1
|
Hypermethylation at the CXCR5 gene locus limits trafficking potential of CD8+ T cells into B-cell follicles during HIV-1 infection. Blood Adv 2022; 6:1904-1916. [PMID: 34991160 PMCID: PMC8941472 DOI: 10.1182/bloodadvances.2021006001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
CD8+ T-cells play an important role in HIV control. However, in human lymph nodes (LNs), only a small subset of CD8+ T-cells expresses CXCR5, the chemokine receptor required for cell migration into B cell follicles, which are major sanctuaries for HIV persistence in individuals on therapy. Here, we investigate the impact of HIV infection on follicular CD8+ T-cells (fCD8s) frequencies, trafficking pattern and CXCR5 regulation. We show that, although HIV infection results in a marginal increase of fCD8s in LN, the majority of HIV-specific CD8+ T-cells are CXCR5 negative (non-fCD8s) (p<0.003). Mechanistic investigations using ATAC-seq showed that non-fCD8s have closed chromatin at the CXCR5 transcriptional start site (TSS). DNA bisulfite sequencing identified DNA hypermethylation at the CXCR5 TSS as the most probable cause of closed chromatin. Transcriptional factor footprints analysis revealed enrichment of transforming growth factors (TGFs) at the TSS of fCD8s. In-vitro stimulation of non-fCD8s with recombinant TGF-β resulted in significant increase in CXCR5 expression (fCD8s). Thus, this study identifies TGF-β signaling as a viable strategy for increasing fCD8s frequencies in follicular areas of the LN where they are needed to eliminate HIV infected cells, with implications for HIV cure strategies.
Collapse
|
2
|
Huot N, Rascle P, Tchitchek N, Wimmer B, Passaes C, Contreras V, Desjardins D, Stahl-Hennig C, Le Grand R, Saez-Cirion A, Jacquelin B, Müller-Trutwin M. Role of NKG2a/c +CD8 + T cells in pathogenic versus non-pathogenic SIV infections. iScience 2021; 24:102314. [PMID: 33870131 PMCID: PMC8040270 DOI: 10.1016/j.isci.2021.102314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Some viruses have established an equilibrium with their host. African green monkeys (AGM) display persistent high viral replication in the blood and intestine during Simian immunodeficiency virus (SIV) infection but resolve systemic inflammation after acute infection and lack intestinal immune or tissue damage during chronic infection. We show that NKG2a/c+CD8+ T cells increase in the blood and intestine of AGM in response to SIVagm infection in contrast to SIVmac infection in macaques, the latter modeling HIV infection. NKG2a/c+CD8+ T cells were not expanded in lymph nodes, and CXCR5+NKG2a/c+CD8+ T cell frequencies further decreased after SIV infection. Genome-wide transcriptome analysis of NKG2a/c+CD8+ T cells from AGM revealed the expression of NK cell receptors, and of molecules with cytotoxic effector, gut homing, and immunoregulatory and gut barrier function, including CD73. NKG2a/c+CD8+ T cells correlated negatively with IL-23 in the intestine during SIVmac infection. The data suggest a potential regulatory role of NKG2a/c+CD8+ T cells in intestinal inflammation during SIV/HIV infections. Molecular determination of NKG2a/c+CD8+ T cells in two species of nonhuman primates Tissue distribution of NKG2a/c+CD8+ T cell is profoundly sculpted by SIV infections Intestinal NKG2a/c+CD8+ T cells correlated negatively with IL-23 in SIV infection NKG2a/c+CD8+ T cells might play a protective gut barrier function in HIV/SIV infection
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Nicolas Tchitchek
- Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), Paris, France
| | - Benedikt Wimmer
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Delphine Desjardins
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Christiane Stahl-Hennig
- Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Unit of Infection Models, Göttingen, Germany
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation et Persistance, 28 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
3
|
Huot N, Rascle P, Petitdemange C, Contreras V, Stürzel CM, Baquero E, Harper JL, Passaes C, Legendre R, Varet H, Madec Y, Sauermann U, Stahl-Hennig C, Nattermann J, Saez-Cirion A, Le Grand R, Keith Reeves R, Paiardini M, Kirchhoff F, Jacquelin B, Müller-Trutwin M. SIV-induced terminally differentiated adaptive NK cells in lymph nodes associated with enhanced MHC-E restricted activity. Nat Commun 2021; 12:1282. [PMID: 33627642 PMCID: PMC7904927 DOI: 10.1038/s41467-021-21402-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells play a critical understudied role during HIV infection in tissues. In a natural host of SIV, the African green monkey (AGM), NK cells mediate a strong control of SIVagm infection in secondary lymphoid tissues. We demonstrate that SIVagm infection induces the expansion of terminally differentiated NKG2alow NK cells in secondary lymphoid organs displaying an adaptive transcriptional profile and increased MHC-E-restricted cytotoxicity in response to SIV Env peptides while expressing little IFN-γ. Such NK cell differentiation was lacking in SIVmac-infected macaques. Adaptive NK cells displayed no increased NKG2C expression. This study reveals a previously unknown profile of NK cell adaptation to a viral infection, thus accelerating strategies toward NK-cell directed therapies and viral control in tissues.
