1
|
Dopler A, Alkan F, Malka Y, van der Kammen R, Hoefakker K, Taranto D, Kocabay N, Mimpen I, Ramirez C, Malzer E, Isaeva OI, Kerkhoff M, Gangaev A, Silva J, Ramalho S, Hoekman L, Altelaar M, Beijersbergen R, Akkari L, Yewdell JW, Kvistborg P, Faller WJ. P-stalk ribosomes act as master regulators of cytokine-mediated processes. Cell 2024; 187:6981-6993.e23. [PMID: 39437780 PMCID: PMC11896023 DOI: 10.1016/j.cell.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory cytokines are pivotal to immune responses. Upon cytokine exposure, cells enter an "alert state" that enhances their visibility to the immune system. Here, we identified an alert-state subpopulation of ribosomes defined by the presence of the P-stalk. We show that P-stalk ribosomes (PSRs) are formed in response to cytokines linked to tumor immunity, and this is at least partially mediated by P-stalk phosphorylation. PSRs are involved in the preferential translation of mRNAs vital for the cytokine response via the more efficient translation of transmembrane domains of receptor molecules involved in cytokine-mediated processes. Importantly, loss of the PSR inhibits CD8+ T cell recognition and killing, and inhibitory cytokines like transforming growth factor β (TGF-β) hinder PSR formation, suggesting that the PSR is a central regulatory hub upon which multiple signals converge. Thus, the PSR is an essential mediator of the cellular rewiring that occurs following cytokine exposure via the translational regulation of this process.
Collapse
Affiliation(s)
- Anna Dopler
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ferhat Alkan
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yuval Malka
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rob van der Kammen
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Kelly Hoefakker
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daniel Taranto
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Naz Kocabay
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Iris Mimpen
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christel Ramirez
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Elke Malzer
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Olga I Isaeva
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mandy Kerkhoff
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Anastasia Gangaev
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joana Silva
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sofia Ramalho
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Roderick Beijersbergen
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leila Akkari
- Division of Tumor Biology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jonathan Wilson Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pia Kvistborg
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - William James Faller
- Division of Oncogenomics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
D’Andrea G, Deroma G, Miluzio A, Biffo S. The Paradox of Ribosomal Insufficiency Coupled with Increased Cancer: Shifting the Perspective from the Cancer Cell to the Microenvironment. Cancers (Basel) 2024; 16:2392. [PMID: 39001453 PMCID: PMC11240629 DOI: 10.3390/cancers16132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ribosomopathies are defined as inherited diseases in which ribosomal factors are mutated. In general, they present multiorgan symptoms. In spite of the fact that in cellular models, ribosomal insufficiency leads to a reduced rate of oncogenic transformation, patients affected by ribosomopathies present a paradoxical increase in cancer incidence. Several hypotheses that explain this paradox have been formulated, mostly on the assumption that altered ribosomes in a stem cell induce compensatory changes that lead to a cancer cell. For instance, the lack of a specific ribosomal protein can lead to the generation of an abnormal ribosome, an oncoribosome, that itself leads to altered translation and increased tumorigenesis. Alternatively, the presence of ribosomal stress may induce compensatory proliferation that in turns selects the loss of tumor suppressors such as p53. However, modern views on cancer have shifted the focus from the cancer cell to the tumor microenvironment. In particular, it is evident that human lymphocytes are able to eliminate mutant cells and contribute to the maintenance of cancer-free tissues. Indeed, many tumors develop in conditions of reduced immune surveillance. In this review, we summarize the current evidence and attempt to explain cancer and ribosomopathies from the perspective of the microenvironment.
Collapse
Affiliation(s)
- Giacomo D’Andrea
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giorgia Deroma
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Annarita Miluzio
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, INGM Fondazione Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.D.); (G.D.); (A.M.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
3
|
Belean A, Xue E, Cisneros B, Roberson EDO, Paley MA, Bigley TM. Transcriptomic profiling of thymic dysregulation and viral tropism after neonatal roseolovirus infection. Front Immunol 2024; 15:1375508. [PMID: 38895117 PMCID: PMC11183875 DOI: 10.3389/fimmu.2024.1375508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Herpesviruses, including the roseoloviruses, have been linked to autoimmune disease. The ubiquitous and chronic nature of these infections have made it difficult to establish a causal relationship between acute infection and subsequent development of autoimmunity. We have shown that murine roseolovirus (MRV), which is highly related to human roseoloviruses, induces thymic atrophy and disruption of central tolerance after neonatal infection. Moreover, neonatal MRV infection results in development of autoimmunity in adult mice, long after resolution of acute infection. This suggests that MRV induces durable immune dysregulation. Methods In the current studies, we utilized single-cell RNA sequencing (scRNAseq) to study the tropism of MRV in the thymus and determine cellular processes in the thymus that were disrupted by neonatal MRV infection. We then utilized tropism data to establish a cell culture system. Results Herein, we describe how MRV alters the thymic transcriptome during acute neonatal infection. We found that MRV infection resulted in major shifts in inflammatory, differentiation and cell cycle pathways in the infected thymus. We also observed shifts in the relative number of specific cell populations. Moreover, utilizing expression of late viral transcripts as a proxy of viral replication, we identified the cellular tropism of MRV in the thymus. This approach demonstrated that double negative, double positive, and CD4 single positive thymocytes, as well as medullary thymic epithelial cells were infected by MRV in vivo. Finally, by applying pseudotime analysis to viral transcripts, which we refer to as "pseudokinetics," we identified viral gene transcription patterns associated with specific cell types and infection status. We utilized this information to establish the first cell culture systems susceptible to MRV infection in vitro. Conclusion Our research provides the first complete picture of roseolovirus tropism in the thymus after neonatal infection. Additionally, we identified major transcriptomic alterations in cell populations in the thymus during acute neonatal MRV infection. These studies offer important insight into the early events that occur after neonatal MRV infection that disrupt central tolerance and promote autoimmune disease.
Collapse
Affiliation(s)
- Andrei Belean
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Eden Xue
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Benjamin Cisneros
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Elisha D. O. Roberson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Michael A. Paley
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tarin M. Bigley
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Kuntschar S, Cardamone G, Klann K, Bauer R, Meyer SP, Raue R, Rappl P, Münch C, Brüne B, Schmid T. Mmp12 Is Translationally Regulated in Macrophages during the Course of Inflammation. Int J Mol Sci 2023; 24:16981. [PMID: 38069304 PMCID: PMC10707645 DOI: 10.3390/ijms242316981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.
