1
|
Ayala-Torres C, Liu J, Dantuma NP, Masucci MG. Regulation of N-degron recognin-mediated autophagy by the SARS-CoV-2 PLpro ubiquitin deconjugase. Autophagy 2025; 21:1019-1038. [PMID: 39723606 PMCID: PMC12013424 DOI: 10.1080/15548627.2024.2442849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase. PLpro was detected in protein complexes that control multiple ubiquitin and ubiquitin-like (UbL) regulated signaling and effector pathways. By restricting the analysis to cytosolic and membrane-associated ubiquitin ligases, we found that PLpro interacts with N-recognin ubiquitin ligases and preferentially rescues type I N-degron substrates from proteasomal degradation. PLpro stabilized N-degron carrying HSPA5/BiP/GRP78, which is arginylated in the cytosol upon release from the endoplasmic reticulum (ER) during ER stress, and enhanced the Arg-HSPA5-driven oligomerization of the N-recognin SQSTM1/p62 that serves as a platform for phagophore assembly. However, while in addition to Arg-HSPA5 and SQSTM1/p62, ATG9A, WIPI2, and BECN1/Beclin 1 were detected in PLpro immunoprecipitates, other components of the autophagosome biogenesis machinery, such as the ATG12-ATG5-ATG16L1 complex and MAP1LC3/LC3 were absent, which correlated with proteolytic inactivation of ULK1, impaired production of lipidated LC3-II, and inhibition of reticulophagy. The findings highlight a novel mechanism by which, through the reprogramming of autophagy, the PLpro deubiquitinase may contribute to the remodeling of intracellular membranes in coronavirus-infected cells.
Collapse
Affiliation(s)
- Carlos Ayala-Torres
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Nico P. Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
2
|
Yang L, Du X, Hu Y, Wu Z, Bao W. Insight into mechanism of ALKBH5-mediated N 6-methyladenosine (m 6A) regulating porcine epidemic diarrhea virus infection in IPEC-J2 cells. Int J Biol Macromol 2025; 310:143501. [PMID: 40280045 DOI: 10.1016/j.ijbiomac.2025.143501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/29/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Porcine epidemic diarrhea (PED), induced by porcine epidemic diarrhea virus (PEDV) infection, represents a highly contagious swine disease that causes substantial economic losses in the global pig industry. As the most prevalent RNA modification, N6-methyladenosine (m6A) has emerged as a crucial epitranscriptomic regulator of host-pathogen interactions, although its functional significance in PEDV-infected porcine intestinal epithelial cells (IPEC-J2) remains to be fully elucidated. This study drew m6A maps before and after ALKBH5 interfering with IPEC-J2 cells, revealing the mechanism by which ALKBH5 mediated m6A regulates PEDV infection in IPEC-J2 cells. This study employs an in vitro model of PEDV-induced IPEC-J2 cell damage to investigate the regulatory mechanisms of m6A methylation in host antiviral responses. Utilizing a comprehensive multi-omics approach, including MeRIP-seq, RNA-seq, qPCR, Western blot, MeRIP-qPCR, and RIP-qPCR, we systematically uncovered the critical role of m6A methylation in antiviral defense. Our findings reveal that ALKBH5, a key demethylase during PEDV infection, plays a pivotal role in modulating m6A modification levels. Specifically, gene silencing of ALKBH5 significantly upregulates m6A modification but downregulates expression of the antiviral effector genes IFIT3 and HERC5. Mechanistically, we demonstrate that the YTHDC2 protein selectively recognizes m6A modification sites within IFIT3 and HERC5 transcripts, thereby mediating ALKBH5-dependent regulation of mRNA stability and protein expression. Functional analyses further reveal that IFIT3 activates the IRF3/TBK1 signaling axis, while HERC5 enhances antiviral responses by modulating the key effector molecule ISG15. Together, these findings establish a synergistic antiviral mechanism in IPEC-J2 cells. This study is the first to elucidate the novel ALKBH5-YTHDC2-m6A molecular axis, which orchestrates host antiviral immunity through a dual-pathway regulatory mode. These findings provide a theoretical foundation for understanding the role of RNA epigenetic modifications in enterovirus infections and offer a molecular basis for developing m6A-targeted strategies to prevent and control porcine infectious gastroenteritis.
Collapse
Affiliation(s)
- Li Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China.
| | - Xiaomei Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Yueqing Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
| | - Zhengchang Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
3
|
Bruno L, Nappo MA, Frontoso R, Perrotta MG, Di Lecce R, Guarnieri C, Ferrari L, Corradi A. West Nile Virus (WNV): One-Health and Eco-Health Global Risks. Vet Sci 2025; 12:288. [PMID: 40266979 PMCID: PMC11945822 DOI: 10.3390/vetsci12030288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 04/25/2025] Open
Abstract
West Nile virus (WNV) is an important zoonotic pathogen belonging to the Flaviviridae family, which is endemic in some areas and emerging in others. WNV is transmitted by blood-sucking mosquitoes of the genus Culicoides, Aedes, and Anopheles, and the infection can cause different clinical symptoms. The most common and benign illness in humans is West Nile fever (WNF), but a lethal neurological disease (WNND), related to the neuro-invasiveness of WNV lineage 2, represents the highest health risk of WNV infection. The neuro-clinical form is recognized in mammals (land and cetaceans), particularly in humans (elderly or immunosuppressed) and in horses, avian species, and wildlife animals ranging free or in a zoological setting. This review highlights the most relevant data regarding epidemiology, virology, pathogenesis and immunity, clinical signs and differential diagnosis, pathology and imaging, histopathology and gross pathology, economic impact, influence of climate change, and surveillance of WNV. Climate change has favored the wide spread of WNV in many areas of the globe and consequent One-Health and Eco-Health emergencies, influencing the health of human beings, animals, and ecosystems.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, Castellammare di Stabia, 80053 Naples, Italy;
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, Castellammare di Stabia, 80053 Naples, Italy;
| | - Raffaele Frontoso
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (I.Z.S.M.), Portici, 80055 Naples, Italy
| | - Maria Gabriella Perrotta
- Ministry of Health, Office 3 exDGSAF of the General Directorate of Animal Health, 00144 Rome, Italy;
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (R.D.L.); (C.G.); (A.C.)
| |
Collapse
|
4
|
Chen Z, Li Z, Wang Y, Dushimova Z, Gulnara K, Takeda S, Zhou Z, Xu X. ISGylation: is our genome yearning for such a modification? Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40103488 DOI: 10.3724/abbs.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
ISGylation is the post-translational modification of protein substrates covalently conjugated with the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15). Although initially linked to antiviral immunity, recent evidence highlights important roles for ISGylation in various biological processes, such as maintaining genomic stability, promoting tumourigenesis, and being involved in other pathological conditions. In this review, we examine the molecular mechanisms underlying ISGylation, its interplay with other post-translational modifications, and its involvement in diverse biological and pathological processes. We propose future research directions to advance the field and discuss how ISGylation might be harnessed to ensure human health, particularly genome instability-associated diseases.
Collapse
Affiliation(s)
- Zheng Chen
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua 362500, China
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zheng Li
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine (sgh-dhhCPM), Dehua Hospital, Dehua 362500, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zaure Dushimova
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Kapanova Gulnara
- Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty 050040, Kazakhstan
| | - Shunichi Takeda
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, University of Hong Kong, Hong Kong 999077, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
5
|
Moezpoor MR, Stevenson M. Help or Hinder: Protein Host Factors That Impact HIV-1 Replication. Viruses 2024; 16:1281. [PMID: 39205255 PMCID: PMC11360189 DOI: 10.3390/v16081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Interactions between human immunodeficiency virus type 1 (HIV-1) and the host factors or restriction factors of its target cells determine the cell's susceptibility to, and outcome of, infection. Factors intrinsic to the cell are involved at every step of the HIV-1 replication cycle, contributing to productive infection and replication, or severely attenuating the chances of success. Furthermore, factors unique to certain cell types contribute to the differences in infection between these cell types. Understanding the involvement of these factors in HIV-1 infection is a key requirement for the development of anti-HIV-1 therapies. As the list of factors grows, and the dynamic interactions between these factors and the virus are elucidated, comprehensive and up-to-date summaries that recount the knowledge gathered after decades of research are beneficial to the field, displaying what is known so that researchers can build off the groundwork of others to investigate what is unknown. Herein, we aim to provide a review focusing on protein host factors, both well-known and relatively new, that impact HIV-1 replication in a positive or negative manner at each stage of the replication cycle, highlighting factors unique to the various HIV-1 target cell types where appropriate.
Collapse
Affiliation(s)
- Michael Rameen Moezpoor
- Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Stevenson
- Raymond F. Schinazi and Family Endowed Chair in Biomedicine; Professor of Medicine; Director, Institute of AIDS and Emerging Infectious Diseases; Department of Microbiology and Immunology, University of Miami Leonard M. Miller School of Medicine, Life Science Technology Park, 1951 NW 7th Avenue, Room 2331B, Suite 200, Miami, FL 33136, USA;
| |
Collapse
|
6
|
Valero Y, Chaves-Pozo E, Cuesta A. Fish HERC7: Phylogeny, Characterization, and Potential Implications for Antiviral Immunity in European Sea Bass. Int J Mol Sci 2024; 25:7751. [PMID: 39062994 PMCID: PMC11277259 DOI: 10.3390/ijms25147751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
E3 ubiquitin ligases, key components of the ubiquitin proteasome system, orchestrate protein degradation through ubiquitylation and profoundly impact cellular biology. Small HERC E3 ligases (HERC3-6) have diverse functions in mammals, including roles in spermatogenesis, protein degradation, and immunity. Until now, only mammals' HERC3, HERC5, and HERC6 are known to participate in immune responses, with major involvement in the antiviral response. Interestingly, an exclusive HERC7 has been characterized in fish showing great molecular conservation and antiviral roles. Thus, this study identifies and characterizes the herc7 gene in the European sea bass teleost. The European sea bass herc7 gene and the putative protein show good conservation of the promoter binding sites for interferons and the RCC1 and HECT domains characteristic of HERC proteins, respectively. The phylogenetic analysis shows a unique cluster with the fish-exclusive HERC7 orthologues. During ontogeny, the herc7 gene is expressed from 3 days post-fertilization onwards, being constitutively and widely distributed in adult tissues. In vitro, stimulated leucocytes up-regulate the herc7 gene in response to mitogens and viruses, pointing to a role in the immune response. Furthermore, sea bass herc7 expression is related to the interferon response intensity and viral load in different tissues upon in vivo infection with red-grouper betanodavirus (RGNNV), suggesting the potential involvement of fish HERC7 in ISGylation-based antiviral activity, similarly to mammalian HERC5. This study broadens the understanding of small HERC proteins in fish species and highlights HERC7 as a potential contributor to the immune response in European sea bass, with implications for antiviral defense mechanisms. Future research is needed to unravel the precise actions and functions of HERC7 in teleost fish immunity, providing insights into direct antiviral activity and viral evasion.
