1
|
Cheung PHH, Yang H, Wu L. dNTP depletion and beyond: the multifaceted nature of SAMHD1-mediated viral restriction. J Virol 2025:e0030225. [PMID: 40277359 DOI: 10.1128/jvi.00302-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
SAMHD1 is a dNTPase of mammalian cells. In 2011, SAMHD1 was found to be a host restriction factor against retroviruses through dNTP reduction. Recent research provides evidence that the antiviral mechanisms of SAMHD1 cannot be explained solely by its dNTPase activity. Instead, the versatility of SAMHD1-mediated restriction of various viruses suggests that its antiviral mechanisms extend beyond dNTP depletion. This explains the multifaceted and broad restriction functions of SAMHD1 that play a significant role in innate antiviral immunity.
Collapse
Affiliation(s)
- Pak-Hin Hinson Cheung
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Shao J, Wang W, Li S, Yin G, Han L, Wang X, Cai M, Yang T, Wang Y, Qu W, Jiao Y, Wang P, Xu H, Zhu X, Ying S, Xu S, Sheng Q, Fang J, Jiang T, Wei C, Shen Y, Shen Y. Nuclear Overexpression of SAMHD1 Induces M Phase Stalling in Hepatoma Cells and Suppresses HCC Progression by Interacting with the Cohesin Complex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411988. [PMID: 39679869 PMCID: PMC11809348 DOI: 10.1002/advs.202411988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
Emerging evidence suggests that the sterile alpha-motif (SAM) and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) is implicated in various cancers, including hepatocellular carcinoma (HCC). However, its precise role in tumor cells and the underlying mechanisms remain unclear. This study aimed to investigate the expression patterns, prognostic values, and functional role of SAMHD1 in HCC progression. We constructed liver tissue microarrays using tumor and paired paratumor tissue specimens from 187 patients with primary HCC. Our findings indicate that nuclear SAMHD1 protein levels are increased in tumors compared to paratumor tissues. Moreover, nuclear SAMHD1 levels decline in advanced tumor stages, with higher SAMHD1 nuclear staining correlating with favorable prognostic outcomes. Hepatocyte-specific SAMHD1 knockout mice, generated by crossing SAMHD1fl/fl mice with Alb-cre mice, showed accelerated tumor progression in a diethylnitrosamine (DEN)-induced HCC model. In hepatoma cell lines, nuclear overexpression of SAMHD1 inhibited cell proliferation by stalling mitosis, independent of its deoxynucleotide triphosphohydrolase (dNTPase) function. Mechanistically, SAMHD1 interacts with the cohesin complex in nucleus, enhancing sister chromatid cohesion during cell division, which delays metaphase progression. Our findings suggest that nuclear SAMHD1 plays a critical role in slowing HCC progression by regulating mitosis, highlighting its potential as a therapeutic target by manipulating cohesin dynamics.
Collapse
Affiliation(s)
- Juntang Shao
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Wei Wang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
| | - Shiyu Li
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Guangfa Yin
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Lili Han
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Xinyu Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Meng Cai
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Tao Yang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Ying Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Wenyan Qu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yanhong Jiao
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Peng Wang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Hanyang Xu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Xu Zhu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Songcheng Ying
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Sa Xu
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Qiang Sheng
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Jian Fang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Tongcui Jiang
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Chuansheng Wei
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yujun Shen
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research InstituteAnhui Medical University81 Meishan RoadHefei230032China
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical University218 Jixi RoadHefei230022China
| |
Collapse
|
3
|
Mann JR, McKenna ED, Mawrie D, Papakis V, Alessandrini F, Anderson EN, Mayers R, Ball HE, Kaspi E, Lubinski K, Baron DM, Tellez L, Landers JE, Pandey UB, Kiskinis E. Loss of function of the ALS-associated NEK1 kinase disrupts microtubule homeostasis and nuclear import. SCIENCE ADVANCES 2023; 9:eadi5548. [PMID: 37585529 PMCID: PMC10431718 DOI: 10.1126/sciadv.adi5548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Loss-of-function variants in NIMA-related kinase 1 (NEK1) constitute a major genetic cause of amyotrophic lateral sclerosis (ALS), accounting for 2 to 3% of all cases. However, how NEK1 mutations cause motor neuron (MN) dysfunction is unknown. Using mass spectrometry analyses for NEK1 interactors and NEK1-dependent expression changes, we find functional enrichment for proteins involved in the microtubule cytoskeleton and nucleocytoplasmic transport. We show that α-tubulin and importin-β1, two key proteins involved in these processes, are phosphorylated by NEK1 in vitro. NEK1 is essential for motor control and survival in Drosophila models in vivo, while using several induced pluripotent stem cell (iPSC)-MN models, including NEK1 knockdown, kinase inhibition, and a patient mutation, we find evidence for disruptions in microtubule homeostasis and nuclear import. Notably, stabilizing microtubules with two distinct classes of drugs restored NEK1-dependent deficits in both pathways. The capacity of NEK1 to modulate these processes that are critically involved in ALS pathophysiology renders this kinase a formidable therapeutic candidate.
Collapse
Affiliation(s)
- Jacob R. Mann
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth D. McKenna
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Vasileios Papakis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Francesco Alessandrini
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ryan Mayers
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hannah E. Ball
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evan Kaspi
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katherine Lubinski
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Desiree M. Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liana Tellez
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Yang H, Espada CE, Phillips S, Martinez N, Kenney AD, Yount JS, Xiong Y, Wu L. The host antiviral protein SAMHD1 suppresses NF-κB activation by interacting with the IKK complex during inflammatory responses and viral infection. J Biol Chem 2023; 299:104750. [PMID: 37100289 PMCID: PMC10318468 DOI: 10.1016/j.jbc.2023.104750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
Sterile alpha motif and histidine-aspartate (HD) domain-containing protein 1 (SAMHD1) inhibits HIV-1 replication in nondividing cells by reducing the intracellular dNTP pool. SAMHD1 also suppresses NF-κB activation induced by inflammatory stimuli and viral infections. Specifically, SAMHD1-mediated reduction of NF-κB inhibitory protein (IκBα) phosphorylation is important for the suppression of NF-κB activation. However, while the inhibitors of NF-κB kinase subunit alpha and beta (IKKα and IKKβ) regulate IκBα phosphorylation, the mechanism by which SAMHD1 regulates phosphorylation of IκBα remains unclear. Here, we report that SAMHD1 suppresses phosphorylation of IKKα/β/γ via interaction with IKKα and IKKβ, thus inhibiting subsequent phosphorylation of IκBα in monocytic THP-1 cells and differentiated nondividing THP-1 cells. We show that knockout of SAMHD1 enhanced phosphorylation of IKKα, IKKβ, and IKKγ in THP-1 cells treated with the NF-κB activator lipopolysaccharide or infected with Sendai virus and SAMHD1 reconstitution inhibited phosphorylation of IKKα/β/γ in Sendai virus-infected THP-1 cells. We demonstrate that endogenous SAMHD1 interacted with IKKα and IKKβ in THP-1 cells and recombinant SAMHD1 bound to purified IKKα or IKKβ directly in vitro. Mapping of these protein interactions showed that the HD domain of SAMHD1 interacts with both IKKα and IKKβ and that the kinase domain of IKKα and the ubiquitin-like domain of IKKβ are required for their interactions with SAMHD1, respectively. Moreover, we found that SAMHD1 disrupts the interaction between upstream kinase TAK1 and IKKα or IKKβ. Our findings identify a new regulatory mechanism by which SAMHD1 inhibits phosphorylation of IκBα and NF-κB activation.
Collapse
Affiliation(s)
- Hua Yang
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Constanza E Espada
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Stacia Phillips
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Nicholas Martinez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Li Wu
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
5
|
An S, Vo TTL, Son T, Choi H, Kim J, Lee J, Kim BH, Choe M, Ha E, Surh YJ, Kim KW, Seo JH. SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion. Exp Mol Med 2023; 55:779-793. [PMID: 37009792 PMCID: PMC10167369 DOI: 10.1038/s12276-023-00961-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 04/04/2023] Open
Abstract
Human sterile α motif and HD domain-containing protein 1 (SAMHD1) has deoxyribonucleoside triphosphohydrolase (dNTPase) activity that allows it to defend against human immunodeficiency virus type I (HIV-1) infections and regulate the cell cycle. Although SAMHD1 mutations have been identified in various cancer types, their role in cancer is unclear. Here, we aimed to investigate the oncogenic role of SAMHD1 in human clear cell renal cell carcinoma (ccRCC), particularly as a core molecule promoting cancer cell migration. We found that SAMHD1 participated in endocytosis and lamellipodia formation. Mechanistically, SAMHD1 contributed to the formation of the endosomal complex by binding to cortactin. Thereafter, SAMHD1-stimulated endosomal focal adhesion kinase (FAK) signaling activated Rac1, which promoted lamellipodia formation on the plasma membrane and enhanced the motility of ccRCC cells. Finally, we observed a strong correlation between SAMHD1 expression and the activation of FAK and cortactin in tumor tissues obtained from patients with ccRCC. In brief, these findings reveal that SAMHD1 is an oncogene that plays a pivotal role in ccRCC cell migration through the endosomal FAK-Rac1 signaling pathway.