Collapse
Affiliation(s)
- Silvia Kuntschar
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Giulia Cardamone
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Peter Rappl
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
5
|
Tungalag S, Shinriki S, Hirayama M, Nagamachi A, Kanai A, Inaba T, Matsui H. Ribosome profiling analysis reveals the roles of DDX41 in translational regulation. Int J Hematol 2023; 117:876-888. [PMID: 36780110 DOI: 10.1007/s12185-023-03558-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
DDX41 mutation has been observed in myeloid malignancies including myelodysplastic syndromes and acute myeloid leukemia, but the underlying causative mechanisms of these diseases have not been fully elucidated. The DDX41 protein is an ATP-dependent RNA helicase with roles in RNA metabolism. We previously showed that DDX41 is involved in ribosome biogenesis by promoting the processing of newly transcribed pre-ribosomal RNA. To build on this finding, in this study, we leveraged ribosome profiling technology to investigate the involvement of DDX41 in translation. We found that DDX41 knockdown resulted in both translationally increased and decreased transcripts. Both gene set enrichment analysis and gene ontology analysis indicated that ribosome-associated genes were translationally promoted after DDX41 knockdown, in part because these transcripts had significantly shorter transcript length and higher transcriptional and translational levels. In addition, we found that transcripts with 5'-terminal oligopyrimidine motifs tended to be translationally upregulated when the DDX41 level was low. Our data suggest that a translationally regulated feedback mechanism involving DDX41 may exist for ribosome biogenesis.
Collapse
Affiliation(s)
- Saruul Tungalag
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Satoru Shinriki
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.,Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiko Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akinori Kanai
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hirotaka Matsui
- Department of Molecular Laboratory Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
6
|
Modulation of the mTOR pathway plays a central role in dendritic cell functions after Echinococcus granulosus antigen recognition. Sci Rep 2021; 11:17238. [PMID: 34446757 PMCID: PMC8390662 DOI: 10.1038/s41598-021-96435-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immune evasion is a hallmark of persistent echinococcal infection, comprising modulation of innate immune cells and antigen-specific T cell responses. However, recognition of Echinococcus granulosus by dendritic cells (DCs) is a key determinant of the host's response to this parasite. Given that mTOR signaling pathway has been described as a regulator linking metabolism and immune function in DCs, we reported for the first time in these cells, global translation levels, antigen uptake, phenotype, cytokine transcriptional levels, and splenocyte priming activity upon recognition of the hydatid fluid (HF) and the highly glycosylated laminar layer (LL). We found that LL induced a slight up-regulation of CD86 and MHC II in DCs and also stimulated the production of IL-6 and TNF-α. By contrast, HF did not increase the expression of any co-stimulatory molecules, but also down-modulated CD40 and stimulated the expression of the anti-inflammatory cytokine IL-10. Both parasitic antigens promoted protein synthesis through mTOR activation. The use of rapamycin decreased the expression of the cytokines tested, empowered the down-modulation of CD40 and also reduced splenocyte proliferation. Finally, we showed that E. granulosus antigens increase the amounts of LC3-positive structures in DCs which play critical roles in the presentation of these antigens to T cells.
Collapse
|
7
|
Peng Y, Song Y, Ding J, Li N, Zhang Z, Wang H. Identification of immune-related biomarkers in adrenocortical carcinoma: Immune-related biomarkers for ACC. Int Immunopharmacol 2020; 88:106930. [PMID: 32919215 DOI: 10.1016/j.intimp.2020.106930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/02/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Emerging evidence has suggested that the tumor microenvironment, including immune infiltration, plays a crucially important role in tumor progression. Nevertheless, limited studies have been conducted on this topic in adrenocortical carcinoma. The present study aimed to explore the immune-related biomarkers in adrenocortical carcinoma. CIBERSORT was used to estimate the abundances of 22 kinds of immune cells, and univariable Cox analysis was performed to find survival-related immune cells with both Overall Survival (OS) and Progression-Free Interval (PFI). DESeq2 was applied to find differentially expressed genes between adrenocortical carcinoma and normal control samples; subsequently, weighted correlation network analysis and protein-protein interaction (PPI) network analysis were conducted to identify immune-related hub genes. xCell, TISIDB, and MsigDB were searched to validate the immune associations of hub genes. Eventually, univariable Cox and Kaplan-Meier analysis were used to assess the prognostic implications of the hub gene with the GEO database. Consequently, we identified two hub immune-related genes (ERN1, CEP55), GSEA revealed that both were mainly involved in tumor progression and immune response. ROC analysis indicated that ERN1 can accurately predict the 1-, 3-, and 5-year PFI, and CEP55 had the best performance for the prediction of both OS and PFI compared with other traits. Univariable Cox and Kaplan-Meier analysis showed that both genes have a significant effect on prognosis. Furthermore, both hub genes were validated in GEO datasets. The hub genes can provide better insights into tumor microenvironment and serve as potential biomarkers for immunotherapy in adrenocortical carcinoma.
Collapse
Affiliation(s)
- Yun Peng
- Department of Urology, Tianjin Medical University Second Hospital, Hexi, Tianjin 300000, China
| | - Yuxuan Song
- Department of Urology, Tianjin Medical University General Hospital, Heping, Tianjin 300000, China
| | - Jin Ding
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Nan Li
- Department of Urology, Tianjin Medical University Second Hospital, Hexi, Tianjin 300000, China
| | - Zheyu Zhang
- Department of Urology, Tianjin Medical University Second Hospital, Hexi, Tianjin 300000, China
| | - Haitao Wang
- Department of Oncology, Tianjin Medical University Second Hospital, Hexi, Tianjin 300000, China.
| |
Collapse
|
8
|
Schregle R, Mueller S, Legler DF, Rossy J, Krueger WA, Groettrup M. FAT10 localises in dendritic cell aggresome-like induced structures and contributes to their disassembly. J Cell Sci 2020; 133:jcs240085. [PMID: 32546531 DOI: 10.1242/jcs.240085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/04/2020] [Indexed: 08/31/2023] Open
Abstract
Dendritic cell (DC) aggresome-like induced structures (DALIS) are protein aggregates of polyubiquitylated proteins that form transiently during DC maturation. DALIS scatter randomly throughout the cytosol and serve as antigen storage sites synchronising DC maturation and antigen presentation. Maturation of DCs is accompanied by the induction of the ubiquitin-like modifier FAT10 (also known as UBD), which localises to aggresomes, structures that are similar to DALIS. FAT10 is conjugated to substrate proteins and serves as a signal for their rapid and irreversible degradation by the 26S proteasome similar to, yet independently of ubiquitin, thereby contributing to antigen presentation. Here, we have investigated whether FAT10 is involved in the formation and turnover of DALIS, and whether proteins accumulating in DALIS can be modified through conjunction to FAT10 (FAT10ylated). We found that FAT10 localises to DALIS in maturing DCs and that this localisation occurs independently of its conjugation to substrates. Additionally, we investigated the DALIS turnover in FAT10-deficient and -proficient DCs, and observed FAT10-mediated disassembly of DALIS. Thus, we report further evidence that FAT10 is involved in antigen processing, which may provide a functional rationale as to why FAT10 is selectively induced upon DC maturation.