Collapse
Affiliation(s)
- Yulema Valero
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain;
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (COMU-IEO), CSIC Carretera de la Azohía s/n, Puerto de Mazarrón, 30860 Murcia, Spain;
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain;
| |
Collapse
|
7
|
Naveed A, Eertink LG, Wang D, Li F. Lessons Learned from West Nile Virus Infection:Vaccinations in Equines and Their Implications for One Health Approaches. Viruses 2024; 16:781. [PMID: 38793662 PMCID: PMC11125849 DOI: 10.3390/v16050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Humans and equines are two dead-end hosts of the mosquito-borne West Nile virus (WNV) with similar susceptibility and pathogenesis. Since the introduction of WNV vaccines into equine populations of the United States of America (USA) in late 2002, there have been only sporadic cases of WNV infection in equines. These cases are generally attributed to unvaccinated and under-vaccinated equines. In contrast, due to the lack of a human WNV vaccine, WNV cases in humans have remained steadily high. An average of 115 deaths have been reported per year in the USA since the first reported case in 1999. Therefore, the characterization of protective immune responses to WNV and the identification of immune correlates of protection in vaccinated equines will provide new fundamental information about the successful development and evaluation of WNV vaccines in humans. This review discusses the comparative epidemiology, transmission, susceptibility to infection and disease, clinical manifestation and pathogenesis, and immune responses of WNV in humans and equines. Furthermore, prophylactic and therapeutic strategies that are currently available and under development are described. In addition, the successful vaccination of equines against WNV and the potential lessons for human vaccine development are discussed.
Collapse
Affiliation(s)
| | | | | | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA; (A.N.); (L.G.E.); (D.W.)
| |
Collapse
|
8
|
Lin C, Kuffour EO, Li T, Gertzen CGW, Kaiser J, Luedde T, König R, Gohlke H, Münk C. The ISG15-Protease USP18 Is a Pleiotropic Enhancer of HIV-1 Replication. Viruses 2024; 16:485. [PMID: 38675828 PMCID: PMC11053637 DOI: 10.3390/v16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.
Collapse
Affiliation(s)
- Chaohui Lin
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Edmund Osei Kuffour
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Taolan Li
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Christoph G. W. Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| |
Collapse
|
9
|
Xia M, Wang Y, Xia Y, Zeng J. Forskolin Enhances Antitumor Effect of Oncolytic Measles Virus by Promoting Rab27a Dependent Vesicular Transport System. Curr Microbiol 2024; 81:93. [PMID: 38334775 DOI: 10.1007/s00284-024-03613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/06/2024] [Indexed: 02/10/2024]
Abstract
The measles vaccine virus strain (MV-Edm) serves as a potential platform for the development of effective oncolytic vectors. Nevertheless, despite promising pre-clinical data, our comprehension of the factors influencing the efficacy of MV-Edm infection and intratumoral spread, as well as the interactions between oncolytic viruses and specific chemotherapeutics associated with viral infection, remains limited. Therefore, we investigated the potency of Forskolin in enhancing the antitumor effect of oncolytic MV-Edm by promoting the Rab27a-dependent vesicular transport system. After infecting cells with MV-Edm, we observed an increased accumulation of cytoplasmic vesicles. Our study demonstrated that MV-Edm infection and spread in tumors, which are indispensable processes for viral oncolysis, depend on the vesicular transport system of tumor cells. Although tumor cells displayed a responsive mechanism to restrain the MV-Edm spread by down-regulating the expression of Rab27a, a key member of the vesicle transport system, over-expression of Rab27a promoted the oncolytic efficacy of MV-Edm towards A549 tumor cells. Additionally, we found that Forskolin, a Rab27a agonist, was capable of promoting the oncolytic effect of MV-Edm in vitro. Our study revealed that the vesicle transporter Rab27a could facilitate the secretion of MV-Edm and the generation of syncytial bodies in MV-Edm infected cells during the MV-Edm-mediated oncolysis pathway. The results of the study demonstrate that a combination of Forskolin and MV-Edm exerts a synergistic anti-tumor effect in vitro, leading to elevated oncolysis. This finding holds promise for the clinical treatment of patients with tumors.
Collapse
Affiliation(s)
- Mao Xia
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yangbin Wang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yongquan Xia
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiawei Zeng
- Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou, 225300, China.
| |
Collapse
|
10
|
Li D, Peng J, Wu J, Yi J, Wu P, Qi X, Ren J, Peng G, Duan X, Ru Y, Liu H, Tian H, Zheng H. African swine fever virus MGF-360-10L is a novel and crucial virulence factor that mediates ubiquitination and degradation of JAK1 by recruiting the E3 ubiquitin ligase HERC5. mBio 2023; 14:e0060623. [PMID: 37417777 PMCID: PMC10470787 DOI: 10.1128/mbio.00606-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023] Open
Abstract
African swine fever virus (ASFV) causes acute hemorrhagic infectious disease in pigs. The ASFV genome encodes various proteins that enable the virus to escape innate immunity; however, the underlying mechanisms are poorly understood. The present study found that ASFV MGF-360-10L significantly inhibits interferon (IFN)-β-triggered STAT1/2 promoter activation and the production of downstream IFN-stimulated genes (ISGs). ASFV MGF-360-10L deletion (ASFV-Δ10L) replication was impaired compared with the parental ASFV CN/GS/2018 strain, and more ISGs were induced by the ASFV-Δ10L in porcine alveolar macrophages in vitro. We found that MGF-360-10L mainly targets JAK1 and mediates its degradation in a dose-dependent manner. Meanwhile, MGF-360-10L also mediates the K48-linked ubiquitination of JAK1 at lysine residues 245 and 269 by recruiting the E3 ubiquitin ligase HERC5 (HECT and RLD domain-containing E3 ubiquitin protein ligase 5). The virulence of ASFV-Δ10L was significantly lower than that of the parental strain in vivo, which indicates that MGF-360-10L is a novel virulence factor of ASFV. Our findings elaborate the novel mechanism of MGF-360-10L on the STAT1/2 signaling pathway, expanding our understanding of the inhibition of host innate immunity by ASFV-encoded proteins and providing novel insights that could contribute to the development of African swine fever vaccines. IMPORTANCE African swine fever outbreaks remain a concern in some areas. There is no effective drug or commercial vaccine to prevent African swine fever virus (ASFV) infection. In the present study, we found that overexpression of MGF-360-10L strongly inhibited the interferon (IFN)-β-induced STAT1/2 signaling pathway and the production of IFN-stimulated genes (ISGs). Furthermore, we demonstrated that MGF-360-10L mediates the degradation and K48-linked ubiquitination of JAK1 by recruiting the E3 ubiquitin ligase HERC5. The virulence of ASFV with MGF-360-10L deletion was significantly less than parental ASFV CN/GS/2018. Our study identified a new virulence factor and revealed a novel mechanism by which MGF-360-10L inhibits the immune response, thus providing new insights into the vaccination strategies against ASFV.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiangling Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Junhuang Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiamin Yi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Panxue Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaolan Qi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Gaochuang Peng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xianghan Duan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huanan Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
11
|
Du X, Sheng J, Chen Y, He S, Yang Y, Huang Y, Fu Y, Lie L, Han Z, Zhu B, Liu H, Wen Q, Zhou X, Zhou C, Hu S, Ma L. The E3 ligase HERC5 promotes antimycobacterial responses in macrophages by ISGylating the phosphatase PTEN. Sci Signal 2023; 16:eabm1756. [PMID: 37279284 DOI: 10.1126/scisignal.abm1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
Innate immune signaling in macrophages during viral infection is regulated by ISGylation, the covalent attachment of the ubiquitin-like protein interferon-stimulated gene 15 (ISG15) to protein targets. Here, we explored the role of ISGylation in the macrophage response to infection with Mycobacterium tuberculosis. In human and mouse macrophages, the E3 ubiquitin ligases HERC5 and mHERC6, respectively, mediated the ISGylation of the phosphatase PTEN, which promoted its degradation. The decreased abundance of PTEN led to an increase in the activity of the PI3K-AKT signaling pathway, which stimulated the synthesis of proinflammatory cytokines. Bacterial growth was increased in culture and in vivo when human or mouse macrophages were deficient in the major E3 ISG15 ligase. The findings expand the role of ISGylation in macrophages to antibacterial immunity and suggest that HERC5 signaling may be a candidate target for adjunct host-directed therapy in patients with tuberculosis.