Collapse
Affiliation(s)
- Sunho An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Tam Thuy Lu Vo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Taekwon Son
- Korea Brain Bank, Korea Brain Research Institute, Daegu, 42601, Republic of Korea
| | - Hoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jinyoung Kim
- Department of Internal Medicine, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Juyeon Lee
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Byung Hoon Kim
- Department of Urology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Misun Choe
- Department of Pathology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Young-Joon Surh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Kyu-Won Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
6
|
Bowen NE, Oo A, Kim B. Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses 2022; 14:v14081622. [PMID: 35893688 PMCID: PMC9331428 DOI: 10.3390/v14081622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Collapse
Affiliation(s)
- Nicole E. Bowen
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; (N.E.B.); (A.O.)
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
- Correspondence:
| |
Collapse
|
7
|
Walter M, Herr P. Re-Discovery of Pyrimidine Salvage as Target in Cancer Therapy. Cells 2022; 11:cells11040739. [PMID: 35203388 PMCID: PMC8870348 DOI: 10.3390/cells11040739] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Nucleotides are synthesized through two distinct pathways: de novo synthesis and nucleoside salvage. Whereas the de novo pathway synthesizes nucleotides from amino acids and glucose, the salvage pathway recovers nucleosides or bases formed during DNA or RNA degradation. In contrast to high proliferating non-malignant cells, which are highly dependent on the de novo synthesis, cancer cells can switch to the nucleoside salvage pathways to maintain efficient DNA replication. Pyrimidine de novo synthesis remains the target of interest in cancer therapy and several inhibitors showed promising results in cancer cells and in vivo models. In the 1980s and 1990s, poor responses were however observed in clinical trials with several of the currently existing pyrimidine synthesis inhibitors. To overcome the observed limitations in clinical trials, targeting pyrimidine salvage alone or in combination with pyrimidine de novo inhibitors was suggested. Even though this approach showed initially promising results, it received fresh attention only recently. Here we discuss the re-discovery of targeting pyrimidine salvage pathways for DNA replication alone or in combination with inhibitors of pyrimidine de novo synthesis to overcome limitations of commonly used antimetabolites in various preclinical cancer models and clinical trials. We also highlight newly emerged targets in pyrimidine synthesis as well as pyrimidine salvage as a promising target in immunotherapy.
Collapse
|
8
|
Regulation of Viral Restriction by Post-Translational Modifications. Viruses 2021; 13:v13112197. [PMID: 34835003 PMCID: PMC8618861 DOI: 10.3390/v13112197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Intrinsic immunity is orchestrated by a wide range of host cellular proteins called restriction factors. They have the capacity to interfere with viral replication, and most of them are tightly regulated by interferons (IFNs). In addition, their regulation through post-translational modifications (PTMs) constitutes a major mechanism to shape their action positively or negatively. Following viral infection, restriction factor modification can be decisive. Palmitoylation of IFITM3, SUMOylation of MxA, SAMHD1 and TRIM5α or glycosylation of BST2 are some of those PTMs required for their antiviral activity. Nonetheless, for their benefit and by manipulating the PTMs machinery, viruses have evolved sophisticated mechanisms to counteract restriction factors. Indeed, many viral proteins evade restriction activity by inducing their ubiquitination and subsequent degradation. Studies on PTMs and their substrates are essential for the understanding of the antiviral defense mechanisms and provide a global vision of all possible regulations of the immune response at a given time and under specific infection conditions. Our aim was to provide an overview of current knowledge regarding the role of PTMs on restriction factors with an emphasis on their impact on viral replication.
Collapse
|
9
|
Batalis S, Rogers LC, Hemphill WO, Mauney CH, Ornelles DA, Hollis T. SAMHD1 Phosphorylation at T592 Regulates Cellular Localization and S-phase Progression. Front Mol Biosci 2021; 8:724870. [PMID: 34513928 PMCID: PMC8426622 DOI: 10.3389/fmolb.2021.724870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
SAMHD1 activity is regulated by a network of mechanisms including phosphorylation, oxidation, oligomerization, and others. Significant questions remain about the effects of phosphorylation on SAMHD1 function and activity. We investigated the effects of a SAMHD1 T592E phosphorylation mimic on its cellular localization, catalytic activity, and cell cycle progression. We found that the SAMHD1 T592E is a catalytically active enzyme that is inhibited by protein oxidation. SAMHD1 T592E is retained in the nucleus at higher levels than the wild-type protein during growth factor-mediated signaling. This nuclear localization protects SAMHD1 from oxidation by cytoplasmic reactive oxygen species. The SAMHD1 T592E phosphomimetic further inhibits the cell cycle S/G2 transition. This has significant implications for SAMHD1 function in regulating innate immunity, antiviral response and DNA replication.
Collapse
Affiliation(s)
- Stephanie Batalis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - LeAnn C Rogers
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Wayne O Hemphill
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher H Mauney
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
10
|
Banchenko S, Krupp F, Gotthold C, Bürger J, Graziadei A, O’Reilly FJ, Sinn L, Ruda O, Rappsilber J, Spahn CMT, Mielke T, Taylor IA, Schwefel D. Structural insights into Cullin4-RING ubiquitin ligase remodelling by Vpr from simian immunodeficiency viruses. PLoS Pathog 2021; 17:e1009775. [PMID: 34339457 PMCID: PMC8360603 DOI: 10.1371/journal.ppat.1009775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/12/2021] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Viruses have evolved means to manipulate the host's ubiquitin-proteasome system, in order to down-regulate antiviral host factors. The Vpx/Vpr family of lentiviral accessory proteins usurp the substrate receptor DCAF1 of host Cullin4-RING ligases (CRL4), a family of modular ubiquitin ligases involved in DNA replication, DNA repair and cell cycle regulation. CRL4DCAF1 specificity modulation by Vpx and Vpr from certain simian immunodeficiency viruses (SIV) leads to recruitment, poly-ubiquitylation and subsequent proteasomal degradation of the host restriction factor SAMHD1, resulting in enhanced virus replication in differentiated cells. To unravel the mechanism of SIV Vpr-induced SAMHD1 ubiquitylation, we conducted integrative biochemical and structural analyses of the Vpr protein from SIVs infecting Cercopithecus cephus (SIVmus). X-ray crystallography reveals commonalities between SIVmus Vpr and other members of the Vpx/Vpr family with regard to DCAF1 interaction, while cryo-electron microscopy and cross-linking mass spectrometry highlight a divergent molecular mechanism of SAMHD1 recruitment. In addition, these studies demonstrate how SIVmus Vpr exploits the dynamic architecture of the multi-subunit CRL4DCAF1 assembly to optimise SAMHD1 ubiquitylation. Together, the present work provides detailed molecular insight into variability and species-specificity of the evolutionary arms race between host SAMHD1 restriction and lentiviral counteraction through Vpx/Vpr proteins.
Collapse
Affiliation(s)
- Sofia Banchenko
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Ferdinand Krupp
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Christine Gotthold
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Jörg Bürger
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Andrea Graziadei
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Francis J. O’Reilly
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ludwig Sinn
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Olga Ruda
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Christian M. T. Spahn
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Thorsten Mielke
- Microscopy and Cryo-Electron Microscopy Service Group, Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - David Schwefel
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| |
Collapse
|
11
|
Akimova E, Gassner FJ, Schubert M, Rebhandl S, Arzt C, Rauscher S, Tober V, Zaborsky N, Greil R, Geisberger R. SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining. Nucleic Acids Res 2021; 49:2598-2608. [PMID: 33591315 PMCID: PMC7969033 DOI: 10.1093/nar/gkab051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.
Collapse
Affiliation(s)
- Ekaterina Akimova
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Maria Schubert
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Stefan Rebhandl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Claudia Arzt
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Stefanie Rauscher
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Vanessa Tober
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria.,Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria.,Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
12
|
Wang C, Meng L, Wang J, Zhang K, Duan S, Ren P, Wei Y, Fu X, Yu B, Wu J, Yu X. Role of Intracellular Distribution of Feline and Bovine SAMHD1 Proteins in Lentiviral Restriction. Virol Sin 2021; 36:981-996. [PMID: 33751400 DOI: 10.1007/s12250-021-00351-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/28/2020] [Indexed: 11/28/2022] Open
Abstract
Human SAMHD1 (hSAM) restricts lentiviruses at the reverse transcription step through its dNTP triphosphohydrolase (dNTPase) activity. Besides humans, several mammalian species such as cats and cows that carry their own lentiviruses also express SAMHD1. However, the intracellular distribution of feline and bovine SAMHD1 (fSAM and bSAM) and its significance in their lentiviral restriction function is not known. Here, we demonstrated that fSAM and bSAM were both predominantly localized to the nucleus and nuclear localization signal (11KRPR14)-deleted fSAM and bSAM relocalized to the cytoplasm. Both cytoplasmic fSAM and bSAM retained the antiviral function against different lentiviruses and cytoplasmic fSAM could restrict Vpx-encoding SIV and HIV-2 more efficiently than its wild-type (WT) protein as cytoplasmic hSAM. Further investigation revealed that cytoplasmic fSAM was resistant to Vpx-induced degradation like cytoplasmic hSAM, while cytoplasmic bSAM was not, but they all demonstrated the same in vitro dNTPase activity and all could interact with Vpx as their WT proteins, indicating that cytoplasmic hSAM and fSAM can suppress more SIV and HIV-2 by being less sensitive to Vpx-mediated degradation. Our results suggested that fSAM- and bSAM-mediated lentiviral restriction does not require their nuclear localization and that fSAM shares more common features with hSAM. These findings may provide insights for the establishment of alternative animal models to study SAMHD1 in vivo.
