1
|
Puzzo F, Kay MA. The deLIVERed promises of gene therapy: Past, present, and future of liver-directed gene therapy. Mol Ther 2025; 33:1966-1987. [PMID: 40156191 DOI: 10.1016/j.ymthe.2025.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Gene therapy has revolutionized modern medicine by offering innovative treatments for genetic and acquired diseases. The liver has been and continues as a prime target for in vivo gene therapy due to its essential biological functions, vascular access to the major target cell (hepatocytes), and relatively immunotolerant environment. Adeno-associated virus (AAV) vectors have become the cornerstone of liver-directed therapies, demonstrating remarkable success in conditions such as hemophilia A and B, with US Food and Drug Administration (FDA)-approved therapies like etranacogene dezaparvovec, Beqvez, and Roctavian marking milestones in the field. Despite these advances, challenges persist, including vector immunogenicity, species-specific barriers, and high manufacturing costs. Innovative strategies, such as capsid engineering, immune modulation, and novel delivery systems, are continuing to address these issues in expanding the scope of therapeutic applications. Some of the challenges with many new therapies result in the discordance between preclinical success and translation into humans. The advent of various genome-editing tools to repair genomic mutations or insert therapeutic DNAs into precise locations in the genome further enhances the potential for a single-dose medicine that will offer durable life-long therapeutic treatments. As advancements accelerate, liver-targeted gene therapy is poised to continue to transform the treatment landscape for both genetic and acquired disorders, for which unmet challenges remain.
Collapse
Affiliation(s)
- Francesco Puzzo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| | - Mark A Kay
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Amano Y, Ishige M, Amano M, Shinoda N, Ando C, Takagi R. Pictorial Review of MRI Findings of Glycogen Storage Disease from Children to Young Adults. CHILDREN (BASEL, SWITZERLAND) 2025; 12:295. [PMID: 40150578 PMCID: PMC11941586 DOI: 10.3390/children12030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Glycogen storage diseases (GSDs) are rare, inherited disorders of glycogen metabolism caused by a deficiency of enzymes or transporters. GSDs involve the liver, kidneys, skeletal muscles, and heart of children and young adults. The complications involving these organs affect the prognosis of patients with GSDs. Magnetic resonance imaging (MRI) is useful for identifying the complications of GSDs and monitoring the response to treatments owing to its ability of tissue characterization and the lack of a need for ionizing radiation. This pictorial review describes the MRI sequences used for GSDs, presents clinical examples, and emphasizes the pivotal role of MRI as an imaging tool in diagnosing complications associated with GSDs. MRI should be performed at least every year in patients with GSDs and hepatic tumors or myocardial scarring. Further MRI sequences that can be used to quantify the severity of GSDs are discussed.
Collapse
Affiliation(s)
- Yasuo Amano
- Department of Radiology, Nihon University Hospital, 1-6 Kanda-Surugadai, Tokyo 101-8309, Japan
| | - Mika Ishige
- Department of Pediatrics, Nihon University Hospital, 1-6 Kanda-Surugadai, Tokyo 101-8309, Japan
| | - Maki Amano
- Department of Radiology, Nihon University Hospital, 1-6 Kanda-Surugadai, Tokyo 101-8309, Japan
| | - Naoki Shinoda
- Division of Radiological Technology, Nihon University Hospital, 1-6 Kanda-Surugadai, Tokyo 101-8309, Japan
| | - Chisato Ando
- Division of Radiological Technology, Nihon University Hospital, 1-6 Kanda-Surugadai, Tokyo 101-8309, Japan
| | - Ryo Takagi
- Department of Radiology, Nihon University Hospital, 1-6 Kanda-Surugadai, Tokyo 101-8309, Japan
| |
Collapse
|
3
|
Vai S, Falchetti A, Corbetta S, Bianchi ML, Alberio C, Carrara S, Gasperini S, Pretese R, Parisi L, Teti A, Maurizi A. Glycogen Storage Disease Type I and Bone: Clinical and Cellular Characterization. Calcif Tissue Int 2024; 115:661-672. [PMID: 39453459 PMCID: PMC11531425 DOI: 10.1007/s00223-024-01302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Glycogen storage disease (GSD) is the most prevalent inherited disorder of glycogen metabolism for which no causal treatment is available. In recent years, thanks to the improved clinical management, the life expectancy of these patients extended, disclosing previously unidentified adverse conditions in other organs. In this study, we evaluated the clinical bone complications and the cellular responses in 20 patients (aged 14.1 ± 3.4 years) affected by GSD type I. Fragility fractures were reported in 35% of the patients, which were older than unfractured patients. They involved appendicular skeletal segments, while no vertebral deformity was detected. 60% of the patients had a bone mineral density (BMD) "below the expected range for age", and lumbar spine (LS) BMD Z-scores positively correlated with muscle strength. Circulating mineral and bone markers showed reduction in the older subjects, with no increase in the pubertal age. Significant correlations could not be detected between circulating markers and LS BMD Z-scores, except for sclerostin levels, which also correlated with muscle strength. The osteoclasts differentiated from patients' peripheral blood mononuclear cells did not show cell-autonomous alterations. However, circulating osteoclast precursors from healthy individuals cultured in the presence of patients' sera exhibited increased osteoclastogenesis compared to control sera suggesting that GSD type I serum factors could affect osteoclast function in a non-autonomous manner. In contrast, circulating osteoprogenitors were unremarkable.
Collapse
Affiliation(s)
- Silvia Vai
- Bone Metabolism Diseases and Diabetes Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | - Sabrina Corbetta
- Bone Metabolism Diseases and Diabetes Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Luisa Bianchi
- Bone Metabolism Diseases and Diabetes Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Chiara Alberio
- Bone Metabolism Diseases and Diabetes Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Carrara
- Bone Metabolism Diseases and Diabetes Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Serena Gasperini
- Rare Metabolic Diseases Unit, Paediatrics Clinic, IRCCS Foundation San Gerardo Dei Tintori, Monza, Italy
| | - Roberta Pretese
- Rare Metabolic Diseases Unit, Paediatrics Clinic, IRCCS Foundation San Gerardo Dei Tintori, Monza, Italy
| | - Loredana Parisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy.