Collapse
Affiliation(s)
- Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Junli Sheng
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yitian Chen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shitong He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yalong Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yulan Huang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuling Fu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Linmiao Lie
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Zhenyu Han
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Bo Zhu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Honglin Liu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xinying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chaoying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
12
|
Suzuki Y. Interferon-induced restriction of Chikungunya virus infection. Antiviral Res 2023; 210:105487. [PMID: 36657882 DOI: 10.1016/j.antiviral.2022.105487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Chikungunya virus (CHIKV) is an enveloped RNA virus that causes Chikungunya fever (CHIKF), which is transmitted to humans through the bite of infected Aedes mosquitos. Although CHIKVF had been regarded as an endemic disease in limited regions of Africa and Asia, the recent global reemergence of CHIKV heightened awareness of this infectious disease, and CHIKV infection is currently considered an increasing threat to public health. However, no specific drug or licensed vaccine is available for CHIKV infection. As seen in other RNA virus infections, CHIKV triggers the interferon (IFN) response that plays a central role in host defense against pathogens. Experimental evidence has demonstrated that control of CHIVK replication by the IFN response is achieved by antiviral effector molecules called interferon-stimulated genes (ISGs), whose expressions are upregulated by IFN stimulation. This review details the molecular basis of the IFN-mediated suppression of CHIKV, particularly the ISGs restricting CHIKV replication.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| |
Collapse
|
13
|
Wang L, Yang Z, Yu H, Lin W, Wu R, Yang H, Yang K. Predicting diagnostic gene expression profiles associated with immune infiltration in patients with lupus nephritis. Front Immunol 2022; 13:839197. [PMID: 36532018 PMCID: PMC9755505 DOI: 10.3389/fimmu.2022.839197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Objective To identify potential diagnostic markers of lupus nephritis (LN) based on bioinformatics and machine learning and to explore the significance of immune cell infiltration in this pathology. Methods Seven LN gene expression datasets were downloaded from the GEO database, and the larger sample size was used as the training group to obtain differential genes (DEGs) between LN and healthy controls, and to perform gene function, disease ontology (DO), and gene set enrichment analyses (GSEA). Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) and support vector machine-recursive feature elimination (SVM-RFE), were applied to identify candidate biomarkers. The diagnostic value of LN diagnostic gene biomarkers was further evaluated in the area under the ROC curve observed in the validation dataset. CIBERSORT was used to analyze 22 immune cell fractions from LN patients and to analyze their correlation with diagnostic markers. Results Thirty and twenty-one DEGs were screened in kidney tissue and peripheral blood, respectively. Both of which covered macrophages and interferons. The disease enrichment analysis of DEGs in kidney tissues showed that they were mainly involved in immune and renal diseases, and in peripheral blood it was mainly enriched in cardiovascular system, bone marrow, and oral cavity. The machine learning algorithm combined with external dataset validation revealed that C1QA(AUC = 0.741), C1QB(AUC = 0.758), MX1(AUC = 0.865), RORC(AUC = 0.911), CD177(AUC = 0.855), DEFA4(AUC= 0.843)and HERC5(AUC = 0.880) had high diagnostic value and could be used as diagnostic biomarkers of LN. Compared to controls, pathways such as cell adhesion molecule cam, and systemic lupus erythematosus were activated in kidney tissues; cell cycle, cytoplasmic DNA sensing pathways, NOD-like receptor signaling pathways, proteasome, and RIG-1-like receptors were activated in peripheral blood. Immune cell infiltration analysis showed that diagnostic markers in kidney tissue were associated with T cells CD8 and Dendritic cells resting, and in blood were associated with T cells CD4 memory resting, suggesting that CD4 T cells, CD8 T cells and dendritic cells are closely related to the development and progression of LN. Conclusion C1QA, C1QB, MX1, RORC, CD177, DEFA4 and HERC5 could be used as new candidate molecular markers for LN. It may provide new insights into the diagnosis and molecular treatment of LN in the future.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hangxing Yu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Lin
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruoxi Wu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| |
Collapse
|
14
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
15
|
Jurczyszak D, Manganaro L, Buta S, Gruber C, Martin-Fernandez M, Taft J, Patel RS, Cipolla M, Alshammary H, Mulder LCF, Sachidanandam R, Bogunovic D, Simon V. ISG15 deficiency restricts HIV-1 infection. PLoS Pathog 2022; 18:e1010405. [PMID: 35333911 PMCID: PMC8986114 DOI: 10.1371/journal.ppat.1010405] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/06/2022] [Accepted: 02/28/2022] [Indexed: 01/01/2023] Open
Abstract
Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral cytokines. They induce IFN stimulated genes (ISGs), which act as proinflammatory mediators, antiviral effectors, and negative regulators of the IFN-I signaling cascade itself. One such regulator is interferon stimulated gene 15 (ISG15). Humans with complete ISG15 deficiency express persistently elevated levels of ISGs, and consequently, exhibit broad spectrum resistance to viral infection. Here, we demonstrate that IFN-I primed fibroblasts derived from ISG15-deficient individuals are more resistant to infection with single-cycle HIV-1 compared to healthy control fibroblasts. Complementation with both wild-type (WT) ISG15 and ISG15ΔGG (incapable of ISGylation while retaining negative regulation activity) was sufficient to reverse this phenotype, restoring susceptibility to infection to levels comparable to WT cells. Furthermore, CRISPR-edited ISG15ko primary CD4+ T cells were less susceptible to HIV-1 infection compared to cells treated with non-targeting controls. Transcriptome analysis of these CRISPR-edited ISG15ko primary CD4+ T cells recapitulated the ISG signatures of ISG15 deficient patients. Taken together, we document that the increased broad-spectrum viral resistance in ISG15-deficiency also extends to HIV-1 and is driven by a combination of T-cell-specific ISGs, with both known and unknown functions, predicted to target HIV-1 replication at multiple steps. Type I interferons (IFN-Is) are a group of potent inflammatory and antiviral agents. They induce IFN stimulated genes (ISGs), which perform downstream functions to resolve viral infection, mediate the inflammatory response, as well as negatively regulate the IFN-I signaling cascade to prevent hyperinflammation. One such negative regulator is interferon stimulated gene 15 (ISG15). Humans that lack ISG15 have chronic, low levels of antiviral ISGs, and ensuing broad-spectrum resistance to viral infection. We demonstrate that IFN-I priming of ISG15-deficient cells leads to superior resistance to human immunodeficiency virus 1 (HIV-1) infection compared to IFN-I primed healthy control cells. This is true for fibroblast cell lines, as well as primary CD4+ T cells, the main target of HIV-1. Analysis of the gene expression profiles show that ISG15-knockout CD4+ T cells express similar inflammatory markers as ISG15-deficient patients. Overall, we show that the broad-spectrum viral resistance in ISG15-deficiency extends to HIV-1.
Collapse
Affiliation(s)
- Denise Jurczyszak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Lara Manganaro
- INGM-Istituto Nazionale di Genetica Molecolare, Virology, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of MIlan, Milan, Italy
| | - Sofija Buta
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Conor Gruber
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Marta Martin-Fernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Justin Taft
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Roosheel S. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Melissa Cipolla
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York city, New York, United States of America
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail: (DB); (VS)
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail: (DB); (VS)
| |
Collapse
|
16
|
Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. ISG15 and ISGylation in Human Diseases. Cells 2022; 11:cells11030538. [PMID: 35159348 PMCID: PMC8834048 DOI: 10.3390/cells11030538] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Type I Interferons (IFNs) induce the expression of >500 genes, which are collectively called ISGs (IFN-stimulated genes). One of the earliest ISGs induced by IFNs is ISG15 (Interferon-Stimulated Gene 15). Free ISG15 protein synthesized from the ISG15 gene is post-translationally conjugated to cellular proteins and is also secreted by cells into the extracellular milieu. ISG15 comprises two ubiquitin-like domains (UBL1 and UBL2), each of which bears a striking similarity to ubiquitin, accounting for its earlier name ubiquitin cross-reactive protein (UCRP). Like ubiquitin, ISG15 harbors a characteristic β-grasp fold in both UBL domains. UBL2 domain has a conserved C-terminal Gly-Gly motif through which cellular proteins are appended via an enzymatic cascade similar to ubiquitylation called ISGylation. ISG15 protein is minimally expressed under physiological conditions. However, its IFN-dependent expression is aberrantly elevated or compromised in various human diseases, including multiple types of cancer, neurodegenerative disorders (Ataxia Telangiectasia and Amyotrophic Lateral Sclerosis), inflammatory diseases (Mendelian Susceptibility to Mycobacterial Disease (MSMD), bacteriopathy and viropathy), and in the lumbar spinal cords of veterans exposed to Traumatic Brain Injury (TBI). ISG15 and ISGylation have both inhibitory and/or stimulatory roles in the etiology and pathogenesis of human diseases. Thus, ISG15 is considered a “double-edged sword” for human diseases in which its expression is elevated. Because of the roles of ISG15 and ISGylation in cancer cell proliferation, migration, and metastasis, conferring anti-cancer drug sensitivity to tumor cells, and its elevated expression in cancer, neurodegenerative disorders, and veterans exposed to TBI, both ISG15 and ISGylation are now considered diagnostic/prognostic biomarkers and therapeutic targets for these ailments. In the current review, we shall cover the exciting journey of ISG15, spanning three decades from the bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Shyamal Desai
- Correspondence: ; Tel.: +1-504-568-4388; Fax: +1-504-568-2093
| |
Collapse
|
17
|
Abdulhasan M, Ruden X, Rappolee B, Dutta S, Gurdziel K, Ruden DM, Awonuga AO, Korzeniewski SJ, Puscheck EE, Rappolee DA. Stress Decreases Host Viral Resistance and Increases Covid Susceptibility in Embryonic Stem Cells. Stem Cell Rev Rep 2021; 17:2164-2177. [PMID: 34155611 PMCID: PMC8216586 DOI: 10.1007/s12015-021-10188-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
Stress-induced changes in viral receptor and susceptibility gene expression were measured in embryonic stem cells (ESC) and differentiated progeny. Rex1 promoter-Red Fluorescence Protein reporter ESC were tested by RNAseq after 72hr exposures to control stress hyperosmotic sorbitol under stemness culture (NS) to quantify stress-forced differentiation (SFD) transcriptomic programs. Control ESC cultured with stemness factor removal produced normal differentiation (ND). Bulk RNAseq transcriptomic analysis showed significant upregulation of two genes involved in Covid-19 cell uptake, Vimentin (VIM) and Transmembrane Serine Protease 2 (TMPRSS2). SFD increased the hepatitis A virus receptor (Havcr1) and the transplacental Herpes simplex 1 (HSV1) virus receptor (Pvrl1) compared with ESC undergoing ND. Several other coronavirus receptors, Glutamyl Aminopeptidase (ENPEP) and Dipeptidyl Peptidase 4 (DPP4) were upregulated significantly in SFD>ND. Although stressed ESC are more susceptible to infection due to increased expression of viral receptors and decreased resistance, the necessary Covid-19 receptor, angiotensin converting enzyme (ACE)2, was not expressed in our experiments. TMPRSS2, ENPEP, and DPP4 mediate Coronavirus uptake, but are also markers of extra-embryonic endoderm (XEN), which arise from ESC undergoing ND or SFD. Mouse and human ESCs differentiated to XEN increase TMPRSS2 and other Covid-19 uptake-mediating gene expression, but only some lines express ACE2. Covid-19 susceptibility appears to be genotype-specific and not ubiquitous. Of the 30 gene ontology (GO) groups for viral susceptibility, 15 underwent significant stress-forced changes. Of these, 4 GO groups mediated negative viral regulation and most genes in these increase in ND and decrease with SFD, thus suggesting that stress increases ESC viral susceptibility. Taken together, the data suggest that a control hyperosmotic stress can increase Covid-19 susceptibility and decrease viral host resistance in mouse ESC. However, this limited pilot study should be followed with studies in human ESC, tests of environmental, hormonal, and pharmaceutical stressors and direct tests for infection of stressed, cultured ESC and embryos by Covid-19.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA
| | - Ximena Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
| | | | - Sudipta Dutta
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Endocrinology and Cell Signaling LaboratoryDepartment of Integrative BiosciencesCollege of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, USA
| | - Katherine Gurdziel
- Genome Sciences Center, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Douglas M Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA
| | - Awoniyi O Awonuga
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
| | - Steve J Korzeniewski
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA
| | - Elizabeth E Puscheck
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, 60169, USA
| | - Daniel A Rappolee
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, WayneState UniversitySchoolofMedicine, Detroit, Michigan, 48201, USA.
