persistent neuroinflammatory phenotype in the PTSD-modeled group. CBD (10 mg/kg, i.p.) inhibited all PTSD-related behaviors and reversed the alterations in both microglial/macrophage quantity and morphology when administered prior to behavioral assessments. We further found increased pro-inflammatory factors, decreased PSD95 expression, and impaired synaptic density in the hippocampus of the modeled group, all of which were also restored by CBD treatment. CBD dramatically increased the level of anandamide, one of the endocannabinoids, and cannabinoid type 2 receptors (CB2Rs) transcripts in the hippocampus compared with PTSD-modeled group. Importantly, we discovered the expression of CB2Rs mRNA in Arg-1-positive cells in vivo and found that the behavioral effects of CBD were diminished by CB2Rs antagonist AM630 (1 mg/kg, i.p.) and both the behavioral and molecular effects of CBD were abolished in CB2Rs knockout mice. These findings suggest that CBD would alleviate PTSD-like behaviors in mice by suppressing PTSD-related neuroinflammation and upregulation and activation of CB2Rs may serve as one of the underlying mechanisms for this therapeutic effect. The present study offers innovative experimental evidence supporting the utilization of CBD in PTSD treatment from the perspective of its regulation of neuroinflammation, and paves the way for leveraging the endocannabinoid system to regulate neuroinflammation as a potential therapeutic approach for psychiatric disorders.
Collapse
Affiliation(s)
- Guanbo Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Xinwei Gao
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Qingchun Guo
- Chinese Institute for Brain Research, Beijing 102206, China; School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Haizhen Liang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lan Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenjuan Li
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
13
|
Sharon N, Yarmolinsky L, Khalfin B, Fleisher-Berkovich S, Ben-Shabat S. Cannabinoids' Role in Modulating Central and Peripheral Immunity in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:6402. [PMID: 38928109 PMCID: PMC11204381 DOI: 10.3390/ijms25126402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabinoids (the endocannabinoids, the synthetic cannabinoids, and the phytocannabinoids) are well known for their various pharmacological properties, including neuroprotective and anti-inflammatory features, which are fundamentally important for the treatment of neurodegenerative diseases. The aging of the global population is causing an increase in these diseases that require the development of effective drugs to be even more urgent. Taking into account the unavailability of effective drugs for neurodegenerative diseases, it seems appropriate to consider the role of cannabinoids in the treatment of these diseases. To our knowledge, few reviews are devoted to cannabinoids' impact on modulating central and peripheral immunity in neurodegenerative diseases. The objective of this review is to provide the best possible information about the cannabinoid receptors and immuno-modulation features, peripheral immune modulation by cannabinoids, cannabinoid-based therapies for the treatment of neurological disorders, and the future development prospects of making cannabinoids versatile tools in the pursuit of effective drugs.
Collapse
Affiliation(s)
| | | | | | | | - Shimon Ben-Shabat
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (N.S.); (L.Y.); (B.K.); (S.F.-B.)
| |
Collapse
|
14
|
Faydalı N, Arpacı ÖT. Benzimidazole and Benzoxazole Derivatives Against Alzheimer's Disease. Chem Biodivers 2024; 21:e202400123. [PMID: 38494443 DOI: 10.1002/cbdv.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Benzimidazole and benzoxazole derivatives are included in the category of medical drugs in a wide range of areas such as anticancer, anticoagulant, antihypertensive, anti- inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, immunomodulators, proton pump inhibitors, hormone modulators, etc. Many researchers have focused on synthesizing more effective benzimidazole and benzoxazole derivatives for screening various biological activities. In addition, there are benzimidazole and benzoxazole rings as bioisosteres of aromatic rings found in drugs used in the treatment of Alzheimer's disease. Because of the diverse activity of the benzimidazole and benzoxazole rings and bioisosteres marketed as drugs for Alzheimer Diseases, designed compounds containing these rings are likely to be effective against Alzheimer's disease. In this study, the effectiveness of compounds containing benzimidazole and benzoxazole rings against Alzheimer's disease will be examined.
Collapse
Affiliation(s)
- Nagihan Faydalı
- Department of Pharmaceutical Chemistry, Selcuk University, 42250, Konya, Turkey
- Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Özlem Temiz Arpacı
- Department of Pharmaceutical Chemistry, Ankara University, 06560, Ankara, Turkey
| |
Collapse
|
15
|
Ayoub SM, Holloway BM, Miranda AH, Roberts BZ, Young JW, Minassian A, Ellis RJ. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep 2024; 21:87-115. [PMID: 38602558 PMCID: PMC11129923 DOI: 10.1007/s11904-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Young AP, Szczesniak AM, Hsu K, Kelly ME, Denovan-Wright EM. Enantiomeric Agonists of the Type 2 Cannabinoid Receptor Reduce Retinal Damage during Proliferative Vitreoretinopathy and Inhibit Hyperactive Microglia In Vitro. ACS Pharmacol Transl Sci 2024; 7:1348-1363. [PMID: 38751621 PMCID: PMC11091991 DOI: 10.1021/acsptsci.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Microglia are resident immune cells of the central nervous system (CNS) and propagate inflammation following damage to the CNS, including the retina. Proliferative vitreoretinopathy (PVR) is a condition that can emerge following retinal detachment and is characterized by severe inflammation and microglial proliferation. The type 2 cannabinoid receptor (CB2) is an emerging pharmacological target to suppress microglial-mediated inflammation when the eyes or brain are damaged. CB2-knockout mice have exacerbated inflammation and retinal pathology during experimental PVR. We aimed to assess the anti-inflammatory effects of CB2 stimulation in the context of retinal damage and also explore the mechanistic roles of CB2 in microglia function. To target CB2, we used a highly selective agonist, HU-308, as well as its enantiomer, HU-433, which is a putative selective agonist. First, β-arrestin2 and Gαi recruitment was measured to compare activation of human CB2 in an in vitro heterologous expression system. Both agonists were then utilized in a mouse model of PVR, and the effects on retinal damage, inflammation, and cell death were assessed. Finally, we used an in vitro model of microglia to determine the effects of HU-308 and HU-433 on phagocytosis, cytokine release, migration, and intracellular signaling. We observed that HU-308 more strongly recruited both β-arrestin2 and Gαi compared to HU-433. Stimulation of CB2 with either drug effectively blunted LPS- and IFNγ-mediated signaling as well as NO and TNF release from microglia. Furthermore, both drugs reduced IL-6 accumulation, total caspase-3 cleavage, and retinal pathology following the induction of PVR. Ultimately, this work supports that CB2 is a valuable target for drugs to suppress inflammation and cell death associated with infection or sterile retinopathy, although the magnitude of effector recruitment may not be predictive of anti-inflammatory capacity.
