1
|
Laddha K, Sobhia ME. Optimizing antibody stability and efficacy in CD47- SIRPα inhibition via computational approaches. Mol Divers 2025:10.1007/s11030-024-11037-x. [PMID: 39832086 DOI: 10.1007/s11030-024-11037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025]
Abstract
CD47, a cell surface protein, serves as a "don't eat me" signal that prevents immune cells from engulfing healthy cells upon its interaction with SIRPα. Cancer cells exploit this mechanism by overexpressing CD47 to evade immune destruction. Blocking the interaction between CD47 and its receptor, SIRPα, is a promising therapeutic strategy. Targeting the interactions between these surface proteins with small molecules is quite challenging, and on the other hand, antibodies offer potential. However, the interactions between antigen (CD47) and antibody (B6H12.2) play a crucial role in this scenario, and increasing the affinity by mutating the interacting residues might impact the inclination and effectiveness of the antibody towards antigen. Thus, this study focuses on designing antibodies with increased affinity and stability towards the antigen compared to the wild-type. Residual scanning calculations were performed to mutate the interacting as well as the hydrophobic residues of the antibody and affinity was assessed. Computational approaches, including antigen-antibody docking studies and molecular dynamics simulations, were employed to evaluate the affinity, stability and therapeutic potential of these modified antibodies.
Collapse
Affiliation(s)
- Kapil Laddha
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, 160062, India
| | - M Elizabeth Sobhia
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
2
|
Lefranc M, Lefranc G. Using IMGT unique numbering for IG allotypes and Fc-engineered variants of effector properties and half-life of therapeutic antibodies. Immunol Rev 2024; 328:473-506. [PMID: 39367563 PMCID: PMC11659927 DOI: 10.1111/imr.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Therapeutic monoclonal antibodies (mAb) are usually of the IgG1, IgG2, and IgG4 classes, and their heavy chains may be modified by amino acid (aa) changes involved in antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), complement-dependent cytotoxicity (CDC), and/or half-life. Allotypes and Fc-engineered variants are classified using IMGT/HGNC gene nomenclature (e.g., Homo sapiens IGHG1). Allotype names follow the WHO/IMGT nomenclature. IMGT-engineered variant names use the IMGT nomenclature (e.g., Homsap G1v1), which comprises species and gene name (both abbreviated) followed by the letter v (for variant) and a number. Both allotypes and engineered variants are defined by their aa changes and positions, based on the IMGT unique numbering for C domain, identified in sequence motifs, referred to as IMGT topological motifs, as their limits and length are standardized and correspond to a structural feature (e.g., strand or loop). One hundred twenty-six variants are displayed with their type, IMGT numbering, Eu-IMGT positions, motifs before and after changes, and their property and function (effector and half-life). Three motifs characterize effector variants, CH2 1.6-3, 23-BC-41, and the FG loop, whereas three different motifs characterize half-life variants, two on CH2 13-AB-18 and 89-96 with H93, and one on CH3 the FG loop with H115.
Collapse
Affiliation(s)
- Marie‐Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002 Centre National de la Recherche Scientifique (CNRS)Université de Montpellier (UM)Montpellier Cedex 5France
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system® (IMGT), Laboratoire d'ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), UMR 9002 Centre National de la Recherche Scientifique (CNRS)Université de Montpellier (UM)Montpellier Cedex 5France
| |
Collapse
|
3
|
Patel R, Verma P, Nagraj AK, Gavade A, Sharma OP, Patil J. Significance of antibody numbering systems in the development of antibody engineering. Hum Antibodies 2023; 31:71-80. [PMID: 38217590 DOI: 10.3233/hab-230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Immunotherapy has become increasingly popular in recent years for treating a variety of diseases including inflammatory, neurological, oncological, and auto-immune disorders. The significant interest in antibody development is due to the high binding affinity and specificity of an antibody against a specific antigen. Recent advances in antibody engineering have provided a different view on how to engineer antibodies in silico for therapeutic and diagnostic applications. In order to improve the clinical utility of therapeutic antibodies, it is of paramount importance to understand the various molecular properties which impact antigen targeting and its potency. In antibody engineering, antibody numbering (AbN) systems play an important role to identify the complementarity determining regions (CDRs) and the framework regions (FR). Hence, it is crucial to accurately define and understand the CDR, FR and the crucial residues of heavy and light chains that aid in the binding of the antibody to the antigenic site. Detailed understanding of amino acids positions are useful for modifying the binding affinity, specificity, physicochemical features, and half-life of an antibody. In this review, we have summarized the different antibody numbering systems that are widely used in antibody engineering and highlighted their significance. Here, we have systematically explored and mentioned the various tools and servers that harness different AbN systems.
Collapse
Affiliation(s)
- Riya Patel
- Innoplexus Consulting Services Pvt Ltd, Pune, Maharashtra, India
| | - Pratibha Verma
- Innoplexus Consulting Services Pvt Ltd, Pune, Maharashtra, India
| | | | - Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, Pune, Maharashtra, India
| | | | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, Pune, Maharashtra, India
| |
Collapse
|
4
|
Lefranc MP, Lefranc G. Antibody Sequence and Structure Analyses Using IMGT ®: 30 Years of Immunoinformatics. Methods Mol Biol 2023; 2552:3-59. [PMID: 36346584 DOI: 10.1007/978-1-0716-2609-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
IMGT®, the international ImMunoGeneTics information system®, http://www.imgt.org , the global reference in immunogenetics and immunoinformatics, was created in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR) of the adaptive immune responses. The founding of IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® standardized analysis of the IG, TR, and major histocompatibility (MH) genes and proteins bridges the gap between sequences and three-dimensional (3D) structures, for all jawed vertebrates from fish to humans. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY axioms, and primarily CLASSIFICATION (IMGT gene and allele nomenclature) and NUMEROTATION (IMGT unique numbering and IMGT Colliers de Perles). IMGT® comprises seven databases (IMGT/LIGM-DB for nucleotide sequences, IMGT/GENE-DB for genes and alleles, etc.), 17 tools (IMGT/V-QUEST, IMGT/JunctionAnalysis, IMGT/HighV-QUEST for NGS, etc.), and more than 20,000 Web resources. In this chapter, the focus is on the tools for amino acid sequences per domain (IMGT/DomainGapAlign and IMGT/Collier-de-Perles), and on the databases for receptors (IMGT/2Dstructure-DB and IMGT/3D-structure-DB) described per receptor, chain, and domain and, for 3D, with contact analysis, paratope, and epitope. The IMGT/mAb-DB is the query interface for monoclonal antibodies (mAb), fusion proteins for immune applications (FPIA), composite proteins for clinical applications (CPCA), and related proteins of interest (RPI) with links to IMGT® 2D and 3D databases and to the World Health Organization (WHO) International Nonproprietary Names (INN) program lists. The chapter includes the human IG allotypes and antibody engineered variants for effector properties used in the description of therapeutical mAb.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier cedex 5, France.