Collapse
Affiliation(s)
- Richard Schregle
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Stefanie Mueller
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | - Jérémie Rossy
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| |
Collapse
|
9
|
Yang B, Li R, Liu PN, Geng X, Mooney BP, Chen C, Cheng J, Fritsche KL, Beversdorf DQ, Lee JC, Sun GY, Greenlief CM. Quantitative Proteomics Reveals Docosahexaenoic Acid-Mediated Neuroprotective Effects in Lipopolysaccharide-Stimulated Microglial Cells. J Proteome Res 2020; 19:2236-2246. [PMID: 32302149 PMCID: PMC7282485 DOI: 10.1021/acs.jproteome.9b00792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
The high levels of docosahexaenoic
acid (DHA) in cell membranes
within the brain have led to a number of studies exploring its function.
These studies have shown that DHA can reduce inflammatory responses
in microglial cells. However, the method of action is poorly understood.
Here, we report the effects of DHA on microglial cells stimulated
with lipopolysaccharides (LPSs). Data were acquired using the parallel
accumulation serial fragmentation method in a hybrid trapped ion mobility-quadrupole
time-of-flight mass spectrometer. Over 2800 proteins are identified
using label-free quantitative proteomics. Cells exposed to LPSs and/or
DHA resulted in changes in cell morphology and expression of 49 proteins
with differential abundance (greater than 1.5-fold change). The data
provide details about pathways that are influenced in this system
including the nuclear factor κ-light-chain-enhancer of the activated
B cells (NF-κB) pathway. Western blots and enzyme-linked immunosorbent
assay studies are used to help confirm the proteomic results. The
MS data are available at ProteomeXchange.
Collapse
Affiliation(s)
- Bo Yang
- Department of Chemistry, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Runting Li
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States
| | - Pei N Liu
- Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Xue Geng
- Department of Bioengineering, University of Illinois at Chicago, Chicago 60612, Illinois, United States
| | - Brian P Mooney
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia 65211, Missouri, United States
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia 65211, Missouri, United States
| | - Kevin L Fritsche
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia 65211, Missouri, United States
| | - David Q Beversdorf
- Departments of Radiology, Neurology and Psychological Sciences, and the Thompson Center, University of Missouri, Columbia 65211, Missouri, United States
| | - James C Lee
- Department of Bioengineering, University of Illinois at Chicago, Chicago 60612, Illinois, United States
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia 65211, Missouri, United States
| | - C Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia 65211, Missouri, United States.,Charles W. Gehrke Proteomics Center, University of Missouri, Columbia 65211, Missouri, United States
| |
Collapse
|
10
|
Ryan AF, Nasamran CA, Pak K, Draf C, Fisch KM, Webster N, Kurabi A. Single-Cell Transcriptomes Reveal a Complex Cellular Landscape in the Middle Ear and Differential Capacities for Acute Response to Infection. Front Genet 2020; 11:358. [PMID: 32351546 PMCID: PMC7174727 DOI: 10.3389/fgene.2020.00358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Single-cell transcriptomics was used to profile cells of the normal murine middle ear. Clustering analysis of 6770 transcriptomes identified 17 cell clusters corresponding to distinct cell types: five epithelial, three stromal, three lymphocyte, two monocyte, two endothelial, one pericyte and one melanocyte cluster. Within some clusters, cell subtypes were identified. While many corresponded to those cell types known from prior studies, several novel types or subtypes were noted. The results indicate unexpected cellular diversity within the resting middle ear mucosa. The resolution of uncomplicated, acute, otitis media is too rapid for cognate immunity to play a major role. Thus innate immunity is likely responsible for normal recovery from middle ear infection. The need for rapid response to pathogens suggests that innate immune genes may be constitutively expressed by middle ear cells. We therefore assessed expression of innate immune genes across all cell types, to evaluate potential for rapid responses to middle ear infection. Resident monocytes/macrophages expressed the most such genes, including pathogen receptors, cytokines, chemokines and chemokine receptors. Other cell types displayed distinct innate immune gene profiles. Epithelial cells preferentially expressed pathogen receptors, bactericidal peptides and mucins. Stromal and endothelial cells expressed pathogen receptors. Pericytes expressed pro-inflammatory cytokines. Lymphocytes expressed chemokine receptors and antimicrobials. The results suggest that tissue monocytes, including macrophages, are the master regulators of the immediate middle ear response to infection, but that virtually all cell types act in concert to mount a defense against pathogens.
Collapse
Affiliation(s)
- Allen F. Ryan
- Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Chanond A. Nasamran
- Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Kwang Pak
- Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Clara Draf
- Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Kathleen M. Fisch
- Medicine/Center for Computational Biology & Bioinformatics, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Nicholas Webster
- Medicine/Endocrinology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| | - Arwa Kurabi
- Departments of Surgery/Otolaryngology, UC San Diego School of Medicine, VA Medical Center, La Jolla, CA, United States
| |
Collapse
|
11
|
Chen HJ, Li Yim AYF, Griffith GR, de Jonge WJ, Mannens MMAM, Ferrero E, Henneman P, de Winther MPJ. Meta-Analysis of in vitro-Differentiated Macrophages Identifies Transcriptomic Signatures That Classify Disease Macrophages in vivo. Front Immunol 2019; 10:2887. [PMID: 31921150 PMCID: PMC6917623 DOI: 10.3389/fimmu.2019.02887] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are heterogeneous leukocytes regulated in a tissue- and disease-specific context. While in vitro macrophage models have been used to study diseases empirically, a systematic analysis of the transcriptome thereof is lacking. Here, we acquired gene expression data from eight commonly-used in vitro macrophage models to perform a meta-analysis. Specifically, we obtained gene expression data from unstimulated macrophages (M0) and macrophages stimulated with lipopolysaccharides (LPS) for 2–4 h (M-LPSearly), LPS for 24 h (M-LPSlate), LPS and interferon-γ (M-LPS+IFNγ), IFNγ (M-IFNγ), interleukin-4 (M-IL4), interleukin-10 (M-IL10), and dexamethasone (M-dex). Our meta-analysis identified consistently differentially expressed genes that have been implicated in inflammatory and metabolic processes. In addition, we built macIDR, a robust classifier capable of distinguishing macrophage activation states with high accuracy (>0.95). We classified in vivo macrophages with macIDR to define their tissue- and disease-specific characteristics. We demonstrate that alveolar macrophages display high resemblance to IL10 activation, but show a drop in IFNγ signature in chronic obstructive pulmonary disease patients. Adipose tissue-derived macrophages were classified as unstimulated macrophages, but acquired LPS-activation features in diabetic-obese patients. Rheumatoid arthritis synovial macrophages exhibit characteristics of IL10- or IFNγ-stimulation. Altogether, we defined consensus transcriptional profiles for the eight in vitro macrophage activation states, built a classification model, and demonstrated the utility of the latter for in vivo macrophages.