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, Coppito 2, 67100, L'Aquila, Italy
| |
Collapse
|
4
|
Wang A, Wu J, Yuan X, Liu J, Lu C. A case study of a liver transplant-treated patient with glycogen storage disease type Ia presenting with multiple inflammatory hepatic adenomas: an analysis of clinicopathologic and genetic data. BMC Med Genomics 2024; 17:124. [PMID: 38711024 PMCID: PMC11075316 DOI: 10.1186/s12920-024-01888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Glycogen storage disease (GSD) is a disease caused by excessive deposition of glycogen in tissues due to genetic disorders in glycogen metabolism. Glycogen storage disease type I (GSD-I) is also known as VonGeirk disease and glucose-6-phosphatase deficiency. This disease is inherited in an autosomal recessive manner, and both sexes can be affected. The main symptoms include hypoglycaemia, hepatomegaly, acidosis, hyperlipidaemia, hyperuricaemia, hyperlactataemia, coagulopathy and developmental delay. CASE PRESENTATION Here, we present the case of a 13-year-old female patient with GSD Ia complicated with multiple inflammatory hepatic adenomas. She presented to the hospital with hepatomegaly, hypoglycaemia, and epistaxis. By clinical manifestations and imaging and laboratory examinations, we suspected that the patient suffered from GSD I. Finally, the diagnosis was confirmed by liver pathology and whole-exome sequencing (WES). WES revealed a synonymous mutation, c.648 G > T (p.L216 = , NM_000151.4), in exon 5 and a frameshift mutation, c.262delG (p.Val88Phefs*14, NM_000151.4), in exon 2 of the G6PC gene. According to the pedigree analysis results of first-generation sequencing, heterozygous mutations of c.648 G > T and c.262delG were obtained from the patient's father and mother. Liver pathology revealed that the solid nodules were hepatocellular hyperplastic lesions, and immunohistochemical (IHC) results revealed positive expression of CD34 (incomplete vascularization), liver fatty acid binding protein (L-FABP) and C-reactive protein (CRP) in nodule hepatocytes and negative expression of β-catenin and glutamine synthetase (GS). These findings suggest multiple inflammatory hepatocellular adenomas. PAS-stained peripheral hepatocytes that were mostly digested by PAS-D were strongly positive. This patient was finally diagnosed with GSD-Ia complicated with multiple inflammatory hepatic adenomas, briefly treated with nutritional therapy after diagnosis and then underwent living-donor liver allotransplantation. After 14 months of follow-up, the patient recovered well, liver function and blood glucose levels remained normal, and no complications occurred. CONCLUSION The patient was diagnosed with GSD-Ia combined with multiple inflammatory hepatic adenomas and received liver transplant treatment. For childhood patients who present with hepatomegaly, growth retardation, and laboratory test abnormalities, including hypoglycaemia, hyperuricaemia, and hyperlipidaemia, a diagnosis of GSD should be considered. Gene sequencing and liver pathology play important roles in the diagnosis and typing of GSD.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610000, China
- Department of Pathology, Affiliated Hospital of Panzhihua University, Panzhihua, 617000, China
| | - Jiamei Wu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiaohui Yuan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jianping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Changli Lu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, 610000, China.
| |
Collapse
|
5
|
Subih HS, Qudah RA, Janakat S, Rimawi H, Elsahoryi NA, Alyahya L. Medium-Chain Triglyceride Oil and Dietary Intervention Improved Body Composition and Metabolic Parameters in Children with Glycogen Storage Disease Type 1 in Jordan: A Clinical Trial. Foods 2024; 13:1091. [PMID: 38611395 PMCID: PMC11011708 DOI: 10.3390/foods13071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Glycogen storage diseases (GSDs) are a group of carbohydrate metabolism disorders, most of which are inherited in autosomal recessive patterns. GSDs are of two types: those that have to do with liver and hypoglycaemia (hepatic GSDs) and those that are linked to neuromuscular presentation. This study aims to assess the impact of dietary intervention, including medium-chain triglyceride (MCT) oil, on anthropometric measurements, body composition analysis and metabolic parameters among Jordanian children and is expected to be the first in the country. A sample of 38 children with glycogen storage disease type 1 (GSD-1) (median age = 6.4 years) were on a diet that included uncooked cornstarch therapy and a fructose-, sucrose- and lactose-restricted diet. Patients started to take MCT oil along with the prescribed diet after the first body composition test. Patients' nutritional status was re-evaluated three months later. The study results show that the percentage of patients who suffered from hypoglycaemia at the beginning of the study decreased significantly from 94.7% to 7.9% (p < 0.0001). The serum levels of triglycerides, cholesterol, uric acid and lactate decreased significantly after three months of intervention (100-71.1%, 73.7-21.1%, 97.4-52.6% and 94.7-18.4%, respectively). In contrast, there was no statistical difference in neutrophil count. Regarding clinical parameters, liver span was significantly reduced from (16.01 ± 2.65 cm) to (14.85 ± 2.26 cm) (p < 0.0001). There were significant improvements in growth parameters, including height-for-age and BMI-for-age for children aged ≥2 years (p = 0.034 and p = 0.074, respectively). Significant improvements in skeletal muscle mass and bone mineral content were also noticed at the end of the trial (p ≤ 0.05). In conclusion, medium-chain triglyceride therapy is found to improve biochemical and growth parameters in children with GSD-1 in Jordan.
Collapse
Affiliation(s)
- Hadil S. Subih
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (R.A.Q.); (S.J.)
| | - Reem A. Qudah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (R.A.Q.); (S.J.)
| | - Sana Janakat
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (R.A.Q.); (S.J.)
| | - Hanadi Rimawi
- Royal Medical Services, P.O. Box 712996, Amman 11171, Jordan;
| | - Nour Amin Elsahoryi
- Department of Nutrition, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan;
| | - Linda Alyahya
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| |
Collapse
|
6
|
Sahu P, Camarillo IG, Sundararajan R. Efficacy of metformin and electrical pulses in breast cancer MDA-MB-231 cells. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:54-73. [PMID: 38464382 PMCID: PMC10918234 DOI: 10.37349/etat.2024.00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024] Open
Abstract
Aim Triple-negative breast cancer (TNBC) is a very aggressive subset of breast cancer, with limited treatment options, due to the lack of three commonly targeted receptors, which merits the need for novel treatments for TNBC. Towards this need, the use of metformin (Met), the most widely used type-2 diabetes drug worldwide, was explored as a repurposed anticancer agent. Cancer being a metabolic disease, the modulation of two crucial metabolites, glucose, and reactive oxygen species (ROS), is studied in MDA-MB-231 TNBC cells, using Met in the presence of electrical pulses (EP) to enhance the drug efficacy. Methods MDA-MB-231, human TNBC cells were treated with Met in the presence of EP, with various concentrations Met of 1 mmol/L, 2.5 mmol/L, 5 mmol/L, and 10 mmol/L. EP of 500 V/cm, 800 V/cm, and 1,000 V/cm (with a pulse width of 100 µs at 1 s intervals) were applied to TNBC and the impact of these two treatments was studied. Various assays, including cell viability, microscopic inspection, glucose, ROS, and wound healing assay, were performed to characterize the response of the cells to the combination treatment. Results Combining 1,000 V/cm with 5 mmol/L Met yielded cell viability as low as 42.6% at 24 h. The glucose level was reduced by 5.60-fold and the ROS levels were increased by 9.56-fold compared to the control, leading to apoptotic cell death. Conclusions The results indicate the enhanced anticancer effect of Met in the presence of electric pulses. The cell growth is inhibited by suppressing glucose levels and elevated ROS. This shows a synergistic interplay between electroporation, Met, glucose, and ROS metabolic alterations. The results show promises for combinational therapy in TNBC patients.
Collapse
Affiliation(s)
- Praveen Sahu
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| | - Ignacio G. Camarillo
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Raji Sundararajan
- School of Engineering Technology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Takahashi T, Oue K, Imado E, Doi M, Shimizu Y, Yoshida M. Severe perioperative lactic acidosis in a pediatric patient with glycogen storage disease type Ia: a case report. JA Clin Rep 2023; 9:91. [PMID: 38114842 PMCID: PMC10730783 DOI: 10.1186/s40981-023-00683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Glycogen storage disease (GSD) is a group of rare inherited metabolic disorders caused by enzyme deficiencies in glycogen catabolism. GSD type Ia is a congenital deficiency of the enzyme responsible for the final step in glucose production by glycolysis, resulting in impaired carbohydrate metabolism. CASE PRESENTATION A 14-year-old boy with GSD type Ia was scheduled for a maxillary cystectomy under general anesthesia. He was taking oral sugars such as uncooked cornstarch regularly to prevent hypoglycemia. Perioperatively, glucose was administered via the peripheral vein for fasting; however, severe lactic acidosis occurred. He also developed hypercapnia because of intraoperative poor ventilation caused by hepatomegaly. CONCLUSIONS We experienced a child with GSD type Ia who developed severe lactic acidosis despite continuous glucose infusion. Further studies are required to determine appropriate perioperative management for patients with GSD, including fasting glucose administration.