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS, Université de Montpellier, Montpellier cedex 5, France.
| |
Collapse
|
5
|
Lefranc MP, Lefranc G. IMGT ® Nomenclature of Engineered IGHG Variants Involved in Antibody Effector Properties and Formats. Antibodies (Basel) 2022; 11:65. [PMID: 36278618 PMCID: PMC9624366 DOI: 10.3390/antib11040065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The constant region of the immunoglobulin (IG) or antibody heavy gamma chain is frequently engineered to modify the effector properties of the therapeutic monoclonal antibodies. These variants are classified in regards to their effects on effector functions, antibody-dependent cytotoxicity (ADCC), antibody-dependent phagocytosis (ADCP), complement-dependent cytotoxicity (CDC) enhancement or reduction, B cell inhibition by the coengagement of antigen and FcγR on the same cell, on half-life increase, and/or on structure such as prevention of IgG4 half-IG exchange, hexamerisation, knobs-into-holes and the heteropairing H-H of bispecific antibodies, absence of disulfide bridge inter H-L, absence of glycosylation site, and site-specific drug attachment engineered cysteine. The IMGT engineered variant identifier is comprised of the species and gene name (and eventually allele), the letter 'v' followed by a number (assigned chronologically), and for each concerned domain (e.g, CH1, h, CH2 and CH3), the novel AA (single letter abbreviation) and IMGT position according to the IMGT unique numbering for the C-domain and between parentheses, the Eu numbering. IMGT engineered variants are described with detailed amino acid changes, visualized in motifs based on the IMGT numbering bridging genes, sequences, and structures for higher order description.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), UMR 9002 CNRS-UM, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), UMR 9002 CNRS-UM, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
6
|
Abstract
The enormous diversity of antibodies is a key element to combat infections. Antibodies containing pathogen receptors were a surprising discovery that contrasted antibody diversification through classic recombination events. However, such insert-containing antibodies were thus far exclusively detected in African individuals exposed to malaria parasites and were identified as screening byproducts or through hypothesis-driven search. The prevalence and complexity of insertion events remained elusive. In this study, we devise an unbiased, systematic approach to identify inserts in the human antibody repertoire. We show that inserts from distant genomic regions occur in the majority of donors and are independent of Plasmodium falciparum preexposure. Our findings suggest that four distinct classes of insertion events contribute diversity to the human antibody repertoire. Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.
Collapse
|
7
|
Abdollahi N, Jeusset L, De Septenville AL, Ripoche H, Davi F, Bernardes JS. A multi-objective based clustering for inferring BCR clonal lineages from high-throughput B cell repertoire data. PLoS Comput Biol 2022; 18:e1010411. [PMID: 36037250 PMCID: PMC9462827 DOI: 10.1371/journal.pcbi.1010411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/09/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
The adaptive B cell response is driven by the expansion, somatic hypermutation, and selection of B cell clonal lineages. A high number of clonal lineages in a B cell population indicates a highly diverse repertoire, while clonal size distribution and sequence diversity reflect antigen selective pressure. Identifying clonal lineages is fundamental to many repertoire studies, including repertoire comparisons, clonal tracking, and statistical analysis. Several methods have been developed to group sequences from high-throughput B cell repertoire data. Current methods use clustering algorithms to group clonally-related sequences based on their similarities or distances. Such approaches create groups by optimizing a single objective that typically minimizes intra-clonal distances. However, optimizing several objective functions can be advantageous and boost the algorithm convergence rate. Here we propose MobiLLe, a new method based on multi-objective clustering. Our approach requires V(D)J annotations to obtain the initial groups and iteratively applies two objective functions that optimize cohesion and separation within clonal lineages simultaneously. We show that our method greatly improves clonal lineage grouping on simulated benchmarks with varied mutation rates compared to other tools. When applied to experimental repertoires generated from high-throughput sequencing, its clustering results are comparable to the most performing tools and can reproduce the results of previous publications. The method based on multi-objective clustering can accurately identify clonally-related antibody sequences and presents the lowest running time among state-of-art tools. All these features constitute an attractive option for repertoire analysis, particularly in the clinical context. MobiLLe can potentially help unravel the mechanisms involved in developing and evolving B cell malignancies. High-throughput sequencing can produce a large set of sequences and has profoundly changed our ability to study immune repertoires, particularly B cell receptor sequences. An important application is the analysis of the clonal lineage composition of B cell populations; it is the starting point of many immune repertoire studies, for instance, to differentiate between healthy individuals and those with lymphoid malignancies or other diseases. Several computational methods have been developed to identify clonal lineages from a set of B cell receptor sequences. Most of them apply clustering algorithms and optimize a single objective function that typically minimizes intra-clonal distances. However, optimizing several objective functions in parallel can benefit and increase the clustering performance and efficiency. We propose MobiLLe, the first multi-objective clonal lineage grouping method, which simultaneously optimizes two objective functions for minimizing intra-clonal diversity and maximizing inter-clonal differences. Our approach greatly improved clonal grouping on simulated benchmarks and performed comparably to the most powerful and recent methods on experimental samples. MobiLLe is computationally more efficient than existing tools and does not require any training process or hyper-parameter optimization. It can easily manage large-scale experimental repertoires, providing useful plots to help researchers detect clonally-related sequences in high-throughput B cell repertoire data.
Collapse
Affiliation(s)
- Nika Abdollahi
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Lucile Jeusset
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, UMR_S 1138 Department of Hematology, Paris, France
| | | | - Hugues Ripoche
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Frédéric Davi
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, UMR_S 1138 Department of Hematology, Paris, France
| | - Juliana Silva Bernardes
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Lefranc MP, Lefranc G. IMGT ®Homo sapiens IG and TR Loci, Gene Order, CNV and Haplotypes: New Concepts as a Paradigm for Jawed Vertebrates Genome Assemblies. Biomolecules 2022; 12:381. [PMID: 35327572 PMCID: PMC8945572 DOI: 10.3390/biom12030381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
IMGT®, the international ImMunoGeneTics information system®, created in 1989, by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science which emerged at the interface between immunogenetics and bioinformatics for the study of the adaptive immune responses. IMGT® is based on a standardized nomenclature of the immunoglobulin (IG) and T cell receptor (TR) genes and alleles from fish to humans and on the IMGT unique numbering for the variable (V) and constant (C) domains of the immunoglobulin superfamily (IgSF) of vertebrates and invertebrates, and for the groove (G) domain of the major histocompatibility (MH) and MH superfamily (MhSF) proteins. IMGT® comprises 7 databases, 17 tools and more than 25,000 pages of web resources for sequences, genes and structures, based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts. IMGT® reference directories are used for the analysis of the NGS high-throughput expressed IG and TR repertoires (natural, synthetic and/or bioengineered) and for bridging sequences, two-dimensional (2D) and three-dimensional (3D) structures. This manuscript focuses on the IMGT®Homo sapiens IG and TR loci, gene order, copy number variation (CNV) and haplotypes new concepts, as a paradigm for jawed vertebrates genome assemblies.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’Immuno Génétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), UMR 9002 CNRS-UM, 141 rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT®, The International ImMunoGeneTics Information System®, Laboratoire d’Immuno Génétique Moléculaire (LIGM), Institut de Génétique Humaine (IGH), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), UMR 9002 CNRS-UM, 141 rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
9
|
Lefranc MP, Lefranc G. Immunoglobulins or Antibodies: IMGT ® Bridging Genes, Structures and Functions. Biomedicines 2020; 8:E319. [PMID: 32878258 PMCID: PMC7555362 DOI: 10.3390/biomedicines8090319] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics® information system founded in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science at the interface between immunogenetics and bioinformatics. For the first time, the immunoglobulin (IG) or antibody and T cell receptor (TR) genes were officially recognized as 'genes' as well as were conventional genes. This major breakthrough has allowed the entry, in genomic databases, of the IG and TR variable (V), diversity (D) and joining (J) genes and alleles of Homo sapiens and of other jawed vertebrate species, based on the CLASSIFICATION axiom. The second major breakthrough has been the IMGT unique numbering and the IMGT Collier de Perles for the V and constant (C) domains of the IG and TR and other proteins of the IG superfamily (IgSF), based on the NUMEROTATION axiom. IMGT-ONTOLOGY axioms and concepts bridge genes, sequences, structures and functions, between biological and computational spheres in the IMGT® system (Web resources, databases and tools). They provide the IMGT Scientific chart rules to identify, to describe and to analyse the IG complex molecular data, the huge diversity of repertoires, the genetic (alleles, allotypes, CNV) polymorphisms, the IG dual function (paratope/epitope, effector properties), the antibody humanization and engineering.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
10
|
Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody Structure and Function: The Basis for Engineering Therapeutics. Antibodies (Basel) 2019; 8:antib8040055. [PMID: 31816964 PMCID: PMC6963682 DOI: 10.3390/antib8040055] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
Antibodies and antibody-derived macromolecules have established themselves as the mainstay in protein-based therapeutic molecules (biologics). Our knowledge of the structure–function relationships of antibodies provides a platform for protein engineering that has been exploited to generate a wide range of biologics for a host of therapeutic indications. In this review, our basic understanding of the antibody structure is described along with how that knowledge has leveraged the engineering of antibody and antibody-related therapeutics having the appropriate antigen affinity, effector function, and biophysical properties. The platforms examined include the development of antibodies, antibody fragments, bispecific antibody, and antibody fusion products, whose efficacy and manufacturability can be improved via humanization, affinity modulation, and stability enhancement. We also review the design and selection of binding arms, and avidity modulation. Different strategies of preparing bispecific and multispecific molecules for an array of therapeutic applications are included.