Collapse
Affiliation(s)
- Alexander P. Young
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Anna-Maria Szczesniak
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Karolynn Hsu
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Melanie E.M. Kelly
- Department
of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Ophthalmology & Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department
of Anesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | | |
Collapse
|
17
|
Safi K, Sobieraj J, Błaszkiewicz M, Żyła J, Salata B, Dzierżanowski T. Tetrahydrocannabinol and Cannabidiol for Pain Treatment-An Update on the Evidence. Biomedicines 2024; 12:307. [PMID: 38397910 PMCID: PMC10886939 DOI: 10.3390/biomedicines12020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
In light of the current International Association for the Study of Pain (IASP) clinical practice guidelines (CPGs) and the European Society for Medical Oncology (ESMO) guidelines, the topic of cannabinoids in relation to pain remains controversial, with insufficient research presently available. Cannabinoids are an attractive pain management option due to their synergistic effects when administered with opioids, thereby also limiting the extent of respiratory depression. On their own, however, cannabinoids have been shown to have the potential to relieve specific subtypes of chronic pain in adults, although controversies remain. Among these subtypes are neuropathic, musculoskeletal, cancer, and geriatric pain. Another interesting feature is their effectiveness in chemotherapy-induced peripheral neuropathy (CIPN). Analgesic benefits are hypothesized to extend to HIV-associated neuropathic pain, as well as to lower back pain in the elderly. The aim of this article is to provide an up-to-date review of the existing preclinical as well as clinical studies, along with relevant systematic reviews addressing the roles of various types of cannabinoids in neuropathic pain settings. The impact of cannabinoids in chronic cancer pain and in non-cancer conditions, such as multiple sclerosis and headaches, are all discussed, as well as novel techniques of administration and relevant mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomasz Dzierżanowski
- Palliative Medicine Clinic, Medical University of Warsaw, Żwirki i Wigury 61, 02-091 Warsaw, Poland
| |
Collapse
|
18
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
19
|
Steinmüller SAM, Fender J, Deventer MH, Tutov A, Lorenz K, Stove CP, Hislop JN, Decker M. Visible-Light Photoswitchable Benzimidazole Azo-Arenes as β-Arrestin2-Biased Selective Cannabinoid 2 Receptor Agonists. Angew Chem Int Ed Engl 2023; 62:e202306176. [PMID: 37269130 DOI: 10.1002/anie.202306176] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
The cannabinoid 2 receptor (CB2 R) has high therapeutic potential for multiple pathogenic processes, such as neuroinflammation. Pathway-selective ligands are needed to overcome the lack of clinical success and to elucidate correlations between pathways and their respective therapeutic effects. Herein, we report the design and synthesis of a photoswitchable scaffold based on the privileged structure of benzimidazole and its application as a functionally selective CB2 R "efficacy-switch". Benzimidazole azo-arenes offer huge potential for the broad extension of photopharmacology to a wide range of optically addressable biological targets. We used this scaffold to develop compound 10 d, a "trans-on" agonist, which serves as a molecular probe to study the β-arrestin2 (βarr2) pathway at CB2 R. βΑrr2 bias was observed in CB2 R internalization and βarr2 recruitment, while no activation occurred when looking at Gα16 or mini-Gαi . Overall, compound 10 d is the first light-dependent functionally selective agonist to investigate the complex mechanisms of CB2 R-βarr2 dependent endocytosis.
Collapse
Affiliation(s)
- Sophie A M Steinmüller
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julia Fender
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Anna Tutov
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Bunsen-Kirchhoff-Straße 11, 44139, Dortmund, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - James N Hislop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
20
|
Gambacorta N, Gasperi V, Guzzo T, Di Leva FS, Ciriaco F, Sánchez C, Tullio V, Rozzi D, Marinelli L, Topai A, Nicolotti O, Maccarrone M. Exploring the 1,3-benzoxazine chemotype for cannabinoid receptor 2 as a promising anti-cancer therapeutic. Eur J Med Chem 2023; 259:115647. [PMID: 37478557 DOI: 10.1016/j.ejmech.2023.115647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
The discovery of selective agonists of cannabinoid receptor 2 (CB2) is strongly pursued to successfully tuning endocannabinoid signaling for therapeutic purposes. However, the design of selective CB2 agonists is still challenging because of the high homology with the cannabinoid receptor 1 (CB1) and for the yet unclear molecular basis of the agonist/antagonist switch. Here, the 1,3-benzoxazine scaffold is presented as a versatile chemotype for the design of CB2 agonists from which 25 derivatives were synthesized. Among these, compound 7b5 (CB2 EC50 = 110 nM, CB1 EC50 > 10 μM) demonstrated to impair proliferation of triple negative breast cancer BT549 cells and to attenuate the release of pro-inflammatory cytokines in a CB2-dependent manner. Furthermore, 7b5 abrogated the activation of extracellular signal-regulated kinase (ERK) 1/2, a key pro-inflammatory and oncogenic enzyme. Finally, molecular dynamics studies suggested a new rationale for the in vitro measured selectivity and for the observed agonist behavior.
Collapse
Affiliation(s)
- Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Tatiana Guzzo
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy
| | | | - Fulvio Ciriaco
- Department of Chemistry, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, C/ José Antonio Nováis, 12, 28040, Madrid, Spain
| | - Valentina Tullio
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Diego Rozzi
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Alessandra Topai
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy.
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy; European Center for Brain Research/Santa Lucia Foundation IRCCS, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
21
|
Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023; 13:1388. [PMID: 37759788 PMCID: PMC10526757 DOI: 10.3390/biom13091388] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Felix-Mircea Brehar
- Neurosurgery Department, Emergency Clinical Hospital Bagdasar-Arseni, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
22
|
Olabiyi BF, Schmoele AC, Beins EC, Zimmer A. Pharmacological blockade of cannabinoid receptor 2 signaling does not affect LPS/IFN-γ-induced microglial activation. Sci Rep 2023; 13:11105. [PMID: 37429837 PMCID: PMC10333177 DOI: 10.1038/s41598-023-37702-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Cannabinoid receptor 2 (CB2) signaling modulates microglial responses to inflammatory stimuli. Our previous studies demonstrated that genetic deletion of CB2 inhibits microglial activation during inflammatory stimulation of toll-like receptors (TLRs) or in neurodegenerative conditions. However, we cannot exclude developmental effects of the constitutive CB2 knockout (CB2-/-), which could mediate compensatory outcomes in CB2-/- mice. In the present study, we therefore tested whether acute pharmacological inhibition of CB2 receptor has a similar effect on microglial activation as in CB2-/- in response to inflammatory stimulation. Our findings suggest that the CB2-specific antagonist SR144528 has little or no effect on LPS/IFN-γ-induced activation in primary microglia or organotypic hippocampal slice cultures at nanomolar concentrations. We show that SR144528 did not alter LPS/IFN-γ-mediated microglial cytokine secretion, Iba1 and CD68 staining intensity or morphology at 1 and 10 nM. Although SR144528 suppressed LPS/IFN-γ-induced microglial activation at 1 µM, this anti-inflammatory effect was not dependent on CB2 receptors and exceeded the Ki on CB2 receptors by more than a thousand-fold. Thus, SR144528 does not mimic the anti-inflammatory effects observed in the CB2-/- microglia after LPS/IFN-γ stimulation. Therefore, we propose that the deletion of CB2 probably triggered an adaptive mechanism, making microglia less responsive to inflammatory stimulation.
Collapse
Affiliation(s)
| | | | - Eva Carolina Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Zhu Y, Huang R, Wang D, Yu L, Liu Y, Huang R, Yin S, He X, Chen B, Liu Z, Cheng L, Zhu R. EVs-mediated delivery of CB2 receptor agonist for Alzheimer's disease therapy. Asian J Pharm Sci 2023; 18:100835. [PMID: 37645682 PMCID: PMC10460952 DOI: 10.1016/j.ajps.2023.100835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Alzheimer's disease (AD) is a typical neurodegenerative disease that leads to irreversible neuronal degeneration, and effective treatment remains elusive due to the unclear mechanism. We utilized biocompatible mesenchymal stem cell-derived extracellular vesicles as carriers loaded with the CB2 target medicine AM1241 (EVs-AM1241) to protect against neurodegenerative progression and neuronal function in AD model mice. According to the results, EVs-AM1241 were successfully constructed and exhibited better bioavailability and therapeutic effects than bare AM1241. The Morris water maze (MWM) and fear conditioning tests revealed that the learning and memory of EVs-AM1241-treated model mice were significantly improved. In vivo electrophysiological recording of CA1 neurons indicated enhanced response to an auditory conditioned stimulus following fear learning. Immunostaining and Western blot analysis showed that amyloid plaque deposition and amyloid β (Aβ)-induced neuronal apoptosis were significantly suppressed by EVs-AM1241. Moreover, EVs-AM1241 increased the number of neurons and restored the neuronal cytoskeleton, indicating that they enhanced neuronal regeneration. RNA sequencing revealed that EVs-AM1241 facilitated Aβ phagocytosis, promoted neurogenesis and ultimately improved learning and memory through the calcium-Erk signaling pathway. Our study showed that EVs-AM1241 efficiently reversed neurodegenerative pathology and enhanced neurogenesis in model mice, indicating that they are very promising particles for treating AD.