Collapse
Affiliation(s)
- Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Andrew Y F Li Yim
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Epigenetics Discovery Performance Unit, GlaxoSmithKline, Stevenage, United Kingdom
| | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Wouter J de Jonge
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Marcel M A M Mannens
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Enrico Ferrero
- Computational Biology, Target Sciences, GlaxoSmithKline, Stevenage, United Kingdom
| | - Peter Henneman
- Genome Diagnostics Laboratory, Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
12
|
Hillen MR, Pandit A, Blokland SLM, Hartgring SAY, Bekker CPJ, van der Heijden EHM, Servaas NH, Rossato M, Kruize AA, van Roon JAG, Radstake TRDJ. Plasmacytoid DCs From Patients With Sjögren's Syndrome Are Transcriptionally Primed for Enhanced Pro-inflammatory Cytokine Production. Front Immunol 2019; 10:2096. [PMID: 31552042 PMCID: PMC6736989 DOI: 10.3389/fimmu.2019.02096] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic auto-immune disease typified by dryness of the mouth and eyes. A majority of patients with pSS have a type-I interferon (IFN)-signature, which is defined as the increased expression of IFN-induced genes in circulating immune cells and is associated with increased disease activity. As plasmacytoid dendritic cells (pDC) are the premier type-I IFN-producing cells and are present at the site of inflammation, they are thought to play a significant role in pSS pathogenesis. Considering the lack of data on pDC regulation and function in pSS patients, we here provided the first in-depth molecular characterization of pSS pDCs. In addition, a group of patients with non-Sjögren's sicca (nSS) was included; these poorly studied patients suffer from complaints similar to pSS patients, but are not diagnosed with Sjögren's syndrome. We isolated circulating pDCs from two independent cohorts of patients and controls (each n = 31) and performed RNA-sequencing, after which data-driven networks and modular analysis were used to identify robustly reproducible transcriptional “signatures” of differential and co-expressed genes. Four signatures were identified, including an IFN-induced gene signature and a ribosomal protein gene-signature, that indicated pDC activation. Comparison with a dataset of in vitro activated pDCs showed that pSS pDCs have higher expression of many genes also upregulated upon pDC activation. Corroborating this transcriptional profile, pSS pDCs produced higher levels of pro-inflammatory cytokines, including type-I IFN, upon in vitro stimulation with endosomal Toll-like receptor ligands. In this setting, cytokine production was associated with expression of hub-genes from the IFN-induced and ribosomal protein gene-signatures, indicating that the transcriptional profile of pSS pDCs underlies their enhanced cytokine production. In all transcriptional analyses, nSS patients formed an intermediate group in which some patients were molecularly similar to pSS patients. Furthermore, we used the identified transcriptional signatures to develop a discriminative classifier for molecular stratification of patients with sicca. Altogether, our data provide in-depth characterization of the aberrant regulation of pDCs from patients with nSS and pSS and substantiate their perceived role in the immunopathology of pSS, supporting studies that target pDCs, type-I IFNs, or IFN-signaling in pSS.
Collapse
Affiliation(s)
- Maarten R Hillen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sofie L M Blokland
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sarita A Y Hartgring
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Cornelis P J Bekker
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eefje H M van der Heijden
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Nila H Servaas
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Biotechnology, University of Verona, Verona, Italy
| | - Aike A Kruize
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Joel A G van Roon
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
13
|
Martin-Gayo E, Cole MB, Kolb KE, Ouyang Z, Cronin J, Kazer SW, Ordovas-Montanes J, Lichterfeld M, Walker BD, Yosef N, Shalek AK, Yu XG. A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers. Genome Biol 2018; 19:10. [PMID: 29378643 PMCID: PMC5789701 DOI: 10.1186/s13059-017-1385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/23/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Human immunity relies on the coordinated responses of many cellular subsets and functional states. Inter-individual variations in cellular composition and communication could thus potentially alter host protection. Here, we explore this hypothesis by applying single-cell RNA-sequencing to examine viral responses among the dendritic cells (DCs) of three elite controllers (ECs) of HIV-1 infection. RESULTS To overcome the potentially confounding effects of donor-to-donor variability, we present a generally applicable computational framework for identifying reproducible patterns in gene expression across donors who share a unifying classification. Applying it, we discover a highly functional antiviral DC state in ECs whose fractional abundance after in vitro exposure to HIV-1 correlates with higher CD4+ T cell counts and lower HIV-1 viral loads, and that effectively primes polyfunctional T cell responses in vitro. By integrating information from existing genomic databases into our reproducibility-based analysis, we identify and validate select immunomodulators that increase the fractional abundance of this state in primary peripheral blood mononuclear cells from healthy individuals in vitro. CONCLUSIONS Overall, our results demonstrate how single-cell approaches can reveal previously unappreciated, yet important, immune behaviors and empower rational frameworks for modulating systems-level immune responses that may prove therapeutically and prophylactically useful.