Collapse
Affiliation(s)
- Tamayo Takahashi
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Kana Oue
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan.
| | - Eiji Imado
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Mitsuru Doi
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Yoshitaka Shimizu
- Department of Dental Anesthesiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| | - Mitsuhiro Yoshida
- Department of Dental Anesthesiology, Division of Oral and Maxillofacial Surgery and Oral Medicine, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
8
|
Wang Z, Zhao R, Jia X, Li X, Ma L, Fu H. Three novel SLC37A4 variants in glycogen storage disease type 1b and a literature review. J Int Med Res 2023; 51:3000605231216633. [PMID: 38087503 PMCID: PMC10718061 DOI: 10.1177/03000605231216633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Glycogen storage disease type 1b (GSD1b) is a rare genetic disorder, resulting from mutations in the SLC37A4 gene located on chromosome 11q23.3. Although the SLC37A4 gene has been identified as the pathogenic gene for GSD1b, the complete variant spectrum of this gene remains to be fully elucidated. In this study, we present three patients diagnosed with GSD1b through genetic testing. We detected five variants of the SLC37A4 gene in these three patients, with three of these mutations (p. L382Pfs*15, p. G117fs*28, and p. T312Sfs*13) being novel variants not previously reported in the literature. We also present a literature review and general overview of the currently reported SLC37A4 gene variants. Our study expands the mutation spectrum of SLC37A4, which may help enable genetic testing to facilitate prompt diagnosis, appropriate intervention, and genetic counseling for affected families.
Collapse
Affiliation(s)
- Zhuolin Wang
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Ruiqin Zhao
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Xiaoyun Jia
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Xiaolei Li
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Li Ma
- Department of Neonatology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| | - Haiyan Fu
- Department of Gastroenterology, Hebei Children's Hospital, 133 Jianhua South Street, Shijiazhuang 050031, Hebei Province, China
| |
Collapse
|
9
|
Ren J, Ma Y, Ma M, Ding J, Jiang J, Zheng X, Han X. Development of a rapid simultaneous assay of two urinary tetrasaccharide metabolites using differential ion mobility and tandem mass spectrometry and its application to patients with glycogen storage disease (type Ib and II). Anal Bioanal Chem 2023; 415:6863-6871. [PMID: 37770665 DOI: 10.1007/s00216-023-04964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
Glucose tetrasaccharide (Glc4) and maltotetraose (M4) are important biomarkers for Pompe disease and other glycogen storage diseases (GSDs). With the development of new treatments for GSDs, more specific and sensitive bioanalytical methods are needed to determine biomarkers. In recent years, differential mobility spectrometry (DMS) has become an effective analytical technique with high selectivity and specificity. This study aimed to develop an efficient analytical method for the two urinary tetrasaccharide metabolites using DMS and apply it to patients with GSDs (type Ib and II). Urine samples were directly diluted and injected into liquid chromatography-differential mobility spectrometry tandem mass spectrometry (LC-DMS-MS/MS). Chromatographic separation was performed on an Acquity™ UPLC BEH Amide column (2.1 × 50 mm, 1.7 μm) with a short gradient elution of 2.6 min. DMS-MS/MS was used to detect two urinary tetrasaccharide metabolites in a negative multiple reaction monitoring mode with isopropanol as a modifier. A total of 20 urine samples from 6 healthy volunteers and 10 patients with GSDs (type Ib and II) were collected for analysis. The method was linear over a concentration range of 0.5~100.0 µg/mL for each urinary tetrasaccharide (r≥0.99). The intra- and inter-day precision RSD% were less than 14.3%, and the accuracy RE% were in the range of -14.3~13.4%. The relative matrix effect was between 86.6 and 114.3%. No carryover or interference was observed. Patients with GSDs (type Ib and II) had significantly higher median urinary Glc4 (P=0.001) and M4 (P=0.012) excretion than healthy subjects. The developed method was simple, rapid, sensitive, and specific. It was successfully applied to healthy volunteers and patients with GSDs (type Ib and II). DMS technology greatly improved analysis efficiency and provided high sensitivity and specificity.
Collapse
Affiliation(s)
- Jianwei Ren
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yufang Ma
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Mingsheng Ma
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Juan Ding
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Jingjing Jiang
- Department of Pediatrics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xin Zheng
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Hill DP, Drabkin HJ, Smith CL, Van Auken KM, D’Eustachio P. Biochemical pathways represented by Gene Ontology-Causal Activity Models identify distinct phenotypes resulting from mutations in pathways. Genetics 2023; 225:iyad152. [PMID: 37579192 PMCID: PMC10550311 DOI: 10.1093/genetics/iyad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a causally connected way. To demonstrate that individual variant genes from connected pathways result in similar but distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of 2 related but distinct pathways, gluconeogenesis and glycolysis, we show that individual causal paths in gene networks give rise to discrete phenotypic outcomes resulting from perturbations of glycolytic and gluconeogenic genes. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.
Collapse
Affiliation(s)
- David P Hill
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Kimberly M Van Auken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
11
|
Calia M, Arosio AML, Crescitelli V, Fornari A, Pretese R, Gasperini S, Zuin G. Crohn-like disease long remission in a pediatric patient with glycogen storage disease type Ib treated with empagliflozin: a case report. Therap Adv Gastroenterol 2023; 16:17562848231202138. [PMID: 37779861 PMCID: PMC10540602 DOI: 10.1177/17562848231202138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Glycogen storage disease type Ib (GSD Ib) is a rare hereditary glycogen disorder that results in inadequate maintenance of glucose homeostasis, accumulation of glycogen in different organs, loss and dysfunction of neutrophils. Crohn's-like disease is observed in up to 24-77% of GDS Ib cases. Recently, empagliflozin has been recommended as a treatment for neutrophil dysfunction in GDS Ib patients with or without Crohn's-like disease. There are no guidelines for the treatment of inflammatory bowel disease (IBD) manifestation in GSD Ib patients, although some cases have been treated with granulocyte colony-stimulating factor and others with IBD conventional therapy, resulting in partial IBD remission. Herein, we describe a child with GDS Ib and Crohn's-like disease who was treated with empagliflozin and achieved complete remission after 2 years of treatment. This case is the first one with such a long follow-up evaluation including endoscopic and magnetic resonance enterography assessment. Our clinical evidence of remission of IBD manifestation in our GSD Ib patient and the role of neutrophils in GDS Ib described in the literature suggest a strong association with IBD pathophysiology and neutrophil function. The use of empagliflozin resulted in significant improvements in gastrointestinal symptoms, reduced drug usage, and enhanced quality of life in the patient, with a favorable safety profile, offering a promising new therapeutic option for this population.