Collapse
Affiliation(s)
- Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, China
| | - Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Deheng Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liqun Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Yuchen Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Runzhi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Bairu Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Zhibo Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, Shanghai 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, China
| |
Collapse
|
24
|
Medina-Vera D, Zhao H, Bereczki E, Rosell-Valle C, Shimozawa M, Chen G, de Fonseca FR, Nilsson P, Tambaro S. The Expression of the Endocannabinoid Receptors CB2 and GPR55 Is Highly Increased during the Progression of Alzheimer's Disease in AppNL-G-F Knock-In Mice. BIOLOGY 2023; 12:805. [PMID: 37372090 DOI: 10.3390/biology12060805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND The endocannabinoid system (ECS) and associated lipid transmitter-based signaling systems play an important role in modulating brain neuroinflammation. ECS is affected in neurodegenerative disorders, such as Alzheimer's disease (AD). Here we have evaluated the non-psychotropic endocannabinoid receptor type 2 (CB2) and lysophosphatidylinositol G-protein-coupled receptor 55 (GPR55) localization and expression during Aβ-pathology progression. METHODS Hippocampal gene expression of CB2 and GPR55 was explored by qPCR analysis, and brain distribution was evaluated by immunofluorescence in the wild type (WT) and APP knock-in AppNL-G-F AD mouse model. Furthermore, the effects of Aβ42 on CB2 and GPR55 expression were assessed in primary cell cultures. RESULTS CB2 and GPR55 mRNA levels were significantly upregulated in AppNL-G-F mice at 6 and 12 months of age, compared to WT. CB2 was highly expressed in the microglia and astrocytes surrounding the Aβ plaques. Differently, GPR55 staining was mainly detected in neurons and microglia but not in astrocytes. In vitro, Aβ42 treatment enhanced CB2 receptor expression mainly in astrocytes and microglia cells, whereas GPR55 expression was enhanced primarily in neurons. CONCLUSIONS These data show that Aβ pathology progression, particularly Aβ42, plays a crucial role in increasing the expression of CB2 and GPR55 receptors, supporting CB2 and GPR55 implications in AD.
Collapse
Affiliation(s)
- Dina Medina-Vera
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Cristina Rosell-Valle
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga-IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, 17164 Solna, Sweden
| |
Collapse
|
25
|
Standoli S, Rapino C, Di Meo C, Rudowski A, Kämpfer-Kolb N, Volk LM, Thomas D, Trautmann S, Schreiber Y, Meyer zu Heringdorf D, Maccarrone M. Sphingosine Kinases at the Intersection of Pro-Inflammatory LPS and Anti-Inflammatory Endocannabinoid Signaling in BV2 Mouse Microglia Cells. Int J Mol Sci 2023; 24:8508. [PMID: 37239854 PMCID: PMC10217805 DOI: 10.3390/ijms24108508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system, play important roles in brain homeostasis as well as in neuroinflammation, neurodegeneration, neurovascular diseases, and traumatic brain injury. In this context, components of the endocannabinoid (eCB) system have been shown to shift microglia towards an anti-inflammatory activation state. Instead, much less is known about the functional role of the sphingosine kinase (SphK)/sphingosine-1-phosphate (S1P) system in microglia biology. In the present study, we addressed potential crosstalk of the eCB and the S1P systems in BV2 mouse microglia cells challenged with lipopolysaccharide (LPS). We show that URB597, the selective inhibitor of fatty acid amide hydrolase (FAAH)-the main degradative enzyme of the eCB anandamide-prevented LPS-induced production of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β), and caused the accumulation of anandamide itself and eCB-like molecules such as oleic acid and cis-vaccenic acid ethanolamide, palmitoylethanolamide, and docosahexaenoyl ethanolamide. Furthermore, treatment with JWH133, a selective agonist of the eCB-binding cannabinoid 2 (CB2) receptor, mimicked the anti-inflammatory effects of URB597. Interestingly, LPS induced transcription of both SphK1 and SphK2, and the selective inhibitors of SphK1 (SLP7111228) and SphK2 (SLM6031434) strongly reduced LPS-induced TNFα and IL-1β production. Thus, the two SphKs were pro-inflammatory in BV2 cells in a non-redundant manner. Most importantly, the inhibition of FAAH by URB597, as well as the activation of CB2 by JWH133, prevented LPS-stimulated transcription of SphK1 and SphK2. These results present SphK1 and SphK2 at the intersection of pro-inflammatory LPS and anti-inflammatory eCB signaling, and suggest the further development of inhibitors of FAAH or SphKs for the treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sara Standoli
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (S.S.)
| | - Cinzia Rapino
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy;
| | - Camilla Di Meo
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (S.S.)
| | - Agnes Rudowski
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Nicole Kämpfer-Kolb
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Luisa Michelle Volk
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (D.T.); (S.T.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany;
| | - Dagmar Meyer zu Heringdorf
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (A.R.); (N.K.-K.); (L.M.V.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC), Santa Lucia Foundation, Scientific Institute for Research, Hospitalization and Healthcare, 00143 Rome, Italy
| |
Collapse
|
26
|
Grabon W, Rheims S, Smith J, Bodennec J, Belmeguenai A, Bezin L. CB2 receptor in the CNS: from immune and neuronal modulation to behavior. Neurosci Biobehav Rev 2023; 150:105226. [PMID: 37164044 DOI: 10.1016/j.neubiorev.2023.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
Despite low levels of cannabinoid receptor type 2 (CB2R) expression in the central nervous system in human and rodents, a growing body of evidence shows CB2R involvement in many processes at the behavioral level, through both immune and neuronal modulations. Recent in vitro and in vivo evidence have highlighted the complex role of CB2R under physiological and inflammatory conditions. Under neuroinflammatory states, its activation seems to protect the brain and its functions, making it a promising target in a wide range of neurological disorders. Here, we provide a complete and updated overview of CB2R function in the central nervous system of rodents, spanning from modulation of immune function in microglia but also in other cell types, to behavior and neuronal activity, in both physiological and neuroinflammatory contexts.