- Reproductive Stress 3M Inc, Grosse Pointe Farms, MI, 48236, USA.
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, 48202, USA.
- Program for Reproductive Sciences and Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, MI, 48201, USA.
| |
Collapse
|
18
|
Paparisto E, Hunt NR, Labach DS, Coleman MD, Di Gravio EJ, Dodge MJ, Friesen NJ, Côté M, Müller A, Hoenen T, Barr SD. Interferon-Induced HERC5 Inhibits Ebola Virus Particle Production and Is Antagonized by Ebola Glycoprotein. Cells 2021; 10:cells10092399. [PMID: 34572049 PMCID: PMC8472148 DOI: 10.3390/cells10092399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/11/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Survival following Ebola virus (EBOV) infection correlates with the ability to mount an early and robust interferon (IFN) response. The host IFN-induced proteins that contribute to controlling EBOV replication are not fully known. Among the top genes with the strongest early increases in expression after infection in vivo is IFN-induced HERC5. Using a transcription- and replication-competent VLP system, we showed that HERC5 inhibits EBOV virus-like particle (VLP) replication by depleting EBOV mRNAs. The HERC5 RCC1-like domain was necessary and sufficient for this inhibition and did not require zinc finger antiviral protein (ZAP). Moreover, we showed that EBOV (Zaire) glycoprotein (GP) but not Marburg virus GP antagonized HERC5 early during infection. Our data identify a novel ‘protagonist–antagonistic’ relationship between HERC5 and GP in the early stages of EBOV infection that could be exploited for the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Nina R. Hunt
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Daniel S. Labach
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Macon D. Coleman
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Eric J. Di Gravio
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Mackenzie J. Dodge
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Nicole J. Friesen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
| | - Marceline Côté
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Roger-Guindon Hall Room 4214, Ottawa, ON K1H 8M5 , Canada;
| | - Andreas Müller
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald—Insel Riems, Germany; (A.M.); (T.H.)
| | - Thomas Hoenen
- Friedrich-Loeffler-Institut, Institute of Molecular Virology and Cell Biology, Südufer 10, 17493 Greifswald—Insel Riems, Germany; (A.M.); (T.H.)
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, Dental Sciences Building Room 3007, London, ON N6A 5C1, Canada; (E.P.); (N.R.H.); (D.S.L.); (M.D.C.); (E.J.D.G.); (M.J.D.); (N.J.F.)
- Correspondence:
| |
Collapse
|
19
|
Armstrong LA, Lange SM, Dee Cesare V, Matthews SP, Nirujogi RS, Cole I, Hope A, Cunningham F, Toth R, Mukherjee R, Bojkova D, Gruber F, Gray D, Wyatt PG, Cinatl J, Dikic I, Davies P, Kulathu Y. Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS One 2021; 16:e0253364. [PMID: 34270554 PMCID: PMC8284666 DOI: 10.1371/journal.pone.0253364] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Of the 16 non-structural proteins (Nsps) encoded by SARS CoV-2, Nsp3 is the largest and plays important roles in the viral life cycle. Being a large, multidomain, transmembrane protein, Nsp3 has been the most challenging Nsp to characterize. Encoded within Nsp3 is the papain-like protease domain (PLpro) that cleaves not only the viral polypeptide but also K48-linked polyubiquitin and the ubiquitin-like modifier, ISG15, from host cell proteins. We here compare the interactors of PLpro and Nsp3 and find a largely overlapping interactome. Intriguingly, we find that near full length Nsp3 is a more active protease compared to the minimal catalytic domain of PLpro. Using a MALDI-TOF based assay, we screen 1971 approved clinical compounds and identify five compounds that inhibit PLpro with IC50s in the low micromolar range but showed cross reactivity with other human deubiquitinases and had no significant antiviral activity in cellular SARS-CoV-2 infection assays. We therefore looked for alternative methods to block PLpro activity and engineered competitive nanobodies that bind to PLpro at the substrate binding site with nanomolar affinity thus inhibiting the enzyme. Our work highlights the importance of studying Nsp3 and provides tools and valuable insights to investigate Nsp3 biology during the viral infection cycle.
Collapse
Affiliation(s)
- Lee A. Armstrong
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Sven M. Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Virginia Dee Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Stephen P. Matthews
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Raja Sekhar Nirujogi
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Isobel Cole
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Anthony Hope
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Fraser Cunningham
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Rachel Toth
- MRC Reagents and Services, University of Dundee, Dundee, Scotland, United Kingdom
| | - Rukmini Mukherjee
- Institute of Biochemistry II, Goethe University Frankfurt Medical Faculty, University Hospital, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Franz Gruber
- National Phenotypic Screening Centre, University of Dundee, Dundee, Scotland, United Kingdom
| | - David Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Paul G. Wyatt
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Frankfurt Medical Faculty, University Hospital, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Paul Davies
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Yogesh Kulathu
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|
20
|
Mathieu NA, Paparisto E, Barr SD, Spratt DE. HERC5 and the ISGylation Pathway: Critical Modulators of the Antiviral Immune Response. Viruses 2021; 13:1102. [PMID: 34207696 PMCID: PMC8228270 DOI: 10.3390/v13061102] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/10/2023] Open
Abstract
Mammalian cells have developed an elaborate network of immunoproteins that serve to identify and combat viral pathogens. Interferon-stimulated gene 15 (ISG15) is a 15.2 kDa tandem ubiquitin-like protein (UBL) that is used by specific E1-E2-E3 ubiquitin cascade enzymes to interfere with the activity of viral proteins. Recent biochemical studies have demonstrated how the E3 ligase HECT and RCC1-containing protein 5 (HERC5) regulates ISG15 signaling in response to hepatitis C (HCV), influenza-A (IAV), human immunodeficiency virus (HIV), SARS-CoV-2 and other viral infections. Taken together, the potent antiviral activity displayed by HERC5 and ISG15 make them promising drug targets for the development of novel antiviral therapeutics that can augment the host antiviral response. In this review, we examine the emerging role of ISG15 in antiviral immunity with a particular focus on how HERC5 orchestrates the specific and timely ISGylation of viral proteins in response to infection.
Collapse
Affiliation(s)
- Nicholas A. Mathieu
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| | - Ermela Paparisto
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (E.P.); (S.D.B.)
| | - Stephen D. Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St., London, ON N6A 5C1, Canada; (E.P.); (S.D.B.)
| | - Donald E. Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA;
| |
Collapse
|
21
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
22
|
Sauter D, Kirchhoff F. Evolutionary conflicts and adverse effects of antiviral factors. eLife 2021; 10:e65243. [PMID: 33450175 PMCID: PMC7811402 DOI: 10.7554/elife.65243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human cells are equipped with a plethora of antiviral proteins protecting them against invading viral pathogens. In contrast to apoptotic or pyroptotic cell death, which serves as ultima ratio to combat viral infections, these cell-intrinsic restriction factors may prevent or at least slow down viral spread while allowing the host cell to survive. Nevertheless, their antiviral activity may also have detrimental effects on the host. While the molecular mechanisms underlying the antiviral activity of restriction factors are frequently well investigated, potential undesired effects of their antiviral functions on the host cell are hardly explored. With a focus on antiretroviral proteins, we summarize in this review how individual restriction factors may exert adverse effects as trade-off for efficient defense against attacking pathogens.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital TübingenTübingenGermany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
| |
Collapse
|
23
|
Jacquet S, Pontier D, Etienne L. Rapid Evolution of HERC6 and Duplication of a Chimeric HERC5/6 Gene in Rodents and Bats Suggest an Overlooked Role of HERCs in Mammalian Immunity. Front Immunol 2021; 11:605270. [PMID: 33391270 PMCID: PMC7775381 DOI: 10.3389/fimmu.2020.605270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Studying the evolutionary diversification of mammalian antiviral defenses is of main importance to better understand our innate immune repertoire. The small HERC proteins are part of a multigene family, including HERC5 and HERC6, which have probably diversified through complex evolutionary history in mammals. Here, we performed mammalian-wide phylogenetic and genomic analyses of HERC5 and HERC6, using 83 orthologous sequences from bats, rodents, primates, artiodactyls, and carnivores—the top five representative groups of mammalian evolution. We found that HERC5 has been under weak and differential positive selection in mammals, with only primate HERC5 showing evidences of pathogen-driven selection. In contrast, HERC6 has been under strong and recurrent adaptive evolution in mammals, suggesting past and widespread genetic arms-races with viral pathogens. Importantly, the rapid evolution of mammalian HERC6 spacer domain suggests that it might be a host-pathogen interface, targeting viral proteins and/or being the target of virus antagonists. Finally, we identified a HERC5/6 chimeric gene that arose from independent duplication in rodent and bat lineages and encodes for a conserved HERC5 N-terminal domain and divergent HERC6 spacer and HECT domains. This duplicated chimeric gene highlights adaptations that potentially contribute to rodent and bat immunity. Our findings open new research avenues on the functions of HERC6 and HERC5/6 in mammals, and on their implication in antiviral innate immunity.