Collapse
Affiliation(s)
- Mark L. Chiu
- Drug Product Development Science, Janssen Research & Development, LLC, Malvern, PA 19355, USA
- Correspondence:
| | - Dennis R. Goulet
- Department of Medicinal Chemistry, University of Washington, P.O. Box 357610, Seattle, WA 98195-7610, USA;
| | - Alexey Teplyakov
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| | - Gary L. Gilliland
- Biologics Research, Janssen Research & Development, LLC, Spring House, PA 19477, USA; (A.T.); (G.L.G.)
| |
Collapse
|
11
|
Lefranc MP, Lefranc G. IMGT ® and 30 Years of Immunoinformatics Insight in Antibody V and C Domain Structure and Function. Antibodies (Basel) 2019; 8:E29. [PMID: 31544835 PMCID: PMC6640715 DOI: 10.3390/antib8020029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
At the 10th Human Genome Mapping (HGM10) Workshop, in New Haven, for the first time, immunoglobulin (IG) or antibody and T cell receptor (TR) variable (V), diversity (D), joining (J), and constant (C) genes were officially recognized as 'genes', as were the conventional genes. Under these HGM auspices, IMGT®, the international ImMunoGeneTics information system®, was created in June 1989 at Montpellier (University of Montpellier and CNRS). The creation of IMGT® marked the birth of immunoinformatics, a new science, at the interface between immunogenetics and bioinformatics. The accuracy and the consistency between genes and alleles, sequences, and three-dimensional (3D) structures are based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts: IMGT standardized keywords (IDENTIFICATION), IMGT gene and allele nomenclature (CLASSIFICATION), IMGT standardized labels (DESCRIPTION), IMGT unique numbering and IMGT Collier de Perles (NUMEROTATION). These concepts provide IMGT® immunoinformatics insights for antibody V and C domain structure and function, used for the standardized description in IMGT® web resources, databases and tools, immune repertoires analysis, single cell and/or high-throughput sequencing (HTS, NGS), antibody humanization, and antibody engineering in relation with effector properties.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGeneTics information system®, University of Montpellier, CNRS, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS-UM, 141 rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| | - Gérard Lefranc
- IMGT®, the international ImMunoGeneTics information system®, University of Montpellier, CNRS, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UMR 9002 CNRS-UM, 141 rue de la Cardonille, 34396 Montpellier CEDEX 5, France.
| |
Collapse
|
12
|
Abstract
IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS) to manage the huge diversity of the antigen receptors, immunoglobulins (IG) or antibodies, and T cell receptors (TR). The founding of IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. Standardized sequence and structure analysis of antibody using IMGT® databases and tools allow one to bridge, for the first time, the gap between antibody sequences and three-dimensional (3D) structures. This is achieved through the IMGT Scientific chart rules, based on the IMGT-ONTOLOGY concepts of classification (IMGT gene and allele nomenclature), description (IMGT standardized labels), and numerotation (IMGT unique numbering and IMGT Collier de Perles). IMGT® is acknowledged as the global reference for immunogenetics and immunoinformatics, and its standards are particularly useful for antibody engineering and humanization. IMGT® databases for antibody nucleotide sequences and genes include IMGT/LIGM-DB and IMGT/GENE-DB, respectively, and nucleotide sequence analysis is performed by the IMGT/V-QUEST and IMGT/JunctionAnalysis tools and for NGS by IMGT/HighV-QUEST. In this chapter, we focus on IMGT® databases and tools for amino acid sequences, two-dimensional (2D) and three-dimensional (3D) structures: the IMGT/DomainGapAlign and IMGT Collier de Perles tools and the IMGT/2Dstructure-DB and IMGT/3Dstructure-DB database. IMGT/mAb-DB provides the query interface for monoclonal antibodies (mAb), fusion proteins for immune applications (FPIA), and composite proteins for clinical applications (CPCA) and related proteins of interest (RPI) and links to the proposed and recommended lists of the World Health Organization International Nonproprietary Name (WHO INN) programme, to IMGT/2Dstructure-DB for amino acid sequences, and to IMGT/3Dstructure-DB and its associated tools (IMGT/StructuralQuery, IMGT/DomainSuperimpose) for crystallized antibodies.
Collapse
|
13
|
Dawson HD, Chen C, Gaynor B, Shao J, Urban JF. The porcine translational research database: a manually curated, genomics and proteomics-based research resource. BMC Genomics 2017; 18:643. [PMID: 28830355 PMCID: PMC5568366 DOI: 10.1186/s12864-017-4009-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The use of swine in biomedical research has increased dramatically in the last decade. Diverse genomic- and proteomic databases have been developed to facilitate research using human and rodent models. Current porcine gene databases, however, lack the robust annotation to study pig models that are relevant to human studies and for comparative evaluation with rodent models. Furthermore, they contain a significant number of errors due to their primary reliance on machine-based annotation. To address these deficiencies, a comprehensive literature-based survey was conducted to identify certain selected genes that have demonstrated function in humans, mice or pigs. RESULTS The process identified 13,054 candidate human, bovine, mouse or rat genes/proteins used to select potential porcine homologs by searching multiple online sources of porcine gene information. The data in the Porcine Translational Research Database (( http://www.ars.usda.gov/Services/docs.htm?docid=6065 ) is supported by >5800 references, and contains 65 data fields for each entry, including >9700 full length (5' and 3') unambiguous pig sequences, >2400 real time PCR assays and reactivity information on >1700 antibodies. It also contains gene and/or protein expression data for >2200 genes and identifies and corrects 8187 errors (gene duplications artifacts, mis-assemblies, mis-annotations, and incorrect species assignments) for 5337 porcine genes. CONCLUSIONS This database is the largest manually curated database for any single veterinary species and is unique among porcine gene databases in regard to linking gene expression to gene function, identifying related gene pathways, and connecting data with other porcine gene databases. This database provides the first comprehensive description of three major Super-families or functionally related groups of proteins (Cluster of Differentiation (CD) Marker genes, Solute Carrier Superfamily, ATP binding Cassette Superfamily), and a comparative description of porcine microRNAs.
Collapse
Affiliation(s)
- Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA.
| | - Celine Chen
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Brady Gaynor
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Molecular Plant Pathology Lab, Beltsville, MD, 20705, USA
| | - Jonathan Shao
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Molecular Plant Pathology Lab, Beltsville, MD, 20705, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA
| |
Collapse
|
14
|
de Jong BG, IJspeert H, Marques L, van der Burg M, van Dongen JJ, Loos BG, van Zelm MC. Human IgG2- and IgG4-expressing memory B cells display enhanced molecular and phenotypic signs of maturity and accumulate with age. Immunol Cell Biol 2017; 95:744-752. [PMID: 28546550 PMCID: PMC5636940 DOI: 10.1038/icb.2017.43] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 12/28/2022]
Abstract
The mechanisms involved in sequential immunoglobulin G (IgG) class switching are still largely unknown. Sequential IG class switching is linked to higher levels of somatic hypermutation (SHM) in vivo, but it remains unclear if these are generated temporally during an immune response or upon activation in a secondary response. We here aimed to uncouple these processes and to distinguish memory B cells from primary and secondary immune responses. SHM levels and IgG subclasses were studied with 454 pyrosequencing on blood mononuclear cells from young children and adults as models for primary and secondary immunological memory. Additional sequencing and detailed immunophenotyping with IgG subclass-specific antibodies was performed on purified IgG+ memory B-cell subsets. In both children and adults, SHM levels were higher in transcripts involving more downstream-located IGHG genes (esp. IGHG2 and IGHG4). In adults, SHM levels were significantly higher than in children, and downstream IGHG genes were more frequently utilized. This was associated with increased frequencies of CD27+IgG+ memory B cells, which contained higher levels of SHM, more IGHG2 usage, and higher expression levels of activation markers than CD27−IgG+ memory B cells. We conclude that secondary immunological memory accumulates with age and these memory B cells express CD27, high levels of activation markers, and carry high SHM levels and frequent usage of IGHG2. These new insights contribute to our understanding of sequential IgG subclass switching and show a potential relevance of using serum IgG2 levels or numbers of IgG2-expressing B cells as markers for efficient generation of memory responses.