Collapse
Affiliation(s)
| | - Michael B Cole
- Department of Physics, University of California, Berkeley, CA, USA
| | - Kellie E Kolb
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhengyu Ouyang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Samuel W Kazer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jose Ordovas-Montanes
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Nir Yosef
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Electrical Engineering & Computer Sciences, UC Berkeley, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| | - Alex K Shalek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Institute for Medical Engineering & Science (IMES) and Department of Chemistry, MIT, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA. .,Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Knap P, Tebaldi T, Di Leva F, Biagioli M, Dalla Serra M, Viero G. The Unexpected Tuners: Are LncRNAs Regulating Host Translation during Infections? Toxins (Basel) 2017; 9:E357. [PMID: 29469820 PMCID: PMC5705972 DOI: 10.3390/toxins9110357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Pathogenic bacteria produce powerful virulent factors, such as pore-forming toxins, that promote their survival and cause serious damage to the host. Host cells reply to membrane stresses and ionic imbalance by modifying gene expression at the epigenetic, transcriptional and translational level, to recover from the toxin attack. The fact that the majority of the human transcriptome encodes for non-coding RNAs (ncRNAs) raises the question: do host cells deploy non-coding transcripts to rapidly control the most energy-consuming process in cells-i.e., host translation-to counteract the infection? Here, we discuss the intriguing possibility that membrane-damaging toxins induce, in the host, the expression of toxin-specific long non-coding RNAs (lncRNAs), which act as sponges for other molecules, encoding small peptides or binding target mRNAs to depress their translation efficiency. Unravelling the function of host-produced lncRNAs upon bacterial infection or membrane damage requires an improved understanding of host lncRNA expression patterns, their association with polysomes and their function during this stress. This field of investigation holds a unique opportunity to reveal unpredicted scenarios and novel approaches to counteract antibiotic-resistant infections.
Collapse
Affiliation(s)
- Primoz Knap
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| | - Toma Tebaldi
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Francesca Di Leva
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo Trento 38123, Italy.
| | - Marta Biagioli
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, Povo Trento 38123, Italy.
| | - Mauro Dalla Serra
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, Via Sommarive 18, Povo Trento 38123, Italy.
| |
Collapse
|
15
|
Forn-Cuní G, Varela M, Pereiro P, Novoa B, Figueras A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep 2017; 7:41905. [PMID: 28157230 PMCID: PMC5291205 DOI: 10.1038/srep41905] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential.
Collapse
Affiliation(s)
- G Forn-Cuní
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - M Varela
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - P Pereiro
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - B Novoa
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| | - A Figueras
- Inmunología y Genómica, Institute of Marine Research (IIM), Spanish National Research Council (CSIC), c/Eduardo Cabello, 6, 36208, Vigo, Spain
| |
Collapse
|
16
|
Howard LM, Hoek KL, Goll JB, Samir P, Galassie A, Allos TM, Niu X, Gordy LE, Creech CB, Prasad N, Jensen TL, Hill H, Levy SE, Joyce S, Link AJ, Edwards KM. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial. PLoS One 2017; 12:e0167488. [PMID: 28099485 PMCID: PMC5242433 DOI: 10.1371/journal.pone.0167488] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT01573312
Collapse
Affiliation(s)
- Leigh M. Howard
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Kristen L. Hoek
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | | | - Parimal Samir
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Allison Galassie
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Tara M. Allos
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Laura E. Gordy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - C. Buddy Creech
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology; Huntsville, AL, United States of America
| | | | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States of America
| | - Shawn E. Levy
- HudsonAlpha Institute for Biotechnology; Huntsville, AL, United States of America
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, United States of America
| | - Andrew J. Link
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- * E-mail: (KME); (AJL)
| | - Kathryn M. Edwards
- Vanderbilt Vaccine Research Program, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- * E-mail: (KME); (AJL)
| |
Collapse
|
17
|
Chaudhury A, Cheema S, Fachini JM, Kongchan N, Lu G, Simon LM, Wang T, Mao S, Rosen DG, Ittmann MM, Hilsenbeck SG, Shaw CA, Neilson JR. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun 2016; 7:13362. [PMID: 27869122 PMCID: PMC5121338 DOI: 10.1038/ncomms13362] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 09/22/2016] [Indexed: 01/07/2023] Open
Abstract
The importance of translational regulation in tumour biology is increasingly appreciated. Here, we leverage polyribosomal profiling to prospectively define translational regulatory programs underlying epithelial-to-mesenchymal transition (EMT) in breast epithelial cells. We identify a group of ten translationally regulated drivers of EMT sharing a common GU-rich cis-element within the 3'-untranslated region (3'-UTR) of their mRNA. These cis-elements, necessary for the regulatory activity imparted by these 3'-UTRs, are directly bound by the CELF1 protein, which itself is regulated post-translationally during the EMT program. CELF1 is necessary and sufficient for both mesenchymal transition and metastatic colonization, and CELF1 protein, but not mRNA, is significantly overexpressed in human breast cancer tissues. Our data present an 11-component genetic pathway, invisible to transcriptional profiling approaches, in which the CELF1 protein functions as a central node controlling translational activation of genes driving EMT and ultimately tumour progression.
Collapse
Affiliation(s)
- Arindam Chaudhury
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shebna Cheema
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joseph M. Fachini
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Natee Kongchan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Guojun Lu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lukas M. Simon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Tao Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sufeng Mao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Daniel G. Rosen
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael M. Ittmann
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Susan G. Hilsenbeck
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joel R. Neilson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
18
|
Proteomics analysis of dendritic cell activation by contact allergens reveals possible biomarkers regulated by Nrf2. Toxicol Appl Pharmacol 2016; 313:170-179. [PMID: 27816475 DOI: 10.1016/j.taap.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022]
Abstract
Allergic contact dermatitis is a widespread disease with high clinical relevance affecting approximately 20% of the general population. Typically, contact allergens are low molecular weight electrophilic compounds which can activate the Keap1/Nrf2 pathway. We performed a proteomics study to reveal possible biomarkers for dendritic cell (DC) activation by contact allergens and to further elucidate the role of Keap1/Nrf2 signaling in this process. We used bone marrow derived dendritic cells (BMDCs) of wild-type (nrf2+/+) and Nrf2 knockout (nrf2-/-) mice and studied their response against the model contact sensitizers 2,4-dinitrochlorobenzene (DNCB), cinnamaldehyde (CA) and nickel(II) sulfate by 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) in combination with electrospray ionization tandem mass spectrometry (ESI-MS/MS). Sodium dodecyl sulfate (SDS, 100μM) served as irritant control. While treatment with nickel(II) sulfate and SDS had only little effects, CA and DNCB led to significant changes in protein expression. We found 18 and 30 protein spots up-regulated in wild-type cells treated with 50 and 100μM CA, respectively. For 5 and 10μM DNCB, 32 and 37 spots were up-regulated, respectively. Almost all of these proteins were not differentially expressed in nrf2-/- BMDCs, indicating an Nrf2-dependent regulation. Among them proteins were detected which are involved in oxidative stress and heat shock responses, as well as in signal transduction or basic cellular pathways. The applied approach allowed us to differentiate between Nrf2-dependent and Nrf2-independent cellular biomarkers differentially regulated upon allergen-induced DC activation. The data presented might contribute to the further development of suitable in vitro testing methods for chemical-mediated sensitization.