Collapse
Affiliation(s)
- Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,The First Hospital and Institute of Immunology, Jilin University, Changchun, 130012, China
| | - Lina Meng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jialin Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Kaikai Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Sizhu Duan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Pengyu Ren
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yingzhe Wei
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyu Fu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China. .,Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
13
|
He J, Yang L, Chang P, Yang S, Lin S, Tang Q, Wang X, Zhang YJ. Zika virus NS2A protein induces the degradation of KPNA2 (karyopherin subunit alpha 2) via chaperone-mediated autophagy. Autophagy 2020; 16:2238-2251. [PMID: 32924767 PMCID: PMC7751636 DOI: 10.1080/15548627.2020.1823122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
KPNA2/importin-alpha1 (karyopherin subunit alpha 2) is the primary nucleocytoplasmic transporter for some transcription factors to activate cellular proliferation and differentiation. Aberrant increase of KPNA2 level is identified as a prognostic marker in a variety of cancers. Yet, the turnover mechanism of KPNA2 remains unknown. Here, we demonstrate that KPNA2 is degraded via the chaperone-mediated autophagy (CMA) and that Zika virus (ZIKV) enhances the KPNA2 degradation. KPNA2 contains a CMA motif, which possesses an indispensable residue Gln109 for the CMA-mediated degradation. RNAi-mediated knockdown of LAMP2A, a vital component of the CMA pathway, led to a higher level of KPNA2. Moreover, ZIKV reduced KPNA2 via the viral NS2A protein, which contains an essential residue Thr100 for inducing the CMA-mediated KPNA2 degradation. Notably, mutant ZIKV with T100A alteration in NS2A replicates much weaker than the wild-type virus. Also, knockdown of KPNA2 led to a higher ZIKV viral yield, which indicates that KPNA2 mediates certain antiviral effects. These data provide insights into the KPNA2 turnover and the ZIKV-cell interactions.
Collapse
Affiliation(s)
- Jia He
- College of Veterinary Medicine, Jilin University, Jilin, China,Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Peixi Chang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Shixing Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA,CONTACT Xinping Wang
| | - Shaoli Lin
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington DC, USA
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Jilin, China,Yan-Jin Zhang
Present address of Shixing Yang is School of Medicine, Jiangsu University, Jiangsu, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA,Yan-Jin Zhang
Present address of Shixing Yang is School of Medicine, Jiangsu University, Jiangsu, China.
| |
Collapse
|
14
|
Chen Y, Li Y, Zheng G, Zhou P. Construction and analysis of macrophage infiltration related circRNA-miRNA-mRNA regulatory networks in hepatocellular carcinoma. PeerJ 2020; 8:e10198. [PMID: 33150086 PMCID: PMC7583625 DOI: 10.7717/peerj.10198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Macrophage play a crucial role in regulating tumor progression. This study intended to investigate the circular RNA (circRNA) regulatory network associated with macrophage infiltration in hepatocellular carcinoma (HCC). METHODS The immune cell fractions of HCC from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium were calculated by Estimation of the Proportion of Immune and Cancer cells algorithm. The differentially expressed mRNAs (DEmRNAs), microRNAs (DEmiRNAs) and circRNAs (DEcircRNAs) were identified from HCC and adjacent non-tumor cases of TCGA or Gene Expression Omnibus database. The DEmRNAs related to macrophage were selected by weighted gene co-expression network analysis and then utilized to generate the circRNA-miRNA-mRNA network. A hub circRNA regulatory network was established based on the co-expressed DEmiRNAs and DEmRNAs owning contrary correlation with the clinical characteristics, survival and macrophage infiltration level. A gene signature based on the DEmRNAs in hub network was also generated for further evaluation. The circRNA binding bite for miRNA was detected by luciferase assay. RESULTS High macrophage fraction predicted good survival for HCC. A circRNA-miRNA-mRNA network was constructed by 27 macrophage related DEmRNAs, 21 DEmiRNAs, and 15 DEcircRNAs. Among this network, the expression of hsa-miR-139-5p was negatively correlated with CDCA8, KPNA2, PRC1 or TOP2A. Hsa-miR-139-5p low or targeted DEmRNA high expression was associated with low macrophage infiltration, high grade, advanced stage and poor prognosis of HCC. Additionally, the risk score generated by 4-DEmRNA signature could reflect the macrophage infiltration status and function as an independent prognostic factor for HCC. Finally, hsa_circ_0007456 acting on hsa-miR-139-5p related network was viewed as the hub circRNA regulatory network. Taken together, some circRNA regulatory networks may be associated with macrophage infiltration, which provides clues for mechanism study and therapeutic strategies of HCC.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yalin Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Guanglei Zheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Davenne T, Klintman J, Sharma S, Rigby RE, Blest HTW, Cursi C, Bridgeman A, Dadonaite B, De Keersmaecker K, Hillmen P, Chabes A, Schuh A, Rehwinkel J. SAMHD1 Limits the Efficacy of Forodesine in Leukemia by Protecting Cells against the Cytotoxicity of dGTP. Cell Rep 2020; 31:107640. [PMID: 32402273 PMCID: PMC7225753 DOI: 10.1016/j.celrep.2020.107640] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-leukemia agent forodesine causes cytotoxic overload of intracellular deoxyguanosine triphosphate (dGTP) but is efficacious only in a subset of patients. We report that SAMHD1, a phosphohydrolase degrading deoxyribonucleoside triphosphate (dNTP), protects cells against the effects of dNTP imbalances. SAMHD1-deficient cells induce intrinsic apoptosis upon provision of deoxyribonucleosides, particularly deoxyguanosine (dG). Moreover, dG and forodesine act synergistically to kill cells lacking SAMHD1. Using mass cytometry, we find that these compounds kill SAMHD1-deficient malignant cells in patients with chronic lymphocytic leukemia (CLL). Normal cells and CLL cells from patients without SAMHD1 mutation are unaffected. We therefore propose to use forodesine as a precision medicine for leukemia, stratifying patients by SAMHD1 genotype or expression.
Collapse
Affiliation(s)
- Tamara Davenne
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK; Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Jenny Klintman
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Rachel E Rigby
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Henry T W Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Chiara Cursi
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Anne Bridgeman
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Bernadeta Dadonaite
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Peter Hillmen
- St James' Institute of Oncology, St James' University Hospital, Leeds LS9 7TF, UK
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden
| | - Anna Schuh
- Molecular Diagnostic Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK; Department of Haematology, Oxford University Hospitals NHS Trust, Oxford OX3 7JL, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
16
|
SAMHD1 Functions and Human Diseases. Viruses 2020; 12:v12040382. [PMID: 32244340 PMCID: PMC7232136 DOI: 10.3390/v12040382] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/12/2022] Open
Abstract
Deoxynucleoside triphosphate (dNTP) molecules are essential for the replication and maintenance of genomic information in both cells and a variety of viral pathogens. While the process of dNTP biosynthesis by cellular enzymes, such as ribonucleotide reductase (RNR) and thymidine kinase (TK), has been extensively investigated, a negative regulatory mechanism of dNTP pools was recently found to involve sterile alpha motif (SAM) domain and histidine-aspartate (HD) domain-containing protein 1, SAMHD1. When active, dNTP triphosphohydrolase activity of SAMHD1 degrades dNTPs into their 2'-deoxynucleoside (dN) and triphosphate subparts, steadily depleting intercellular dNTP pools. The differential expression levels and activation states of SAMHD1 in various cell types contributes to unique dNTP pools that either aid (i.e., dividing T cells) or restrict (i.e., nondividing macrophages) viral replication that consumes cellular dNTPs. Genetic mutations in SAMHD1 induce a rare inflammatory encephalopathy called Aicardi-Goutières syndrome (AGS), which phenotypically resembles viral infection. Recent publications have identified diverse roles for SAMHD1 in double-stranded break repair, genome stability, and the replication stress response through interferon signaling. Finally, a series of SAMHD1 mutations were also reported in various cancer cell types while why SAMHD1 is mutated in these cancer cells remains to investigated. Here, we reviewed a series of studies that have begun illuminating the highly diverse roles of SAMHD1 in virology, immunology, and cancer biology.