Collapse
Affiliation(s)
- Britt G de Jong
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,Department of Periodontology, ACTA, University of Amsterdam and VU University, Amsterdam, The Netherlands
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | - Bruno G Loos
- Department of Periodontology, ACTA, University of Amsterdam and VU University, Amsterdam, The Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.,Department of Immunology and Pathology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Heyman B, Volkheimer AD, Weinberg JB. Double IGHV DNA gene rearrangements in CLL: influence of mixed-mutated and -unmutated rearrangements on outcomes in CLL. Blood Cancer J 2016; 6:e440. [PMID: 27367477 PMCID: PMC5030375 DOI: 10.1038/bcj.2016.49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- B Heyman
- Duke University and Durham Veterans Affairs Medical Centers, Department of Medicine, Durham, NC, USA
| | - A D Volkheimer
- Duke University and Durham Veterans Affairs Medical Centers, Department of Medicine, Durham, NC, USA
| | - J B Weinberg
- Duke University and Durham Veterans Affairs Medical Centers, Department of Medicine, Durham, NC, USA
| |
Collapse
|
16
|
Wang X, Cheng G, Lu Y, Zhang C, Wu X, Han H, Zhao Y, Ren L. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species. PLoS One 2016; 11:e0147704. [PMID: 26901135 PMCID: PMC4762898 DOI: 10.1371/journal.pone.0147704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/07/2016] [Indexed: 12/02/2022] Open
Abstract
Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC) library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλ)n. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates.
Collapse
Affiliation(s)
- Xifeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Gang Cheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Yan Lu
- Beijing Zoo, Beijing 100044, People’s Republic of China
| | | | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Wuhu 241000, People’s Republic of China
| | - Haitang Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| | - Liming Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Lefranc MP. Immunoglobulins: 25 years of immunoinformatics and IMGT-ONTOLOGY. Biomolecules 2014; 4:1102-39. [PMID: 25521638 PMCID: PMC4279172 DOI: 10.3390/biom4041102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics information system® (CNRS and Montpellier University) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IMGT® marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT® is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and IgSF and MhSF superfamilies. IMGT® has been built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences and three-dimensional (3D) structures. The concepts include the IMGT® standardized keywords (identification), IMGT® standardized labels (description), IMGT® standardized nomenclature (classification), IMGT unique numbering and IMGT Colliers de Perles (numerotation). IMGT® comprises seven databases, 15,000 pages of web resources and 17 tools. IMGT® tools and databases provide a high-quality analysis of the IG from fish to humans, for basic, veterinary and medical research, and for antibody engineering and humanization. They include, as examples: IMGT/V-QUEST and IMGT/JunctionAnalysis for nucleotide sequence analysis and their high-throughput version IMGT/HighV-QUEST for next generation sequencing, IMGT/DomainGapAlign for amino acid sequence analysis of IG domains, IMGT/3Dstructure-DB for 3D structures, contact analysis and paratope/epitope interactions of IG/antigen complexes, and the IMGT/mAb-DB interface for therapeutic antibodies and fusion proteins for immunological applications (FPIA).
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT®, the international ImMunoGenetics information system®, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, UPR CNRS 1142, Montpellier University, 141 rue de la Cardonille, 34396 Montpellier cedex 5, France.
| |
Collapse
|
18
|
Neelakantam B, Sridevi NV, Shukra AM, Sugumar P, Samuel S, Rajendra L. Recombinant human antibody fragment against tetanus toxoid produced by phage display. Eur J Microbiol Immunol (Bp) 2014; 4:45-55. [PMID: 24678405 DOI: 10.1556/eujmi.4.2014.1.4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/14/2013] [Indexed: 11/19/2022] Open
Abstract
Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen.
Collapse
|
19
|
Lefranc MP. Immunoglobulin and T Cell Receptor Genes: IMGT(®) and the Birth and Rise of Immunoinformatics. Front Immunol 2014; 5:22. [PMID: 24600447 PMCID: PMC3913909 DOI: 10.3389/fimmu.2014.00022] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 01/15/2014] [Indexed: 11/13/2022] Open
Abstract
IMGT(®), the international ImMunoGeneTics information system(®) (1), (CNRS and Université Montpellier 2) is the global reference in immunogenetics and immunoinformatics. By its creation in 1989, IMGT(®) marked the advent of immunoinformatics, which emerged at the interface between immunogenetics and bioinformatics. IMGT(®) is specialized in the immunoglobulins (IG) or antibodies, T cell receptors (TR), major histocompatibility (MH), and proteins of the IgSF and MhSF superfamilies. IMGT(®) has been built on the IMGT-ONTOLOGY axioms and concepts, which bridged the gap between genes, sequences, and three-dimensional (3D) structures. The concepts include the IMGT(®) standardized keywords (concepts of identification), IMGT(®) standardized labels (concepts of description), IMGT(®) standardized nomenclature (concepts of classification), IMGT unique numbering, and IMGT Colliers de Perles (concepts of numerotation). IMGT(®) comprises seven databases, 15,000 pages of web resources, and 17 tools, and provides a high-quality and integrated system for the analysis of the genomic and expressed IG and TR repertoire of the adaptive immune responses. Tools and databases are used in basic, veterinary, and medical research, in clinical applications (mutation analysis in leukemia and lymphoma) and in antibody engineering and humanization. They include, for example IMGT/V-QUEST and IMGT/JunctionAnalysis for nucleotide sequence analysis and their high-throughput version IMGT/HighV-QUEST for next-generation sequencing (500,000 sequences per batch), IMGT/DomainGapAlign for amino acid sequence analysis of IG and TR variable and constant domains and of MH groove domains, IMGT/3Dstructure-DB for 3D structures, contact analysis and paratope/epitope interactions of IG/antigen and TR/peptide-MH complexes and IMGT/mAb-DB interface for therapeutic antibodies and fusion proteins for immune applications (FPIA).
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- The International ImMunoGenetics Information System (IMGT), Laboratoire d’ImmunoGénétique Moléculaire (LIGM), Institut de Génétique Humaine, UPR CNRS, Université Montpellier 2, Montpellier, France
| |
Collapse
|
20
|
Park YJ, Budiarto T, Wu M, Pardon E, Steyaert J, Hol WGJ. The structure of the C-terminal domain of the largest editosome interaction protein and its role in promoting RNA binding by RNA-editing ligase L2. Nucleic Acids Res 2012; 40:6966-77. [PMID: 22561373 PMCID: PMC3413154 DOI: 10.1093/nar/gks369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatids, such as the sleeping sickness parasite Trypanosoma brucei, contain a ∼ 20S RNA-editing complex, also called the editosome, which is required for U-insertion/deletion editing of mitochondrial mRNAs. The editosome contains a core of 12 proteins including the large interaction protein A1, the small interaction protein A6, and the editing RNA ligase L2. Using biochemical and structural data, we identified distinct domains of T. brucei A1 which specifically recognize A6 and L2. We provide evidence that an N-terminal domain of A1 interacts with the C-terminal domain of L2. The C-terminal domain of A1 appears to be required for the interaction with A6 and also plays a key role in RNA binding by the RNA-editing ligase L2 in trans. Three crystal structures of the C-terminal domain of A1 have been elucidated, each in complex with a nanobody as a crystallization chaperone. These structures permitted the identification of putative dsRNA recognition sites. Mutational analysis of conserved residues of the C-terminal domain identified Arg703, Arg731 and Arg734 as key requirements for RNA binding. The data show that the editing RNA ligase activity is modulated by a novel mechanism, i.e. by the trans-acting RNA binding C-terminal domain of A1.