Collapse
Affiliation(s)
- Stéphanie Jacquet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France.,CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Dominique Pontier
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Lucie Etienne
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
24
|
Proulx J, Borgmann K, Park IW. Post-translational modifications inducing proteasomal degradation to counter HIV-1 infection. Virus Res 2020; 289:198142. [PMID: 32882242 DOI: 10.1016/j.virusres.2020.198142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) are integral to regulating a wide variety of cellular processes in eukaryotic cells, such as regulation of protein stability, alteration of celluar location, protein activity modulation, and regulation of protein interactions. HIV-1, like other eukaryotic viruses, and its infected host exploit the proteasomal degradation system for their respective proliferation and survival, using various PTMs, including but not limited to ubiquitination, SUMOylation, NEDDylation, interferon-stimulated gene (ISG)ylation. Essentially all viral proteins within the virions -- and in the HIV-1-infected cells -- interact with their cellular counterparts for this degradation, utilizing ubiquitin (Ub), and the Ub-like (Ubl) modifiers less frequently, to eliminate the involved proteins throughout the virus life cycle, from the entry step to release of the assembled virus particles. Such interplay is pivotal for, on the one hand, the cell to restrict proliferation of the infecting virus, and on the other, for molecular counteraction by the virus to overcome this cellular protein-imposed restriction. Recent reports indicate that not only viral/cellular proteins but also viral/viral protein interactions play vital roles in regulating viral protein stability. We hence give an overview of the molecular processes of PTMs involved in proteasomal degradation of the viral and cellular proteins, and the viral/viral and viral/cellular protein interplay in restriction and competition for HIV-1 vs. host cell survival. Insights in this realm could open new avenues for developing therapeutics against HIV-1 via targeting specific steps of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - In-Woo Park
- Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States.
| |
Collapse
|
25
|
Thippeshappa R, Kimata JT, Kaushal D. Toward a Macaque Model of HIV-1 Infection: Roadblocks, Progress, and Future Strategies. Front Microbiol 2020; 11:882. [PMID: 32477302 PMCID: PMC7237640 DOI: 10.3389/fmicb.2020.00882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
The human-specific tropism of Human Immunodeficiency Virus Type 1 (HIV-1) has complicated the development of a macaque model of HIV-1 infection/AIDS that is suitable for preclinical evaluation of vaccines and novel treatment strategies. Several innate retroviral restriction factors, such as APOBEC3 family of proteins, TRIM5α, BST2, and SAMHD1, that prevent HIV-1 replication have been identified in macaque cells. Accessory proteins expressed by Simian Immunodeficiency virus (SIV) such as viral infectivity factor (Vif), viral protein X (Vpx), viral protein R (Vpr), and negative factor (Nef) have been shown to play key roles in overcoming these restriction factors in macaque cells. Thus, substituting HIV-1 accessory genes with those from SIV may enable HIV-1 replication in macaques. We and others have constructed macaque-tropic HIV-1 derivatives [also called simian-tropic HIV-1 (stHIV-1) or Human-Simian Immunodeficiency Virus (HSIV)] carrying SIV vif to overcome APOBEC3 family proteins. Additional modifications to HIV-1 gag in some of the macaque-tropic HIV-1 have also been done to overcome TRIM5α restriction in rhesus and cynomolgus macaques. Although these viruses replicate persistently in macaque species, they do not result in CD4 depletion. Thus, these studies suggest that additional blocks to HIV-1 replication exist in macaques that prevent high-level viral replication. Furthermore, serial animal-to-animal passaging of macaque-tropic HIV-1 in vivo has not resulted in pathogenic variants that cause AIDS in immunocompetent macaques. In this review, we discuss recent developments made toward developing macaque model of HIV-1 infection.
Collapse
Affiliation(s)
- Rajesh Thippeshappa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Jason T Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
26
|
Wang Y, Argiles-Castillo D, Kane EI, Zhou A, Spratt DE. HECT E3 ubiquitin ligases - emerging insights into their biological roles and disease relevance. J Cell Sci 2020; 133:133/7/jcs228072. [PMID: 32265230 DOI: 10.1242/jcs.228072] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Homologous to E6AP C-terminus (HECT) E3 ubiquitin ligases play a critical role in various cellular pathways, including but not limited to protein trafficking, subcellular localization, innate immune response, viral infections, DNA damage responses and apoptosis. To date, 28 HECT E3 ubiquitin ligases have been identified in humans, and recent studies have begun to reveal how these enzymes control various cellular pathways by catalyzing the post-translational attachment of ubiquitin to their respective substrates. New studies have identified substrates and/or interactors with different members of the HECT E3 ubiquitin ligase family, particularly for E6AP and members of the neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4) family. However, there still remains many unanswered questions about the specific roles that each of the HECT E3 ubiquitin ligases have in maintaining cellular homeostasis. The present Review discusses our current understanding on the biological roles of the HECT E3 ubiquitin ligases in the cell and how they contribute to disease development. Expanded investigations on the molecular basis for how and why the HECT E3 ubiquitin ligases recognize and regulate their intracellular substrates will help to clarify the biochemical mechanisms employed by these important enzymes in ubiquitin biology.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shanxi, China 710054.,Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Diana Argiles-Castillo
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Emma I Kane
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| | - Anning Zhou
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shanxi, China 710054
| | - Donald E Spratt
- Gustaf H. Carlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
| |
Collapse
|
27
|
Li J, Johnson JA, Su H. Ubiquitin and Ubiquitin-like proteins in cardiac disease and protection. Curr Drug Targets 2019; 19:989-1002. [PMID: 26648080 DOI: 10.2174/1389450117666151209114608] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 11/01/2015] [Indexed: 01/10/2023]
Abstract
Post-translational modification represents an important mechanism to regulate protein function in cardiac cells. Ubiquitin (Ub) and ubiquitin-like proteins (UBLs) are a family of protein modifiers that share a certain extent of sequence and structure similarity. Conjugation of Ub or UBLs to target proteins is dynamically regulated by a set of UBL-specific enzymes and modulates the physical and physiological properties of protein substrates. Ub and UBLs control a strikingly wide spectrum of cellular processes and not surprisingly are involved in the development of multiple human diseases including cardiac diseases. Further identification of novel UBL targets will expand our understanding of the functional diversity of UBL pathways in physiology and pathology. Here we review recent findings on the mechanisms, proteome and functions of a subset of UBLs and highlight their potential impacts on the development and progression of various forms of cardiac diseases.
Collapse
Affiliation(s)
- Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - John A Johnson
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
28
|
Interplay between Intrinsic and Innate Immunity during HIV Infection. Cells 2019; 8:cells8080922. [PMID: 31426525 PMCID: PMC6721663 DOI: 10.3390/cells8080922] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are antiviral components of intrinsic immunity which constitute a first line of defense by blocking different steps of the human immunodeficiency virus (HIV) replication cycle. In immune cells, HIV infection is also sensed by several pattern recognition receptors (PRRs), leading to type I interferon (IFN-I) and inflammatory cytokines production that upregulate antiviral interferon-stimulated genes (ISGs). Several studies suggest a link between these two types of immunity. Indeed, restriction factors, that are generally interferon-inducible, are able to modulate immune responses. This review highlights recent knowledge of the interplay between restriction factors and immunity inducing antiviral defenses. Counteraction of this intrinsic and innate immunity by HIV viral proteins will also be discussed.
Collapse
|
29
|
Shaikh N, Nirmalkar A, Thakar M. Polymorphisms in Toll-Like Receptors (TLRs)-7 and 9 Genes in Indian Population with Progressive and Nonprogressive HIV-1 Infection. AIDS Res Hum Retroviruses 2019; 35:577-582. [PMID: 30793925 DOI: 10.1089/aid.2019.0004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The polymorphisms in Toll-like receptor (TLR) 7 and 9 genes are shown to influence HIV-1 infection. We studied HIV-1-infected Indian individuals for presence and association of TLR7 and 9 gene polymorphism with different disease outcomes. Genomic DNA from 65 HIV-infected individuals (35 long-term nonprogressors and 30 progressors) and 89 uninfected healthy donors was isolated, amplified, and sequenced for the reported polymorphisms in TLR7 [Gln11Leu (A/T); rs179008] and TLR9 (1635A/G; rs352140) genes. Of these, only the reported TLR9 single-nucleotide polymorphism [SNP; p = .017, odds ratio (OR) = 0.20] and its allele A frequency (p = .038, OR = 0.41) were found to be associated with slow disease progression. Of the new SNPs observed (three TLR7 and two TLR9), the TLR7 rs2074109 G allele showed less likely association with HIV-1 acquisition (p = .019, OR = 0.27). These findings indicate that TLR7 SNP (rs2074109) could be one of the factors for predisposition to HIV-1 and TLR9 1635A/G genotype and allele might have a role in HIV-1 disease progression in Indian population.
Collapse
Affiliation(s)
- Nawaj Shaikh
- Department of Immunology and Serology, National AIDS Research Institute, Pune, India
| | - Amit Nirmalkar
- Department of Epidemiology and Biostatistics, National AIDS Research Institute, Pune, India
| | - Madhuri Thakar
- Department of Immunology and Serology, National AIDS Research Institute, Pune, India
| |
Collapse
|
30
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
31
|
Evolution-Guided Structural and Functional Analyses of the HERC Family Reveal an Ancient Marine Origin and Determinants of Antiviral Activity. J Virol 2018; 92:JVI.00528-18. [PMID: 29669830 PMCID: PMC6002735 DOI: 10.1128/jvi.00528-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 01/24/2023] Open
Abstract
In humans, homologous to the E6-AP carboxyl terminus (HECT) and regulator of chromosome condensation 1 (RCC1)-like domain-containing protein 5 (HERC5) is an interferon-induced protein that inhibits replication of evolutionarily diverse viruses, including human immunodeficiency virus type 1 (HIV-1). To better understand the origin, evolution, and function of HERC5, we performed phylogenetic, structural, and functional analyses of the entire human small-HERC family, which includes HERC3, HERC4, HERC5, and HERC6. We demonstrated that the HERC family emerged >595 million years ago and has undergone gene duplication and gene loss events throughout its evolution. The structural topology of the RCC1-like domain and HECT domains from all HERC paralogs is highly conserved among evolutionarily diverse vertebrates despite low sequence homology. Functional analyses showed that the human small HERCs exhibit different degrees of antiviral activity toward HIV-1 and that HERC5 provides the strongest inhibition. Notably, coelacanth HERC5 inhibited simian immunodeficiency virus (SIV), but not HIV-1, particle production, suggesting that the antiviral activity of HERC5 emerged over 413 million years ago and exhibits species- and virus-specific restriction. In addition, we showed that both HERC5 and HERC6 are evolving under strong positive selection, particularly blade 1 of the RCC1-like domain, which we showed is a key determinant of antiviral activity. These studies provide insight into the origin, evolution, and biological importance of the human restriction factor HERC5 and the other HERC family members. IMPORTANCE Intrinsic immunity plays an important role as the first line of defense against viruses. Studying the origins, evolution, and functions of proteins responsible for effecting this defense will provide key information about virus-host relationships that can be exploited for future drug development. We showed that HERC5 is one such antiviral protein that belongs to an evolutionarily conserved family of HERCs with an ancient marine origin. Not all vertebrates possess all HERC members, suggesting that different HERCs emerged at different times during evolution to provide the host with a survival advantage. Consistent with this, two of the more recently emerged HERC members, HERC5 and HERC6, displayed strong signatures of having been involved in an ancient evolutionary battle with viruses. Our findings provide new insights into the evolutionary origin and function of the HERC family in vertebrate evolution, identifying HERC5 and possibly HERC6 as important effectors of intrinsic immunity in vertebrates.