Collapse
|
19
|
Gutierrez MJ, Gomez JL, Perez GF, Pancham K, Val S, Pillai DK, Giri M, Ferrante S, Freishtat R, Rose MC, Preciado D, Nino G. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood. PLoS One 2016; 11:e0162244. [PMID: 27643599 PMCID: PMC5028059 DOI: 10.1371/journal.pone.0162244] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/21/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs) that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV) to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome) and examine the changes during rhinovirus (RV) infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood. METHODS Nasal airway secretions were obtained from children (≤3 yrs. old) during PCR-confirmed RV infections (n = 10) and age-matched controls (n = 10). Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC) differentiated at air-liquid interface (ALI). Bioinformatics tools were used to determine the unified (nasal and bronchial) signature airway secretory miRNAome and changes during RV infection in children. RESULTS Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV. CONCLUSIONS Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway secretion of EVs containing miR-155, which is predicted in silico to regulate antiviral immunity. Further characterization of the airway secretory microRNAome during health and disease may lead to completely new strategies to treat and monitor respiratory conditions in all ages.
Collapse
Affiliation(s)
- Maria J. Gutierrez
- Division of Pediatric Allergy Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jose L. Gomez
- Division of Pediatric Pulmonology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Geovanny F. Perez
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Krishna Pancham
- Division of Pediatric Pulmonology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stephanie Val
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Children’s National Medical Center, Washington, DC, United States of America
| | - Dinesh K. Pillai
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Mamta Giri
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Sarah Ferrante
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Robert Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, United States of America
| | - Mary C. Rose
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Diego Preciado
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Children’s National Medical Center, Washington, DC, United States of America
| | - Gustavo Nino
- Division of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
20
|
Argüello RJ, Reverendo M, Gatti E, Pierre P. Regulation of protein synthesis and autophagy in activated dendritic cells: implications for antigen processing and presentation. Immunol Rev 2016; 272:28-38. [DOI: 10.1111/imr.12427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rafael J. Argüello
- Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique UMR7280; Marseille France
| | - Marisa Reverendo
- Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique UMR7280; Marseille France
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique UMR7280; Marseille France
- Institute for Research in Biomedicine (iBiMED), Aveiro; Health Sciences Program; University of Aveiro; Aveiro Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy; Aix Marseille Université UM2; Institut National de la Santé et de la Recherche Médicale U1104; Centre National de la Recherche Scientifique UMR7280; Marseille France
- Institute for Research in Biomedicine (iBiMED), Aveiro; Health Sciences Program; University of Aveiro; Aveiro Portugal
| |
Collapse
|
21
|
Kiron V, Kulkarni A, Dahle D, Vasanth G, Lokesh J, Elvebo O. Recognition of purified beta 1,3/1,6 glucan and molecular signalling in the intestine of Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 56:57-66. [PMID: 26615007 DOI: 10.1016/j.dci.2015.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Atlantic salmon was orally intubated with a highly purified β-glucan product (MacroGard(®)) to study the recognition of the molecule by the receptor genes, the regulation of the downstream signalling genes and global proteins, and the micromorphological changes in the intestine. The β-glucan receptor genes of Atlantic salmon, sclra, sclrb, sclrc and cr3, seem to recognize the molecule, and initiate the downstream ITAM-motif signalling, as evident from the significantly high mRNA levels of ksyk, mapkin2, il1b and mip2a levels. Among the altered proteins, the Apoa4 (involved in carbohydrate and lipid metabolism); Tagln, Actb (uptake of β-glucan); Psma2 (associated with substrate recognition); and Ckt (energy metabolism-related) were the overexpressed ones. The underexpressed proteins included the Uk114, Rpl9, Ctsb and Lgal that are connected to proliferation, LPS-stimulation, Il1b and lactose recognition, respectively. Furthermore, the mRNA levels of igt and the number of immune cells in the distal intestine were found to increase upon β-glucan uptake by the fish. This study provides some clues on the mechanisms by which the β-glucan evokes response in Atlantic salmon, particularly at the intestinal level.
Collapse
Affiliation(s)
- Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Amod Kulkarni
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Dalia Dahle
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Ghana Vasanth
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Jep Lokesh
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| | - Odd Elvebo
- Biorigin Europe NV, Vosseschijnstraat 59, Haven 182, BE 2030 Antwerpen, Belgium.
| |
Collapse
|
22
|
Global translation variations in host cells upon attack of lytic and sublytic Staphylococcus aureus α-haemolysin1. Biochem J 2015; 472:83-95. [DOI: 10.1042/bj20150284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/11/2015] [Indexed: 02/07/2023]
Abstract
Staphylococcal alpha-hemolysin (AHL) is a clinically relevant toxin, whose effects on host translation are poorly understood. We characterized genome-wide alterations induced at transcriptional and transational levels by lytic and sublytic AHL, pinpointing the importance of translational control during host-pathogen interaction.
Collapse
|
23
|
Geillinger KE, Kuhlmann K, Eisenacher M, Giesbertz P, Meyer HE, Daniel H, Spanier B. Intestinal amino acid availability via PEPT-1 affects TORC1/2 signaling and the unfolded protein response. J Proteome Res 2014; 13:3685-92. [PMID: 24999909 DOI: 10.1021/pr5002669] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The intestinal peptide transporter PEPT-1 plays an important role in development, growth, reproduction, and stress tolerance in Caenorhabditis elegans, as revealed by the severe phenotype of the pept-1-deficient strain. The reduced number of offspring and increased stress resistance were shown to result from changes in the insulin/IGF-signaling cascade. To further elucidate the regulatory network behind the phenotypic alterations in PEPT1-deficient animals, a quantitative proteome analysis combined with transcriptome profiling was applied. Various target genes of XBP-1, the major mediator of the unfolded protein response, were found to be downregulated at the mRNA and protein levels, accompanied by a reduction of spliced xbp-1 mRNA. Proteome analysis also revealed a markedly reduced content of numerous ribosomal proteins. This was associated with a reduction in the protein synthesis rate in pept-1 C. elegans, a process that is strictly regulated by the TOR (target of rapamycine) complex, the cellular sensor for free amino acids. These data argue for a central role of PEPT-1 in cellular amino acid homeostasis. In PEPT-1 deficiency, amino acid levels dropped systematically, leading to alterations in protein synthesis and in the IRE-1/XBP-1 pathway.