Collapse
Affiliation(s)
- Margherita Calia
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | | | | | - Anna Fornari
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Roberta Pretese
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Serena Gasperini
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italia
| | - Giovanna Zuin
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Via G. B. Pergolesi, 33, 20900 Monza (MB), Italy
| |
Collapse
|
12
|
Abate E, Mehdi M, Addisu S, Degef M, Tebeje S, Kelemu T. Emerging roles of cytosolic phosphoenolpyruvate kinase 1 (PCK1) in cancer. Biochem Biophys Rep 2023; 35:101528. [PMID: 37637941 PMCID: PMC10457690 DOI: 10.1016/j.bbrep.2023.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Although it was traditionally believed that gluconeogenesis enzymes were absent from cancers that did not originate in gluconeogenic organs, numerous investigations have shown that they are functionally expressed in a variety of tumors as mediators of shortened forms of Gluconeogenesis. One of the isomers of PEPCK, the first-rate limiting enzyme in gluconeogenesis, is PCK 1, which catalyzes the conversion of oxaloacetate (OAA) and GTP into PEP, CO2, and GDP. It is also known as PEPCK-C or PCK1, and it is cytosolic. Despite being paradoxical, it has been demonstrated that, in addition to its enzymatic role in normal metabolism, this enzyme also plays a role in tumors that arise in gluconeogenic and non-gluconeogenic organs. According to newly available research, it has metabolic and non-metabolic roles in tumor progression and development. Thus, this review will give insight into PCK1 relationship, function, and mechanism in or with different types of cancer using contemporary findings.
Collapse
Affiliation(s)
- Ebsitu Abate
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mohammed Mehdi
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sisay Addisu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Maria Degef
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Solomon Tebeje
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu
- Department of Medical Biochemistry, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Abstract
Gluconeogenesis is a critical biosynthetic process that helps maintain whole-body glucose homeostasis and becomes altered in certain medical diseases. We review gluconeogenic flux in various medical diseases, including common metabolic disorders, hormonal imbalances, specific inborn genetic errors, and cancer. We discuss how the altered gluconeogenic activity contributes to disease pathogenesis using data from experiments using isotopic tracer and spectroscopy methodologies. These in vitro, animal, and human studies provide insights into the changes in circulating levels of available gluconeogenesis substrates and the efficiency of converting those substrates to glucose by gluconeogenic organs. We highlight ongoing knowledge gaps, discuss emerging research areas, and suggest future investigations. A better understanding of altered gluconeogenesis flux may ultimately identify novel and targeted treatment strategies for such diseases.
Collapse
Affiliation(s)
- Ankit Shah
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA; ,
| | - Fredric E Wondisford
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA; ,
| |
Collapse
|
14
|
Dalga D, Verissimo T, de Seigneux S. Gluconeogenesis in the kidney: in health and in chronic kidney disease. Clin Kidney J 2023; 16:1249-1257. [PMID: 37529654 PMCID: PMC10387387 DOI: 10.1093/ckj/sfad046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Indexed: 08/03/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health issue with increasing prevalence. Despite large improvements in current therapies, slowing CKD progression remains a challenge. A better understanding of renal pathophysiology is needed to offer new therapeutic targets. The role of metabolism alterations and mitochondrial dysfunction in tubular cells is increasingly recognized in CKD progression. In proximal tubular cells, CKD progression is associated with a switch from fatty acid oxidation to glycolysis. Glucose synthesis through gluconeogenesis is one of the principal physiological functions of the kidney. Loss of tubular gluconeogenesis in a stage-dependent manner is a key feature of CKD and contributes to systemic and possibly local metabolic complications. The local consequences observed may be related to an accumulation of precursors, such as glycogen, but also to the various physiological functions of the gluconeogenesis enzymes. The basic features of metabolism in proximal tubular cells and their modifications during CKD will be reviewed. The metabolic modifications and their influence on kidney disease will be described, as well as the local and systemic consequences. Finally, therapeutic interventions will be discussed.
Collapse
Affiliation(s)
- Delal Dalga
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Thomas Verissimo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
15
|
Hill DP, Drabkin HJ, Smith CL, Van Auken KM, D’Eustachio P. Biochemical Pathways Represented by Gene Ontology Causal Activity Models Identify Distinct Phenotypes Resulting from Mutations in Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541760. [PMID: 37293039 PMCID: PMC10245817 DOI: 10.1101/2023.05.22.541760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene inactivation can affect the process(es) in which that gene acts and causally downstream ones, yielding diverse mutant phenotypes. Identifying the genetic pathways resulting in a given phenotype helps us understand how individual genes interact in a functional network. Computable representations of biological pathways include detailed process descriptions in the Reactome Knowledgebase, and causal activity flows between molecular functions in Gene Ontology-Causal Activity Models (GO-CAMs). A computational process has been developed to convert Reactome pathways to GO-CAMs. Laboratory mice are widely used models of normal and pathological human processes. We have converted human Reactome GO-CAMs to orthologous mouse GO-CAMs, as a resource to transfer pathway knowledge between humans and model organisms. These mouse GO-CAMs allowed us to define sets of genes that function in a connected and well-defined way. To test whether individual genes from well-defined pathways result in similar and distinguishable phenotypes, we used the genes in our pathway models to cross-query mouse phenotype annotations in the Mouse Genome Database (MGD). Using GO-CAM representations of two related but distinct pathways, gluconeogenesis and glycolysis, we can identify causal paths in gene networks that give rise to discrete phenotypic outcomes for perturbations of glycolysis and gluconeogenesis. The accurate and detailed descriptions of gene interactions recovered in this analysis of well-studied processes suggest that this strategy can be applied to less well-understood processes in less well-studied model systems to predict phenotypic outcomes of novel gene variants and to identify potential gene targets in altered processes.
Collapse
Affiliation(s)
| | | | | | - Kimberly M Van Auken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Peter D’Eustachio
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York NY 10016 USA
| |
Collapse
|
16
|
Krzyzanowski D, Oszer A, Madzio J, Zdunek M, Kolodrubiec J, Urbanski B, Mlynarski W, Janczar S. The paradox of autoimmunity and autoinflammation in inherited neutrophil disorders - in search of common patterns. Front Immunol 2023; 14:1128581. [PMID: 37350970 PMCID: PMC10283154 DOI: 10.3389/fimmu.2023.1128581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Congenital defects of neutrophil number or function are associated with a severe infectious phenotype that may require intensive medical attention and interventions to be controlled. While the infectious complications in inherited neutrophil disorders are easily understood much less clear and explained are autoimmune and autoinflammatory phenomena. We survey the clinical burden of autoimmunity/autoinflammation in this setting, search for common patterns, discuss potential mechanisms and emerging treatments.
Collapse
Affiliation(s)
- Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Oszer
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Maciej Zdunek
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Julia Kolodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartosz Urbanski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Twanabasu S, Duwadee P, Homagain S, Ghimire J, Rijal RC. Glycogen storage disease in two sisters: A case report. Clin Case Rep 2023; 11:e7318. [PMID: 37151946 PMCID: PMC10160815 DOI: 10.1002/ccr3.7318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Glycogen storage diseases (GSDs) are rare autosomal disorders that result from defects in glycogen metabolism. There are more than 12 types, each with distinct clinical features. Clinical scenario, biochemical abnormalities are useful for suspicion whereas liver biopsy and enzyme assay provides definite diagnosis. We report a case of two sisters with similar clinical symptoms suggestive of the disease.