Collapse
Affiliation(s)
- Wanda Grabon
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France.
| | - Sylvain Rheims
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France; Department of Functional Neurology and Epileptology, Hospices Civils de Lyon - France
| | - Jonathon Smith
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Jacques Bodennec
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Amor Belmeguenai
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France; Epilepsy Institute IDEE, 59 boulevard Pinel - F-69500 Bron, France
| | - Laurent Bezin
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team - F-69500 Bron, France.
| |
Collapse
|
27
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
28
|
Scipioni L, Tortolani D, Ciaramellano F, Fanti F, Gazzi T, Sergi M, Nazaré M, Oddi S, Maccarrone M. Aβ Chronic Exposure Promotes an Activation State of Microglia through Endocannabinoid Signalling Imbalance. Int J Mol Sci 2023; 24:ijms24076684. [PMID: 37047663 PMCID: PMC10095368 DOI: 10.3390/ijms24076684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/12/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Dysfunctional phenotype of microglia, the primary brain immune cells, may aggravate Alzheimer’s disease (AD) pathogenesis by releasing proinflammatory factors, such as nitric oxide (NO). The endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are bioactive lipids increasingly recognised for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. To investigate the possible impact of chronic exposure to β-amyloid peptides (Aβ) on the microglial endocannabinoid signalling, we characterised the functional expression of the endocannabinoid system on neonatal microglia isolated from wild-type and Tg2576 mice, an AD-like model, which overexpresses Aβ peptides in the developing brain. We found that Aβ-exposed microglia produced 2-fold more 2-AG than normal microglia. Accordingly, the expression levels of diacylglycerol lipase-α (DAGLα) and monoacylglycerol lipase (MAGL), the main enzymes responsible for synthesising and hydrolysing 2-AG, respectively, were consistently modified in Tg2576 microglia. Furthermore, compared to wild-type cells, transgenic microglia basally showed increased expression of the cannabinoid 2 receptor, typically upregulated in an activated proinflammatory phenotype. Indeed, following inflammatory stimulus, Aβ-exposed microglia displayed an enhanced production of NO, which was abolished by pharmacological inhibition of DAGLα. These findings suggested that exposure to Aβ polarises microglial cells towards a pro-AD phenotype, possibly by enhancing 2-AG signalling.
Collapse
Affiliation(s)
- Lucia Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy
- European Center for Brain Research-IRCCS Santa Lucia Foundation (FSL), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Daniel Tortolani
- European Center for Brain Research-IRCCS Santa Lucia Foundation (FSL), Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Francesca Ciaramellano
- European Center for Brain Research-IRCCS Santa Lucia Foundation (FSL), Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Federico Fanti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Thais Gazzi
- Leibniz Research Institute for Molecular Pharmacology (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Manuel Sergi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Marc Nazaré
- Leibniz Research Institute for Molecular Pharmacology (FMP), Campus Berlin-Buch, 13125 Berlin, Germany
| | - Sergio Oddi
- European Center for Brain Research-IRCCS Santa Lucia Foundation (FSL), Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Department of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy
- European Center for Brain Research-IRCCS Santa Lucia Foundation (FSL), Via del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
29
|
Grabon W, Bodennec J, Rheims S, Belmeguenai A, Bezin L. Update on the controversial identity of cells expressing cnr2 gene in the nervous system. CNS Neurosci Ther 2023; 29:760-770. [PMID: 36604187 PMCID: PMC9928557 DOI: 10.1111/cns.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/07/2023] Open
Abstract
The function of cannabinoid receptor type 2 (CB2R), mainly expressed by leukocytes, has long been limited to its peripheral immunomodulatory role. However, the use of CB2R-specific ligands and the availability of CB2R-Knock Out mice revealed that it could play a functional role in the CNS not only under physiological but also under pathological conditions. A direct effect on the nervous system emerged when CB2R mRNA was detected in neural tissues. However, accurate mapping of CB2R protein expression in the nervous system is still lacking, partly because of the lack of specificity of antibodies available. This review examines the regions and cells of the nervous system where CB2R protein is most likely present by cross-referencing mRNA and protein data published to date. Of the many antibodies developed to target CB2R, only a few have partially passed specificity tests and detected CB2R in the CNS. Efforts must be continued to support the development of more specific and better validated antibodies in each of the species in which CB2R protein is sought or needs to be quantified.
Collapse
Affiliation(s)
- Wanda Grabon
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Jacques Bodennec
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Sylvain Rheims
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Amor Belmeguenai
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| | - Laurent Bezin
- Lyon Neuroscience Research CenterTIGER TeamBronFrance,Lyon 1 UniversityCNRS UMR 5292, Inserm U1028VilleurbanneFrance,Epilepsy Institute IDEEBronFrance
| |
Collapse
|
30
|
Bernal‐Chico A, Tepavcevic V, Manterola A, Utrilla C, Matute C, Mato S. Endocannabinoid signaling in brain diseases: Emerging relevance of glial cells. Glia 2023; 71:103-126. [PMID: 35353392 PMCID: PMC9790551 DOI: 10.1002/glia.24172] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
The discovery of cannabinoid receptors as the primary molecular targets of psychotropic cannabinoid Δ9 -tetrahydrocannabinol (Δ9 -THC) in late 1980s paved the way for investigations on the effects of cannabis-based therapeutics in brain pathology. Ever since, a wealth of results obtained from studies on human tissue samples and animal models have highlighted a promising therapeutic potential of cannabinoids and endocannabinoids in a variety of neurological disorders. However, clinical success has been limited and major questions concerning endocannabinoid signaling need to be satisfactorily addressed, particularly with regard to their role as modulators of glial cells in neurodegenerative diseases. Indeed, recent studies have brought into the limelight diverse, often unexpected functions of astrocytes, oligodendrocytes, and microglia in brain injury and disease, thus providing scientific basis for targeting glial cells to treat brain disorders. This Review summarizes the current knowledge on the molecular and cellular hallmarks of endocannabinoid signaling in glial cells and its clinical relevance in neurodegenerative and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ana Bernal‐Chico
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| | | | - Andrea Manterola
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Present address:
Parque Científico y Tecnológico de GuipuzkoaViralgenSan SebastianSpain
| | | | - Carlos Matute
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Susana Mato
- Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain,Achucarro Basque Center for NeuroscienceLeioaSpain,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain,Neuroimmunology UnitBiocruces BizkaiaBarakaldoSpain
| |
Collapse
|
31
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
32
|
Li S, Huang Y, Yu L, Ji X, Wu J. Impact of the Cannabinoid System in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:715-726. [PMID: 35105293 PMCID: PMC10207907 DOI: 10.2174/1570159x20666220201091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Cannabinoids are compounds isolated from cannabis and are also widely present in both nervous and immune systems of animals. In recent years, with in-depth research on cannabinoids, their clinical medicinal value has been evaluated, and many exciting achievements have been continuously accumulating, especially in the field of neurodegenerative disease. Alzheimer's disease is the most common type of neurodegenerative disease that causes dementia and has become a global health problem that seriously impacts human health today. In this review, we discuss the therapeutic potential of cannabinoids for the treatment of Alzheimer's disease. How cannabinoids act on different endocannabinoid receptor subtypes to regulate Alzheimer's disease and the roles of the endocannabinoid system in Alzheimer's disease are outlined, and the underlying mechanisms are discussed. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to Alzheimer's disease and discuss the potential usefulness of cannabinoids in the clinical treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shuangtao Li
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Yuanbing Huang
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Lijun Yu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| | - Xiaoyu Ji
- Department of Neurology, Yunfu People’s Hospital, Yunfu, Guangdong 527300, China
| | - Jie Wu
- Shantou University Medical College, Brain Function and Disease Laboratory, Shantou, #22 Road Xinling, Guangdong 515041, China
| |
Collapse
|
33
|
Current Pharmacotherapy and Multi-Target Approaches for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 15:ph15121560. [PMID: 36559010 PMCID: PMC9781592 DOI: 10.3390/ph15121560] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by decreased synaptic transmission and cerebral atrophy with appearance of amyloid plaques and neurofibrillary tangles. Cognitive, functional, and behavioral alterations are commonly associated with the disease. Different pathophysiological pathways of AD have been proposed, some of which interact and influence one another. Current treatment for AD mainly involves the use of therapeutic agents to alleviate the symptoms in AD patients. The conventional single-target treatment approaches do not often cause the desired effect in the disease due to its multifactorial origin. Thus, multi-target strategies have since been undertaken, which aim to simultaneously target multiple targets involved in the development of AD. In this review, we provide an overview of the pathogenesis of AD and the current drug therapies for the disease. Additionally, rationales of the multi-target approaches and examples of multi-target drugs with pharmacological actions against AD are also discussed.