Collapse
Affiliation(s)
- Nicolas Huot
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France ,grid.508487.60000 0004 7885 7602Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Caroline Petitdemange
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | | | - Eduard Baquero
- grid.462718.eInstitut Pasteur, Unité de Virologie Structurale, Paris, France
| | - Justin L. Harper
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA
| | - Caroline Passaes
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Rachel Legendre
- grid.428999.70000 0001 2353 6535Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Hugo Varet
- grid.428999.70000 0001 2353 6535Biomics Platform, Center for Technological Resources and Research (C2RT), Institut Pasteur, Paris, France
| | - Yoann Madec
- grid.428999.70000 0001 2353 6535 Institut Pasteur; Epidemiology of Emerging Diseases Unit, Paris, France
| | - Ulrike Sauermann
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Christiane Stahl-Hennig
- grid.418215.b0000 0000 8502 7018Deutsches Primatenzentrum - Leibniz Institut für Primatenforschung, Göttingen, Germany
| | - Jacob Nattermann
- grid.452463.2Medizinische Klinik und Poliklinik I, Universitätsklinikum Bonn, Germany; German Center for Infection Research (DZIF), Bonn, Germany
| | - Asier Saez-Cirion
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - R. Keith Reeves
- grid.38142.3c000000041936754XCenter for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Mirko Paiardini
- grid.189967.80000 0001 0941 6502Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA USA ,grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA USA
| | | | - Beatrice Jacquelin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Michaela Müller-Trutwin
- grid.428999.70000 0001 2353 6535Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| |
Collapse
|
4
|
Jochems SP, Jacquelin B, Tchitchek N, Busato F, Pichon F, Huot N, Liu Y, Ploquin MJ, Roché E, Cheynier R, Dereuddre-Bosquet N, Stahl-Henning C, Le Grand R, Tost J, Müller-Trutwin M. DNA methylation changes in metabolic and immune-regulatory pathways in blood and lymph node CD4 + T cells in response to SIV infections. Clin Epigenetics 2020; 12:188. [PMID: 33298174 PMCID: PMC7724887 DOI: 10.1186/s13148-020-00971-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular mechanisms underlying HIV-induced inflammation, which persists even during effective long-term treatment, remain incompletely defined. Here, we studied pathogenic and nonpathogenic simian immunodeficiency virus (SIV) infections in macaques and African green monkeys, respectively. We longitudinally analyzed genome-wide DNA methylation changes in CD4 + T cells from lymph node and blood, using arrays. DNA methylation changes after SIV infection were more pronounced in lymph nodes than blood and already detected in primary infection. Differentially methylated genes in pathogenic SIV infection were enriched for Th1-signaling (e.g., RUNX3, STAT4, NFKB1) and metabolic pathways (e.g., PRKCZ). In contrast, nonpathogenic SIVagm infection induced DNA methylation in genes coding for regulatory proteins such as LAG-3, arginase-2, interleukin-21 and interleukin-31. Between 15 and 18% of genes with DNA methylation changes were differentially expressed in CD4 + T cells in vivo. Selected identified sites were validated using bisulfite pyrosequencing in an independent cohort of uninfected, viremic and SIV controller macaques. Altered DNA methylation was confirmed in blood and lymph node CD4 + T cells in viremic macaques but was notably absent from SIV controller macaques. Our study identified key genes differentially methylated already in primary infection and in tissues that could contribute to the persisting metabolic disorders and inflammation in HIV-infected individuals despite effective treatment.
Collapse
Affiliation(s)
- Simon P Jochems
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, Paris, France
- Leiden University Medical Center, Leiden, The Netherlands
| | - Beatrice Jacquelin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Nicolas Tchitchek
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Fabien Pichon
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Nicolas Huot
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Yi Liu
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Mickaël J Ploquin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France
| | - Elodie Roché
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Rémi Cheynier
- UMR8104, CNRS, U1016, INSERM, Institut Cochin, Université de Paris, 75014, Paris, France
| | - Nathalie Dereuddre-Bosquet
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | | | - Roger Le Grand
- IDMIT Department/IBFJ, Immunology of Viral Infections and Autoimmune Diseases (IMVA), INSERM U1184, CEA, Université Paris Sud, Fontenay-aux-Roses, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Michaela Müller-Trutwin
- HIV Inflammation and Persistence Unit, Institut Pasteur, 28 Rue Didot, 75015, Paris, France.
| |
Collapse
|
5
|
Dickinson M, Kliszczak AE, Giannoulatou E, Peppa D, Pellegrino P, Williams I, Drakesmith H, Borrow P. Dynamics of Transforming Growth Factor (TGF)-β Superfamily Cytokine Induction During HIV-1 Infection Are Distinct From Other Innate Cytokines. Front Immunol 2020; 11:596841. [PMID: 33329587 PMCID: PMC7732468 DOI: 10.3389/fimmu.2020.596841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection triggers rapid induction of multiple innate cytokines including type I interferons, which play important roles in viral control and disease pathogenesis. The transforming growth factor (TGF)-β superfamily is a pleiotropic innate cytokine family, some members of which (activins and bone morphogenetic proteins (BMPs)) were recently demonstrated to exert antiviral activity against Zika and hepatitis B and C viruses but are poorly studied in HIV-1 infection. Here, we show that TGF-β1 is systemically induced with very rapid kinetics (as early as 1-4 days after viremic spread begins) in acute HIV-1 infection, likely due to release from platelets, and remains upregulated throughout infection. Contrastingly, no substantial systemic upregulation of activins A and B or BMP-2 was observed during acute infection, although plasma activin levels trended to be elevated during chronic infection. HIV-1 triggered production of type I interferons but not TGF-β superfamily cytokines from plasmacytoid dendritic cells (DCs) in vitro, putatively explaining their differing in vivo induction; whilst lipopolysaccharide (but not HIV-1) elicited activin A production from myeloid DCs. These findings underscore the need for better definition of the protective and pathogenic capacity of TGF-β superfamily cytokines, to enable appropriate modulation for therapeutic purposes.
Collapse
Affiliation(s)
- Matthew Dickinson
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anna E Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Dimitra Peppa
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Mortimer Market Centre, Department of HIV, CNWL NHS Trust, London, United Kingdom
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, London, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, London, United Kingdom
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
7
|
Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection. Proc Natl Acad Sci U S A 2017; 114:1976-1981. [PMID: 28159893 DOI: 10.1073/pnas.1621418114] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A significant challenge to HIV eradication is the elimination of viral reservoirs in germinal center (GC) T follicular helper (Tfh) cells. However, GCs are considered to be immune privileged for antiviral CD8 T cells. Here, we show a population of simian immunodeficiency virus (SIV)-specific CD8 T cells express CXCR5 (C-X-C chemokine receptor type 5, a chemokine receptor required for homing to GCs) and expand in lymph nodes (LNs) following pathogenic SIV infection in a cohort of vaccinated macaques. This expansion was greater in animals that exhibited superior control of SIV. The CXCR5+ SIV-specific CD8 T cells demonstrated enhanced polyfunctionality, restricted expansion of antigen-pulsed Tfh cells in vitro, and possessed a unique gene expression pattern related to Tfh and Th2 cells. The increase in CXCR5+ CD8 T cells was associated with the presence of higher frequencies of SIV-specific CD8 T cells in the GC. Following TCR-driven stimulation in vitro, CXCR5+ but not CXCR5- CD8 T cells generated both CXCR5+ as well as CXCR5- cells. However, the addition of TGF-β to CXCR5- CD8 T cells induced a population of CXCR5+ CD8 T cells, suggesting that this cytokine may be important in modulating these CXCR5+ CD8 T cells in vivo. Thus, CXCR5+ CD8 T cells represent a unique subset of antiviral CD8 T cells that expand in LNs during chronic SIV infection and may play a significant role in the control of pathogenic SIV infection.