Collapse
|
32
|
Scholte FEM, Zivcec M, Dzimianski JV, Deaton MK, Spengler JR, Welch SR, Nichol ST, Pegan SD, Spiropoulou CF, Bergeron É. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease. Cell Rep 2018; 20:2396-2407. [PMID: 28877473 DOI: 10.1016/j.celrep.2017.08.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022] Open
Abstract
Antiviral responses are regulated by conjugation of ubiquitin (Ub) and interferon-stimulated gene 15 (ISG15) to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU) superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae) is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.
Collapse
Affiliation(s)
- Florine E M Scholte
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Marko Zivcec
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - John V Dzimianski
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Michelle K Deaton
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Scott D Pegan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Éric Bergeron
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| |
Collapse
|
33
|
Radetskyy R, Daher A, Gatignol A. ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine Growth Factor Rev 2018; 40:48-58. [PMID: 29625900 DOI: 10.1016/j.cytogfr.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
The induction of hundreds of Interferon Stimulated Genes (ISGs) subsequent to virus infection generates an antiviral state that functions to restrict virus growth at multiple steps of their replication cycles. In the context of Human Immunodeficiency Virus-1 (HIV-1), ISGs also possess antiviral functions, but some ISGs show proapoptotic or proviral activity. One of the most studied ISGs, the RNA activated Protein Kinase (PKR), shuts down the viral protein synthesis upon activation. HIV-1 has evolved to evade its inhibition by PKR through viral and cellular mechanisms. One of the cellular mechanisms is the induction of another ISG, the Adenosine Deaminase acting on RNA 1 (ADAR1). ADAR1 promotes viral replication by acting as an RNA sensing inhibitor, by editing viral RNA and by inhibiting PKR. This review challenges the orthodox dogma of ISGs as antiviral proteins, by demonstrating that two ISGs have opposing and clashing effects on viral replication.
Collapse
Affiliation(s)
- Roman Radetskyy
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada
| | - Aïcha Daher
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada
| | - Anne Gatignol
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada; Department of Medicine, Division of Infectious Diseases, Canada; Department of Microbiology-Immunology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
34
|
Gargan S, Ahmed S, Mahony R, Bannan C, Napoletano S, O'Farrelly C, Borrow P, Bergin C, Stevenson NJ. HIV-1 Promotes the Degradation of Components of the Type 1 IFN JAK/STAT Pathway and Blocks Anti-viral ISG Induction. EBioMedicine 2018; 30:203-216. [PMID: 29580840 PMCID: PMC5952252 DOI: 10.1016/j.ebiom.2018.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 01/12/2023] Open
Abstract
Anti-retroviral therapy successfully suppresses HIV-1 infection, but fails to provide a cure. During infection Type 1 IFNs normally play an essential role in viral clearance, but in vivo IFN-α only has a modest impact on HIV-1 infection, suggesting its possible targeting by HIV. Here, we report that the HIV protein, Vif, inhibits effective IFN-α signalling via degradation of essential JAK/STAT pathway components. We found that STAT1 and STAT3 are specifically reduced in HEK293T cells expressing Vif and that full length, infectious HIV-1 IIIB strain promotes their degradation in a Vif-dependent manner. HIV-1 IIIB infection of myeloid ThP-1 cells also reduced the IFN-α-mediated induction of the anti-viral gene, ISG15, but not MxA, revealing a functional consequence of this HIV-1-mediated immune evasion strategy. Interestingly, while total STAT levels were not reduced upon in vitro IIIB infection of primary human PBMCs, IFN-α-mediated phosphorylation of STAT1 and STAT3 and ISG induction were starkly reduced, with removal of Vif (IIIBΔVif), partially restoring pSTATs, ISG15 and MxB induction. Similarly, pSTAT1 and pSTAT3 expression and IFN-α-induced ISG15 were reduced in PBMCs from HIV-infected patients, compared to healthy controls. Furthermore, IFN-α pre-treatment of a CEM T lymphoblast cells significantly inhibited HIV infection/replication (measured by cellular p24), only in the absence of Vif (IIIBΔVif), but was unable to suppress full length IIIB infection. When analysing the mechanism by which Vif might target the JAK/STAT pathway, we found Vif interacts with both STAT1 and STAT3, (but not STAT2), and its expression promotes ubiquitination and MG132-sensitive, proteosomal degradation of both proteins. Vif's Elongin-Cullin-SOCS-box binding motif enables the formation of an active E3 ligase complex, which we found to be required for Vif's degradation of STAT1 and STAT3. In fact, the E3 ligase scaffold proteins, Cul5 and Rbx2, were also found to be essential for Vif-mediated proteasomal degradation of STAT1 and STAT3. These results reveal a target for HIV-1-Vif and demonstrate how HIV-1 impairs the anti-viral activity of Type 1 IFNs, possibly explaining why both endogenous and therapeutic IFN-α fail to activate more effective control over HIV infection.
Collapse
Affiliation(s)
- Siobhan Gargan
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suaad Ahmed
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Rebecca Mahony
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Ciaran Bannan
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland; Department of GU Medicine and Infectious Diseases, St. James's Hospital, Dublin, Ireland
| | - Silvia Napoletano
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Cliona O'Farrelly
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
| | - Colm Bergin
- School of Medicine, Trinity College Dublin, Ireland; Department of GU Medicine and Infectious Diseases, St. James's Hospital, Dublin, Ireland
| | - Nigel J Stevenson
- Intracellular Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
35
|
Jain P, Boso G, Langer S, Soonthornvacharin S, De Jesus PD, Nguyen Q, Olivieri KC, Portillo AJ, Yoh SM, Pache L, Chanda SK. Large-Scale Arrayed Analysis of Protein Degradation Reveals Cellular Targets for HIV-1 Vpu. Cell Rep 2018; 22:2493-2503. [PMID: 29490283 PMCID: PMC5916846 DOI: 10.1016/j.celrep.2018.01.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 11/03/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Accessory proteins of lentiviruses, such as HIV-1, target cellular restriction factors to enhance viral replication. Systematic analyses of proteins that are targeted for degradation by HIV-1 accessory proteins may provide a better understanding of viral immune evasion strategies. Here, we describe a high-throughput platform developed to study cellular protein stability in a highly parallelized matrix format. We used this approach to identify cellular targets of the HIV-1 accessory protein Vpu through arrayed coexpression with 433 interferon-stimulated genes, followed by differential fluorescent labeling and automated image analysis. Among the previously unreported Vpu targets identified by this approach, we find that the E2 ligase mediating ISG15 conjugation, UBE2L6, and the transmembrane protein PLP2 are targeted by Vpu during HIV-1 infection to facilitate late-stage replication. This study provides a framework for the systematic and high-throughput evaluation of protein stability and establishes a more comprehensive portrait of cellular Vpu targets.
Collapse
Affiliation(s)
- Prashant Jain
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guney Boso
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon Langer
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephen Soonthornvacharin
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paul D De Jesus
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Quy Nguyen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kevin C Olivieri
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Alex J Portillo
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sunnie M Yoh
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lars Pache
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Sumit K Chanda
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Taylor JP, Cash MN, Santostefano KE, Nakanishi M, Terada N, Wallet MA. CRISPR/Cas9 knockout of USP18 enhances type I IFN responsiveness and restricts HIV-1 infection in macrophages. J Leukoc Biol 2018; 103:1225-1240. [PMID: 29437254 PMCID: PMC6754309 DOI: 10.1002/jlb.3mia0917-352r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/14/2017] [Accepted: 01/05/2018] [Indexed: 12/11/2022] Open
Abstract
The IFN-stimulated gene ubiquitin-specific proteinase 18 (USP18) encodes a protein that negatively regulates T1 IFN signaling via stearic inhibition of JAK1 recruitment to the IFN-α receptor 2 subunit (IFNAR2). Here, we demonstrate that USP18 expression is induced by HIV-1 in a T1 IFN-dependent manner. Experimental depletion of USP18 by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing results in a significant restriction of HIV-1 replication in an induced pluripotent stem cell (iPSC)-derived macrophage model. In the absence of USP18, macrophages have increased responsiveness to stimulation with T1 IFNs with prolonged phosphorylation of STAT1 and STAT2 and increased expression of IFN-stimulated genes that are key for antiviral responses. Interestingly, HIV-1 requires some signaling through the T1 IFN receptor to replicate efficiently because a neutralizing antibody that inhibits T1 IFN activity reduces HIV-1 replication rate in monocyte-derived macrophages. USP18 induction by HIV-1 tunes the IFN response to optimal levels allowing for efficient transcription from the HIV-1 LTR promoter while minimizing the T1 IFN-induced antiviral response that would otherwise restrict viral replication and spread. Finally, iPSC and CRISPR/Cas9 gene targeting offer a powerful tool to study host factors that regulate innate immune responses.