Collapse
|
18
|
Dan L, Song X, Yu H. A case of glycogen storage disease type Ⅰa with gout as the first manifestation. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:230-236. [PMID: 37283108 PMCID: PMC10409914 DOI: 10.3724/zdxbyxb-2022-0530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/31/2022] [Indexed: 06/08/2023]
Abstract
A 24-year-old male was admitted due to recurrent redness, swelling, fever and pain in the ankle, frequently accompanied by hungry feeling. Dual energy CT scans showed multiple small gouty stones in the posterior edge of the bilateral calcaneus and in the space between the bilateral metatarsophalangeal joints. The laboratory examination results indicated hyperlipidemia, high lactate lipids, and low fasting blood glucose. Histopathology of liver biopsy showed significant glycogen accumulation. The results of gene sequencing revealed the compound heterozygous mutations of the G6PC gene c.248G>A (p.Arg83His) and c.238T>A (p.Phe80Ile) in the proband. The c.248G>A mutation was from mother and the c.238T>A mutation was from father. The diagnosis of glycogen storage disease type Ⅰa was confirmed. After giving a high starch diet and limiting monosaccharide intake, as well as receiving uric acid and blood lipids lowering therapy, the condition of the patient was gradually stabilized. After a one-year follow-up, there were no acute episodes of gout and a significant improvement in hungry feeling in the patient.
Collapse
Affiliation(s)
- Lingying Dan
- Department of Endocrinology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
- Department of Endocrinology, Lishui Hospital of Traditional Chinese Medicine, Lishui 323020, Zhejiang Province, China.
| | - Xiaoxiao Song
- Department of Endocrinology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Hanxiao Yu
- Clinical Research Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
19
|
Turki A, Stockler S, Sirrs S, Duddy K, Ho G, Elango R. Impact of hematopoietic stem cell transplantation in glycogen storage disease type Ib: A single-subject research design using 13C-glucose breath test. Mol Genet Metab Rep 2023; 34:100955. [PMID: 36632325 PMCID: PMC9826966 DOI: 10.1016/j.ymgmr.2023.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023] Open
Abstract
Background Glycogen storage disease type Ib (GSD Ib) is an autosomal recessively inherited deficiency of the glucose-6-phosphate translocase (G6PT). Clinical features include a combination of a metabolic phenotype (fasting hypoglycemia, lactic acidosis, hepatomegaly) and a hematologic phenotype with neutropenia and neutrophil dysfunction. Dietary treatment involves provision of starches such as uncooked cornstarch (UCCS) and Glycosade® to provide prolonged enteral supply of glucose. Granulocyte colony-stimulating factor (G-CSF) is the treatment of choice for neutropenia. Because long-term stimulation of hematopoiesis with G-CSF causes serious complications such as splenomegaly, hypersplenism, and osteopenia; hematopoietic stem cell transplantation (HSCT) has been considered in some patients with GSD Ib to correct neutropenia and avoid G-CSF related adverse effects. Whether HSCT also has an effect on the metabolic phenotype and utilization of carbohydrate sources has not been determined. Objective Our objective was to measure the utilization of starch in a patient with GSD Ib before and after HSCT using the minimally invasive 13C-glucose breath test (13C-GBT). Design A case of GSD Ib (18y; female) underwent 13C-GBT four times: UCCS (pre-HSCT), UCCS (3, 5 months post-HSCT) and Glycosade® (6 months post-HSCT) with a dose of 80 g administered via nasogastric tube after a 4 h fast according to our patient's fasting tolerance. Breath samples were collected at baseline and every 30 min for 240 min. Rate of CO2 production was measured at 120 min using indirect calorimetry. Finger-prick blood glucose was measured using a glucometer hourly to test hypoglycemia (glucose <4 mmol/L). Biochemical and clinical data were obtained from the medical records as a post-hoc chart review. Results UCCS utilization was significantly higher in GSD Ib pre-HSCT, which reduced and stabilized 5 months post-HSCT. UCCS and Glycosade® utilizations were low and not different at 5 and 6 months post-HSCT. Blood glucose concentrations were not significantly different at any time point. Conclusions Findings show that HSCT stabilized UCCS utilization, as reflected by lower and stable glucose oxidation. The results also illustrate the application of 13C-GBT to examine glucose metabolism in response to various carbohydrate sources after other treatment modalities like HSCT in GSD Ib.
Collapse
Key Words
- 13C-GBT, 13C-glucose breath test
- 13C-glucose
- ALT, alanine aminotransferase
- AML, acute myeloid leukemia
- ANOVA, analysis of variance
- AST, aspartate aminotransferase
- AUC, area under the curve
- BIA, bioelectrical impedance analysis
- BMI, body mass index
- Breath test
- CF-IRMS, continuous flow isotope ratio mass spectrometer
- CGM, continuous glucose monitor
- CRP, C-reactive protein
- Cmax, maximum peak enrichment in 13CO2 oxidation
- ER, endoplasmic reticulum
- FFM, fat free mass
- FM, fat mass
- G-CSF, granulocyte colony-stimulating factor
- G6P, glucose-6-phosphate
- G6PT, glucose-6-phosphate translocase
- G6Pase-ß, glucose-6-phosphatase-β
- G6Pase-α, glucose-6-phosphatase-α
- GGT, gamma glutamyltransferase
- GSD I, glycogen storage disease type I
- GSD III, glycogen storage disease type III
- GSD Ia, glycogen storage disease type Ia
- GSD Ib, glycogen storage disease type Ib
- Glycogen storage disease type Ib
- Glycosade®
- HSCT/BMT, hematopoietic stem cell transplantation / bone marrow transplantation
- Hematopoietic stem cell transplantation
- IBD, inflammatory bowel disease
- IM, intramuscular
- NG, nasogastric
- TBW, total body water
- UCCS, uncooked cornstarch
- Uncooked cornstarch
- VCO2, rate of carbon dioxide production.
- tmax, time to reach maximum 13CO2 oxidation
Collapse
Affiliation(s)
- Abrar Turki
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sylvia Stockler
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, British Columbia, Canada
- Correspondence author to: Sylvia Stockler, Division of Biochemical Genetics, 4500 Oak St, BC Children's Hospital, Vancouver, BC V6H 3N1, Canada.
| | - Sandra Sirrs
- Department of Medicine, Division of Endocrinology, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Costal Health, Adult Metabolic Diseases Clinic, Vancouver, British Columbia, Canada
| | - Kathleen Duddy
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Gloria Ho
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Rajavel Elango
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
- Correspondence author to: Rajavel Elango, Rm170A, 950 West 28th Avenue, BC Children's Hospital Research Institute, Vancouver BC V5Z 4H4, Canada.