Collapse
|
34
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
35
|
Marinelli S, Marrone MC, Di Domenico M, Marinelli S. Endocannabinoid signaling in microglia. Glia 2022; 71:71-90. [PMID: 36222019 DOI: 10.1002/glia.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Microglia, the innate immune cells of the central nervous system (CNS), execute their sentinel, housekeeping and defense functions through a panoply of genes, receptors and released cytokines, chemokines and neurotrophic factors. Moreover, microglia functions are closely linked to the constant communication with other cell types, among them neurons. Depending on the signaling pathway and type of stimuli involved, the outcome of microglia operation can be neuroprotective or neurodegenerative. Accordingly, microglia are increasingly becoming considered cellular targets for therapeutic intervention. Among signals controlling microglia activity, the endocannabinoid (EC) system has been shown to exert a neuroprotective role in many neurological diseases. Like neurons, microglia express functional EC receptors and can produce and degrade ECs. Interestingly, boosting EC signaling leads to an anti-inflammatory and neuroprotective microglia phenotype. Nonetheless, little evidence is available on the microglia-mediated therapeutic effects of EC compounds. This review focuses on the EC signals acting on the CNS microglia in physiological and pathological conditions, namely on the CB1R, CB2R and TRPV1-mediated regulation of microglia properties. It also provides new evidence, which strengthens the understanding of mechanisms underlying the control of microglia functions by ECs. Given the broad expression of the EC system in glial and neuronal cells, the resulting picture is the need for in vivo studies in transgenic mouse models to dissect the contribution of EC microglia signaling in the neuroprotective effects of EC-derived compounds.
Collapse
Affiliation(s)
- Sara Marinelli
- CNR-National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| | - Maria Cristina Marrone
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Marina Di Domenico
- EBRI-Fondazione Rita Levi Montalcini, Rome, Italy.,Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
36
|
Tudorancea IM, Ciorpac M, Stanciu GD, Caratașu C, Săcărescu A, Ignat B, Burlui A, Rezuș E, Creangă I, Alexa-Stratulat T, Tudorancea I, Tamba BI. The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines 2022; 10:2492. [PMID: 36289755 PMCID: PMC9599275 DOI: 10.3390/biomedicines10102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.
Collapse
Affiliation(s)
- Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Gabriela Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Alina Săcărescu
- Department of Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității, 700115 Iași, Romania
- Department of Neurology, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa, 700661 Iași, Romania
| | - Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandra Burlui
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Elena Rezuș
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| |
Collapse
|
37
|
Young AP, Denovan-Wright EM. Synthetic cannabinoids reduce the inflammatory activity of microglia and subsequently improve neuronal survival in vitro. Brain Behav Immun 2022; 105:29-43. [PMID: 35764268 DOI: 10.1016/j.bbi.2022.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia are resident immune cells of the brain that survey the microenvironment, provide trophic support to neurons, and clear debris to maintain homeostasis and healthy brain function. Microglia are also drivers of neuroinflammation in several neurodegenerative diseases. Microglia produce endocannabinoids and express both cannabinoid receptor subtypes suggesting that this system is a target to suppress neuroinflammation. We tested whether cannabinoid type 1 (CB1) or type 2 (CB2) receptors could be targeted selectively or in combination to dampen the pro-inflammatory behavior of microglia, and whether this would have functional relevance to decrease secondary neuronal damage. We determined that components of the endocannabinoid system were altered when microglia are treated with lipopolysaccharide and interferon-gamma and shift to a pro-inflammatory phenotype. Furthermore, pro-inflammatory microglia released cytotoxic factors that induced cell death in cultured STHdhQ7/Q7 neurons. Treatment with synthetic cannabinoids that were selective for CB1 receptors (ACEA) or CB2 receptors (HU-308) dampened the release of nitric oxide (NO) and pro-inflammatory cytokines and decreased levels of mRNA for several pro-inflammatory markers. A nonselective agonist (CP 55,940) exhibited similar influence over NO release but to a lesser extent relative to ACEA or HU-308. All three classes of synthetic cannabinoids ultimately reduced the secondary damage to the cultured neurons. The mechanism for the observed neuroprotective effects appeared to be related to cannabinoid-mediated suppression of MAPK signaling in microglia. Taken together, the data indicate that activation of CB1 or CB2 receptors interfered with the pro-inflammatory activity of microglia in a manner that also reduced secondary damage to neurons.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
38
|
Kecheliev V, Spinelli F, Herde A, Haider A, Mu L, Klohs J, Ametamey SM, Ni R. Evaluation of cannabinoid type 2 receptor expression and pyridine-based radiotracers in brains from a mouse model of Alzheimer's disease. Front Aging Neurosci 2022; 14:1018610. [PMID: 36248003 PMCID: PMC9561934 DOI: 10.3389/fnagi.2022.1018610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. The cannabinoid type 2 receptor (CB2R) is an emerging target for neuroinflammation and therapeutics of Alzheimer's disease. Here, we aim to assess the alterations in brain CB2R levels and evaluate novel CB2R imaging tracers in the arcAß mouse model of Alzheimer's disease amyloidosis. Immunohistochemical staining for amyloid-ß deposits (6E10), microgliosis (anti-Iba1 and anti-CD68 antibodies), astrocytes (GFAP) and the anti-CB2R antibody was performed on brain slices from 17-month-old arcAß mice. Autoradiography using the CB2R imaging probes [18F]RoSMA-18-d6, [11C]RSR-056, and [11C]RS-028 and mRNA analysis were performed in brain tissue from arcAß and non-transgenic littermate (NTL) mice at 6, 17, and 24 months of age. Specific increased CB2R immunofluorescence intensities on the increased number of GFAP-positive astrocytes and Iba1-positive microglia were detected in the hippocampus and cortex of 17-month-old arcAß mice compared to NTL mice. CB2R immunofluorescence was higher in glial cells inside 6E10-positive amyloid-ß deposits than peri-plaque glial cells, which showed low background immunofluorescence in the hippocampus and cortex of 17-month-old arcAß mice. Ex vivo autoradiography showed that the specific binding of [18F]RoSMA-18-d6 and [11C]RSR-056 was comparable in arcAß and NTL mice at 6, 17, and 24 months of age. The level of Cnr2 mRNA expression in the brain was not significantly different between arcAß and NTL mice at 6, 17, or 24 months of age. In conclusion, we demonstrated pronounced specific increases in microglial and astroglial CB2R expression levels in a mouse model of AD-related cerebral amyloidosis, emphasizing CB2R as a suitable target for imaging neuroinflammation.