Collapse
|
8
|
Immune activation in HIV infection: what can the natural hosts of simian immunodeficiency virus teach us? Curr Opin HIV AIDS 2016; 11:201-8. [PMID: 26845673 DOI: 10.1097/coh.0000000000000238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The review summarizes studies in natural hosts, with a particular focus on the control of immune activation and new insights into viral reservoirs. We discuss why these findings are relevant for HIV research today. RECENT FINDINGS AIDS resistance in natural hosts is characterized by a rapid control of inflammatory processes in response to simian immunodeficiency virus infection despite persistent viremia. Although CD4 T cells are dramatically depleted in the intestine in primary infection, interleukin 17-producing T helper cells (Th17) are preserved and natural hosts lack microbial translocation. Thus, viral replication in the gut is not sufficient to explain mucosal damage, but additional factors are necessary. Natural hosts also display a lower infection rate of stem-cell memory, central memory and follicular helper T cells. The follicles are characterized by a lack of viral trapping and the viral replication in secondary lymphoid organs is rapidly controlled. Hence, the healthy status of natural hosts is associated with preserved lymphoid environments. SUMMARY Understanding the underlying mechanisms of preservation of Th17 and of the low contribution of stem-cell memory, central memory and follicular helper T cells to viral reservoirs could benefit the search for preventive and curative approaches of HIV. Altogether, the complementarity of the model helps to identify strategies aiming at restoring full capacity of the immune system and decreasing the size of the viral reservoirs.
Collapse
|
9
|
Elevated Basal Pre-infection CXCL10 in Plasma and in the Small Intestine after Infection Are Associated with More Rapid HIV/SIV Disease Onset. PLoS Pathog 2016; 12:e1005774. [PMID: 27509048 PMCID: PMC4980058 DOI: 10.1371/journal.ppat.1005774] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/27/2016] [Indexed: 12/02/2022] Open
Abstract
Elevated blood CXCL10/IP-10 levels during primary HIV-1 infection (PHI) were described as an independent marker of rapid disease onset, more robust than peak viremia or CD4 cell nadir. IP-10 enhances the recruitment of CXCR3+ cells, which include major HIV-target cells, raising the question if it promotes the establishment of viral reservoirs. We analyzed data from four cohorts of HIV+ patients, allowing us to study IP-10 levels before infection (Amsterdam cohort), as well as during controlled and uncontrolled viremia (ANRS cohorts). We also addressed IP-10 expression levels with regards to lymphoid tissues (LT) and blood viral reservoirs in patients and non-human primates. Pre-existing elevated IP-10 levels but not sCD63 associated with rapid CD4 T-cell loss upon HIV-1 infection. During PHI, IP-10 levels and to a lesser level IL-18 correlated with cell-associated HIV DNA, while 26 other inflammatory soluble markers did not. IP-10 levels tended to differ between HIV controllers with detectable and undetectable viremia. IP-10 was increased in SIV-exposed aviremic macaques with detectable SIV DNA in tissues. IP-10 mRNA was produced at higher levels in the small intestine than in colon or rectum. Jejunal IP-10+ cells corresponded to numerous small and round CD68neg cells as well as to macrophages. Blood IP-10 response negatively correlated with RORC (Th17 marker) gene expression in the small intestine. CXCR3 expression was higher on memory CD4+ T cells than any other immune cells. CD4 T cells from chronically infected animals expressed extremely high levels of intra-cellular CXCR3 suggesting internalization after ligand recognition. Elevated systemic IP-10 levels before infection associated with rapid disease progression. Systemic IP-10 during PHI correlated with HIV DNA. IP-10 production was regionalized in the intestine during early SIV infection and CD68+ and CD68neg haematopoietic cells in the small intestine appeared to be the major source of IP-10. Chronic immune activation is a hallmark of HIV infection and contributes in multiple ways to HIV persistence. Here, we gained insights on the association between a pro-inflammatory chemokine, CXCL10/IP-10 and HIV infection in four cohorts of HIV+ individuals, studied at distinct stages of infection (before, primary and chronic stage with spontaneous- and treatment-controlled infection). We further analyzed pathogenic and non-pathogenic SIV infections to address IP-10 levels and the presence of infected cells in tissues (lymph nodes, small and large intestine). We found that elevated systemic IP-10 levels before HIV-1 infection associate with a more rapid disease progression. During primary infection, IP-10 in blood strongly correlated with the amount of infected cells in blood. The animal model showed that IP-10 expression was regionalized in the intestine and highest in the small intestine. Studies of aviremic animals suggest that high IP-10 is indicative of viral replication in lymphoid tissues. Haematopoietic cells rather than epithelial/endothelial cells mainly contributed to the IP-10 production in small intestine (jejunum). The receptor of IP-10 was highly expressed on memory CD4+ T cells, i.e. major target cells for the virus. This study contributes to our understanding of the establishment of HIV reservoirs and why IP-10 associates with HIV/AIDS.
Collapse
|
10
|
The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression. INFECTION GENETICS AND EVOLUTION 2016; 46:308-323. [PMID: 27394696 DOI: 10.1016/j.meegid.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/25/2022]
Abstract
African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.