| |
Collapse
|
20
|
Lenzini L, Iori E, Scannapieco F, Carraro G, Avogaro A, Vitturi N. Urine-Derived Epithelial Cells as a New Model to Study Renal Metabolic Phenotypes of Patients with Glycogen Storage Disease 1a. Int J Mol Sci 2022; 24:ijms24010232. [PMID: 36613675 PMCID: PMC9820562 DOI: 10.3390/ijms24010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Glycogen storage diseases (GSDs) represent a model of pathological accumulation of glycogen disease in the kidney that, in animal models, results in nephropathy due to abnormal autophagy and mitochondrial function. Patients with Glycogen Storage Disease 1a (GSD1a) accumulate glycogen in the kidneys and suffer a disease resembling diabetic nephropathy that can progress to renal failure. In this study, we addressed whether urine-derived epithelial cells (URECs) from patients with GSD1a maintain their biological features, and whether they can be used as a model to study the renal and metabolic phenotypes of this genetic condition. Studies were performed on cells extracted from urine samples of GSD1a and healthy subjects. URECs were characterized after the fourth passage by transmission electron microscopy and immunofluorescence. Reactive oxygen species (ROS), at different glucose concentrations, were measured by fluorescent staining. We cultured URECs from three patients with GSD1a and three healthy controls. At the fourth passage, URECs from GSD1a patients maintained their massive glycogen content. GSD1a and control cells showed the ciliary structures of renal tubular epithelium and the expression of epithelial (E-cadherin) and renal tubular cells (aquaporin 1 and 2) markers. Moreover, URECs from both groups responded to changes in glucose concentrations by modulating ROS levels. GSD1a cells were featured by a specific response to the low glucose stimulus, which is the condition that more resembles the metabolic derangement of patients with GSD1a. Through this study, we demonstrated that URECs might represent a promising experimental model to study the molecular mechanisms leading to renal damage in GSD1a, due to pathological glycogen storage.
Collapse
Affiliation(s)
- Livia Lenzini
- Emergency Medicine Unit and Specialized Center of Excellence for Hypertension of the European Society of Hypertension, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Elisabetta Iori
- Division of Metabolic Diseases, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Federico Scannapieco
- Division of Metabolic Diseases, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Gianni Carraro
- Nephrology, Dialysis and Transplant Unit, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Angelo Avogaro
- Division of Metabolic Diseases, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine-DIMED, University Hospital, 35128 Padova, Italy
- Correspondence: ; Tel.: +39-049-821-4326
| |
Collapse
|
21
|
Wang J, Zhao Y, Chang P, Liu B, Yao R. Double filtration plasmapheresis for pregnancy with hyperlipidemia in glycogen storage disease type Ia: A case report. World J Clin Cases 2022; 10:10273-10278. [PMID: 36246825 PMCID: PMC9561557 DOI: 10.12998/wjcc.v10.i28.10273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Glycogen storage disease type Ia (GSDIa) is an autosomal recessive inborn error of carbohydrate metabolism that is caused by deficiency of the enzyme glucose-6-phosphatase (G6Pase), leading to disturbed glycogenolysis and gluconeogenesis. Patients with GSDIa show severe fasting hypoglycemia, hyperlipidemia, hyperlactacidemia, and hyperuricemia, which are associated with fatal outcomes in pregnant women and fetuses.
CASE SUMMARY Herein, we report the case of a 24-year-old female who on her first visit to the hospital, presented with pregnancy combined with extremely high hyperlipidemia and hyperlactic acidosis with anemia, and frequent hypoglycemia occurred during the treatment. Genetic tests revealed a mutation in the G6Pase gene (G6PC) at 17q21, the patient was finally diagnosed with glycogen storage disease type Ia for the first time after 22 years of inaccurate treatment. She has been treated with a continuous double filtration plasmapheresis (DFPP) strategy to remove blood lipids, and a cornstarch diet therapy. The patient did not develop pancreatitis during the course of the disease and a healthy baby girl weighing 3 kg was delivered.
CONCLUSION Patients with GSDIa may be misdiagnosed as epilepsy. DFPP can be used to control hyperlipidemia in GSDIa patients during pregnancy.
Collapse
Affiliation(s)
- Jie Wang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Zhao
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Pan Chang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Rong Yao
- Department of Emergency, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
22
|
Sun Y, Qiang W, Wu R, Yin T, Yuan J, Yuan J, Gu Y. A glycogen storage disease type 1a patient with type 2 diabetes. BMC Med Genomics 2022; 15:205. [PMID: 36167523 PMCID: PMC9516787 DOI: 10.1186/s12920-022-01344-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Background Glycogen storage disease type 1a (GSD1a) is an inborn genetic disease caused by glucose-6-phosphatase-α (G6Pase-α) deficiency and is often observed to lead to endogenous glucose production disorders manifesting as hypoglycemia, hyperuricemia, hyperlipidemia, lactic acidemia, hepatomegaly, and nephromegaly. The development of GSD1a with diabetes is relatively rare, and the underlying pathogenesis remains unclear.
Case presentation Here we describe a case of a 25-year-old Chinese female patient with GSD1a, who developed uncontrolled type 2 diabetes mellitus (T2DM) as a young adult. The patient was diagnosed with GSD1a disease at the age of 10 and was subsequently treated with an uncooked cornstarch diet. Recently, the patient was treated in our hospital for vomiting and electrolyte imbalance and was subsequently diagnosed with T2DM. Owing to the impaired secretory function of the patient’s pancreatic islets, liver dysfunction, hypothyroidism, severe hyperlipidemia, and huge hepatic adenoma, we adopted diet control, insulin therapy, and hepatic adenoma resection to alleviate this situation. The WES discovered compound heterozygous mutations at the exon 5 of G6PC gene at 17th chromosome in the patient, c.648G>T (p.L216 L, NM_000151.4, rs80356484) in her father and c.674T>C (p.L225 P, NM_000151.4, rs1555560128) in her mother. c.648G>T is a well-known splice-site mutation, which causes CTG changing to CTT at protein 216 and creates a new splicing site 91 bp downstream of the authentic splice site, though both codons encode leucine. c.674T>C is a known missense mutation that causes TGC to become CGC at protein 225, thereby changing from coding for leucine to coding for proline.
Conclusion We report a rare case of GSD1a with T2DM. On the basis of the pathogenesis of GSD1a, we recommend attentiveness to possible development of fasting hypoglycemia caused by GSD and postprandial hyperglycemia from diabetes. As the disease is better identified and treated, and as patients with GSD live longer, this challenge may appear more frequently. Therefore, it is necessary to have a deeper and more comprehensive understanding of the pathophysiology of the disease and explore suitable treatment options. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01344-3.
Collapse
Affiliation(s)
- Yi Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenhui Qiang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College, Nantong University, Nantong, Jiangsu, China
| | - Runze Wu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical College, Nantong University, Nantong, Jiangsu, China
| | - Tong Yin
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Yuan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jin Yuan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yunjuan Gu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. .,Department of Endocrinology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
23
|
Abdul Wahab SA, Yakob Y, Mohd Khalid MKN, Ali N, Leong HY, Ngu LH. Molecular, Biochemical, and Clinical Characterization of Thirteen Patients with Glycogen Storage Disease 1a in Malaysia. Genet Res (Camb) 2022; 2022:5870092. [PMID: 36160031 PMCID: PMC9489408 DOI: 10.1155/2022/5870092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 02/06/2023] Open
Abstract
Background Glycogen storage disease type 1a (GSD1a) is a rare autosomal recessive metabolic disorder characterized by hypoglycaemia, growth retardation, lactic acidosis, hepatomegaly, hyperlipidemia, and nephromegaly. GSD1a is caused by a mutation in the G6PC gene encoding glucose-6-phosphatase (G6Pase); an enzyme that catalyses the hydrolysis of glucose-6-phosphate (G6P) to phosphate and glucose. Objective To elaborate on the clinical findings, biochemical data, molecular genetic analysis, and short-term prognosis of 13 GSD1a patients in Malaysia. Methods The information about 13 clinically classified GSD1a patients was retrospectively studied. The G6PC mutation analysis was performed by PCR-DNA sequencing. Results Patients were presented with hepatomegaly (92%), hypoglycaemia (38%), poor weight gain (23%), and short stature (15%). Mutation analysis revealed nine heterozygous mutations; eight previously reported mutations (c.155 A > T, c.209 G > A, c.226 A > T, c.248 G > A, c.648 G > T, c.706 T > A, c.1022 T > A, c.262delG) and a novel mutation (c.325 T > C). The most common mutation found in Malaysian patients was c.648 G > T in ten patients (77%) of mostly Malay ethnicity, followed by c.248 G > A in 4 patients of Chinese ethnicity (30%). A novel missense mutation (c.325 T > C) was predicted to be disease-causing by various in silico software. Conclusions The establishment of G6PC molecular genetic testing will enable the detection of presymptomatic patients, assisting in genetic counselling while avoiding the invasive methods of liver biopsy.