Collapse
Affiliation(s)
- Young-Jun Park
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Tanya Budiarto
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Meiting Wu
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Els Pardon
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim G. J. Hol
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA, Structural Biology Brussels, Vrije Universiteit Brussel and Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
21
|
Abstract
Immunogenetics is the science that studies the genetics of the immune system and immune responses. Owing to the complexity and diversity of the immune repertoire, immunogenetics represents one of the greatest challenges for data interpretation: a large biological expertise, a considerable effort of standardization and the elaboration of an efficient system for the management of the related knowledge were required. IMGT®, the international ImMunoGeneTics information system® (http://www.imgt.org) has reached that goal through the building of a unique ontology, IMGT-ONTOLOGY, which represents the first ontology for the formal representation of knowledge in immunogenetics and immunoinformatics. IMGT-ONTOLOGY manages the immunogenetics knowledge through diverse facets that rely on the seven axioms of the Formal IMGT-ONTOLOGY or IMGT-Kaleidoscope: “IDENTIFICATION,” “DESCRIPTION,” “CLASSIFICATION,” “NUMEROTATION,” “LOCALIZATION,” “ORIENTATION,” and “OBTENTION.” The concepts of identification, description, classification, and numerotation generated from the axioms led to the elaboration of the IMGT® standards that constitute the IMGT Scientific chart: IMGT® standardized keywords (concepts of identification), IMGT® standardized labels (concepts of description), IMGT® standardized gene and allele nomenclature (concepts of classification) and IMGT unique numbering and IMGT Collier de Perles (concepts of numerotation). IMGT-ONTOLOGY has become the global reference in immunogenetics and immunoinformatics for the knowledge representation of immunoglobulins (IG) or antibodies, T cell receptors (TR), and major histocompatibility (MH) proteins of humans and other vertebrates, proteins of the immunoglobulin superfamily (IgSF) and MH superfamily (MhSF), related proteins of the immune system (RPI) of vertebrates and invertebrates, therapeutic monoclonal antibodies (mAbs), fusion proteins for immune applications (FPIA), and composite proteins for clinical applications (CPCA).
Collapse
Affiliation(s)
- Véronique Giudicelli
- IMGT® the international ImMunoGenetics information system® Université Montpellier 2, Laboratoire d'ImmunoGénétique Moléculaire, Institut de Génétique Humaine, UPR CNRS Montpellier, France
| | | |
Collapse
|
22
|
Monegal A, Olichon A, Bery N, Filleron T, Favre G, de Marco A. Single domain antibodies with VH hallmarks are positively selected during panning of llama (Lama glama) naïve libraries. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:150-156. [PMID: 21767565 DOI: 10.1016/j.dci.2011.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/24/2011] [Accepted: 06/26/2011] [Indexed: 05/31/2023]
Abstract
Independent variable domains with VH hallmarks have been repeatedly identified in immune and pre-immune VHH libraries. In some cases, stable independent VH domains have been also isolated in mouse and human recombinant antibody repertoires. However, we have come to realize that VHs were selected with a higher efficiency than VHHs during biopanning of a pre-immune (VHH) library. The biochemical and biophysical comparison did not indicate a presence of any feature that would favor the VH binders during the selection process. In contrast, selected VHHs seemed to be more stable than the VHs, ruling out the existence of a thermodynamically - favored VH sub-class. Therefore, we reasoned that a certain degree of thermodynamic instability may be beneficial for both displaying and expression of VH(H)s when the Sec-pathway is used for their secretion to avoid the cytoplasmic trapping of fast-folding polypeptides. Indeed, VHHs, but not VHs, were accumulated at higher concentrations when expressed fused to the dsbA leader peptide, a sequence that drives the linked polypeptides to the co-translational SRP secretion machinery. These data suggest that the thermodynamically favored VHHs can be lost during biopanning, as previously observed for DARPins and in contrast to the recombinant antibodies in scFv format.
Collapse
Affiliation(s)
- Ana Monegal
- Cogentech - Protein Chemistry Unit, IFOM-IEO Campus, Via Adamello 16, 20139 Milano, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Lefranc MP. IMGT Collier de Perles for the variable (V), constant (C), and groove (G) domains of IG, TR, MH, IgSF, and MhSF. Cold Spring Harb Protoc 2011; 2011:643-651. [PMID: 21632788 DOI: 10.1101/pdb.ip86] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
INTRODUCTIONThe “IMGT Collier de Perles” (or “IMGT_Collier_de_Perles”) concept is a major concept of numerotation (generated from the NUMEROTATION axiom) of IMGT-ONTOLOGY, the global reference in immunogenetics and immunoinformatics, built by IMGT, the international ImMunoGeneTics information system. The “IMGT Collier de Perles” concept, described here, allows standardized two-dimensional (2D) graphical representations of the domains, based on the IMGT unique numbering. Three leafconcepts (a leafconcept is a concept that corresponds to the finest level of granularity) have been defined: for the variable (V) domain and constant (C) domain of the immunoglobulin superfamily (IgSF) and for the groove (G) domain of the major histocompatibility (MH) superfamily (MhSF). IMGT Colliers de Perles are obtained, starting from V, C, or G domain amino acid sequences, using IMGT/DomainGapAlign and IMGT/Collier de Perles tools. In IMGT/3Dstructure-DB, IMGT Colliers de Perles of V and C domains are provided with hydrogen bonds and those of G domains with IMGT pMH contact analysis. IMGT Colliers de Perles allows one to bridge the gap between sequences and three-dimensional (3D) structures, whatever the species, the IgSF or MhSF protein, or the chain type. They are particularly useful for antibody engineering, sequence-structure analysis, visualization and comparison of positions for mutations, polymorphisms and contact analysis of immunoglobulins (IG), T cell receptors (TR), MH, and related proteins of the immune system (RPI) belonging to the IgSF and MhSF.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France.
| |
Collapse
|
24
|
Lefranc MP. IMGT, the International ImMunoGeneTics Information System. Cold Spring Harb Protoc 2011; 2011:595-603. [PMID: 21632786 DOI: 10.1101/pdb.top115] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France.
| |
Collapse
|
25
|
Lefranc MP. From IMGT-ONTOLOGY DESCRIPTION axiom to IMGT standardized labels: for immunoglobulin (IG) and T cell receptor (TR) sequences and structures. Cold Spring Harb Protoc 2011; 2011:614-26. [PMID: 21632791 DOI: 10.1101/pdb.ip83] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France.
| |
Collapse
|
26
|
Lefranc MP. From IMGT-ONTOLOGY CLASSIFICATION Axiom to IMGT standardized gene and allele nomenclature: for immunoglobulins (IG) and T cell receptors (TR). Cold Spring Harb Protoc 2011; 2011:627-32. [PMID: 21632790 DOI: 10.1101/pdb.ip84] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, international ImMunoGeneTics information system, Laboratoire d'ImmunoGénétique Moléculaire LIGM, Université Montpellier 2, Institut de Génétique Humaine IGH, UPR CNRS 1142, 34396 Montpellier cedex 5, France
| |
Collapse
|
27
|
Abstract
During the development cycle of a new antibody therapy, the therapeutic agent will be tested on subsequently more biologically complex models. New experiments' designs are based upon data gathered from prior models. New researchers who inherit the data and researchers from groups with different cultures or expertise are often called upon to interpret these data. Experiments which are not recorded consistently or employ ambiguous terminology can make interpreting these results difficult. The researcher who had originally collected the data may not be at hand to correct any misunderstanding or offer clarification and data can be unknowingly misused. This introduces an element of risk into the therapy development process. We have developed a reporting guideline for recording therapy experiments. This guideline consists of a checklist of data to be recorded from antibody therapy experiments performed in molecular, cellular, animal and clinical model.