Collapse
|
11
|
George J, Lewis MG, Renne R, Mattapallil JJ. Suppression of transforming growth factor β receptor 2 and Smad5 is associated with high levels of microRNA miR-155 in the oral mucosa during chronic simian immunodeficiency virus infection. J Virol 2015; 89:2972-8. [PMID: 25540365 PMCID: PMC4325739 DOI: 10.1128/jvi.03248-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/15/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic human immunodeficiency virus and simian immunodeficiency virus (HIV and SIV) infections are characterized by mucosal inflammation in the presence of anti-inflammatory cytokines such as transforming growth factor β (TGFβ). The mechanisms for refractiveness to TGFβ are not clear. Here we show that the expression of microRNA miR-155 was significantly upregulated in the oropharyngeal mucosa during chronic SIV infection and was coincident with downregulation of TGFβ receptor 2 (TGFβ-R2) and SMAD5, key TGFβ signaling genes that harbor putative target sites for miR-155. Ectopic expression of miR-155 in vitro was found to significantly downregulate TGFβ-R2 and Smad5 expression, suggesting a role for miR-155 in the suppression of TGFβ-R2 and SMAD5 genes in vivo. The downregulation of TGFβ signaling genes by miR-155 likely contributes to the nonresponsiveness to TGFβ during SIV infection and may inadvertently aid in increased immune activation during HIV and SIV infections.
Collapse
Affiliation(s)
- Jeffy George
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | - Rolf Renne
- University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
12
|
Sironi M, Biasin M, Gnudi F, Cagliani R, Saulle I, Forni D, Rainone V, Trabattoni D, Garziano M, Mazzotta F, Real LM, Rivero-Juarez A, Caruz A, Caputo SL, Clerici M. A regulatory polymorphism in HAVCR2 modulates susceptibility to HIV-1 infection. PLoS One 2014; 9:e106442. [PMID: 25180498 PMCID: PMC4152274 DOI: 10.1371/journal.pone.0106442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022] Open
Abstract
The HAVCR2 gene encodes TIM-3, an immunoglobulin superfamily member expressed by exhausted CD8+ T cells during chronic viral infection. We investigated whether genetic variation at HAVCR2 modulates the susceptibility to HIV-1 acquisition; specifically we focused on a 3′ UTR variant (rs4704846, A/G) that represents a natural selection target. We genotyped rs4704846 in three independent cohorts of HIV-1 exposed seronegative (HESN) individuals with different geographic origin (Italy and Spain) and distinct route of exposure to HIV-1 (sexual and injection drug use). Matched HIV-1 positive subjects and healthy controls were also analyzed. In all case-control cohorts the minor G allele at rs4704846 was more common in HIV-1 infected individuals than in HESN, with healthy controls showing intermediate frequency. Results from the three association analyses were combined through a random effect meta-analysis, which revealed no heterogeneity among samples (Cochrane's Q, p value = 0.89, I2 = 0) and yielded a p value of 6.8 ×10−4. The minor G allele at rs4704846 was found to increase HAVCR2 expression after in vitro HIV-1 infection. Thus, a positively selected polymorphism in the 3′ UTR, which modulates HAVCR2 expression, is associated with the susceptibility to HIV-1 infection. These data warrant further investigation into the role of TIM-3 in the prevention and treatment of HIV-1/AIDS.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
- * E-mail:
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Federica Gnudi
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, Bosisio Parini, Italy
| | - Veronica Rainone
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Micaela Garziano
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Francesco Mazzotta
- Infectious Disease Unit, S. Maria Annunziata Hospital Florence, Florence, Italy
| | - Luis Miguel Real
- Infectious Diseases and Microbiology Clinical Unit, Valme Hospital, Seville, Spain
| | - Antonio Rivero-Juarez
- Maimonides Institut for Biomedical Research (IMIBIC)-Reina Sofia Universitary Hospital-University of Cordoba, Cordoba, Spain
| | - Antonio Caruz
- Immunogenetics Unit, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Sergio Lo Caputo
- Infectious Disease Unit, S. Maria Annunziata Hospital Florence, Florence, Italy
| | - Mario Clerici
- Chair of Immunology, Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| |
Collapse
|
13
|
Abstract
Systemic chronic immune activation is considered today as the driving force of CD4(+) T-cell depletion and acquired immunodeficiency syndrome (AIDS). A residual chronic immune activation persists even in HIV-infected patients in which viral replication is successfully inhibited by anti-retroviral therapy, with the extent of this residual immune activation being associated with CD4(+) T-cell loss. Unfortunately, the causal link between chronic immune activation and CD4(+) T-cell loss has not been formally established. This article provides first a brief historical overview on how the perception of the causative role of immune activation has changed over the years and lists the different kinds of immune activation characteristic of human immunodeficiency virus (HIV) infection. The mechanisms proposed to explain the chronic immune activation are multiple and are enumerated here, as well as the mechanisms proposed on how chronic immune activation could lead to AIDS. In addition, we summarize the lessons learned from natural hosts that know how to 'show AIDS the door', and discuss how these studies informed the design of novel immune modulatory interventions that are currently being tested. Finally, we review the current approaches aimed at targeting chronic immune activation and evoke future perspectives.
Collapse
Affiliation(s)
- Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA.
| | | |
Collapse
|
14
|
Liovat AS, Rey-Cuillé MA, Lécuroux C, Jacquelin B, Girault I, Petitjean G, Zitoun Y, Venet A, Barré-Sinoussi F, Lebon P, Meyer L, Sinet M, Müller-Trutwin M. Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV-1 infection. PLoS One 2012; 7:e46143. [PMID: 23056251 PMCID: PMC3462744 DOI: 10.1371/journal.pone.0046143] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/28/2012] [Indexed: 12/23/2022] Open
Abstract
T cell activation levels, viral load and CD4(+) T cell counts at early stages of HIV-1 infection are predictive of the rate of progression towards AIDS. We evaluated whether the inflammatory profile during primary HIV-1 infection is predictive of the virological and immunological set-points and of disease progression. We quantified 28 plasma proteins during acute and post-acute HIV-1 infection in individuals with known disease progression profiles. Forty-six untreated patients, enrolled during primary HIV-1 infection, were categorized into rapid progressors, progressors and slow progressors according to their spontaneous progression profile over 42 months of follow-up. Already during primary infection, rapid progressors showed a higher number of increased plasma proteins than progressors or slow progressors. The plasma levels of TGF-β1 and IL-18 in primary HIV-1 infection were both positively associated with T cell activation level at set-point (6 months after acute infection) and together able to predict 74% of the T cell activation variation at set-point. Plasma IP-10 was positively and negatively associated with, respectively, T cell activation and CD4(+) T cell counts at set-point and capable to predict 30% of the CD4(+) T cell count variation at set-point. Moreover, plasma IP-10 levels during primary infection were predictive of rapid progression. In primary infection, IP-10 was an even better predictor of rapid disease progression than viremia or CD4(+) T cell levels at this time point. The superior predictive capacity of IP-10 was confirmed in an independent group of 88 HIV-1 infected individuals. Altogether, this study shows that the inflammatory profile in primary HIV-1 infection is associated with T cell activation levels and CD4(+) T cell counts at set-point. Plasma IP-10 levels were of strong predictive value for rapid disease progression. The data suggest IP-10 being an earlier marker of disease progression than CD4(+) T cell counts or viremia levels.