Collapse
Affiliation(s)
- Siti Aishah Abdul Wahab
- Molecular Diagnostics Unit, Specialised Diagnostic Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Jalan Pahang 50586, Kuala Lumpur, Malaysia
| | - Yusnita Yakob
- Molecular Diagnostics Unit, Specialised Diagnostic Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Jalan Pahang 50586, Kuala Lumpur, Malaysia
| | - Mohd Khairul Nizam Mohd Khalid
- IEM & Genetic Unit, Nutrition Metabolic and Cardiovascular Research Centre, Institute for Medical Research, National Institute of Health, Ministry of Health, Kuala Lumpur, Malaysia
| | - Noraishah Ali
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Kuala Lumpur, Malaysia
| | - Huey Yin Leong
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Kuala Lumpur, Malaysia
| | - Lock Hock Ngu
- Department of Genetics, Hospital Kuala Lumpur, Ministry of Health, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes. Nat Commun 2022; 13:5332. [PMID: 36088354 PMCID: PMC9464252 DOI: 10.1038/s41467-022-32864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Here we present an exome-wide rare genetic variant association study for 30 blood biomarkers in 191,971 individuals in the UK Biobank. We compare gene-based association tests for separate functional variant categories to increase interpretability and identify 193 significant gene-biomarker associations. Genes associated with biomarkers were ~ 4.5-fold enriched for conferring Mendelian disorders. In addition to performing weighted gene-based variant collapsing tests, we design and apply variant-category-specific kernel-based tests that integrate quantitative functional variant effect predictions for missense variants, splicing and the binding of RNA-binding proteins. For these tests, we present a computationally efficient combination of the likelihood-ratio and score tests that found 36% more associations than the score test alone while also controlling the type-1 error. Kernel-based tests identified 13% more associations than their gene-based collapsing counterparts and had advantages in the presence of gain of function missense variants. We introduce local collapsing by amino acid position for missense variants and use it to interpret associations and identify potential novel gain of function variants in PIEZO1. Our results show the benefits of investigating different functional mechanisms when performing rare-variant association tests, and demonstrate pervasive rare-variant contribution to biomarker variability.
Collapse
|
25
|
Alkaissi HR, Mostel Z, McFarlane SI. Duplication of AKT2 Gene in Ovarian Cancer: A Potentially Novel Mechanism for Tumor-Induced Hypoglycemia. Cureus 2022; 14:e25813. [PMID: 35822150 PMCID: PMC9271230 DOI: 10.7759/cureus.25813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/15/2022] Open
Abstract
Severe hypoglycemia occurs with different types of tumors, including islet cell and non-islet cell tumors. Non-islet cell tumor hypoglycemia (NICTH) is a rare and potentially life-threatening complication of malignancy. The primary underlying mechanism of NICTH proposed in the literature includes paraneoplastic overproduction of insulin-like growth factor-2 (IGF-2), the production of autoantibodies against insulin or its receptors, or the presence of extensive metastatic burden replacing hepatic tissue or adrenal glands. In this report, we propose a potentially novel mechanism underlying NICTH involving stimulation of the insulin signaling pathway in a 58-year-old woman with a rare ovarian tumor of Müllerian origin that carries a duplication of the AKT2 gene. AKT2 is a molecular mediator of insulin signaling. To our knowledge, this is the first reported case of tumor-induced hypoglycemia associated with AKT2 gene duplication. In this report also, we discuss the currently available diagnostic modalities and highlight the therapeutic rationale in patients with NICTH, a highly vulnerable population.
Collapse
|
26
|
Simons PIHG, Valkenburg O, Telgenkamp I, van der Waaij KM, de Groot DM, Veeraiah P, Bons JAP, Derks TGJ, Schalkwijk CG, Schrauwen-Hinderling VB, Stehouwer CDA, Brouwers MCGJ. Serum sex hormone-binding globulin levels are reduced and inversely associated with intrahepatic lipid content and saturated fatty acid fraction in adult patients with glycogen storage disease type 1a. J Endocrinol Invest 2022; 45:1227-1234. [PMID: 35132570 PMCID: PMC9098618 DOI: 10.1007/s40618-022-01753-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/22/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE De novo lipogenesis has been inversely associated with serum sex hormone-binding globulin (SHBG) levels. However, the directionality of this association has remained uncertain. We, therefore, studied individuals with glycogen storage disease type 1a (GSD1a), who are characterized by a genetic defect in glucose-6-phosphatase resulting in increased rates of de novo lipogenesis, to assess the downstream effect on serum SHBG levels. METHODS A case-control study comparing serum SHBG levels in patients with GSD1a (n = 10) and controls matched for age, sex, and BMI (n = 10). Intrahepatic lipid content and saturated fatty acid fraction were quantified by proton magnetic resonance spectroscopy. RESULTS Serum SHBG levels were statistically significantly lower in patients with GSD1a compared to the controls (p = 0.041), while intrahepatic lipid content and intrahepatic saturated fatty acid fraction-a marker of de novo lipogenesis-were significantly higher in patients with GSD1a (p = 0.001 and p = 0.019, respectively). In addition, there was a statistically significant, inverse association of intrahepatic lipid content and saturated fatty acid fraction with serum SHBG levels in patients and controls combined (β: - 0.28, 95% CI: - 0.47;- 0.09 and β: - 0.02, 95% CI: - 0.04;- 0.01, respectively). CONCLUSION Patients with GSD1a, who are characterized by genetically determined higher rates of de novo lipogenesis, have lower serum SHBG levels than controls.
Collapse
Affiliation(s)
- P I H G Simons
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - O Valkenburg
- Department of Reproductive Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - I Telgenkamp
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
| | - K M van der Waaij
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
| | - D M de Groot
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - P Veeraiah
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University, Maastricht, The Netherlands
| | - J A P Bons
- Central Diagnostic Laboratory, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - T G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - C G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - V B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University, Maastricht, The Netherlands
| | - C D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of General Internal Medicine, Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - M C G J Brouwers
- Division of Endocrinology and Metabolic Diseases, Department of Internal Medicine, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
27
|
dos Santos BB, Colonetti K, Nalin T, de Oliveira BM, de Souza CF, Spritzer PM, Schwartz IV. Body composition in patients with hepatic glycogen storage diseases. Nutrition 2022; 103-104:111763. [DOI: 10.1016/j.nut.2022.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/14/2022] [Accepted: 05/31/2022] [Indexed: 10/31/2022]
|
28
|
Hepatic manifestations of systemic disease: an imaging-based review. Pediatr Radiol 2022; 52:852-864. [PMID: 34797394 DOI: 10.1007/s00247-021-05222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/28/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
The liver is responsible for many processes that maintain human metabolic homeostasis and can be affected by several pediatric systemic diseases. In this manuscript, we explore key pathological findings and imaging features across multiple modalities of a spectrum of congenital, metabolic and autoimmune disorders. Strengthening the radiologists' knowledge regarding potential hepatic manifestations of these systemic diseases will ultimately lead to improved care for pediatric patients.