Collapse
Affiliation(s)
- Kerstin E Geillinger
- ZIEL Research Center of Nutrition and Food Sciences, Molecular Nutrition and Biochemistry Unit, Technische Universität München , Gregor-Mendel-Str. 2, 85350 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet 2014; 10:e1004368. [PMID: 24945926 PMCID: PMC4063670 DOI: 10.1371/journal.pgen.1004368] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/24/2014] [Indexed: 01/10/2023] Open
Abstract
For a rapid induction and efficient resolution of the inflammatory response, gene expression in cells of the immune system is tightly regulated at the transcriptional and post-transcriptional level. The control of mRNA translation has emerged as an important determinant of protein levels, yet its role in macrophage activation is not well understood. We systematically analyzed the contribution of translational regulation to the early phase of the macrophage response by polysome fractionation from mouse macrophages stimulated with lipopolysaccharide (LPS). Individual mRNAs whose translation is specifically regulated during macrophage activation were identified by microarray analysis. Stimulation with LPS for 1 h caused translational activation of many feedback inhibitors of the inflammatory response including NF-κB inhibitors (Nfkbid, Nfkbiz, Nr4a1, Ier3), a p38 MAPK antagonist (Dusp1) and post-transcriptional suppressors of cytokine expression (Zfp36 and Zc3h12a). Our analysis showed that their translation is repressed in resting and de-repressed in activated macrophages. Quantification of mRNA levels at a high temporal resolution by RNASeq allowed us to define groups with different expression patterns. Thereby, we were able to distinguish mRNAs whose translation is actively regulated from mRNAs whose polysomal shifts are due to changes in mRNA levels. Active up-regulation of translation was associated with a higher content in AU-rich elements (AREs). For one example, Ier3 mRNA, we show that repression in resting cells as well as de-repression after stimulation depends on the ARE. Bone-marrow derived macrophages from Ier3 knockout mice showed reduced survival upon activation, indicating that IER3 induction protects macrophages from LPS-induced cell death. Taken together, our analysis reveals that translational control during macrophage activation is important for cellular survival as well as the expression of anti-inflammatory feedback inhibitors that promote the resolution of inflammation. When macrophages encounter pathogens, they initiate inflammation by secreting pro-inflammatory factors such as the cytokine TNF. Because a prolonged or overshooting release of these factors is harmful for the organism, their production needs to be tightly controlled and shut off in due time. To ensure a rapid but transient inflammatory response, gene expression is regulated at multiple levels, including transcription, stability and translation of mRNAs. While control of transcription and mRNA stability has been studied extensively, little is known about translational regulation in macrophages. In this study, we measured the translation of all mRNAs expressed in mouse macrophages. Upon activation of macrophages with the bacterial cell wall component lipopolysaccharide, we found that many feedback inhibitors, which are important for dampening the inflammatory response, are translationally up-regulated. Translation of these mRNAs is repressed in resting cells and de-repressed after stimulation. In contrast to feedback inhibitors, most cytokines are primarily regulated by changes in mRNA abundance. Furthermore, we could show that one of the feedback inhibitors, IER3, protects macrophages from cell death during activation. Therefore, regulation at the level of translation is important for the induction of negative feedback loops and cellular survival.
Collapse
|
25
|
Affiliation(s)
- Carola G. Vinuesa
- Dept of Pathogens and Immunity, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Thomas Preiss
- Dept of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
26
|
Savada RP, Bonham-Smith PC. Differential transcript accumulation and subcellular localization of Arabidopsis ribosomal proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 223:134-45. [PMID: 24767123 DOI: 10.1016/j.plantsci.2014.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 05/26/2023]
Abstract
Arabidopsis cytoplasmic ribosomes are an assembly of four rRNAs and 81 ribosomal proteins (RPs). With only a single molecule of each RP incorporated into any given ribosome, an adequate level of each RP in the nucleolus is a prerequisite for efficient ribosome biogenesis. Using Genevestigator (microarray data analysis tool), we have studied transcript levels of 192 of the 254 Arabidopsis RP genes, as well as the sub-cellular localization of each of five two-member RP families, to identify the extent to which these two processes contribute to the nucleolar pool of RPs available for ribosome biogenesis. While transcript levels from different RP genes show up to a 300-fold difference across the RP population, this difference is drastically reduced to ∼8-fold when considering RP gene families. Under various stimuli, while the transcript level for most RP genes remains unchanged some show a significantly increased or decreased level. Subcellular localization studies in tobacco not only showed differential targeting of RPs to the cytoplasm, nucleus and nucleolus, but also differential nucleolar import rates. This degree of variation in gene regulation and subcellular localization of RPs hints at the possibility of extra-ribosomal functions for some RP isoforms.
Collapse
Affiliation(s)
- Raghavendra P Savada
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Peta C Bonham-Smith
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| |
Collapse
|
27
|
Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014; 15:503-11. [DOI: 10.1038/ni.2891] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
|
28
|
|
29
|
Sun D, Zhu J, Fang L, Zhang X, Chow Y, Liu J. De novo transcriptome profiling uncovers a drastic downregulation of photosynthesis upon nitrogen deprivation in the nonmodel green alga Botryosphaerella sudeticus. BMC Genomics 2013; 14:715. [PMID: 24138407 PMCID: PMC4050207 DOI: 10.1186/1471-2164-14-715] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 10/07/2013] [Indexed: 11/30/2022] Open
Abstract
Background Neutral lipid storage is enhanced by nitrogen deprivation (ND) in numbers of green microalgal species. However, little is known about the metabolic pathways whose transcription levels are most significantly altered following ND in green microalgae, especially the nonmodel species. Results To start gaining knowledge on this, we performed transcriptome profiling of the nonmodel green microalga Botryosphaerella sudeticus cells in response to ND. Transcriptome of B. sudeticus is de novo assembled based on millions of HiSEQ short sequence reads using CLC Genomics Workbench software. The resulting non-redundant ESTs are annotated based on the best hits generated from the BLASTX homology comparison against the “best” proteins in the model microalgae Chlamydomonas reinhardtii and Chlorella variabilis. By using a pathway-based approach according to KEGG databases, we show that ESTs encoding ribosomal proteins and photosynthetic functions are the most abundantly expressed ESTs in the rapidly growing B. sudeticus cells. We find that ESTs encoding photosynthetic function but not the ribosomal proteins are most drastically downregulated upon ND. Notably, ESTs encoding lipid metabolic pathways are not significantly upregulated. Further analyses indicate that chlorophyll content is markedly decreased by 3-fold and total lipid content is only slightly increased by 50%, consistent with the transcriptional profiling. On the other hand, carbon content and photosynthesis efficiency are only marginally decreased by 7% and 20%, respectively, indicating that photosynthesis is only slightly reduced upon drastic downregulation of photosynthetic ESTs and chlorophyll content upon ND. In addition, TAG content is found to be greatly increased by 50-fold, though total lipid content is only slightly increased by 1.5-fold. Conclusions Taken together, our results suggest that light-harvesting proteins and chlorophylls are in excess in B. sudeticus. Degradation of excess photosynthesis proteins is most likely a mechanism for recycling of nitrogen-rich molecules to synthesize new proteins for preparation of gametogenesis and zygospore formation in adaptation and survival upon ND. Furthermore, our analyses indicate that TAG accumulation is largely attributed to the modification of other pre-existing lipid molecules, rather than de novo synthesis. We propose that this is likely an evolutionarily conserved mechanism in many green microalgae species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-715) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianhua Liu
- Systems Biology, Genome Institute of Singapore, 60 Biopolis Street, #02-01, Singapore 138672, Singapore.