Collapse
|
28
|
Wu M, Park YJ, Pardon E, Turley S, Hayhurst A, Deng J, Steyaert J, Hol WGJ. Structures of a key interaction protein from the Trypanosoma brucei editosome in complex with single domain antibodies. J Struct Biol 2011; 174:124-36. [PMID: 20969962 PMCID: PMC3037447 DOI: 10.1016/j.jsb.2010.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 01/07/2023]
Abstract
Several major global diseases are caused by single-cell parasites called trypanosomatids. These organisms exhibit many unusual features including a unique and essential U-insertion/deletion RNA editing process in their single mitochondrion. Many key RNA editing steps occur in ∼20S editosomes, which have a core of 12 proteins. Among these, the "interaction protein" KREPA6 performs a central role in maintaining the integrity of the editosome core and also binds to ssRNA. The use of llama single domain antibodies (VHH domains) accelerated crystal growth of KREPA6 from Trypanosoma brucei dramatically. All three structures obtained are heterotetramers with a KREPA6 dimer in the center, and one VHH domain bound to each KREPA6 subunit. Two of the resultant heterotetramers use complementarity determining region 2 (CDR2) and framework residues to form a parallel pair of beta strands with KREPA6 - a mode of interaction not seen before in VHH domain-protein antigen complexes. The third type of VHH domain binds in a totally different manner to KREPA6. Intriguingly, while KREPA6 forms tetramers in solution adding either one of the three VHH domains results in the formation of a heterotetramer in solution, in perfect agreement with the crystal structures. Biochemical solution studies indicate that the C-terminal tail of KREPA6 is involved in the dimerization of KREPA6 dimers to form tetramers. The implications of these crystallographic and solution studies for possible modes of interaction of KREPA6 with its many binding partners in the editosome are discussed.
Collapse
Affiliation(s)
- Meiting Wu
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Young-jun Park
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Stewart Turley
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hayhurst
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227-5301, USA
| | - Junpeng Deng
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Wim G. J. Hol
- Biomolecular Structure Center, Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Breden F, Lepik C, Longo NS, Montero M, Lipsky PE, Scott JK. Comparison of antibody repertoires produced by HIV-1 infection, other chronic and acute infections, and systemic autoimmune disease. PLoS One 2011; 6:e16857. [PMID: 21479208 PMCID: PMC3068138 DOI: 10.1371/journal.pone.0016857] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/16/2011] [Indexed: 12/20/2022] Open
Abstract
Background Antibodies (Abs) produced during HIV-1 infection rarely neutralize a broad range of viral isolates; only eight broadly-neutralizing (bNt) monoclonal (M)Abs have been isolated. Yet, to be effective, an HIV-1 vaccine may have to elicit the essential features of these MAbs. The V genes of all of these bNt MAbs are highly somatically mutated, and the VH genes of five of them encode a long (≥20 aa) third complementarity-determining region (CDR-H3). This led us to question whether long CDR-H3s and high levels of somatic mutation (SM) are a preferred feature of anti-HIV bNt MAbs, or if other adaptive immune responses elicit them in general. Methodology and Principal Findings We assembled a VH-gene sequence database from over 700 human MAbs of known antigen specificity isolated from chronic (viral) infections (ChI), acute (bacterial and viral) infections (AcI), and systemic autoimmune diseases (SAD), and compared their CDR-H3 length, number of SMs and germline VH-gene usage. We found that anti-HIV Abs, regardless of their neutralization breadth, tended to have long CDR-H3s and high numbers of SMs. However, these features were also common among Abs associated with other chronic viral infections. In contrast, Abs from acute viral infections (but not bacterial infections) tended to have relatively short CDR-H3s and a low number of SMs, whereas SAD Abs were generally intermediate in CDR-H3 length and number of SMs. Analysis of VH gene usage showed that ChI Abs also tended to favor distal germline VH-genes (particularly VH1-69), especially in Abs bearing long CDR-H3s. Conclusions and Significance The striking difference between the Abs produced during chronic vs. acute viral infection suggests that Abs bearing long CDR-H3s, high levels of SM and VH1-69 gene usage may be preferentially selected during persistent infection.
Collapse
Affiliation(s)
- Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (FB); (JKS)
| | - Christa Lepik
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nancy S. Longo
- Repertoire Analysis Group, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marinieve Montero
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Peter E. Lipsky
- Repertoire Analysis Group, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jamie K. Scott
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail: (FB); (JKS)
| |
Collapse
|
30
|
Clustering-based identification of clonally-related immunoglobulin gene sequence sets. Immunome Res 2010; 6 Suppl 1:S4. [PMID: 20875155 PMCID: PMC2946782 DOI: 10.1186/1745-7580-6-s1-s4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Clonal expansion of B lymphocytes coupled with somatic mutation and antigen selection allow the mammalian humoral immune system to generate highly specific immunoglobulins (IG) or antibodies against invading bacteria, viruses and toxins. The availability of high-throughput DNA sequencing methods is providing new avenues for studying this clonal expansion and identifying the factors guiding the generation of antibodies. The identification of groups of rearranged immunoglobulin gene sequences descended from the same rearrangement (clonally-related sets) in very large sets of sequences is facilitated by the availability of immunoglobulin gene sequence alignment and partitioning software that can accurately predict component germline gene, but has required painstaking visual inspection and analysis of sequences. Results We have developed and implemented an algorithm for identifying sets of clonally-related sequences in large human immunoglobulin heavy chain gene variable region sequence sets. The program processes sequences that have been partitioned using iHMMune-align, and uses pairwise comparisons of CDR3 sequences and similarity in IGHV and IGHJ germline gene assignments to construct a distance matrix. Agglomerative hierarchical clustering is then used to identify likely groups of clonally-related sequences. The program is available for download from http://www.cse.unsw.edu.au/~ihmmune/ClonalRelate/ClonalRelate.zip. Conclusions The method was evaluated on several benchmark datasets and provided a more accurate and considerably faster identification of clonally-related immunoglobulin gene sequences than visual inspection by domain experts.
Collapse
|
31
|
Axelsson F, Persson J, Moreau E, Côté MH, Lamarre A, Ohlin M. Novel antibody specificities targeting glycoprotein B of cytomegalovirus identified by molecular library technology. N Biotechnol 2009; 25:429-36. [DOI: 10.1016/j.nbt.2009.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/06/2009] [Accepted: 05/07/2009] [Indexed: 01/08/2023]
|
32
|
Abstract
Recent years have witnessed an explosive growth in available biological data pertaining to autoimmunity research. This includes a tremendous quantity of sequence data (biological structures, genetic and physical maps, pathways, etc.) generated by genome and proteome projects plus extensive clinical and epidemiological data. Autoimmunity research stands to greatly benefit from this data so long as appropriate strategies are available to enable full access to and utilization of this data. The quantity and complexity of this biological data necessitates use of advanced bioinformatics strategies for its efficient retrieval, analysis and interpretation. Major progress has been made in development of specialized tools for storage, analysis and modeling of immunological data, and this has led to development of a whole new field know as immunoinformatics. With advances in novel high-throughput immunology technologies immunoinformatics is transforming understanding of how the immune system functions. This paper reviews advances in the field of immunoinformatics pertinent to autoimmunity research including databases, tools in genomics and proteomics, tools for study of B- and T-cell epitopes, integrative approaches, and web servers.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Flinders Medical Centre/Flinders University, Bedford Park, Adelaide, SA, 5042, Australia
| | | |
Collapse
|
33
|
Collins EJ, Riddle DS. TCR-MHC docking orientation: natural selection, or thymic selection? Immunol Res 2009; 41:267-94. [PMID: 18726714 DOI: 10.1007/s12026-008-8040-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell receptors (TCR) dock on their peptide-major histocompatibility complex (pMHC) targets in a conserved orientation. Since amino acid sidechains are the foundation of specific protein-protein interactions, a simple explanation for the conserved docking orientation is that key amino acids encoded by the TCR and MHC genes have been selected and maintained through evolution in order to preserve TCR/pMHC binding. Expectations that follow from the hypothesis that TCR and MHC evolved to interact are discussed in light of the data that both support and refute them. Finally, an alternative and equally simple explanation for the driving force behind the conserved docking orientation is described.