Collapse
|
17
|
Qin Z, Bonifati S, St Gelais C, Li TW, Kim SH, Antonucci JM, Mahboubi B, Yount JS, Xiong Y, Kim B, Wu L. The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells. J Biol Chem 2020; 295:1575-1586. [PMID: 31914403 PMCID: PMC7008377 DOI: 10.1074/jbc.ra119.010360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
Sterile alpha motif and HD domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphohydrolase (dNTPase) with a nuclear localization signal (NLS). SAMHD1 suppresses innate immune responses to viral infection and inflammatory stimuli by inhibiting the NF-κB and type I interferon (IFN-I) pathways. However, whether the dNTPase activity and nuclear localization of SAMHD1 are required for its suppression of innate immunity remains unknown. Here, we report that the dNTPase activity, but not nuclear localization of SAMHD1, is important for its suppression of innate immune responses in differentiated monocytic cells. We generated monocytic U937 cell lines stably expressing WT SAMHD1 or mutated variants defective in dNTPase activity (HD/RN) or nuclear localization (mNLS). WT SAMHD1 in differentiated U937 cells significantly inhibited lipopolysaccharide-induced expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) mRNAs, as well as IFN-α, IFN-β, and TNF-α mRNA levels induced by Sendai virus infection. In contrast, the HD/RN mutant did not exhibit this inhibition in either U937 or THP-1 cells, indicating that the dNTPase activity of SAMHD1 is important for suppressing NF-κB activation. Of note, in lipopolysaccharide-treated or Sendai virus-infected U937 or THP-1 cells, the mNLS variant reduced TNF-α or IFN-β mRNA expression to a similar extent as did WT SAMHD1, suggesting that SAMHD1-mediated inhibition of innate immune responses is independent of SAMHD1's nuclear localization. Moreover, WT and mutant SAMHD1 similarly interacted with key proteins in NF-κB and IFN-I pathways in cells. This study further defines the role and mechanisms of SAMHD1 in suppressing innate immunity.
Collapse
Affiliation(s)
- Zhihua Qin
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| | - Serena Bonifati
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Corine St Gelais
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Tai-Wei Li
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Sun-Hee Kim
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Jenna M Antonucci
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210
| | - Bijan Mahboubi
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242; Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
18
|
Interferon γ and α Have Differential Effects on SAMHD1, a Potent Antiviral Protein, in Feline Lymphocytes. Viruses 2019; 11:v11100921. [PMID: 31600877 PMCID: PMC6832628 DOI: 10.3390/v11100921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022] Open
Abstract
Sterile alpha motif and histidine/aspartic domain-containing protein 1 (SAMHD1) is a protein with anti-viral, anti-neoplastic, and anti-inflammatory properties. By degrading cellular dNTPs to constituent deoxynucleoside and free triphosphate, SAMHD1 limits viral DNA synthesis and prevents replication of HIV-1 and some DNA viruses such as HBV, vaccinia, and HSV-1. Recent findings suggest SAMHD1 is broadly active against retroviruses in addition to HIV-1, such as HIV-2, FIV, BIV, and EIAV. Interferons are cytokines produced by lymphocytes and other cells that induce a wide array of antiviral proteins, including some with activity again lentiviruses. Here we evaluated the role of IFNs on SAMHD1 gene expression, transcription, and post-translational modification in a feline CD4+ T cell line (FeTJ) and in primary feline CD4+ T lymphocytes. SAMHD1 mRNA in FetJ cells increased in a dose-related manner in response to IFNγ treatment concurrent with increased nuclear localization and phosphorylation. IFNα treatment induced SAMHD1 mRNA but did not significantly alter SAMHD1 protein detection, phosphorylation, or nuclear translocation. In purified primary feline CD4+ lymphocytes, IL2 supplementation increased SAMHD1 expression, but the addition of IFNγ did not further alter SAMHD1 protein expression or nuclear localization. Thus, the effect of IFNγ on SAMHD1 expression is cell-type dependent, with increased translocation to the nucleus and phosphorylation in FeTJ but not primary CD4+ lymphocytes. These findings imply that while SAMH1 is inducible by IFNγ, overall activity is cell type and compartment specific, which is likely relevant to the establishment of lentiviral reservoirs in quiescent lymphocyte populations.
Collapse
|
19
|
Kon E, Calvo-Jiménez E, Cossard A, Na Y, Cooper JA, Jossin Y. N-cadherin-regulated FGFR ubiquitination and degradation control mammalian neocortical projection neuron migration. eLife 2019; 8:47673. [PMID: 31577229 PMCID: PMC6786859 DOI: 10.7554/elife.47673] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
The functions of FGF receptors (FGFRs) in early development of the cerebral cortex are well established. Their functions in the migration of neocortical projection neurons, however, are unclear. We have found that FGFRs regulate multipolar neuron orientation and the morphological change into bipolar cells necessary to enter the cortical plate. Mechanistically, our results suggest that FGFRs are activated by N-Cadherin. N-Cadherin cell-autonomously binds FGFRs and inhibits FGFR K27- and K29-linked polyubiquitination and lysosomal degradation. Accordingly, FGFRs accumulate and stimulate prolonged Erk1/2 phosphorylation. Neurons inhibited for Erk1/2 are stalled in the multipolar zone. Moreover, Reelin, a secreted protein regulating neuronal positioning, prevents FGFR degradation through N-Cadherin, causing Erk1/2 phosphorylation. These findings reveal novel functions for FGFRs in cortical projection neuron migration, suggest a physiological role for FGFR and N-Cadherin interaction in vivo and identify Reelin as an extracellular upstream regulator and Erk1/2 as downstream effectors of FGFRs during neuron migration.
Collapse
Affiliation(s)
- Elif Kon
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Elisa Calvo-Jiménez
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Alexia Cossard
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Youn Na
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
20
|
Buffone C, Kutzner J, Opp S, Martinez-Lopez A, Selyutina A, Coggings SA, Studdard LR, Ding L, Kim B, Spearman P, Schaller T, Diaz-Griffero F. The ability of SAMHD1 to block HIV-1 but not SIV requires expression of MxB. Virology 2019; 531:260-268. [PMID: 30959264 PMCID: PMC6487861 DOI: 10.1016/j.virol.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
SAMHD1 is a human restriction factor known to prevent infection of macrophages, resting CD4+ T cells, and dendritic cells by HIV-1. To test the contribution of MxB to the ability of SAMHD1 to block HIV-1 infection, we created human THP-1 cell lines that were knocked out for expression of MxB, SAMHD1, or both. Interestingly, MxB depletion renders SAMHD1 ineffective against HIV-1 but not SIVmac. We observed similar results in human primary macrophages that were knockdown for the expression of MxB. To understand how MxB assists SAMHD1 restriction of HIV-1, we examined direct interaction between SAMHD1 and MxB in pull-down experiments. In addition, we investigated several properties of SAMHD1 in the absence of MxB expression, including subcellular localization, phosphorylation of the SAMHD1 residue T592, and dNTPs levels. These experiments showed that SAMHD1 restriction of HIV-1 requires expression of MxB.
Collapse
Affiliation(s)
- Cindy Buffone
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Juliane Kutzner
- University Hospital Heidelberg, Department of Infectious Diseases, Heidelberg, 69120, Germany
| | - Silvana Opp
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Alicia Martinez-Lopez
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | - Anastasia Selyutina
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA
| | | | | | - Lingmei Ding
- Cincinnati Children's Hospital, Infectious Diseases, Cincinnati, OH, 45229, USA
| | - Baek Kim
- Emory University, Pediatrics, Atlanta, 30322, Georgia
| | - Paul Spearman
- Cincinnati Children's Hospital, Infectious Diseases, Cincinnati, OH, 45229, USA
| | - Torsten Schaller
- University Hospital Heidelberg, Department of Infectious Diseases, Heidelberg, 69120, Germany
| | - Felipe Diaz-Griffero
- Albert Einstein College of Medicine, Microbiology and Immunology, Bronx, NY, 10461, USA.
| |
Collapse
|
21
|
Guo H, Zhang N, Shen S, Yu XF, Wei W. Determinants of lentiviral Vpx-CRL4 E3 ligase-mediated SAMHD1 degradation in the substrate adaptor protein DCAF1. Biochem Biophys Res Commun 2019; 513:933-939. [PMID: 31003777 DOI: 10.1016/j.bbrc.2019.04.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 11/27/2022]
Abstract
The lentiviral accessory protein Vpx enhances viral replication in macrophages, dendritic cells and resting CD4+ T cells by utilizing the host CRL4-DCAF1 E3 ligase to trigger the degradation of the intrinsic antiviral factor SAMHD1. Distinct from the species-specific recognition of either the N or C-terminus of SAMHD1 by Vpx proteins of different HIV-2 and SIV lineages, Vpx recruits SAMHD1 onto the same CRL4-DCAF1 complex. However, the determinants in DCAF1 that are required for Vpx-mediated SAMHD1 degradation have not been well characterized. Here, we demonstrate that the viral protein Vpx is resistant to suppression by a cellular inhibitor of the CRL4-DCAF1 E3 ligase, Merlin/NF2, through targeting a separate binding region in DCAF1. The Merlin binding-deficient DCAF1 truncation mutant (1-1417) is sufficient for Vpx-CRL4-DCAF1 E3 ligase assembly and SAMHD1 degradation. We found that the carboxyl-terminus ED-rich region (1312-1417) of DCAF1 is required for the nuclear localization of DCAF1 and for the Vpx-DCAF1 interaction. We identified the DCAF1 (1-1311) truncation mutant as a dominant negative mutant of wild-type DCAF1 that inhibits Vpx-mediated SAMHD1 degradation. These results suggest a unique strategy by which Vpx exploits DCAF1 to counteract this host restriction factor.