Collapse
Affiliation(s)
- Jared P. Taylor
- Department of PathologyImmunology & Laboratory MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Melanie N. Cash
- Department of PathologyImmunology & Laboratory MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Katherine E. Santostefano
- Department of PathologyImmunology & Laboratory MedicineUniversity of FloridaGainesvilleFloridaUSA
- Center for Cellular ReprogrammingUniversity of FloridaGainesvilleFloridaUSA
| | - Mahito Nakanishi
- Research Center for Stem Cell EngineeringNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
| | - Naohiro Terada
- Department of PathologyImmunology & Laboratory MedicineUniversity of FloridaGainesvilleFloridaUSA
- Center for Cellular ReprogrammingUniversity of FloridaGainesvilleFloridaUSA
| | - Mark A. Wallet
- Department of PathologyImmunology & Laboratory MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
37
|
Multiple Inhibitory Factors Act in the Late Phase of HIV-1 Replication: a Systematic Review of the Literature. Microbiol Mol Biol Rev 2018; 82:82/1/e00051-17. [PMID: 29321222 DOI: 10.1128/mmbr.00051-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of lentiviral vectors for therapeutic purposes has shown promising results in clinical trials. The ability to produce a clinical-grade vector at high yields remains a critical issue. One possible obstacle could be cellular factors known to inhibit human immunodeficiency virus (HIV). To date, five HIV restriction factors have been identified, although it is likely that more factors are involved in the complex HIV-cell interaction. Inhibitory factors that have an adverse effect but do not abolish virus production are much less well described. Therefore, a gap exists in the knowledge of inhibitory factors acting late in the HIV life cycle (from transcription to infection of a new cell), which are relevant to the lentiviral vector production process. The objective was to review the HIV literature to identify cellular factors previously implicated as inhibitors of the late stages of lentivirus production. A search for publications was conducted on MEDLINE via the PubMed interface, using the keyword sequence "HIV restriction factor" or "HIV restriction" or "inhibit HIV" or "repress HIV" or "restrict HIV" or "suppress HIV" or "block HIV," with a publication date up to 31 December 2016. Cited papers from the identified records were investigated, and additional database searches were performed. A total of 260 candidate inhibitory factors were identified. These factors have been identified in the literature as having a negative impact on HIV replication. This study identified hundreds of candidate inhibitory factors for which the impact of modulating their expression in lentiviral vector production could be beneficial.
Collapse
|
38
|
Hotter D, Kirchhoff F. Interferons and beyond: Induction of antiretroviral restriction factors. J Leukoc Biol 2017; 103:465-477. [PMID: 29345347 DOI: 10.1002/jlb.3mr0717-307r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022] Open
Abstract
Antiviral restriction factors are structurally and functionally diverse cellular proteins that play a key role in the first line of defense against viral pathogens. Although many cell types constitutively express restriction factors at low levels, their induction in response to viral exposure and replication is often required for potent control and repulse of the invading pathogens. It is well established that type I IFNs efficiently induce antiviral restriction factors. Accumulating evidence suggests that other types of IFN, as well as specific cytokines, such as IL-27, and other activators of the cell are also capable of enhancing the expression of restriction factors and hence to establish an antiviral cellular state. Agents that efficiently induce restriction factors, increase their activity, and/or render them resistant against viral antagonists without causing general inflammation and significant side effects hold some promise for novel therapeutic or preventive strategies. In the present review, we summarize some of the current knowledge on the induction of antiretroviral restriction factors and perspectives for therapeutic application.
Collapse
Affiliation(s)
- Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
39
|
Shaikh N, Saxena V, Pandey S, Patil A, Thakar M. HECT Domain and RCC1-Like Domain-Containing Protein 5 (HERC-5) Gene Polymorphisms in HIV-1-Infected Individuals: A Study from India. AIDS Res Hum Retroviruses 2017; 33:1171-1174. [PMID: 28737979 DOI: 10.1089/aid.2017.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
HECT domain and RCC1-like domain-containing protein 5 (HERC-5) is one of the novel host restriction factors that is known to inhibit HIV release in vitro. Polymorphisms in other host restriction factors have been associated with HIV infection and disease progression. However, no report is available on the HERC-5 polymorphism in HIV-infected individuals. We studied the HERC-5 gene polymorphism in HIV-infected individuals and explored whether it is associated with different disease outcomes. Genomic DNA was isolated from 41 HIV-1 progressors, 39 long-term nonprogressors, and 74 HIV seronegative healthy donors for amplification of HERC5 Exon-18 and other regulatory regions followed by sequencing. We found no genetic variation in the known single-nucleotide polymorphism (SNP)-rs34457268 (Exon-18) of HERC-5 in HIV-infected individuals. Instead, a synonymous mutation at rs6857425 (T-C) was present in the same region among all study groups (p > .05), irrespective of their HIV status. We further noted two novel SNPs in Intron-18 region. To the best of our knowledge, this is first study to report the HERC5 gene polymorphism among HIV-infected groups.
Collapse
Affiliation(s)
- Nawaj Shaikh
- Department of Immunology and Serology, National AIDS Research Institute , Pune, India
| | - Vandana Saxena
- Department of Immunology and Serology, National AIDS Research Institute , Pune, India
| | - Sudhanshu Pandey
- Department of Immunology and Serology, National AIDS Research Institute , Pune, India
| | - Ajit Patil
- Department of Immunology and Serology, National AIDS Research Institute , Pune, India
| | - Madhuri Thakar
- Department of Immunology and Serology, National AIDS Research Institute , Pune, India
| |
Collapse
|
40
|
Januchowski R, Sterzyńska K, Zawierucha P, Ruciński M, Świerczewska M, Partyka M, Bednarek-Rajewska K, Brązert M, Nowicki M, Zabel M, Klejewski A. Microarray-based detection and expression analysis of new genes associated with drug resistance in ovarian cancer cell lines. Oncotarget 2017; 8:49944-49958. [PMID: 28611294 PMCID: PMC5564819 DOI: 10.18632/oncotarget.18278] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/24/2017] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The present study is to discover a new genes associated with drug resistance development in ovarian cancer. METHODS We used microarray analysis to determine alterations in the level of expression of genes in cisplatin- (CisPt), doxorubicin- (Dox), topotecan- (Top), and paclitaxel- (Pac) resistant variants of W1 and A2780 ovarian cancer cell lines. Immunohistochemistry assay was used to determine protein expression in ovarian cancer patients. RESULTS We observed alterations in the expression of 22 genes that were common to all three cell lines that were resistant to the same cytostatic drug. The level of expression of 13 genes was upregulated and that of nine genes was downregulated. In the CisPt-resistant cell line, we observed downregulated expression of ABCC6, BST2, ERAP2 and MCTP1; in the Pac-resistant cell line, we observe upregulated expression of ABCB1, EPHA7 and RUNDC3B and downregulated expression of LIPG, MCTP1, NSBP1, PCDH9, PTPRK and SEMA3A. The expression levels of three genes, ABCB1, ABCB4 and IFI16, were upregulated in the Dox-resistant cell lines. In the Top-resistant cell lines, we observed increased expression levels of ABCG2, HERC5, IFIH1, MYOT, S100A3, SAMD4A, SPP1 and TGFBI and decreased expression levels of MCTP1 and PTPRK. The expression of EPHA7, IFI16, SPP1 and TGFBI was confirmed at protein level in analyzed ovarian cancer patients.. CONCLUSIONS The expression profiles of the investigated cell lines indicated that new candidate genes are related to the development of resistance to the cytostatic drugs that are used in first- and second-line chemotherapy of ovarian cancer.
Collapse
Affiliation(s)
- Radosław Januchowski
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, 60-781, Poland
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, 60-781, Poland
| | - Piotr Zawierucha
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, 60-781, Poland
- Department of Anatomy, Poznań University of Medical Sciences, Poznań, 60-781, Poland
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, 60-781, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, 60-781, Poland
| | - Małgorzata Partyka
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, 60-781, Poland
| | | | - Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznań University of Medical Sciences, Poznań, 60-535, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, 60-781, Poland
| | - Maciej Zabel
- Department of Histology and Embryology, Poznań University of Medical Sciences, Poznań, 60-781, Poland
- Department of Histology and Embryology, Wrocław Medical University, Wrocław, 50-368, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznań University of Medical Sciences, Poznań, 60-179, Poland
- Departament of Obstetrics and Womens Dieseases, Poznań University of Medical Sciences, Poznań, 60-535, Poland
| |
Collapse
|
41
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|
42
|
Wong YY, Johnson B, Friedrich TC, Trepanier LA. Hepatic expression profiles in retroviral infection: relevance to drug hypersensitivity risk. Pharmacol Res Perspect 2017; 5:e00312. [PMID: 28603631 PMCID: PMC5464341 DOI: 10.1002/prp2.312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/11/2022] Open
Abstract
HIV‐infected patients show a markedly increased risk of delayed hypersensitivity (HS) reactions to potentiated sulfonamide antibiotics (trimethoprim/sulfamethoxazole or TMP/SMX). Some studies have suggested altered SMX biotransformation in HIV infection, but hepatic biotransformation pathways have not been evaluated directly. Systemic lupus erythematosus (SLE) is another chronic inflammatory disease with a higher incidence of sulfonamide HS, but it is unclear whether retroviral infection and SLE share risk factors for drug HS. We hypothesized that retroviral infection would lead to dysregulation of hepatic pathways of SMX biotransformation, as well as pathway alterations in common with SLE that could contribute to drug HS risk. We characterized hepatic expression profiles and enzymatic activities in an SIV‐infected macaque model of retroviral infection, and found no evidence for dysregulation of sulfonamide drug biotransformation pathways. Specifically, NAT1,NAT2,CYP2C8,CYP2C9,CYB5R3,MARC1/2, and glutathione‐related genes (GCLC,GCLM,GSS,GSTM1, and GSTP1) were not differentially expressed in drug naïve SIVmac239‐infected male macaques compared to age‐matched controls, and activities for SMX N‐acetylation and SMX hydroxylamine reduction were not different. However, multiple genes that are reportedly over‐expressed in SLE patients were also up‐regulated in retroviral infection, to include enhanced immunoproteasomal processing and presentation of antigens as well as up‐regulation of gene clusters that may be permissive to autoimmunity. These findings support the hypothesis that pathways downstream from drug biotransformation may be primarily important in drug HS risk in HIV infection.
Collapse
Affiliation(s)
- Yat Yee Wong
- Department of Medical Sciences School of Veterinary Medicine Madison Wisconsin
| | - Brian Johnson
- Molecular and Environmental Toxicology Center School of Medicine and Public Health University of Wisconsin-Madison Madison Wisconsin
| | - Thomas C Friedrich
- Department of Pathobiological Sciences School of Veterinary Medicine Madison Wisconsin.,AIDS Vaccine Research Laboratory Wisconsin National Primate Research Center Madison Wisconsin
| | - Lauren A Trepanier
- Department of Medical Sciences School of Veterinary Medicine Madison Wisconsin
| |
Collapse
|
43
|
Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4 + T Cells following Simian Immunodeficiency Virus Infection. J Virol 2017; 91:JVI.02189-16. [PMID: 28100613 DOI: 10.1128/jvi.02189-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023] Open
Abstract
Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4+ T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4+ T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4+ T cells, jejunal CCR5+ CD4+ T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G, MX2, and TRIM25, which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4+ T cell memory subsets at the peak of acute infection. Jejunal CCR5+ CD4+ T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4+ T cells to lentiviral infection.IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4+ T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is modulated by conditions such as CD4+ T cell differentiation, stimulation, tissue location, or SIV infection are currently poorly understood. We measured the expression of 45 confirmed and putative restriction factors in primary CD4+ T cells from rhesus macaques under various conditions, finding dynamic changes in each state. Most dramatically, in acute SIV infection, the expression of almost all target genes analyzed increased. These are the first measurements of many of these confirmed and putative restriction factors in primary cells or during the early events after SIV infection and suggest that the level of expression of restriction factors may contribute to the differential susceptibility of CD4+ T cells to SIV infection.