| |
Collapse
|
30
|
Dadehbeigi N, Dickson AJ. Application of a nonradioactive method of measuring protein synthesis in industrially relevant Chinese hamster ovary cells. Biotechnol Prog 2013; 29:1043-9. [PMID: 23749410 DOI: 10.1002/btpr.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/11/2013] [Indexed: 01/08/2023]
Abstract
Due to the high medical and commercial value of recombinant proteins for clinical and diagnostic purposes, the protein synthesis machinery of mammalian host cells is the subject of extensive research by the biopharmaceutical industry. RNA translation and protein synthesis are steps that may determine the extent of growth and productivity of host cells. To address the problems of utilization of current radioisotope methods with proprietary media, we have focused on the application of an alternative method of measuring protein synthesis in recombinant Chinese hamster ovary (CHO) cells. This method employs puromycin as a nonradioactive label which incorporates into nascent polypeptide chains and is detectable by western blotting. This method, which is referred to as SUnSET, successfully demonstrated the expected changes in protein synthesis in conditions that inhibit and restore translation activity and was reproducibly quantifiable. The study of the effects of feed and sodium butyrate addition on protein synthesis by SUnSET revealed an increase following 1 h feed supplementation while a high concentration of sodium butyrate was able to decrease translation during the same treatment period. Finally, SUnSET was used to compare protein synthesis activity during batch culture of the CHO cell line in relation to growth. The results indicate that as the cells approached the end of batch culture, the global rate of protein synthesis declined in parallel with the decreasing growth rate. In conclusion, this method can be used as a "snapshot" to directly monitor the effects of different culture conditions and treatments on translation in recombinant host cells.
Collapse
Affiliation(s)
- Nazanin Dadehbeigi
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK, M13 9PT.
| | | |
Collapse
|
31
|
Cláudio N, Dalet A, Gatti E, Pierre P. Mapping the crossroads of immune activation and cellular stress response pathways. EMBO J 2013; 32:1214-24. [PMID: 23584529 DOI: 10.1038/emboj.2013.80] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 03/15/2013] [Indexed: 12/14/2022] Open
Abstract
The innate immune cell network detects specific microbes and damages to cell integrity in order to coordinate and polarize the immune response against invading pathogens. In recent years, a cross-talk between microbial-sensing pathways and endoplasmic reticulum (ER) homeostasis has been discovered and have attracted the attention of many researchers from the inflammation field. Abnormal accumulation of proteins in the ER can be seen as a sign of cellular malfunction and triggers a collection of conserved emergency rescue pathways. These signalling cascades, which increase ER homeostasis and favour cell survival, are collectively known as the unfolded protein response (UPR). The induction or activation by microbial stimuli of several molecules linked to the ER stress response pathway have led to the conclusion that microbe sensing by immunocytes is generally associated with an UPR, which serves as a signal amplification cascade favouring inflammatory cytokines production. Induction of the UPR alone was shown to promote inflammation in different cellular and pathological models. Here we discuss how the innate immune and ER-signalling pathways intersect. Moreover, we propose that the induction of UPR-related molecules by microbial products does not necessarily reflect ER stress, but instead is an integral part of a specific transcription programme controlled by innate immunity receptors.
Collapse
Affiliation(s)
- Nuno Cláudio
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France
| | | | | | | |
Collapse
|
32
|
Larsson O, Tian B, Sonenberg N. Toward a genome-wide landscape of translational control. Cold Spring Harb Perspect Biol 2013; 5:a012302. [PMID: 23209130 PMCID: PMC3579401 DOI: 10.1101/cshperspect.a012302] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genome-wide analysis of translational control has taken strides in recent years owing to the advent of high-throughput technologies, including DNA microarrays and deep sequencing. Global studies have unraveled a principal role, among posttranscriptional mechanisms, for mRNA translation in determining protein levels in the cell. The impact of translational control in dynamic regulation of the proteome under different conditions is increasingly appreciated. Here we review genome-wide studies that use high-throughput techniques and bioinformatics to assess the role of mRNA translation in the regulation of protein levels; we also discuss how genome-wide data on mRNA translation can be obtained, analyzed, and used to identify mechanisms of translational control.
Collapse
Affiliation(s)
- Ola Larsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm SE-171 76, Sweden.
| | | | | |
Collapse
|
33
|
Identification of differential translation in genome wide studies. Proc Natl Acad Sci U S A 2010; 107:21487-92. [PMID: 21115840 DOI: 10.1073/pnas.1006821107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Regulation of gene expression through translational control is a fundamental mechanism implicated in many biological processes ranging from memory formation to innate immunity and whose dysregulation contributes to human diseases. Genome wide analyses of translational control strive to identify differential translation independent of cytosolic mRNA levels. For this reason, most studies measure genes' translation levels as log ratios (translation levels divided by corresponding cytosolic mRNA levels obtained in parallel). Counterintuitively, arising from a mathematical necessity, these log ratios tend to be highly correlated with the cytosolic mRNA levels. Accordingly, they do not effectively correct for cytosolic mRNA level and generate substantial numbers of biological false positives and false negatives. We show that analysis of partial variance, which produces estimates of translational activity that are independent of cytosolic mRNA levels, is a superior alternative. When combined with a variance shrinkage method for estimating error variance, analysis of partial variance has the additional benefit of having greater statistical power and identifying fewer genes as translationally regulated resulting merely from unrealistically low variance estimates rather than from large changes in translational activity. In contrast to log ratios, this formal analytical approach estimates translation effects in a statistically rigorous manner, eliminates the need for inefficient and error-prone heuristics, and produces results that agree with biological function. The method is applicable to datasets obtained from both the commonly used polysome microarray method and the sequencing-based ribosome profiling method.
Collapse
|