Collapse
Affiliation(s)
- Haoran Guo
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China; Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| | - Nannan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China
| | - Siyu Shen
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Wei Wei
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, 130021, China; Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
22
|
Wing PA, Davenne T, Wettengel J, Lai AG, Zhuang X, Chakraborty A, D'Arienzo V, Kramer C, Ko C, Harris JM, Schreiner S, Higgs M, Roessler S, Parish JL, Protzer U, Balfe P, Rehwinkel J, McKeating JA. A dual role for SAMHD1 in regulating HBV cccDNA and RT-dependent particle genesis. Life Sci Alliance 2019; 2:e201900355. [PMID: 30918010 PMCID: PMC6438393 DOI: 10.26508/lsa.201900355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B is one of the world's unconquered diseases with more than 240 million infected subjects at risk of developing liver disease and hepatocellular carcinoma. Hepatitis B virus reverse transcribes pre-genomic RNA to relaxed circular DNA (rcDNA) that comprises the infectious particle. To establish infection of a naïve target cell, the newly imported rcDNA is repaired by host enzymes to generate covalently closed circular DNA (cccDNA), which forms the transcriptional template for viral replication. SAMHD1 is a component of the innate immune system that regulates deoxyribonucleoside triphosphate levels required for host and viral DNA synthesis. Here, we show a positive role for SAMHD1 in regulating cccDNA formation, where KO of SAMHD1 significantly reduces cccDNA levels that was reversed by expressing wild-type but not a mutated SAMHD1 lacking the nuclear localization signal. The limited pool of cccDNA in infected Samhd1 KO cells is transcriptionally active, and we observed a 10-fold increase in newly synthesized rcDNA-containing particles, demonstrating a dual role for SAMHD1 to both facilitate cccDNA genesis and to restrict reverse transcriptase-dependent particle genesis.
Collapse
Affiliation(s)
- Peter Ac Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tamara Davenne
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jochen Wettengel
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Alvina G Lai
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anindita Chakraborty
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | | | - Catharina Kramer
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chunkyu Ko
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sabrina Schreiner
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Martin Higgs
- Institutes of Cancer and Genomic Sciences and Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joanna L Parish
- Institutes of Cancer and Genomic Sciences and Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Peter Balfe
- Institutes of Cancer and Genomic Sciences and Immunity and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Nucleocytoplasmic shuttling of SAMHD1 is important for LINE-1 suppression. Biochem Biophys Res Commun 2019; 510:551-557. [DOI: 10.1016/j.bbrc.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/02/2019] [Indexed: 11/21/2022]
|
24
|
Al-Shehabi H, Fiebig U, Kutzner J, Denner J, Schaller T, Bannert N, Hofmann H. Human SAMHD1 restricts the xenotransplantation relevant porcine endogenous retrovirus (PERV) in non-dividing cells. J Gen Virol 2019; 100:656-661. [PMID: 30767852 DOI: 10.1099/jgv.0.001232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The release of porcine endogenous retrovirus (PERV) particles from pig cells is a potential risk factor during xenotransplantation by way of productively infecting the human transplant recipient. Potential countermeasures against PERV replication are restriction factors that block retroviral replication. SAMHD1 is a triphosphohydrolase that depletes the cellular pool of dNTPs in non-cycling cells starving retroviral reverse transcription. We investigated the antiviral activity of human SAMHD1 against PERV and found that SAMHD1 potently restricts its reverse transcription in human monocytes, monocyte-derived dendritic cells (MDDC), or macrophages (MDM) and in monocytic THP-1 cells. Degradation of SAMHD1 by SIVmac Vpx or CRISPR/Cas9 knock-out of SAMHD1 allowed for PERV reverse transcription. Addition of deoxynucleosides alleviated the SAMHD1-mediated restriction suggesting that SAMHD1-mediated degradation of dNTPs restricts PERV replication in these human immune cells. In conclusion, our findings highlight SAMHD1 as a potential barrier to PERV transmission from pig transplants to human recipients during xenotransplantation.
Collapse
Affiliation(s)
- Hussein Al-Shehabi
- 1Department of HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Uwe Fiebig
- 1Department of HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| | - Juliane Kutzner
- 2Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Joachim Denner
- 3Robert Koch Fellow, Robert Koch Institute, Berlin, Germany
| | - Torsten Schaller
- 2Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Bannert
- 1Department of HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany.,4Institute of Virology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henning Hofmann
- 1Department of HIV and other Retroviruses, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
25
|
Peng N, Yang X, Zhu C, Zhou L, Yu H, Li M, Lin Y, Wang X, Li Q, She Y, Wang J, Zhao Q, Lu M, Zhu Y, Liu S. MicroRNA-302 Cluster Downregulates Enterovirus 71-Induced Innate Immune Response by Targeting KPNA2. THE JOURNAL OF IMMUNOLOGY 2018; 201:145-156. [PMID: 29777028 DOI: 10.4049/jimmunol.1701692] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Abstract
Enterovirus 71 (EV71) induces significantly elevated levels of cytokines and chemokines, leading to local or systemic inflammation and severe complications. As shown in our previous study, microRNA (miR) 302c regulates influenza A virus-induced IFN expression by targeting NF-κB-inducing kinase. However, little is known about the role of the miR-302 cluster in EV71-mediated proinflammatory responses. In this study, we found that the miR-302 cluster controls EV71-induced cytokine expression. Further studies demonstrated that karyopherin α2 (KPNA2) is a direct target of the miR-302 cluster. Interestingly, we also found that EV71 infection upregulates KPNA2 expression by downregulating miR-302 cluster expression. Upon investigating the mechanisms behind this event, we found that KPNA2 intracellularly associates with JNK1/JNK2 and p38, leading to translocation of those transcription factors from the cytosol into the nucleus. In EV71-infected patients, miR-302 cluster expression was downregulated and KPNA2 expression was upregulated compared with controls, and their expression levels were closely correlated. Taken together, our work establishes a link between the miR-302/ KPNA2 axis and EV71-induced cytokine expression and represents a promising target for future antiviral therapy.
Collapse
Affiliation(s)
- Nanfang Peng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xuecheng Yang
- Department of Infectious Diseases, Union Hospital, Wuhan 430030, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, School of Medicine, Wuhan University, Wuhan 430072, China
| | - Haisheng Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengqi Li
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yong Lin
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Xueyu Wang
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Qian Li
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Yinglong She
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214005, China; and
| | - Qian Zhao
- Basic and Clinical Medicine Institute of Yunnan Province, the First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
26
|
Srivaths A, Ramanathan S, Sakthivel S, Habeeb SKM. Insights from the Molecular Modelling and Docking Analysis of AIF-NLS complex to infer Nuclear Translocation of the Protein. Bioinformation 2018; 14:132-139. [PMID: 29785072 PMCID: PMC5953855 DOI: 10.6026/97320630014132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022] Open
Abstract
Apoptosis Inducing Factor protein has a dual role depending on its localization in mitochondrion (energy production) and nucleus (induces apoptosis). Cell damage transports this protein to nucleus which otherwise favors mitochondrion. The alteration of Nuclear Localisation Signal tags could aid nuclear translocation. In this study, apoptosis inducing factor protein (AIF) was conjugated with strong NLS tags and its binding affinity with Importin was studied using in silico approaches such as molecular modeling and docking. This aims to improve the docking affinity of the AIF-Importin complex thus allowing for nuclear translocation, in order to induce caspase-independent apoptosis of the cell.
Collapse
Affiliation(s)
- Akash Srivaths
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai - 603203
| | - Shyam Ramanathan
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai - 603203
| | - Seethalakshmi Sakthivel
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai - 603203
| | - SKM Habeeb
- Department of Genetic Engineering, School of Bioengineering, SRM University, Kattankulathur, Chennai - 603203
| |
Collapse
|
27
|
Abstract
Monocyte-derived macrophages (MDMs) are an important target for HIV-1 despite SAMHD1, a myeloid restriction factor for which HIV-1 lacks a counteracting accessory protein. The antiviral activity of SAMHD1 is modulated by phosphorylation of T592 by cyclin-dependent kinases (CDK). We show that treatment of MDMs with neocarzinostatin, a compound that introduces double strand breaks (DBS) in genomic DNA, results in the decrease of phosphorylated SAMHD1, activating its antiviral activity and blocking HIV-1 infection. The effect was specific for DSB as DNA damage induced by UV light irradiation did not affect SAMHD1 phosphorylation and did not block infection. The block to infection was at reverse transcription and was counteracted by Vpx, demonstrating that it was caused by SAMHD1. Neocarzinostatin treatment also activated an innate immune response that induced interferon-stimulated genes but this was not involved in the block to HIV-1 infection, as it was not relieved by an interferon-blocking antibody. In response to Neocarzinostatin-induced DNA damage, the level of the CDK inhibitor p21cip1 increased which could account for the decrease of phosphorylated SAMHD1. The results show that the susceptibility of MDMs to HIV-1 infection can be affected by stimuli that alter the phosphorylation state of SAMHD1, one of which is the DNA damage response.