Collapse
|
44
|
ZNF395 Is an Activator of a Subset of IFN-Stimulated Genes. Mediators Inflamm 2017; 2017:1248201. [PMID: 28316371 PMCID: PMC5339479 DOI: 10.1155/2017/1248201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of the interferon (IFN) pathway in response to infection with pathogens results in the induction of IFN-stimulated genes (ISGs) including proinflammatory cytokines, which mount the proper antiviral immune response. However, aberrant expression of these genes is pathogenic to the host. In addition to IFN-induced transcription factors non-IFN-regulated factors contribute to the transcriptional control of ISGs. Here, we show by genome wide expression analysis, siRNA-mediated suppression and Doxycycline-induced overexpression that the cellular transcription factor ZNF395 activates a subset of ISGs including the chemokines CXCL10 and CXCL11 in keratinocytes. We found that ZNF395 acts independently of IFN but enhances the IFN-induced expression of CXCL10 and CXCL11. Luciferase reporter assays revealed a requirement of intact NFκB-binding sites for ZNF395 to stimulate the CXCL10 promoter. The transcriptional activation of CXCL10 and CXCL11 by ZNF395 was abolished after inhibition of IKK by BMS-345541, which increased the stability of ZNF395. ZNF395 encodes at least two motifs that mediate the enhanced degradation of ZNF395 in response to IKK activation. Thus, IKK is required for ZNF395-mediated activation of transcription and enhances its turn-over to keep the activity of ZNF395 low. Our results support a previously unrecognized role of ZNF395 in the innate immune response and inflammation.
Collapse
|
45
|
Maruthi M, Singh D, Reddy SR, Mastan BS, Mishra S, Kumar KA. Modulation of host cell SUMOylation facilitates efficient development of Plasmodium berghei and Toxoplasma gondii. Cell Microbiol 2017; 19. [PMID: 28078755 DOI: 10.1111/cmi.12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 12/19/2022]
Abstract
SUMOylation is a reversible post translational modification of proteins that regulates protein stabilization, nucleocytoplasmic transport, and protein-protein interactions. Several viruses and bacteria modulate host SUMOylation machinery for efficient infection. Plasmodium sporozoites are infective forms of malaria parasite that invade mammalian hepatocytes and transforms into exoerythrocytic forms (EEFs). Here, we show that during EEF development, the distribution of SUMOylated proteins in host cell nuclei was significantly reduced and expression of the SUMOylation enzymes was downregulated. Plasmodium EEFs destabilized the host cytoplasmic protein SMAD4 by inhibiting its SUMOylation. SUMO1 overexpression was detrimental to EEF growth, and insufficiency of the only conjugating enzyme Ubc9/E2 promoted EEF growth. The expression of genes involved in suppression of host cell defense pathways during infection was reversed during SUMO1 overexpression, as revealed by transcriptomic analysis. The inhibition of host cell SUMOylation was also observed during Toxoplasma infection. We provide a hitherto unknown mechanism of regulating host gene expression by Apicomplexan parasites through altering host SUMOylation.
Collapse
Affiliation(s)
- Mulaka Maruthi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Dipti Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Babu S Mastan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Satish Mishra
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
46
|
Hermann M, Bogunovic D. ISG15: In Sickness and in Health. Trends Immunol 2017; 38:79-93. [PMID: 27887993 DOI: 10.1016/j.it.2016.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/11/2022]
Abstract
ISG15 is a type I interferon (IFN)-inducible gene encoding a protein with pleiotropic functions, acting both as a soluble molecule and as a protein modifier. Surprisingly, and despite the antiviral functions of ISG15 described in mice, humans born with inactivating mutations of ISG15 do not present with any overt viral phenotype, but are highly susceptible to environmental mycobacteria and have autoinflammatory disease presentations. In vitro, ISG15 deficiency also leads to persistently high levels of type I IFN-stimulated gene expression and to increased resistance to all viruses tested to date. This suggests that ISG15 deficiency increases antiviral responses in humans, in stark contrast to expectations based on mouse experiments. We discuss here the roles of each of the forms of ISG15 in health and disease, as well as the differences between species.
Collapse
Affiliation(s)
- Mark Hermann
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA.
| |
Collapse
|
47
|
Garcia-Minambres A, Eid SG, Mangan NE, Pade C, Lim SS, Matthews AY, de Weerd NA, Hertzog PJ, Mak J. Interferon epsilon promotes HIV restriction at multiple steps of viral replication. Immunol Cell Biol 2017; 95:478-483. [PMID: 28045025 DOI: 10.1038/icb.2016.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/11/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022]
Abstract
Interferon epsilon (IFNɛ) is a type I IFN that is expressed constitutively in the female reproductive tract (FRT), and contributes to protection in models of sexually transmitted infections. Using multiple cell systems, including reporter cell lines and activated peripheral blood lymphocytes (PBLs), we show that recombinant IFNɛ impairs HIV infection at stage(s) post HIV entry and up to the translation of viral proteins. Consistent with this, IFNɛ upregulated a number of host cell restriction factors that block HIV at these stages of the replication cycle. The potency of IFNɛ induction of these HIV restriction factors was comparable to conventional type I IFNs, namely IFNα and IFNβ. IFNɛ also significantly reduced the infectivity of progeny virion particles likely by inducing expression of HIV restriction factors, such as IFITM3, which act at that stage of infection. Thus, our data demonstrate that human IFNɛ suppresses HIV replication at multiple stages of infection.
Collapse
Affiliation(s)
- Albert Garcia-Minambres
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Sahar G Eid
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Corinna Pade
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - San S Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Antony Y Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Johnson Mak
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,CSIRO Australian Animal Health Laboratory, Geelong, Victoria, Australia
| |
Collapse
|
48
|
Schott K, Riess M, König R. Role of Innate Genes in HIV Replication. Curr Top Microbiol Immunol 2017; 419:69-111. [PMID: 28685292 DOI: 10.1007/82_2017_29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells use an elaborate innate immune surveillance and defense system against virus infections. Here, we discuss recent studies that reveal how HIV-1 is sensed by the innate immune system. Furthermore, we present mechanisms on the counteraction of HIV-1. We will provide an overview how HIV-1 actively utilizes host cellular factors to avoid sensing. Additionally, we will summarize effectors of the innate response that provide an antiviral cellular state. HIV-1 has evolved passive mechanism to avoid restriction and to regulate the innate response. We review in detail two prominent examples of these cellular factors: (i) NLRX1, a negative regulator of the innate response that HIV-1 actively usurps to block cytosolic innate sensing; (ii) SAMHD1, a restriction factor blocking the virus at the reverse transcription step that HIV-1 passively avoids to escape sensing.
Collapse
Affiliation(s)
- Kerstin Schott
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Maximilian Riess
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany.
| |
Collapse
|
49
|
Sánchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci 2016; 73:1955-68. [PMID: 26801221 PMCID: PMC11108380 DOI: 10.1007/s00018-016-2139-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The HERC gene family encodes proteins with two characteristic domains in their sequence: the HECT domain and the RCC1-like domain (RLD). In humans, the HERC family comprises six members that can be divided into two groups based on their molecular mass and domain structure. Whereas large HERCs (HERC1 and HERC2) contain one HECT and more than one RLD, small HERCs (HERC3-6) possess single HECT and RLD domains. Accumulating evidence shows the HERC family proteins to be key components of a wide range of cellular functions, including neurodevelopment, DNA damage repair, cell growth and immune response. Considering the significant recent advances made regarding HERC functionality, an updated review summarizing the progress is greatly needed at 10 years since the last HERC review. We provide an integrated view of HERC function and go into detail about its implications for several human diseases such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Susana Sánchez-Tena
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|
50
|
Perelygina L, Adebayo A, Metcalfe M, Icenogle J. Differences in Establishment of Persistence of Vaccine and Wild Type Rubella Viruses in Fetal Endothelial Cells. PLoS One 2015; 10:e0133267. [PMID: 26177032 PMCID: PMC4503567 DOI: 10.1371/journal.pone.0133267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/24/2015] [Indexed: 12/05/2022] Open
Abstract
Both wild type (WT) and vaccine rubella virus (RV) can pass through the placenta to infect a human fetus, but only wtRV routinely causes pathology. To investigate possible reasons for this, we compared establishment of persistence of wtRV and RA27/3 vaccine strains in fetal endothelial cells. We showed that yields of RA27/3 and wtRV were similar after the first round of replication, but then only vaccine-infected cultures went through a crisis characterized by partial cell loss and gradual decline of virus titer followed by recovery and establishment of persistent cultures with low levels of RA27/3 secretion. We compared various steps of virus replication, but we were unable to identify changes, which might explain the 2-log difference in RA27/3 and wtRV yields in persistently infected cultures. Whole genome sequencing did not reveal selection of virus variants in either the wtRV or RA27/3 cultures. Quantitative single-cell analysis of RV replication by in situ hybridization detected, on average, 1–4 copies of negative-strand RNA and ~50 copies of positive-strand genomic RNA in cells infected with both vaccine and WT viruses. The distinct characteristics of RA27/3 replication were the presence of large amounts of negative-strand RV RNA and RV dsRNA at the beginning of the crisis and the accumulation of high amounts of genomic RNA in a subpopulation of infected cells during crisis and persistence. These results suggest that RA27/3 can persist in fetal endothelial cells, but the characteristics of persistence and mechanisms for the establishment and maintenance of persistence are different from wtRV.
Collapse
Affiliation(s)
- Ludmila Perelygina
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adebola Adebayo
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Maureen Metcalfe
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Joseph Icenogle
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|