Collapse
Affiliation(s)
- Edward J Collins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 804 Mary Ellen Jones Building, Chapel Hill, NC 27510, USA.
| | | |
Collapse
|
34
|
Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus. J Struct Biol 2008; 166:8-15. [PMID: 19118632 DOI: 10.1016/j.jsb.2008.11.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 11/22/2008] [Accepted: 11/24/2008] [Indexed: 11/20/2022]
Abstract
Pseudopilins form the central pseudopilus of the sophisticated bacterial type 2 secretion systems. The crystallization of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus was greatly accelerated by the use of nanobodies, which are the smallest antigen-binding fragments derived from heavy-chain only camelid antibodies. Seven anti-EpsI:EpsJ nanobodies were generated and co-crystallization of EpsI:EpsJ nanobody complexes yielded several crystal forms very rapidly. In the structure solved, the nanobodies are arranged in planes throughout the crystal lattice, linking layers of EpsI:EpsJ heterodimers. The EpsI:EpsJ dimer observed confirms a right-handed architecture of the pseudopilus, but, compared to a previous structure of the EpsI:EpsJ heterodimer, EpsI differs 6 degrees in orientation with respect to EpsJ; one loop of EpsJ is shifted by approximately 5A due to interactions with the nanobody; and a second loop of EpsJ underwent a major change of 17A without contacts with the nanobody. Clearly, nanobodies accelerate dramatically the crystallization of recalcitrant protein complexes and can reveal conformational flexibility not observed before.
Collapse
|
35
|
Pelat T, Bedouelle H, Rees AR, Crennell SJ, Lefranc MP, Thullier P. Germline humanization of a non-human primate antibody that neutralizes the anthrax toxin, by in vitro and in silico engineering. J Mol Biol 2008; 384:1400-7. [PMID: 18976662 DOI: 10.1016/j.jmb.2008.10.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 11/15/2022]
Abstract
Fab 35PA83 is an antibody fragment of non-human primate origin that neutralizes the anthrax lethal toxin. Human antibodies are usually preferred when clinical use is envisioned, even though their framework regions (FR) may carry mutations introduced during affinity maturation. These hypermutations can be immunogenic and therefore FR that are encoded by human germline genes, encountered in IgMs and thus part of the "self" proteins, are preferable. Accordingly, the proportion of FR residues in 35PA83 that were encoded by human V and J germline genes, i.e. the germinality index (GI) of 35PA83, was increased in a multistep cumulative approach. In a first step, the FR1 and FR4 residues of 35PA83 were changed simultaneously into their counterparts coded by 35PA83's closest human germline genes, without prior modelling. The resulting derivative of 35PA83 had the same affinity as its parental Fab. In a second step, the 3D structures of this first 35PA83 derivative, carrying the same type of residue changes but in the FR2 and FR3 regions, were modelled in silico from sequences. Some of the changes in FR2 or FR3 modified the predicted peptide backbone. The changes that did not seem to alter the structure were introduced simultaneously in the Fab by an in vitro method and resulted in a loss of reactivity, which could however be fully restored by a single point mutation. The final 35PA83 derivative had a GI higher than that of a fully human Fab, which had neutralization properties similar to 35PA83 and which was used as a benchmark in this study.
Collapse
Affiliation(s)
- Thibaut Pelat
- Groupe de Biotechnologie des Anticorps, Laboratoire d'Immunobiologie, Centre de Recherches du Service de Santé des Armées, 24 avenue du maquis du Grésivaudan, 38702 La Tronche, France
| | | | | | | | | | | |
Collapse
|
36
|
Smith MZ, Asher TE, Venturi V, Davenport MP, Douek DC, Price DA, Kent SJ. Limited maintenance of vaccine-induced simian immunodeficiency virus-specific CD8 T-cell receptor clonotypes after virus challenge. J Virol 2008; 82:7357-68. [PMID: 18508897 PMCID: PMC2493343 DOI: 10.1128/jvi.00607-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 05/16/2008] [Indexed: 11/20/2022] Open
Abstract
T-cell receptors (TCRs) govern the specificity, efficacy, and cross-reactivity of CD8 T cells. Here, we studied CD8 T-cell clonotypes from Mane-A*10(+) pigtail macaques responding to the simian immunodeficiency virus (SIV) Gag KP9 epitope in a setting of vaccination and subsequent viral challenge. We observed a diverse TCR repertoire after DNA, recombinant poxvirus, and live attenuated virus vaccination, with none of 59 vaccine-induced KP9-specific TCRs being identical between macaques. The KP9-specific TCR repertoires remained diverse after SIV or simian-human immunodeficiency virus challenge but, remarkably, exhibited substantially different clonotypic compositions compared to the corresponding populations prechallenge. Within serial samples from individual pigtail macaques, only a small subset (33.9%) of TCRs induced by vaccination were maintained or expanded after challenge. Most (66.1%) of the TCRs induced by vaccination were not detectable after challenge. Our results suggest that some CD8 T cells induced by vaccination are more efficient than others at responding to a viral challenge. These findings have implications for future AIDS virus vaccine studies, which should consider the "fitness" of vaccine-induced T cells in order to generate robust responses in the face of virus exposure.
Collapse
Affiliation(s)
- Miranda Z Smith
- Department of Microbiology and Immunology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
Lundegaard C, Lund O, Kesmir C, Brunak S, Nielsen M. Modeling the adaptive immune system: predictions and simulations. Bioinformatics 2007; 23:3265-75. [PMID: 18045832 PMCID: PMC7110254 DOI: 10.1093/bioinformatics/btm471] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/10/2007] [Accepted: 09/10/2007] [Indexed: 01/06/2023] Open
Abstract
MOTIVATION Immunological bioinformatics methods are applicable to a broad range of scientific areas. The specifics of how and where they might be implemented have recently been reviewed in the literature. However, the background and concerns for selecting between the different available methods have so far not been adequately covered. SUMMARY Before using predictions systems, it is necessary to not only understand how the methods are constructed but also their strength and limitations. The prediction systems in humoral epitope discovery are still in their infancy, but have reached a reasonable level of predictive strength. In cellular immunology, MHC class I binding predictions are now very strong and cover most of the known HLA specificities. These systems work well for epitope discovery, and predictions of the MHC class I pathway have been further improved by integration with state-of-the-art prediction tools for proteasomal cleavage and TAP binding. By comparison, class II MHC binding predictions have not developed to a comparable accuracy level, but new tools have emerged that deliver significantly improved predictions not only in terms of accuracy, but also in MHC specificity coverage. Simulation systems and mathematical modeling are also now beginning to reach a level where these methods will be able to answer more complex immunological questions.