Collapse
Affiliation(s)
- Vasil Kecheliev
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Francesco Spinelli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Adrienne Herde
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Achi Haider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Simon M. Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Han QW, Shao QH, Wang XT, Ma KL, Chen NH, Yuan YH. CB2 receptor activation inhibits the phagocytic function of microglia through activating ERK/AKT-Nurr1 signal pathways. Acta Pharmacol Sin 2022; 43:2253-2266. [PMID: 35132190 PMCID: PMC9433450 DOI: 10.1038/s41401-021-00853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is closely related to the pathogenesis of neurodegenerative diseases. Activation of microglia, the resident immune cells in CNS, induces inflammatory responses, resulting in the release of neurotoxic molecules, which favors neuronal death and neurodegeneration. Nuclear receptor-related 1 (Nurr1) protein, one of the orphan nuclear receptor superfamilies, is an emerging target for neuroprotective therapy. In addition, the anti-inflammatory function of cannabinoid (CB) receptors has attracted increasing interest. As both CB receptors (especially CB2 receptor) and Nurr1 exist in microglia, and regulate a number of same molecular points such as NF-κB, we herein explored the interplay between the CB2 receptor and Nurr1 as well as the regulatory mechanisms in microglial cells. We showed that the application of CB2 receptor agonists JWH015 (1, 10 μM) significantly increased the nuclear Nurr1 protein in BV-2 cells and primary midbrain microglia. Overexpression of Nurr1 or application of Nurr1 agonist C-DIM12 (10 μM) significantly increased the mRNA level of CB2 receptor in BV-2 cells, suggesting that positive expression feedback existing between the CB2 receptor and Nurr1. After 2-AG and JWH015 activated the CB2 receptors, the levels of p-ERK, p-AKT, p-GSK-3β in BV-2 cells were significantly increased. Using ERK1/2 inhibitor U0126 and PI3K/AKT inhibitor LY294002, we revealed that the amount of Nurr1 in the nucleus was upregulated through β-arrestin2/ERK1/2 and PI3K/AKT/GSK-3β signaling pathways. With these inhibitors, we found a cross-talk interaction between the two pathways, and the ERK1/2 signaling pathway played a more dominant regulatory role. Furthermore, we demonstrated that when the CB2 receptor was activated, the phagocytic function of BV-2 cells was significantly weakened; the activation of Nurr1 also inhibited the phagocytic function of BV-2 cells. Pretreatment with the signaling pathway inhibitors, especially U0126, reversed the inhibitory effect of 2-AG on phagocytosis, suggesting that CB2 receptor may regulate the phagocytic function of microglia by activating Nurr1. In conclusion, CB2 receptor or/and Nurr1-mediated signal pathways play instrumental roles in the progress of phagocytosis, which are expected to open up new treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Qi-Wen Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Tong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kai-Li Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
40
|
Llorente-Ovejero A, Bengoetxea de Tena I, Martínez-Gardeazabal J, Moreno-Rodríguez M, Lombardero L, Manuel I, Rodríguez-Puertas R. Cannabinoid Receptors and Glial Response Following a Basal Forebrain Cholinergic Lesion. ACS Pharmacol Transl Sci 2022; 5:791-802. [PMID: 36110372 PMCID: PMC9469185 DOI: 10.1021/acsptsci.2c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/28/2022]
Abstract
The endocannabinoid system modulates learning, memory, and neuroinflammatory processes, playing a key role in neurodegeneration, including Alzheimer's disease (AD). Previous results in a rat lesion model of AD showed modulation of endocannabinoid receptor activity in the basalo-cortical pathway following a specific lesion of basal forebrain cholinergic neurons (BFCNs), indicating that the glial neuroinflammatory response accompanying the lesion is related to endocannabinoid signaling. In this study, 7 days after the lesion, decreased astrocyte and increased microglia immunoreactivities (GFAP and Iba-1) were observed, indicating microglia-mediated neuroinflammation. Using autoradiographic studies, the density and functional coupling to G-proteins of endocannabinoid receptor subtypes were studied in tissue sections from different brain areas where microglia density increased, using CB1 and CB2 selective agonists and antagonists. In the presence of the specific CB1 receptor antagonist, SR141716A, [3H]CP55,940 binding (receptor density) was completely blocked in a dose-dependent manner, while the selective CB2 receptor antagonist, SR144528, inhibited binding to 25%, at best. [35S]GTPγS autoradiography (receptor coupling to Gi/0-proteins) evoked by CP55,940 (CB1/CB2 agonist) and HU308 (more selective for CB2) was abolished by SR141716A in all areas, while SR144528 blocked up to 51.8% of the coupling to Gi/0-proteins evoked by CP55,940 restricted to the nucleus basalis magnocellularis. Together, these results demonstrate that there are increased microglia and decreased astrocyte immunoreactivities 1 week after a specific deletion of BFCNs, which projects to cortical areas, where the CB1 receptor coupling to Gi/0-proteins is upregulated. However, at the lesion site, the area with the highest neuroinflammatory response, there is also a limited contribution of CB2.
Collapse
Affiliation(s)
| | | | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Laura Lombardero
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Iván Manuel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
- Neurodegenerative Diseases, Biocruces Bizkaia Health Research Institute, Barakaldo 48903, Spain
| |
Collapse
|
41
|
Ishiguro H, Kibret BG, Horiuchi Y, Onaivi ES. Potential Role of Cannabinoid Type 2 Receptors in Neuropsychiatric and Neurodegenerative Disorders. Front Psychiatry 2022; 13:828895. [PMID: 35774086 PMCID: PMC9237241 DOI: 10.3389/fpsyt.2022.828895] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
The endocannabinoid system (ECS) is composed of the two canonical receptor subtypes; type-1 cannabinoid (CB1R) and type 2 receptor (CB2R), endocannabinoids (eCBs) and enzymes responsible for the synthesis and degradation of eCBs. Recently, with the identification of additional lipid mediators, enzymes and receptors, the expanded ECS called the endocannabinoidome (eCBome) has been identified and recognized. Activation of CB1R is associated with a plethora of physiological effects and some central nervous system (CNS) side effects, whereas, CB2R activation is devoid of such effects and hence CB2Rs might be utilized as potential new targets for the treatment of different disorders including neuropsychiatric disorders. Previous studies suggested that CB2Rs were absent in the brain and they were considered as peripheral receptors, however, recent studies confirmed the presence of CB2Rs in different brain regions. Several studies have now focused on the characterization of its physiological and pathological roles. Studies done on the role of CB2Rs as a therapeutic target for treating different disorders revealed important putative role of CB2R in neuropsychiatric disorders that requires further clinical validation. Here we provide current insights and knowledge on the potential role of targeting CB2Rs in neuropsychiatric and neurodegenerative disorders. Its non-psychoactive effect makes the CB2R a potential target for treating CNS disorders; however, a better understanding of the fundamental pharmacology of CB2R activation is essential for the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Clinical Genetics, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
- Department of Neuropsychiatry, Graduate School of Medical Science, University of Yamanashi, Kofu, Japan
| | - Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
42
|
Coccurello R, Marrone MC, Maccarrone M. The Endocannabinoids-Microbiota Partnership in Gut-Brain Axis Homeostasis: Implications for Autism Spectrum Disorders. Front Pharmacol 2022; 13:869606. [PMID: 35721203 PMCID: PMC9204215 DOI: 10.3389/fphar.2022.869606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The latest years have witnessed a growing interest towards the relationship between neuropsychiatric disease in children with autism spectrum disorders (ASD) and severe alterations in gut microbiota composition. In parallel, an increasing literature has focused the attention towards the association between derangement of the endocannabinoids machinery and some mechanisms and symptoms identified in ASD pathophysiology, such as alteration of neural development, immune system dysfunction, defective social interaction and stereotypic behavior. In this narrative review, we put together the vast ground of endocannabinoids and their partnership with gut microbiota, pursuing the hypothesis that the crosstalk between these two complex homeostatic systems (bioactive lipid mediators, receptors, biosynthetic and hydrolytic enzymes and the entire bacterial gut ecosystem, signaling molecules, metabolites and short chain fatty acids) may disclose new ideas and functional connections for the development of synergic treatments combining “gut-therapy,” nutritional intervention and pharmacological approaches. The two separate domains of the literature have been examined looking for all the plausible (and so far known) overlapping points, describing the mutual changes induced by acting either on the endocannabinoid system or on gut bacteria population and their relevance for the understanding of ASD pathophysiology. Both human pathology and symptoms relief in ASD subjects, as well as multiple ASD-like animal models, have been taken into consideration in order to provide evidence of the relevance of the endocannabinoids-microbiota crosstalk in this major neurodevelopmental disorder.