Collapse
Affiliation(s)
- Anne-Sophie Liovat
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
- Université Paris Diderot, Paris, France
| | - Marie-Anne Rey-Cuillé
- Institut Pasteur, Unité de Recherche et d'Expertise Epidémiologie des Maladies Emergentes, Paris, France
| | - Camille Lécuroux
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Régulation de la réponse immune: infection VIH-1 et auto-immunité, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Béatrice Jacquelin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Isabelle Girault
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Régulation de la réponse immune: infection VIH-1 et auto-immunité, Université Paris-Sud, Le Kremlin Bicêtre, France
| | - Gaël Petitjean
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | - Yasmine Zitoun
- INSERM U1018, Service d’Epidémiologie et de Santé Publique, AP-HP, Université Paris-Sud, Le Kremlin-Bicêtre, France
- AP-HP, Laboratoire de Virologie, CHU Necker-Enfants Malades, Paris, France
| | - Alain Venet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Régulation de la réponse immune: infection VIH-1 et auto-immunité, Université Paris-Sud, Le Kremlin Bicêtre, France
| | | | - Pierre Lebon
- Hôpital Cochin-Saint-Vincent de Paul & Université Paris Descartes, Laboratoire de Virologie, Paris, France
| | - Laurence Meyer
- INSERM U1018, Service d’Epidémiologie et de Santé Publique, AP-HP, Université Paris-Sud, Le Kremlin-Bicêtre, France
- AP-HP, Laboratoire de Virologie, CHU Necker-Enfants Malades, Paris, France
| | - Martine Sinet
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1012, Régulation de la réponse immune: infection VIH-1 et auto-immunité, Université Paris-Sud, Le Kremlin Bicêtre, France
| | | |
Collapse
|
15
|
Chaoul N, Burelout C, Peruchon S, van Buu BN, Laurent P, Proust A, Raphael M, Garraud O, Le Grand R, Prevot S, Richard Y. Default in plasma and intestinal IgA responses during acute infection by simian immunodeficiency virus. Retrovirology 2012; 9:43. [PMID: 22632376 PMCID: PMC3414759 DOI: 10.1186/1742-4690-9-43] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Conflicting results regarding changes in mucosal IgA production or in the proportions of IgA plasma cells in the small and large intestines during HIV-infection have been previously reported. Except in individuals repeatedly exposed to HIV-1 but yet remaining uninfected, HIV-specific IgAs are frequently absent in mucosal secretions from HIV-infected patients. However, little is known about the organization and functionality of mucosal B-cell follicles in acute HIV/SIV infection during which a T-dependent IgA response should have been initiated. In the present study, we evaluated changes in B-cell and T-cell subsets as well as the extent of apoptosis and class-specific plasma cells in Peyer's Patches, isolated lymphoid follicles, and lamina propria. Plasma levels of IgA, BAFF and APRIL were also determined. RESULTS Plasma IgA level was reduced by 46% by 28 days post infection (dpi), and no IgA plasma cells were found within germinal centers of Peyer's Patches and isolated lymphoid follicles. This lack of a T-dependent IgA response occurs although germinal centers remained functional with no sign of follicular damage, while a prolonged survival of follicular CD4+ T-cells and normal generation of IgG plasma cells is observed. Whereas the average plasma BAFF level was increased by 4.5-fold and total plasma cells were 1.7 to 1.9-fold more numerous in the lamina propria, the relative proportion of IgA plasma cells in this effector site was reduced by 19% (duodemun) to 35% (ileum) at 28 dpi. CONCLUSION Our data provide evidence that SIV is unable to initiate a T-dependent IgA response during the acute phase of infection and favors the production of IgG (ileum) or IgM (duodenum) plasma cells at the expense of IgA plasma cells. Therefore, an early and generalized default in IgA production takes place during the acute of phase of HIV/SIV infection, which might impair not only the virus-specific antibody response but also IgA responses to other pathogens and vaccines as well. Understanding the mechanisms that impair IgA production during acute HIV/SIV infection is crucial to improve virus-specific response in mucosa and control microbial translocation.
Collapse
Affiliation(s)
- Nada Chaoul
- Commissariat à l'Energie Atomique (CEA), CEA, Institut des Maladies Emergentes et Thérapies Innovantes Service d'Immuno-Virologie, CEA, Fontenay-aux Roses, F-92260, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Plasmacytoid dendritic cells in HIV infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:71-107. [PMID: 22975872 DOI: 10.1007/978-1-4614-4433-6_3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are innate immune cells that are specialized to produce interferon-alpha (IFNα) and participate in activating adaptive immune responses. Although IFNα inhibits HIV-1 (HIV) replication in vitro, pDCs may act as inflammatory and immunosuppressive dendritic cells (DCs) rather than classical antigen-presenting cells during chronic HIV infection in vivo, contributing more to HIV pathogenesis than to protection. Improved understanding of HIV-pDC interactions may yield potential new avenues of discovery to prevent HIV transmission, to blunt chronic immune activation and exhaustion, and to enhance beneficial adaptive immune responses. In this chapter we discuss pDC biology, including pDC development from progenitors, trafficking and localization of pDCs in the body, and signaling pathways involved in pDC activation. We focus on the role of pDCs in HIV transmission, chronic disease progression and immune activation, and immunosuppression through regulatory T cell development. Lastly, we discuss potential future directions for the field which are needed to strengthen our current understanding of the role of pDCs in HIV transmission and pathogenesis.