Collapse
Affiliation(s)
- Paula Jáuregui
- Department of Microbiology, NYU School of Medicine, Smilow Research Building, Rm. 1003, 550 First Avenue, New York, 10016, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU School of Medicine, Smilow Research Building, Rm. 1003, 550 First Avenue, New York, 10016, USA.
| |
Collapse
|
28
|
Effects of Inner Nuclear Membrane Proteins SUN1/UNC-84A and SUN2/UNC-84B on the Early Steps of HIV-1 Infection. J Virol 2017; 91:JVI.00463-17. [PMID: 28747499 PMCID: PMC5599759 DOI: 10.1128/jvi.00463-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1NL4.3 and HIV-1IIIB) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro-assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1−/− and SUN2−/− cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection. IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes leads to a mild reduction or no effect on infectivity, respectively. We speculate that SUN1/SUN2 may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis.
Collapse
|
29
|
White TE, Brandariz-Nuñez A, Martinez-Lopez A, Knowlton C, Lenzi G, Kim B, Ivanov D, Diaz-Griffero F. A SAMHD1 mutation associated with Aicardi-Goutières syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans. Hum Mutat 2017; 38:658-668. [PMID: 28229507 DOI: 10.1002/humu.23201] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/09/2017] [Accepted: 02/19/2017] [Indexed: 12/23/2022]
Abstract
Mutations in the human SAMHD1 gene are known to correlate with the development of the Aicardi-Goutières syndrome (AGS), which is an inflammatory encephalopathy that exhibits neurological dysfunction characterized by increased production of type I interferon (IFN); this evidence has led to the concept that the SAMHD1 protein negatively regulates the type I IFN response. Additionally, the SAMHD1 protein has been shown to prevent efficient HIV-1 infection of macrophages, dendritic cells, and resting CD4+ T cells. To gain insights on the SAMHD1 molecular determinants that are responsible for the deregulated production of type I IFN, we explored the biochemical, cellular, and antiviral properties of human SAMHD1 mutants known to correlate with the development of AGS. Most of the studied SAMHD1 AGS mutants exhibit defects in the ability to oligomerize, decrease the levels of cellular deoxynucleotide triphosphates in human cells, localize exclusively to the nucleus, and restrict HIV-1 infection. At least half of the tested variants preserved the ability to be degraded by the lentiviral protein Vpx, and all of them interacted with RNA. Our investigations revealed that the SAMHD1 AGS variant p.G209S preserve all tested biochemical, cellular, and antiviral properties, suggesting that this residue is a determinant for the ability of SAMHD1 to negatively regulate the type I IFN response in human patients with AGS. Overall, our work genetically separated the ability of SAMHD1 to negatively regulate the type I IFN response from its ability to restrict HIV-1.
Collapse
Affiliation(s)
- Tommy E White
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York
| | - Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York
| | - Alicia Martinez-Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York
| | | | - Gina Lenzi
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Baek Kim
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Dmitri Ivanov
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, New York
| |
Collapse
|
30
|
Li M, Zhang D, Zhu M, Shen Y, Wei W, Ying S, Korner H, Li J. Roles of SAMHD1 in antiviral defense, autoimmunity and cancer. Rev Med Virol 2017; 27. [PMID: 28444859 DOI: 10.1002/rmv.1931] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/26/2017] [Accepted: 03/13/2017] [Indexed: 01/02/2023]
Abstract
The enzyme, sterile α motif and histidine-aspartic acid domain-containing protein 1 (SAMHD1) diminishes infection of human immunodeficiency virus type 1 (HIV-1) by hydrolyzing intracellular deoxynucleotide triphosphates (dNTPs) in myeloid cells and resting CD4+ T cells. This dNTP degradation reduces the dNTP concentration to a level insufficient for viral cDNA synthesis, thereby inhibiting retroviral replication. This antiviral enzymatic activity can be inhibited by viral protein X (Vpx). The HIV-2/SIV Vpx causes degradation of SAMHD1, thus interfering with the SAMHD1-mediated restriction of retroviral replication. Recently, SAMHD1 has been suggested to restrict HIV-1 infection by directly digesting genomic HIV-1 RNA through a still controversial RNase activity. Here, we summarize the current knowledge about structure, antiviral mechanisms, intracellular localization, interferon-regulated expression of SAMHD1. We also describe SAMHD1-deficient animal models and an antiviral drug on the basis of disrupting proteasomal degradation of SAMHD1. In addition, the possible roles of SAMHD1 in regulating innate immune sensing, Aicardi-Goutières syndrome and cancer are discussed in this review.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Dong Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China.,School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Mengying Zhu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Yuxian Shen
- School of Basic Medical Sciences and Biopharmaceutical Research Institute, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui Province, PR China
| | - Songcheng Ying
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province, PR China.,School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, PR China
| | - Heinrich Korner
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, Anhui Province, PR China.,Menzies Institute for Medical Research Tasmania, Hobart, Tasmania, Australia
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui Province, PR China
| |
Collapse
|
31
|
Herold N, Rudd SG, Ljungblad L, Sanjiv K, Myrberg IH, Paulin CBJ, Heshmati Y, Hagenkort A, Kutzner J, Page BDG, Calderón-Montaño JM, Loseva O, Jemth AS, Bulli L, Axelsson H, Tesi B, Valerie NCK, Höglund A, Bladh J, Wiita E, Sundin M, Uhlin M, Rassidakis G, Heyman M, Tamm KP, Warpman-Berglund U, Walfridsson J, Lehmann S, Grandér D, Lundbäck T, Kogner P, Henter JI, Helleday T, Schaller T. Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies. Nat Med 2017; 23:256-263. [PMID: 28067901 DOI: 10.1038/nm.4265] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/12/2016] [Indexed: 02/03/2023]
Abstract
The cytostatic deoxycytidine analog cytarabine (ara-C) is the most active agent available against acute myelogenous leukemia (AML). Together with anthracyclines, ara-C forms the backbone of AML treatment for children and adults. In AML, both the cytotoxicity of ara-C in vitro and the clinical response to ara-C therapy are correlated with the ability of AML blasts to accumulate the active metabolite ara-C triphosphate (ara-CTP), which causes DNA damage through perturbation of DNA synthesis. Differences in expression levels of known transporters or metabolic enzymes relevant to ara-C only partially account for patient-specific differential ara-CTP accumulation in AML blasts and response to ara-C treatment. Here we demonstrate that the deoxynucleoside triphosphate (dNTP) triphosphohydrolase SAM domain and HD domain 1 (SAMHD1) promotes the detoxification of intracellular ara-CTP pools. Recombinant SAMHD1 exhibited ara-CTPase activity in vitro, and cells in which SAMHD1 expression was transiently reduced by treatment with the simian immunodeficiency virus (SIV) protein Vpx were dramatically more sensitive to ara-C-induced cytotoxicity. CRISPR-Cas9-mediated disruption of the gene encoding SAMHD1 sensitized cells to ara-C, and this sensitivity could be abrogated by ectopic expression of wild-type (WT), but not dNTPase-deficient, SAMHD1. Mouse models of AML lacking SAMHD1 were hypersensitive to ara-C, and treatment ex vivo with Vpx sensitized primary patient-derived AML blasts to ara-C. Finally, we identified SAMHD1 as a risk factor in cohorts of both pediatric and adult patients with de novo AML who received ara-C treatment. Thus, SAMHD1 expression levels dictate patient sensitivity to ara-C, providing proof-of-concept that the targeting of SAMHD1 by Vpx could be an attractive therapeutic strategy for potentiating ara-C efficacy in hematological malignancies.