Collapse
Affiliation(s)
- Roberto Coccurello
- Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| | - Maria Cristina Marrone
- Ministry of University and Research, Mission Unity for Recovery and Resilience Plan, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Biotechnological and Applied Clinical and Sciences, University of L’Aquila, L’Aquila, Italy
- *Correspondence: Roberto Coccurello, ; Mauro Maccarrone,
| |
Collapse
|
43
|
Scipioni L, Ciaramellano F, Carnicelli V, Leuti A, Lizzi AR, De Dominicis N, Oddi S, Maccarrone M. Microglial Endocannabinoid Signalling in AD. Cells 2022; 11:1237. [PMID: 35406803 PMCID: PMC8997504 DOI: 10.3390/cells11071237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic inflammation in Alzheimer's disease (AD) has been recently identified as a major contributor to disease pathogenesis. Once activated, microglial cells, which are brain-resident immune cells, exert several key actions, including phagocytosis, chemotaxis, and the release of pro- or anti-inflammatory mediators, which could have opposite effects on brain homeostasis, depending on the stage of disease and the particular phenotype of microglial cells. The endocannabinoids (eCBs) are pleiotropic bioactive lipids increasingly recognized for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. Here, we review the current literature regarding the involvement of this signalling system in modulating microglial phenotypes and activity in the context of homeostasis and AD-related neurodegeneration.
Collapse
Affiliation(s)
- Lucia Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| | - Francesca Ciaramellano
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Alessandro Leuti
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
| | - Noemi De Dominicis
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Sergio Oddi
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
- Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio Snc, 67100 L’Aquila, Italy; (L.S.); (V.C.); (A.R.L.); (N.D.D.)
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy; (F.C.); (A.L.)
| |
Collapse
|
44
|
Cortes-Altamirano JL, Yáñes-Pizaña A, Reyes-Long S, Angélica GM, Bandala C, Bonilla-Jaime H, Alfaro-Rodríguez A. Potential Neuroprotective Effect of Cannabinoids in Covid-19 Patients. Curr Top Med Chem 2022; 22:1326-1345. [PMID: 35382723 DOI: 10.2174/1568026622666220405143003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
The global pandemic caused by the SARS-CoV-2 virus began in early 2020 and is still present. The respiratory symptoms caused by COVID-19 are well established, however, neurological manifestations that may result from direct or indirect neurological damage after SARS-CoV-2 infection have been reported frequently. The main proposed pathophysiological processes leading to neurological damage in COVID-19 are cerebrovascular disease, and indirect mechanisms of inflammatory / autoimmune origin. A growing number of studies confirm that neuroprotective measures should be maintained in COVID-19 patients. On the other hand, cannabinoids have been the subject of various studies that propose them as potential promising drugs in chronic neurodegenerative diseases due to their powerful neuroprotective potential. In this review we address the possible mechanism of action of cannabinoids as a neuroprotective treatment in patients infected by SARS-CoV-2. The endocannabinoid system is found in multiple systems within the body, including the immune system. Its activation can lead to beneficial results, such as a decrease in viral entry, a decrease in viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α or IFN-c through CB2R expression induced during inflammation by SARS-CoV-2 infection in the central nervous system.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Departamento de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Estado de Mexico, 55210, Mexico
| | - Ariadna Yáñes-Pizaña
- Escuela de Ciencias de la Salud, Medicina Veterinaria y Zootecnia, Universidad del Valle de Mexico, Mexico City, 04910, México.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Samuel Reyes-Long
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, 07738, México
| | - González-Maciel Angélica
- Laboratory of Cell and Tissue Morphology, Instituto Nacional de Pediatría, Secretaría de Salud, Insurgentes Sur No. 3700-C, Mexico City, C. P. 04530, Mexico
| | - Cindy Bandala
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico.,Escuela de Medicina Veterinaria y Zootecnia en Pequeñas Especies, Federación Canofila Mexicana, Mexico City, 14430, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la reproducción, Universidad Autónoma Metropolitana, Mexico City, 09340, Mexico
| | - Alfonso Alfaro-Rodríguez
- Division de Neurociencias, Instituto Nacional de Rehabilitación, Secretaría de Salud, Mexico City, 14389, Mexico
| |
Collapse
|
45
|
Longoria V, Parcel H, Toma B, Minhas A, Zeine R. Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination. Biomedicines 2022; 10:539. [PMID: 35327341 PMCID: PMC8945692 DOI: 10.3390/biomedicines10030539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and remyelinative effects. This study evaluates the efficacy of medical marijuana in MS and its experimental animal models. A systematic review was conducted by a literature search through PubMed, ProQuest, and EBSCO electronic databases for studies reported since 2007 on the use of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) in MS and in experimental autoimmune encephalomyelitis (EAE), Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and toxin-induced demyelination models. Study selection and data extraction were performed by 3 reviewers, and 28 studies were selected for inclusion. The certainty of evidence was appraised using the Cochrane GRADE approach. In clinical studies, there was low- and moderate-quality evidence that treatment with ~1:1 CBD/THC mixtures as a nabiximols (Sativex®) oromucosal spray reduced numerical rating scale (NRS) scores for spasticity, pain, and sleep disturbance, diminished bladder overactivity, and decreased proinflammatory cytokine and transcription factor expression levels. Preclinical studies demonstrated decreases in disease severity, hindlimb stiffness, motor function, neuroinflammation, and demyelination. Other experimental systems showed the capacity of cannabinoids to promote remyelination in vitro and by electron microscopy. Modest short-term benefits were realized in MS responders to adjunctive therapy with CBD/THC mixtures. Future studies are recommended to investigate the cellular and molecular mechanisms of cannabinoid effects on MS lesions and to evaluate whether medical marijuana can accelerate remyelination and retard the accrual of disability over the long term.
Collapse
Affiliation(s)
- Victor Longoria
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Hannah Parcel
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Bameelia Toma
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Annu Minhas
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Rana Zeine
- School of Natural Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|
46
|
Young AP, Denovan-Wright EM. The Dynamic Role of Microglia and the Endocannabinoid System in Neuroinflammation. Front Pharmacol 2022; 12:806417. [PMID: 35185547 PMCID: PMC8854262 DOI: 10.3389/fphar.2021.806417] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia, the resident immune cells of the brain, can take on a range of pro- or anti-inflammatory phenotypes to maintain homeostasis. However, the sustained activation of pro-inflammatory microglia can lead to a state of chronic neuroinflammation characterized by high concentrations of neurotoxic soluble factors throughout the brain. In healthy brains, the inflammatory processes cease and microglia transition to an anti-inflammatory phenotype, but failure to halt the pro-inflammatory processes is a characteristic of many neurological disorders. The endocannabinoid system has been identified as a promising therapeutic target for chronic neuroinflammation as there is evidence that synthetic and endogenously produced cannabinoids temper the pro-inflammatory response of microglia and may encourage a switch to an anti-inflammatory phenotype. Activation of cannabinoid type 2 (CB2) receptors has been proposed as the mechanism of action responsible for these effects. The abundance of components of the endocannabinoid system in microglia also change dynamically in response to several brain pathologies. This can impact the ability of microglia to synthesize and degrade endocannabinoids or react to endogenous and exogenous cannabinoids. Cannabinoid receptors also participate in the formation of receptor heteromers which influences their function specifically in cells that express both receptors, such as microglia. This creates opportunities for drug-drug interactions between CB2 receptor-targeted therapies and other classes of drugs. In this article, we review the roles of pro- and anti-inflammatory microglia in the development and resolution of neuroinflammation. We also discuss the fluctuations observed in the components of the endocannabinoid in microglia and examine the potential of CB2 receptors as a therapeutic target in this context.