Collapse
|
17
|
Kader M, Bixler S, Roederer M, Veazey R, Mattapallil JJ. CD4 T cell subsets in the mucosa are CD28+Ki-67-HLA-DR-CD69+ but show differential infection based on alpha4beta7 receptor expression during acute SIV infection. J Med Primatol 2010; 38 Suppl 1:24-31. [PMID: 19863675 DOI: 10.1111/j.1600-0684.2009.00372.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND CD4 T cell depletion in the mucosa has been well documented during acute HIV and SIV infections. The demonstration the HIV/SIVcan use the alpha4beta7 receptor for viral entry suggests that these viruses selectively target CD4 T cells in the mucosa that express high levels of alpha4beta7 receptor. METHODS Mucosal samples obtained from SIV infected rhesus macaques during the early phase of infection were used for immunophenotypic analysis. CD4 T cell subsets were sorted based on the expression of beta7 and CD95 to quantify the level of SIV infection in different subsets of CD4 T cells. Changes in IL-17, IL-21, IL-23 and TGFbeta mRNA expression was determined using Taqman PCR. RESULTS CD4 T cells in the mucosa were found to harbor two major population of cells; -25% of CD4 T cells expressed the alpha4(+)beta7(hi) phenotype, whereas the rest of the 75% expressed an alpha4(+)beta7(int) phenotype. Both the subsets were predominantly CD28(+)Ki-67(-)HLA-DR(-) but CD69(+), and expressed detectable levels of CCR5 on their surface. Interestingly, however, alpha4(+)beta7(hi)CD4 T cells were found to harbor more SIV than the alpha4(+)beta7(int) subsets at day 10 pi. Early infection was associated with a dramatic increase in the expression of IL-17, and IL-17 promoting cytokines IL-21, IL-23, and TGFbeta that stayed high even after the loss of mucosal CD4 T cells. CONCLUSIONS Our results suggest that the differential expression of the alpha4beta7 receptor contributes to the differences in the extent of infection in CD4 T cell subsets in the mucosa. Early infection is associated dysregulation of the IL-17 network in mucosal tissues involves other non-Th-17 cells that likely contributes to the pro-inflammatory environment in the mucosa during acute stages of SIV infection.
Collapse
Affiliation(s)
- M Kader
- Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
18
|
Jacquelin B, Mayau V, Targat B, Liovat AS, Kunkel D, Petitjean G, Dillies MA, Roques P, Butor C, Silvestri G, Giavedoni LD, Lebon P, Barré-Sinoussi F, Benecke A, Müller-Trutwin MC. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled type I IFN response. J Clin Invest 2010; 119:3544-55. [PMID: 19959873 DOI: 10.1172/jci40093] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/19/2009] [Indexed: 01/12/2023] Open
Abstract
African green monkeys (AGMs) infected with the AGM type of SIV (SIVagm) do not develop chronic immune activation and AIDS, despite viral loads similar to those detected in humans infected with HIV-1 and rhesus macaques (RMs) infected with the RM type of SIV (SIVmac). Because chronic immune activation drives progressive CD4+ T cell depletion and immune cell dysfunctions, factors that characterize disease progression, we sought to understand the molecular basis of this AGM phenotype. To this end, we longitudinally assessed the gene expression profiles of blood- and lymph node-derived CD4+ cells from AGMs and RMs in response to SIVagm and SIVmac infection, respectively, using a genomic microarray platform. The molecular signature of acute infection was characterized, in both species, by strong upregulation of type I IFN-stimulated genes (ISGs). ISG expression returned to basal levels after postinfection day 28 in AGMs but was sustained in RMs, especially in the lymph node-derived cells. We also found that SIVagm induced IFN-alpha production by AGM cells in vitro and that low IFN-alpha levels were sufficient to induce strong ISG responses. In conclusion, SIV infection triggered a rapid and strong IFN-alpha response in vivo in both AGMs and RMs, with this response being efficiently controlled only in AGMs, possibly as a result of active regulatory mechanisms.
Collapse
Affiliation(s)
- Béatrice Jacquelin
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lederer S, Favre D, Walters KA, Proll S, Kanwar B, Kasakow Z, Baskin CR, Palermo R, McCune JM, Katze MG. Transcriptional profiling in pathogenic and non-pathogenic SIV infections reveals significant distinctions in kinetics and tissue compartmentalization. PLoS Pathog 2009; 5:e1000296. [PMID: 19214219 PMCID: PMC2633618 DOI: 10.1371/journal.ppat.1000296] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/13/2009] [Indexed: 11/26/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected macaques, whereas natural reservoir hosts exhibit limited disease and pathology. It is, however, unclear how natural hosts can sustain high viral loads, comparable to those observed in the pathogenic model, without developing severe disease. We performed transcriptional profiling on lymph node, blood, and colon samples from African green monkeys (natural host model) and Asian pigtailed macaques (pathogenic model) to directly compare gene expression patterns during acute pathogenic versus non-pathogenic SIV infection. The majority of gene expression changes that were unique to either model were detected in the lymph nodes at the time of peak viral load. Results suggest a shift toward cellular stress pathways and Th1 profiles during pathogenic infection, with strong and sustained type I and II interferon responses. In contrast, a strong type I interferon response was initially induced during non-pathogenic infection but resolved after peak viral load. The natural host also exhibited controlled Th1 profiles and better preservation of overall cell homeostasis. This study identified gene expression patterns that are specific to disease susceptibility, tissue compartmentalization, and infection duration. These patterns provide a unique view of how host responses differ depending upon lentiviral infection outcome. Simian immunodeficiency virus (SIV) does not cause disease in African green monkeys (a natural host for the virus), whereas experimentally infected Asian macaques (a non-natural host) develop a progressive disease that is similar to that which occurs in HIV-infected humans. Insight into how HIV causes disease and leads to development of AIDS may therefore be gained by comparing the response of natural and non-natural hosts to SIV infection. To this end, we examined changes that occurred in gene expression levels over time and in multiple tissues derived from African green monkeys and Asian macaques experimentally infected with SIV. Infection leads to host-specific gene expression patterns in lymph nodes, blood, and colon. The natural and non-natural hosts differed with respect to the timing, intensity, and duration of infection-induced gene expression changes associated with inflammation and response to stress.