Collapse
Affiliation(s)
- Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Sean G Rudd
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Linda Ljungblad
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Kumar Sanjiv
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ida Hed Myrberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Cynthia B J Paulin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yaser Heshmati
- Department of Medicine, Center of Hematology and Regenerative Medicine, Karolinska Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Anna Hagenkort
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juliane Kutzner
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Brent D G Page
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - José M Calderón-Montaño
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Olga Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lorenzo Bulli
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanna Axelsson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Chemical Biology Consortium, Stockholm, Sweden
| | - Bianca Tesi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Nicholas C K Valerie
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Höglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Julia Bladh
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Elisée Wiita
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Sundin
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Paediatric Blood Disorders, Immunodeficiency and Stem Cell Transplantation, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Uhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | | | - Mats Heyman
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | | | - Ulrika Warpman-Berglund
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Julian Walfridsson
- Department of Medicine, Center of Hematology and Regenerative Medicine, Karolinska Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine, Center of Hematology and Regenerative Medicine, Karolinska Hospital and Karolinska Institutet, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Dan Grandér
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Lundbäck
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Chemical Biology Consortium, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Jan-Inge Henter
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Torsten Schaller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Durmuş S, Ülgen KÖ. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses. FEBS Open Bio 2017; 7:96-107. [PMID: 28097092 PMCID: PMC5221455 DOI: 10.1002/2211-5463.12167] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/06/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023] Open
Abstract
Viruses are obligatory intracellular pathogens and completely depend on their hosts for survival and reproduction. The strategies adopted by viruses to exploit host cell processes and to evade host immune systems during infections may differ largely with the type of the viral genetic material. An improved understanding of these viral infection mechanisms is only possible through a better understanding of the pathogen-host interactions (PHIs) that enable viruses to enter into the host cells and manipulate the cellular mechanisms to their own advantage. Experimentally-verified protein-protein interaction (PPI) data of pathogen-host systems only became available at large scale within the last decade. In this study, we comparatively analyzed the current PHI networks belonging to DNA and RNA viruses and their human host, to get insights into the infection strategies used by these viral groups. We investigated the functional properties of human proteins in the PHI networks, to observe and compare the attack strategies of DNA and RNA viruses. We observed that DNA viruses are able to attack both human cellular and metabolic processes simultaneously during infections. On the other hand, RNA viruses preferentially interact with human proteins functioning in specific cellular processes as well as in intracellular transport and localization within the cell. Observing virus-targeted human proteins, we propose heterogeneous nuclear ribonucleoproteins and transporter proteins as potential antiviral therapeutic targets. The observed common and specific infection mechanisms in terms of viral strategies to attack human proteins may provide crucial information for further design of broad and specific next-generation antiviral therapeutics.
Collapse
Affiliation(s)
- Saliha Durmuş
- Computational Systems Biology GroupDepartment of BioengineeringGebze Technical UniversityKocaeliTurkey
| | - Kutlu Ö. Ülgen
- Department of Chemical EngineeringBoğaziçi UniversityİstanbulTurkey
| |
Collapse
|
33
|
Seamon KJ, Bumpus NN, Stivers JT. Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer. Biochemistry 2016; 55:6087-6099. [PMID: 27775344 DOI: 10.1021/acs.biochem.6b00986] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sterile alpha motif and HD domain protein 1 (SAMHD1) is a unique enzyme that plays important roles in nucleic acid metabolism, viral restriction, and the pathogenesis of autoimmune diseases and cancer. Although much attention has been focused on its dNTP triphosphohydrolase activity in viral restriction and disease, SAMHD1 also binds to single-stranded RNA and DNA. Here we utilize a UV cross-linking method using 5-bromodeoxyuridine-substituted oligonucleotides coupled with high-resolution mass spectrometry to identify the binding site for single-stranded nucleic acids (ssNAs) on SAMHD1. Mapping cross-linked amino acids on the surface of existing crystal structures demonstrated that the ssNA binding site lies largely along the dimer-dimer interface, sterically blocking the formation of the homotetramer required for dNTPase activity. Surprisingly, the disordered C-terminus of SAMHD1 (residues 583-626) was also implicated in ssNA binding. An interaction between this region and ssNA was confirmed in binding studies using the purified SAMHD1 583-626 peptide. Despite a recent report that SAMHD1 possesses polyribonucleotide phosphorylase activity, we did not detect any such activity in the presence of inorganic phosphate, indicating that nucleic acid binding is unrelated to this proposed activity. These data suggest an antagonistic regulatory mechanism in which the mutually exclusive oligomeric state requirements for ssNA binding and dNTP hydrolase activity modulate these two functions of SAMHD1 within the cell.
Collapse
Affiliation(s)
- Kyle J Seamon
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine , 725 North Wolfe Street, WBSB 314, Baltimore, Maryland 21205, United States
| | - Namandjé N Bumpus
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine , 725 North Wolfe Street, Biophysics 307, Baltimore, Maryland 21205, United States
| | - James T Stivers
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine , 725 North Wolfe Street, WBSB 314, Baltimore, Maryland 21205, United States
| |
Collapse
|
34
|
Karyopherin Alpha 2 Promotes the Inflammatory Response in Rat Pancreatic Acinar Cells Via Facilitating NF-κB Activation. Dig Dis Sci 2016; 61:747-57. [PMID: 26526450 DOI: 10.1007/s10620-015-3948-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 10/24/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Activation of the transcription factor NF-κB and expression of pro-inflammatory mediators have been considered as major events of acute pancreatitis (AP). Karyopherin alpha 2 (KPNA2), a member of the importin α family, reportedly modulates p65 subcellular localization. AIM This study aimed to investigate the expression and possible functions of KPNA2 in the AP cell and animal model, focusing on its association with NF-κB activation. METHODS An AP cell model was established with the cerulein-stimulated AR42J and isolated rat pancreatic acinar cells. The AP rat model was induced by the intraperitoneal injection of cerulein. The secretion of TNF-α, IL-6, and LDH was detected by ELISA kits and the production of NO using nitric oxide kit. Expression of KPNA2 was measured by RT-PCR and Western blot. Expression levels of IKKα, phosphorylation of p65, and total p65 were detected by Western blot. Co-localization of KPNA2 with p65 was observed by immunofluorescence assay. To determine the biological functions of KPNA2 in cerulein-induced inflammatory response, RNA interference was employed to knockdown KPNA2 expression in AR42J and isolated pancreatic acini cells. RESULTS Cerulein stimulated KPNA2 expression and IL-6, TNF-α, NO, and LDH production in rat pancreatic acinar cells. Cerulein triggered the phosphorylation and nuclear translocation of NF-κB p65 subunit, indicating the NF-κB activation. The co-localization and nuclear accumulation of KPNA2 and p65 were detected in cerulein-treated cells. Knocking down KPNA2 hindered cerulein-induced nuclear transportation of p65 and alleviated the subsequent inflammatory response in rat pancreatic acinar cells. Additionally, KPNA2 expression was significantly up-regulated in cerulein-induced AP rat model. CONCLUSIONS KPNA2-facilitated p65 nuclear translocation promotes NF-κB activation and inflammation in acute pancreatitis.
Collapse
|
35
|
He S, Miao X, Wu Y, Zhu X, Miao X, Yin H, He Y, Li C, Liu Y, Lu X, Chen Y, Wang Y, Xu X. Upregulation of nuclear transporter, Kpnβ1, contributes to accelerated cell proliferation- and cell adhesion-mediated drug resistance (CAM-DR) in diffuse large B-cell lymphoma. J Cancer Res Clin Oncol 2016; 142:561-72. [PMID: 26498772 DOI: 10.1007/s00432-015-2057-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/13/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND The Karyopherin proteins are involved in the shuttling of cargo proteins, and certain RNAs, across the nuclear pore complex into and out of the cell nucleus. Karyopherin β1 (Kpnβ1) is a member of the Karyopherin β superfamily of nuclear transport proteins. In addition to the nuclear import function, Kpnβ1 is associated with the occurrence of tumors. This study investigated the expression and biologic function of Kpnβ1 in diffuse large B-cell lymphoma (DLBCL). METHODS The prognostic value of Kpnβ1 expression was evaluated using immunohistochemical staining. The role of Kpnβ1 on cell proliferation- and cell adhesion-mediated drug resistance (CAM-DR) was also determined. RESULTS We demonstrated that Kpnβ1 mRNA and protein expression levels were significantly higher in DLBCL B-cells and DLBCL cell lines than in normal CD19 purified B-cells. Immunohistochemical analysis suggested that the expression of Kpnβ1 was correlated with Ki-67 (P < 0.001). Kaplan-Meier curve showed that high expression of Kpnβ1 was significantly associated with shorter overall survival. In addition, Kpnβ1 was associated with the proliferation of DLBCL cells. Importantly, we found that Kpnβ1 could interact with p65 and promote CAM-DR via accelerating NF-κB activation in DLBCL. CONCLUSIONS Patients with tumors highly expressing Kpnβ1 have poorer overall survivals. Kpnβ1 interacts with p65 and enhances CAM-DR.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Adhesion/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Up-Regulation
- beta Karyopherins/genetics
- beta Karyopherins/metabolism
Collapse
Affiliation(s)
- Song He
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yaxun Wu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xinghua Zhu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xianjing Miao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Haibing Yin
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yunhua He
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yushan Liu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Xiaoyun Lu
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yali Chen
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China
| | - Yuchan Wang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Xiaohong Xu
- Department of Oncology, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, Jiangsu, China.