Collapse
|
47
|
Papa A, Pasquini S, Contri C, Gemma S, Campiani G, Butini S, Varani K, Vincenzi F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022; 11:cells11030471. [PMID: 35159280 PMCID: PMC8834510 DOI: 10.3390/cells11030471] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Polypharmacology breaks up the classical paradigm of “one-drug, one target, one disease” electing multitarget compounds as potential therapeutic tools suitable for the treatment of complex diseases, such as metabolic syndrome, psychiatric or degenerative central nervous system (CNS) disorders, and cancer. These diseases often require a combination therapy which may result in positive but also negative synergistic effects. The endocannabinoid system (ECS) is emerging as a particularly attractive therapeutic target in CNS disorders and neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury (TBI), pain, and epilepsy. ECS is an organized neuromodulatory network, composed by endogenous cannabinoids, cannabinoid receptors type 1 and type 2 (CB1 and CB2), and the main catabolic enzymes involved in the endocannabinoid inactivation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The multiple connections of the ECS with other signaling pathways in the CNS allows the consideration of the ECS as an optimal source of inspiration in the development of innovative polypharmacological compounds. In this review, we focused our attention on the reported polypharmacological examples in which FAAH and MAGL inhibitors are involved.
Collapse
Affiliation(s)
- Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Silvia Pasquini
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Chiara Contri
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.P.); (S.G.); (G.C.)
- Correspondence: ; Tel.: +39-0577-234161
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 17-19, 44121 Ferrara, Italy; (S.P.); (C.C.); (K.V.); (F.V.)
| |
Collapse
|
48
|
Kibret BG, Ishiguro H, Horiuchi Y, Onaivi ES. New Insights and Potential Therapeutic Targeting of CB2 Cannabinoid Receptors in CNS Disorders. Int J Mol Sci 2022; 23:975. [PMID: 35055161 PMCID: PMC8778243 DOI: 10.3390/ijms23020975] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/22/2022] Open
Abstract
The endocannabinoid system (ECS) is ubiquitous in most human tissues, and involved in the regulation of mental health. Consequently, its dysregulation is associated with neuropsychiatric and neurodegenerative disorders. Together, the ECS and the expanded endocannabinoidome (eCBome) are composed of genes coding for CB1 and CB2 cannabinoid receptors (CB1R, CB2R), endocannabinoids (eCBs), and the metabolic enzyme machinery for their synthesis and catabolism. The activation of CB1R is associated with adverse effects on the central nervous system (CNS), which has limited the therapeutic use of drugs that bind this receptor. The discovery of the functional neuronal CB2R raised new possibilities for the potential and safe targeting of the ECS for the treatment of CNS disorders. Previous studies were not able to detect CB2R mRNA transcripts in brain tissue and suggested that CB2Rs were absent in the brain and were considered peripheral receptors. Studies done on the role of CB2Rs as a potential therapeutic target for treating different disorders revealed the important putative role of CB2Rs in certain CNS disorders, which requires further clinical validation. This review addresses recent advances on the role of CB2Rs in neuropsychiatric and neurodegenerative disorders, including, but not limited to, anxiety, depression, schizophrenia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD) and addiction.
Collapse
Affiliation(s)
- Berhanu Geresu Kibret
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| | - Hiroki Ishiguro
- Department of Neuropsychiatry and Clinical Ethics, Graduate School of Medical Science, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan;
| | - Yasue Horiuchi
- Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Emmanuel S. Onaivi
- Department of Biology, College of Science and Health, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
49
|
van den Hoogen NJ, Harding EK, Davidson CED, Trang T. Cannabinoids in Chronic Pain: Therapeutic Potential Through Microglia Modulation. Front Neural Circuits 2022; 15:816747. [PMID: 35069129 PMCID: PMC8777271 DOI: 10.3389/fncir.2021.816747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic pain is a complex sensory, cognitive, and emotional experience that imposes a great personal, psychological, and socioeconomic burden on patients. An estimated 1.5 billion people worldwide are afflicted with chronic pain, which is often difficult to treat and may be resistant to the potent pain-relieving effects of opioid analgesics. Attention has therefore focused on advancing new pain therapies directed at the cannabinoid system because of its key role in pain modulation. Endocannabinoids and exogenous cannabinoids exert their actions primarily through Gi/o-protein coupled cannabinoid CB1 and CB2 receptors expressed throughout the nervous system. CB1 receptors are found at key nodes along the pain pathway and their activity gates both the sensory and affective components of pain. CB2 receptors are typically expressed at low levels on microglia, astrocytes, and peripheral immune cells. In chronic pain states, there is a marked increase in CB2 expression which modulates the activity of these central and peripheral immune cells with important consequences for the surrounding pain circuitry. Growing evidence indicate that interventions targeting CB1 or CB2 receptors improve pain outcomes in a variety of preclinical pain models. In this mini-review, we will highlight recent advances in understanding how cannabinoids modulate microglia function and its implications for cannabinoid-mediated analgesia, focusing on microglia-neuron interactions within the spinal nociceptive circuitry.
Collapse
Affiliation(s)
- Nynke J. van den Hoogen
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Erika K. Harding
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Chloé E. D. Davidson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- *Correspondence: Tuan Trang
| |
Collapse
|
50
|
Rosario-Rodríguez LJ, Gerena Y, García-Requena LA, Cartagena-Isern LJ, Cuadrado-Ruiz JC, Borges-Vélez G, Meléndez LM. Cannabinoid receptor type 2 agonist JWH-133 decreases cathepsin B secretion and neurotoxicity from HIV-infected macrophages. Sci Rep 2022; 12:233. [PMID: 34996989 PMCID: PMC8741953 DOI: 10.1038/s41598-021-03896-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/09/2021] [Indexed: 11/21/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy (cART), affecting 52% of people living with HIV. Our laboratory has demonstrated increased expression of cathepsin B (CATB) in postmortem brain tissue with HAND. Increased secretion of CATB from in vitro HIV-infected monocyte-derived macrophages (MDM) induces neurotoxicity. Activation of cannabinoid receptor type 2 (CB2R) inhibits HIV-1 replication in macrophages and the neurotoxicity induced by viral proteins. However, it is unknown if CB2R agonists affect CATB secretion and neurotoxicity in HIV-infected MDM. We hypothesized that HIV-infected MDM exposed to CB2R agonists decrease CATB secretion and neurotoxicity. Primary MDM were inoculated with HIV-1ADA and treated with selective CB2R agonists JWH-133 and HU-308. HIV-1 p24 and CATB levels were determined from supernatants using ELISA. MDM were pre-treated with a selective CB2R antagonist SR144528 before JWH-133 treatment to determine if CB2R activation is responsible for the effects. Neuronal apoptosis was assessed using a TUNEL assay. Results show that both agonists reduce HIV-1 replication and CATB secretion from MDM in a time and dose-dependent manner and that CB2R activation is responsible for these effects. Finally, JWH-133 decreased HIV/MDM-CATB induced neuronal apoptosis. Our results suggest that agonists of CB2R represent a potential therapeutic strategy against HIV/MDM-induced neurotoxicity.
Collapse
Affiliation(s)
- Lester J Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00935, USA
| | - Yamil Gerena
- Department of Pharmacology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, USA
| | - Luis A García-Requena
- Department of Biology, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR, USA
| | - Luz J Cartagena-Isern
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR, USA
| | - Juan C Cuadrado-Ruiz
- Department of Biology, University of Puerto Rico, Bayamón Campus, Bayamón, PR, USA
| | - Gabriel Borges-Vélez
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00935, USA
| | - Loyda M Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, 00935, USA.
| |
Collapse
|