Collapse
Affiliation(s)
- Sharon Lederer
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David Favre
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Kathie-Anne Walters
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sean Proll
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Bittoo Kanwar
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California, San Francisco, California, United States of America
| | - Zeljka Kasakow
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Carole R. Baskin
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Robert Palermo
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Joseph M. McCune
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
20
|
Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 2009; 29:419-28. [PMID: 18676179 DOI: 10.1016/j.it.2008.05.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 11/22/2022]
Abstract
Identifying distinctions between pathogenic HIV and simian immunodeficiency virus (SIV) infections and nonprogressive SIV in natural African primate hosts might provide key insights into HIV pathogenesis. Similar to pathogenic HIV infection in humans, natural SIV infections result in high viral replication and massive acute depletion of mucosal CD4(+) T cells. A key distinction of natural SIV infections is a rapidly developing anti-inflammatory milieu that prevents chronic activation, apoptosis and proliferation of T cells and preserves the function of other immune cell subsets, thus contributing to the integrity of the mucosal barrier and the lack of microbial translocation from the gut to the peritoneum. Immunologic features observed during natural SIV infections suggest approaches for designing new strategies for producing novel second-generation vaccines and therapeutic approaches to inhibit disease progression in HIV-infected humans.
Collapse
|
21
|
Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang KT. MicroRNA profile changes in human immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology 2008; 5:118. [PMID: 19114009 PMCID: PMC2644721 DOI: 10.1186/1742-4690-5-118] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) play diverse roles in regulating cellular and developmental functions. We have profiled the miRNA expression in peripheral blood mononuclear cells from 36 HIV-1 seropositive individuals and 12 normal controls. The HIV-1-positive individuals were categorized operationally into four classes based on their CD4+ T-cell counts and their viral loads. We report that specific miRNA signatures can be observed for each of the four classes.
Collapse
Affiliation(s)
- Laurent Houzet
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Coleman CA, Muller-Trutwin MC, Apetrei C, Pandrea I. T regulatory cells: aid or hindrance in the clearance of disease? J Cell Mol Med 2008; 11:1291-325. [PMID: 18205702 PMCID: PMC4401294 DOI: 10.1111/j.1582-4934.2007.00087.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CD4+ CD25+ T regulatory cells (Tregs) are classified as a subset of T cells whose role is the suppression and regulation of immune responses to self and non-self. Since their discovery in the early 1970s, the role of CD4+ CD25+ Tregs in both autoimmune and infectious disease has continued to expand. This review exam-ines the recent advances on the role CD4+ CD25+ Tregs may be playing in various diseases regarding pro-gression or protection. In addition, advances made in the purification and manipulation of CD4+ CD25+ Tregs using new cell markers, techniques and antibodies are discussed. Ultimately, an overall understanding of the exact mechanism which CD4+ CD25+ Tregs implement during disease progression will enhance our ability to manipulate CD4+ CD25+ Tregs in a clinically beneficial manner.
Collapse
Affiliation(s)
- Clint A Coleman
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | | | | |
Collapse
|
23
|
Plasmacytoid dendritic cell dynamics and alpha interferon production during Simian immunodeficiency virus infection with a nonpathogenic outcome. J Virol 2008; 82:5145-52. [PMID: 18385227 DOI: 10.1128/jvi.02433-07] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We addressed the role of plasmacytoid dendritic cells (PDC) in protection against AIDS in nonpathogenic simian immunodeficiency virus (SIVagm) infection in African green monkeys (AGMs). PDC were monitored in blood and lymph nodes (LNs) starting from day 1 postinfection. We observed significant declines in blood during acute infection. However, PDC then returned to normal levels, and chronically infected AGMs showed no decrease of PDC in blood. There was a significant increase of PDC in LNs during acute infection. Blood PDC displayed only weak alpha interferon (IFN-alpha) responses to TLR9 agonist stimulation before infection. However, during acute infection, both blood and LN PDC showed a transiently increased propensity for IFN-alpha production. Bioactive IFN-alpha was detected in plasma concomitant with the peak of viremia, though levels were only low to moderate in some animals. Plasma interleukin 6 (IL-6) and IL-12 were not increased. In conclusion, PDC were recruited to the LNs and displayed increased IFN-alpha production during acute infection. However, increases in IFN-alpha were transient. Together with the lack of inflammatory cytokine responses, these events might play an important role in the low level of T-cell activation which is associated with protection against AIDS in nonpathogenic SIVagm infection.
Collapse
|
24
|
Amarnath S, Dong L, Li J, Wu Y, Chen W. Endogenous TGF-beta activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4+CD25- T cells. Retrovirology 2007; 4:57. [PMID: 17688698 PMCID: PMC2096626 DOI: 10.1186/1742-4690-4-57] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/09/2007] [Indexed: 01/17/2023] Open
Abstract
Background CD4+CD25+ T regulatory cells (Tregs) play an important role in regulating immune responses, and in influencing human immune diseases such as HIV infection. It has been shown that human CD4+CD25+ Tregs can be induced in vitro by TCR stimulation of CD4+CD25- T cells. However, the mechanism remains elusive, and intriguingly, similar treatment of murine CD4+CD25- cells did not induce CD4+CD25+Foxp3+ Tregs unless exogenous TGF-β was added during stimulation. Thus, we investigated the possible role of TGF-β in the induction of human Tregs by TCR engagement. We also explored the effects of TGF-β on HIV-1 infection mediated induction of human Tregs since recent evidence has suggested that HIV-1 infection may also impact the generation of Tregs in infected patients. Results We show here that endogenous TGF-β is key to TCR induction of Foxp3 in human CD4+CD25- T cells. These events involve, first, the production of TGF-β by TCR and CD28 stimulation and the activation of latent TGF-β by reactive oxygen species generated from the activated T cells. Biologically active TGF-β then engages in the induction of Foxp3. Neutralization of active TGF-β with anti-TGF-β antibody or elimination of ROS with MnTBAP abrogated Foxp3 expression. HIV-1 infection enhanced Foxp3 expression in activated CD4+CD25- T cells; which was also abrogated by blockade of endogenous TGF-β. Conclusion Several conclusions can be drawn from this work: (1) TCR and CD28-induced Foxp3 expression is a late event following TCR stimulation; (2) TGF-β serves as a link in Foxp3 induction in human CD4+CD25- T cells following TCR stimulation, which induces not only latent, but also active TGF-β; (3) the activation of TGF-β requires reactive oxygen species; (4) HIV infection results in an increase in Foxp3 expression in TCR-activated CD25- T cells, which is also associated with TGF-β. Taken together, our findings reinforce a definitive role of TGF-β not only in the generation of Tregs with respect to normal immune responses, but also is critical in immune diseases such as HIV-1 infection.