Collapse
Affiliation(s)
- Claus Lundegaard
- Center for biological sequence analysis, CBS, Kemitorvet 208, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
38
|
Beisswanger E, DeLuca DS, Blasczyk R, Hahn U. An ontology for major histocompatibility complex (MHC) alleles and molecules. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2007; 2007:41-45. [PMID: 18693794 PMCID: PMC2813666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 07/17/2007] [Accepted: 10/11/2007] [Indexed: 05/26/2023]
Abstract
We present a formally coherent and consistent multi-species MHC ontology which includes all human MHC alleles and serological groups. The ontology is part of StemNet, a knowledge management system for hematopoietic stem cell transplantation with an integrated semantic search engine. The Owl-encoded MHC ontology contributes to the system in a threefold manner. First, it supports query formulation and query processing as well as mapping onto external terminological resources, second, it eases the interaction with the search engine when navigating through search results, and finally, it provides a formal language for text annotation, a methodological prerequisite for state-of-the-art natural language text processors which are increasingly based on machine learning methods and hence require annotated text corpora.
Collapse
|
39
|
Dinakarpandian D, Lee Y, Dinakar C. Applications of medical informatics in allergy/immunology. Ann Allergy Asthma Immunol 2007; 99:2-9; quiz 9-12, 41. [PMID: 17650823 DOI: 10.1016/s1081-1206(10)60613-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To provide a general overview of informatics and its interface with allergy/immunology. DATA SOURCES The PubMed interface to MEDLINE was searched with the keywords asthma, allergy, or immunology together with the keywords informatics, bioinformatics, and information technology to retrieve the articles relevant to this review. STUDY SELECTION The authors' knowledge of the field was used to include sources of information other than those obtained through the MEDLINE search. RESULTS A survey of informatics, with emphasis on the relevance to allergy, asthma, and immunology, is presented. CONCLUSIONS Several innovative informatics approaches have significant potential to improve health care on diverse fronts. Newer methods of information representation are poised to facilitate the impact of cutting-edge research on clinical practice.
Collapse
|
40
|
Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Røder G, Peters B, Sette A, Lund O, Buus S. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2007; 2:e796. [PMID: 17726526 PMCID: PMC1949492 DOI: 10.1371/journal.pone.0000796] [Citation(s) in RCA: 489] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/29/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be a major undertaking. PRINCIPAL FINDINGS Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis. CONCLUSIONS Encompassing all HLA molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
Collapse
Affiliation(s)
- Morten Nielsen
- Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mancia A, Romano TA, Gefroh HA, Chapman RW, Middleton DL, Warr GW, Lundqvist ML. Characterization of the immunoglobulin A heavy chain gene of the Atlantic bottlenose dolphin (Tursiops truncatus). Vet Immunol Immunopathol 2007; 118:304-9. [PMID: 17572508 DOI: 10.1016/j.vetimm.2007.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 04/03/2007] [Accepted: 04/26/2007] [Indexed: 11/28/2022]
Abstract
Immunoglobulin constant region heavy chain genes of the dolphin (Tursiops truncatus) have been described for IgM and IgG but not for IgA. Here, the heavy chain sequence of dolphin IgA has been cloned and sequenced as cDNA. RT-PCR amplification from blood peripheral lymphocytes was carried out using degenerate primers and a single sequence was detected. The inferred heavy chain structure shows conserved features typical of mammalian IgA heavy chains, including three constant (C) regions, a hinge region between constant region domain 1 (C1) and constant region domain 2 (C2), and conserved residues for interaction with the Fc alpha R1 and N-glycosylation sites. Comparisons of the deduced amino acid sequences of the IgA heavy chain for the dolphin and the evolutionarily related artiodactyl species showed high similarity. In cattle and sheep, as in dolphins, a single IgA subclass has been identified. Southern blot analysis as well as genomic PCR confirmed the presence of multiple IGHA sequences suggesting that IGHA pseudogenes may be present in the dolphin genome.
Collapse
Affiliation(s)
- Annalaura Mancia
- Marine Biomedicine and Environmental Science Center, Medical University of South Carolina, Charleston, SC 29412, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Pelat T, Hust M, Laffly E, Condemine F, Bottex C, Vidal D, Lefranc MP, Dübel S, Thullier P. High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 2007; 51:2758-64. [PMID: 17517846 PMCID: PMC1932538 DOI: 10.1128/aac.01528-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anthrax lethal toxin (LT) consists of two subunits, the protective antigen (PA) and the lethal factor (LF), and is essential for anthrax pathogenesis. Several recombinant antibodies directed against PA and intended for medical use have been obtained, but none against LF, despite the recommendations of anthrax experts. Here we describe an anti-LF single-chain variable fragment (scFv) that originated from an immunized macaque (Macaca fascicularis) and was obtained by phage display. Panning of the library of 1.8 x 10(8) clones allowed the isolation of 2LF, a high-affinity (equilibrium dissociation constant, 1.02 nM) scFv, which is highly neutralizing in the standardized in vitro assay (50% inhibitory concentration, 1.20 +/- 0.06 nM) and in an in vivo assay. The scFv neutralizes anthrax LT by inhibiting the formation of the LF-PA complex. The genes encoding 2LF are very similar to those of human immunoglobulin germ line genes, sharing substantial (84.2%) identity with their most similar, germinally encoded counterparts; this feature favors medical applications. These results, and others formerly published, demonstrate that our approach can generate antibody fragments suitable for prophylaxis and therapeutics.
Collapse
Affiliation(s)
- Thibaut Pelat
- Groupe de Biotechnologie des Anticorps, Département de Biologie des Agents Transmissibles, La Tronche, France
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gaëta BA, Malming HR, Jackson KJL, Bain ME, Wilson P, Collins AM. iHMMune-align: hidden Markov model-based alignment and identification of germline genes in rearranged immunoglobulin gene sequences. Bioinformatics 2007; 23:1580-7. [PMID: 17463026 DOI: 10.1093/bioinformatics/btm147] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Immunoglobulin heavy chain (IGH) genes in mature B lymphocytes are the result of recombination of IGHV, IGHD and IGHJ germline genes, followed by somatic mutation. The correct identification of the germline genes that make up a variable VH domain is essential to our understanding of the process of antibody diversity generation as well as to clinical investigations of some leukaemias and lymphomas. RESULTS We have developed iHMMune-align, an alignment program that uses a hidden Markov model (HMM) to model the processes involved in human IGH gene rearrangement and maturation. The performance of iHMMune-align was compared to that of other immunoglobulin gene alignment utilities using both clonally related and randomly selected IGH sequences. This evaluation suggests that iHMMune-align provides a more accurate identification of component germline genes than other currently available IGH gene characterization programs. AVAILABILITY iHMMune-align cross-platform Java executable and web interface are freely available to academic users and can be accessed at http://www.emi.unsw.edu.au/~ihmmune/.
Collapse
Affiliation(s)
- Bruno A Gaëta
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Günther S, Hempel D, Dunkel M, Rother K, Preissner R. SuperHapten: a comprehensive database for small immunogenic compounds. Nucleic Acids Res 2006; 35:D906-10. [PMID: 17090587 PMCID: PMC1669746 DOI: 10.1093/nar/gkl849] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The immune system protects organisms from foreign proteins, peptide epitopes and a multitude of chemical compounds. Among these, haptens are small molecules, eliciting an immune response when conjugated with carrier molecules. Known haptens are xenobiotics or natural compounds, which can induce a number of autoimmune diseases like contact dermatitis or asthma. Furthermore, haptens are utilized in the development of biosensors, immunomodulators and new vaccines. Although hapten-induced allergies account for 6–10% of all adverse drug effects, the understanding of the correlation between structural and haptenic properties is rather fragmentary. We have developed a manually curated hapten database, SuperHapten, integrating information from literature and web resources. The current version of the database compiles 2D/3D structures, physicochemical properties and references for about 7500 haptens and 25,000 synonyms. The commercial availability is documented for about 6300 haptens and 450 related antibodies, enabling experimental approaches on cross-reactivity. The haptens are classified regarding their origin: pesticides, herbicides, insecticides, drugs, natural compounds, etc. Queries allow identification of haptens and associated antibodies according to functional class, carrier protein, chemical scaffold, composition or structural similarity. SuperHapten is available online at .
Collapse
Affiliation(s)
- Stefan Günther
- Institute of Molecular Biology and Bioinformatics, Charité-University Medicine Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|