| |
Collapse
|
36
|
Lever MB, Karpova A, Kreutz MR. An Importin Code in neuronal transport from synapse-to-nucleus? Front Mol Neurosci 2015; 8:33. [PMID: 26257602 PMCID: PMC4508522 DOI: 10.3389/fnmol.2015.00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/06/2015] [Indexed: 12/24/2022] Open
Affiliation(s)
- Michael B Lever
- RG Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Anna Karpova
- RG Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Michael R Kreutz
- RG Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| |
Collapse
|
37
|
Restriction of HIV-1 Requires the N-Terminal Region of MxB as a Capsid-Binding Motif but Not as a Nuclear Localization Signal. J Virol 2015; 89:8599-610. [PMID: 26063425 DOI: 10.1128/jvi.00753-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/02/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The interferon alpha (IFN-α)-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Fate-of-capsid experiments have correlated the ability of MxB to block HIV-1 infection with stabilization of viral cores during infection. We previously demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization. Deletion and gain-of-function experiments have mapped the HIV-1 restriction ability of MxB to its N-terminal 25 amino acids. This report reveals that the N-terminal 25 amino acids of MxB exhibit two separate functions: (i) the ability of MxB to bind to HIV-1 capsid and (ii) the nuclear localization signal of MxB, which is important for the ability of MxB to shuttle into the nucleus. To understand whether MxB restriction of HIV-1 requires capsid binding and/or nuclear localization, we genetically separated these two functions and evaluated their contributions to restriction. Our experiments demonstrated that the (11)RRR(13) motif is important for the ability of MxB to bind capsid and to restrict HIV-1 infection. These experiments suggested that capsid binding is necessary for the ability of MxB to block HIV-1 infection. Separately from the capsid binding function of MxB, we found that residues (20)KY(21) regulate the ability of the N-terminal 25 amino acids of MxB to function as a nuclear localization signal; however, the ability of the N-terminal 25 amino acids to function as a nuclear localization signal was not required for restriction. IMPORTANCE MxB/Mx2 blocks HIV-1 infection in cells from the immune system. MxB blocks infection by preventing the uncoating process of HIV-1. The ability of MxB to block HIV-1 infection requires that MxB binds to the HIV-1 core by using its N-terminal domain. The present study shows that MxB uses residues (11)RRR(13) to bind to the HIV-1 core during infection and that these residues are required for the ability of MxB to block HIV-1 infection. We also found that residues (20)KY(21) constitute a nuclear localization signal that is not required for the ability of MxB to block HIV-1 infection.
Collapse
|
38
|
Degradation of SAMHD1 by Vpx Is Independent of Uncoating. J Virol 2015; 89:5701-13. [PMID: 25762741 DOI: 10.1128/jvi.03575-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Sterile alpha motif domain and HD domain-containing protein 1 (SAMHD1) restricts human immunodeficiency virus type 1 (HIV-1) replication in myeloid and resting T cells. Lentiviruses such as HIV-2 and some simian immunodeficiency viruses (SIVs) counteract the restriction by encoding Vpx or Vpr, accessory proteins that are packaged in virions and which, upon entry of the virus into the cytoplasm, induce the proteasomal degradation of SAMHD1. As a tool to study these mechanisms, we generated HeLa cell lines that express a fusion protein termed NLS.GFP.SAM595 in which the Vpx binding domain of SAMHD1 is fused to the carboxy terminus of green fluorescent protein (GFP) and a nuclear localization signal is fused to the amino terminus of GFP. Upon incubation of Vpx-containing virions with the cells, the NLS.GFP.SAM595 fusion protein was degraded over several hours and the levels remained low over 5 days as the result of continued targeting of the CRL4 E3 ubiquitin ligase. Degradation of the fusion protein required that it contain a nuclear localization sequence. Fusion to the cytoplasmic protein muNS rendered the protein resistant to Vpx-mediated degradation, confirming that SAMHD1 is targeted in the nucleus. Virions treated with protease inhibitors failed to release Vpx, indicating that Gag processing was required for Vpx release from the virion. Mutations in the capsid protein that altered the kinetics of virus uncoating and the Gag binding drug PF74 had no effect on the Vpx-mediated degradation. These results suggest that Vpx is released from virions without a need for uncoating of the capsid, allowing Vpx to transit to the nucleus rapidly upon entry into the cytoplasm. IMPORTANCE SAMHD1 restricts lentiviral replication in myeloid cells and resting T cells. Its importance is highlighted by the fact that viruses such as HIV-2 encode an accessory protein that is packaged in the virion and is dedicated to inducing SAMHD1 degradation. Vpx needs to act rapidly upon infection to allow reverse transcription to proceed. The limited number of Vpx molecules in a virion also needs to clear the cell of SAMHD1 over a prolonged period of time. Using an engineered HeLa cell line that expresses a green fluorescent protein (GFP)-SAMHD1 fusion protein, we showed that the Vpx-dependent degradation occurs without a need for viral capsid uncoating. In addition, the fusion protein was degraded only when it was localized to the nucleus, confirming that SAMHD1 is targeted in the nucleus and thus explaining why Vpx also localizes to the nucleus.
Collapse
|
39
|
Berger G, Lawrence M, Hué S, Neil SJD. G2/M cell cycle arrest correlates with primate lentiviral Vpr interaction with the SLX4 complex. J Virol 2015; 89:230-40. [PMID: 25320300 PMCID: PMC4301105 DOI: 10.1128/jvi.02307-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/06/2014] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED The accessory gene vpr, common to all primate lentiviruses, induces potent G2/M arrest in cycling cells. A recent study showed that human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) mediates this through activation of the SLX4/MUS81/EME1 exonuclease complex that forms part of the Fanconi anemia DNA repair pathway. To confirm these observations, we have examined the G2/M arrest phenotypes of a panel of simian immunodeficiency virus (SIV) Vpr proteins. We show that SIV Vpr proteins differ in their ability to promote cell cycle arrest in human cells. While this is dependent on the DCAF1/DDB1/CUL4 ubiquitin ligase complex, interaction with human DCAF1 does not predict G2/M arrest activity of SIV Vpr in human cells. In all cases, SIV Vpr-mediated cell cycle arrest in human cells correlated with interaction with human SLX4 (huSLX4) and could be abolished by small interfering RNA (siRNA) depletion of any member of the SLX4 complex. In contrast, all but one of the HIV/SIV Vpr proteins tested, including those that lacked activity in human cells, were competent for G2/M arrest in grivet cells. Correspondingly, here cell cycle arrest correlated with interaction with the grivet orthologues of the SLX4 complex, suggesting a level of host adaptation in these interactions. Phylogenetic analyses strongly suggest that G2/M arrest/SLX4 interactions are ancestral activities of primate lentiviral Vpr proteins and that the ability to dysregulate the Fanconi anemia DNA repair pathway is an essential function of Vpr in vivo. IMPORTANCE The Vpr protein of HIV-1 and related viruses is essential for the virus in vivo. The ability of Vpr to block the cell cycle at mitotic entry is well known, but the importance of this function for viral replication is unclear. Recent data have shown that HIV-1 Vpr targets the Fanconi anemia DNA repair pathway by interacting with and activating an endonuclease complex, SLX4/MUS81/EME1, that processes interstrand DNA cross-links. Here we show that the ability of a panel of SIV Vpr proteins to mediate cell cycle arrest correlates with species-specific interactions with the SLX4 complex in human and primate cells. The results of these studies suggest that the SLX4 complex is a conserved target of primate lentiviral Vpr proteins and that the ability to dysregulate members of the Fanconi anemia DNA repair pathway is essential for HIV/SIV replication in vivo.
Collapse
Affiliation(s)
- Gregory Berger
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Madeleine Lawrence
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Stephane Hué
- MRC Centre for Medical Molecular Virology, University College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
40
|
Hollenbaugh JA, Tao S, Lenzi GM, Ryu S, Kim DH, Diaz-Griffero F, Schinazi RF, Kim B. dNTP pool modulation dynamics by SAMHD1 protein in monocyte-derived macrophages. Retrovirology 2014; 11:63. [PMID: 25158827 PMCID: PMC4161909 DOI: 10.1186/s12977-014-0063-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/18/2014] [Indexed: 02/03/2023] Open
Abstract
Background SAMHD1 degrades deoxyribonucleotides (dNTPs), suppressing viral DNA synthesis in macrophages. Recently, viral protein X (Vpx) of HIV-2/SIVsm was shown to target SAMHD1 for proteosomal degradation and led to elevation of dNTP levels, which in turn accelerated proviral DNA synthesis of lentiviruses in macrophages. Results We investigated both time-dependent and quantitative interplays between SAMHD1 level and dNTP concentrations during multiple exposures of Vpx in macrophages. The following were observed. First, SAMHD1 level was rapidly reduced by Vpx + VLP to undetectable levels by Western blot analysis. Recovery of SAMHD1 was very slow with less than 3% of the normal macrophage level detected at day 6 post Vpx treatment and only ~30% recovered at day 14. Second, dGTP, dCTP and dTTP levels peaked at day 1 post Vpx treatment, whereas dATP peaked at day 2. However, all dNTPs rapidly decreased starting at day 3, while SAMHD1 level was below the level of detection. Third, when Vpx pretreated macrophages were re-exposed to a second Vpx treatment at day 7, we observed dNTP elevation that had faster kinetics than the first Vpx + VLP treatment. Moreover, we performed a short kinetic analysis of the second Vpx treatment to find that dATP and dGTP levels peaked at 8 hours post secondary VLP treatment. dGTP peak was consistently higher than the primary, whereas peak dATP concentration was basically equivalent to the first Vpx + VLP treatment. Lastly, HIV-1 replication kinetics were faster in macrophages treated after the secondary Vpx treatments when compared to the initial single Vpx treatment. Conclusion This study reveals that a very low level of SAMHD1 sufficiently modulates the normally low dNTP levels in macrophages and proposes potential diverse mechanisms of Vpx-mediated dNTP regulation in macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0063-2) contains supplementary material, which is available to authorized users.
Collapse
|