Collapse
Affiliation(s)
- Shoba Amarnath
- Mucosal Immunology Unit, OIIB, NIDCR, NIH, Bethesda, MD 20895, USA
| | - Li Dong
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - Jun Li
- Mucosal Immunology Unit, OIIB, NIDCR, NIH, Bethesda, MD 20895, USA
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | - WanJun Chen
- Mucosal Immunology Unit, OIIB, NIDCR, NIH, Bethesda, MD 20895, USA
| |
Collapse
|
25
|
Jacquelin B, Mayau V, Brysbaert G, Regnault B, Diop OM, Arenzana-Seisdedos F, Rogge L, Coppée JY, Barré-Sinoussi F, Benecke A, Müller-Trutwin MC. Long oligonucleotide microarrays for African green monkey gene expression profile analysis. FASEB J 2007; 21:3262-71. [PMID: 17507667 DOI: 10.1096/fj.07-8271com] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonhuman primates, including African green monkey (AGM), are important models for biomedical research. The information on monkey genomes is still limited and no versatile gene expression screening tool is available. We tested human whole genome microarrays for cross-species reactivity with AGM transcripts using both long oligonucleotide arrays (60-mer probes) and short oligonucleotide arrays (25-mer). Using the long oligonucleotide arrays, we detected 4-fold more AGM transcripts than with the short oligonucleotide technology. The number of detected transcripts was comparable to that detected using human RNA, with 87% of the detected genes being shared between both species. The specificity of the signals obtained with the long oligonucleotide arrays was determined by analyzing the transcriptome of concanavalin A-activated CD4+ T cells vs. nonactivated T cells of two monkey species AGM and macaque. For both species, the genes showing the most significant changes in expression, such as IL-2R, were those known to be regulated in human CD4+ T cell activation. Finally, tissue specificity of the signals was established by comparing the transcription profiles of AGM brain and tonsil cells. In conclusion, the ABI human microarray platform provides a highly valuable tool for the assessment of AGM gene expression profiles.
Collapse
Affiliation(s)
- Béatrice Jacquelin
- Unité de Régulations des Infections Rétrovirales, Institut Pasteur, 25, rue du Docteur Roux, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li Y, Chan EY, Katze MG. Functional genomics analyses of differential macaque peripheral blood mononuclear cell infections by human immunodeficiency virus-1 and simian immunodeficiency virus. Virology 2007; 366:137-49. [PMID: 17507074 PMCID: PMC2082051 DOI: 10.1016/j.virol.2007.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/23/2007] [Accepted: 04/05/2007] [Indexed: 11/28/2022]
Abstract
The pathogenicity of the primate lentiviruses, human, and simian immunodeficiency viruses, is host-specific. Previous studies indicated that the highly pathogenic human lentivirus HIV-1 has markedly reduced pathogenicity compared to the pathogenic simian lentivirus SIV in pigtail macaques (Macaca nemestrina). We therefore hypothesized that the pigtail macaque peripheral blood mononuclear cells (mPBMCs) would respond differently to infections of HIV-1 and pathogenic SIV. To elucidate the cellular responses to the infections of HIV-1 and SIV, we infected mPBMC with these two viruses. Like infections in vivo, HIV-1 and SIV demonstrated distinct replication kinetics in mPBMCs, with HIV-1 replicating at significantly lower levels. Similarly, gene expression profiling facilitated by macaque-specific oligonucleotide microarrays also revealed distinct expression patterns of genes between the HIV-1- and SIV-infected mPBMCs; in particular, genes associated with the antigen presentation, T cell receptor, ERK/MAPK signaling, Wnt/beta-catenin signaling, and natural killer cell signaling pathways were differentially regulated between these two viruses. Most interestingly, despite the lower levels of replication, HIV-1 triggered a more robust regulation of immune response genes early after infection; the converse was true in SIV-infected mPBMCs. Our results therefore suggest that macaques may be controlling the infection of HIV-1 at an early stage through coordinated regulation of host defense pathways.
Collapse
Affiliation(s)
- Yu Li
- Department of Microbiology and Washington National Primate Research Center, University of Washington, Box 358070, Seattle, WA 98195-8070, USA
| | | | | |
Collapse
|
27
|
Heeney JL, Plotkin SA. Immunological correlates of protection from HIV infection and disease. Nat Immunol 2007; 7:1281-4. [PMID: 17110946 DOI: 10.1038/ni1206-1281] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent meeting on "Immune Correlates of Protection from HIV Infection and Disease" examined new data from a variety of preclinical and clinical settings. These new insights may facilitate vaccine design and clinical evaluation.
Collapse
Affiliation(s)
- Jonathan L Heeney
- Department of Virology, Biomedical Primate Research Centre, University of Leiden, The Netherlands.
| | | |
Collapse
|
28
|
Smith SM. The pathogenesis of HIV infection: stupid may not be so dumb after all. Retrovirology 2006; 3:60. [PMID: 16961920 PMCID: PMC1592118 DOI: 10.1186/1742-4690-3-60] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 09/08/2006] [Indexed: 11/29/2022] Open
Abstract
In the mid-1990's, researchers hypothesized, based on new viral load data, that HIV-1 causes CD4+ T-cell depletion by direct cytopathic effect. New data from non-human primate studies has raised doubts about this model of HIV-1 pathogenesis. Despite having high levels of viremia, most SIV infections are well tolerated by their natural hosts. Two recent studies of these models provide information, which may be useful in determining how HIV-1 causes CD4+ T-cell loss. A full understanding of pathogenesis may lead to novel therapies, which preserve the immune system without blocking virus replication.
Collapse
Affiliation(s)
- Stephen M Smith
- Saint Michael's Medical Center and The New Jersey Medical School, Newark New Jersey 07102, USA.
| |
Collapse
|