Collapse
|
29
|
Haring MP, Peeks F, Oosterveer MH, Brouwers MC, Hollak CE, Janssen MC, Langendonk JG, Rennings AJ, Wagenmakers MA, Verkade HJ, Derks TG, de Meijer VE. High childhood serum triglyceride concentrations associate with hepatocellular adenoma development in patients with glycogen storage disease type Ia. JHEP Rep 2022; 4:100512. [PMID: 35811762 PMCID: PMC9263528 DOI: 10.1016/j.jhepr.2022.100512] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022] Open
Abstract
Background & Aims Glycogen storage disease type Ia (GSDIa) is an inborn error of carbohydrate metabolism caused by pathogenic variants in the glucose-6-phosphatase catalytic subunit 1 (G6PC1) gene and is associated with hepatocellular adenoma (HCA) formation. Data on risk factors for HCA occurrence in GSDIa are scarce. We investigated HCA development in relation to sex, G6PC1 genotype, and serum triglyceride concentration (TG). Methods An observational study of patients with genetically confirmed GSDIa ≥12 years was performed. Patients were categorised for sex; presence of 2, 1, or 0 predicted severe G6PC1 variant (PSV); and median TG during childhood (<12 years; stratified for above/below 5.65 mmol/L, i.e. 500 mg/dl). Results Fifty-three patients (23 females) were included, of which 26 patients developed HCA at a median (IQR) age of 21 (17–25) years. At the age of 25 years, 48% of females and 30% of males had developed HCA (log-rank p = 0.045). Two-thirds of patients with GSDIa carried 2 PSVs, 20% carried 1, and 13% carried none. Neither the number of PSVs nor any specific G6PC1 variants were associated with HCA occurrence. Childhood TG was 3.4 (3.0–4.2) mmol/L in males vs. 5.6 (4.0–7.9) mmol/L in females (p = 0.026). Childhood TG >5.65 mmol/L was associated with HCA development at younger age, compared with patients with childhood TG <5.65 mmol/L (18 vs. 33 years; log-rank p = 0.001). Cox regression analysis including TG, sex, and TG–sex interaction correction revealed childhood TG >5.65 mmol/L as an independent risk factor for HCA development (hazard ratio [HR] 6.0; 95% CI 1.2–29.8; p = 0.028). Conclusions In patients with GSDIa, high childhood TG was associated with an increased risk of HCA, and earlier onset of HCA development, independent of sex-associated hypertriglyceridaemia, and G6PC1 genotype. Lay summary Glycogen storage disease type Ia (GSDIa) is a rare, inherited metabolic disease that can be complicated by liver tumours (hepatocellular adenomas), which in turn may cause bleeding or progress to liver cancer. Risk factors associated with hepatocellular adenoma formation in patients with GSDIa are largely unknown. In our study, we found that high serum triglyceride concentrations during childhood, but not specific genetic variants, were associated with increased risk of hepatocellular adenoma diagnosis later in life. Glycogen storage disease Ia (GSDIa) is a metabolic disease caused by mutations in glucose-6-phosphatase catalytic subunit 1 (G6PC1). Patients with GSDIa often develop hepatocellular adenoma (HCA), with unclear risk factors. Metabolic control in GSDIa is commonly evaluated through serum triglyceride concentration (TG). Patients with GSDIa with high childhood TG had increased risk and earlier onset of HCA. Sex-associated hypertriglyceridaemia and G6PC1 genotype were not associated with HCA.
Collapse
Affiliation(s)
- Martijn P.D. Haring
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Fabian Peeks
- Department of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maaike H. Oosterveer
- Department of Pediatrics, Center for Liver Digestive and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martijn C.G.J. Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Carla E.M. Hollak
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Mirian C.H. Janssen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Janneke G. Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Alexander J.M. Rennings
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Margreet A.E.M. Wagenmakers
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Erasmus University Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Henkjan J. Verkade
- Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Terry G.J. Derks
- Department of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Corresponding author. Address: University of Groningen and University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands. Tel.: +31 50 361 2896; fax: +31 50 361 4873.
| |
Collapse
|
30
|
Devarajan P, Chertow GM, Susztak K, Levin A, Agarwal R, Stenvinkel P, Chapman AB, Warady BA. Emerging Role of Clinical Genetics in CKD. Kidney Med 2022; 4:100435. [PMID: 35372818 PMCID: PMC8971313 DOI: 10.1016/j.xkme.2022.100435] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts 15% of adults in the United States, of whom 25% have a family history. Genetic testing is supportive in identifying and possibly confirming diagnoses of CKD, thereby guiding care. Advances in the clinical genetic evaluation include next-generation sequencing with targeted gene panels, whole exome sequencing, and whole genome sequencing. These platforms provide DNA sequence reads with excellent coverage throughout the genome and have identified novel genetic causes of CKD. New pathologic genetic variants identified in previously unrecognized biological pathways have elucidated disease mechanisms underlying CKD etiologies, potentially establishing prognosis and guiding treatment selection. Molecular diagnoses using genetic sequencing can detect rare, potentially treatable mutations, avoid misdiagnoses, guide selection of optimal therapy, and decrease the risk of unnecessary and potentially harmful interventions. Genetic testing has been widely adopted in pediatric nephrology; however, it is less frequently used to date in adult nephrology. Extension of clinical genetic approaches to adult patients may achieve similar benefits in diagnostic refinement and treatment selection. This review aimed to identify clinical CKD phenotypes that may benefit the most from genetic testing, outline the commonly available platforms, and provide examples of successful deployment of these approaches in CKD.
Collapse
Affiliation(s)
- Prasad Devarajan
- Division of Nephrology and Hypertension, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH
| | | | - Katalin Susztak
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adeera Levin
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rajiv Agarwal
- Division of Nephrology, Indiana University, Indianapolis, IN
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinkska Institutet, Stockholm, Sweden
| | | | - Bradley A. Warady
- Division of Pediatric Nephrology, Children’s Mercy Kansas City, Kansas City, MO
| |
Collapse
|
31
|
Oyelere SF, Ajayi OH, Ayoade TE, Santana Pereira GB, Dayo Owoyemi BC, Ilesanmi AO, Akinyemi OA. A detailed review on the phytochemical profiles and anti-diabetic mechanisms of Momordica charantia. Heliyon 2022; 8:e09253. [PMID: 35434401 PMCID: PMC9010624 DOI: 10.1016/j.heliyon.2022.e09253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/29/2021] [Accepted: 04/02/2022] [Indexed: 01/25/2023] Open
Abstract
Diabetes mellitus is the most well-known endocrine dilemma suffered by hundreds of million people globally, with an annual mortality of more than one million people. This high mortality rate highlights the need for in-depth study of anti-diabetic agents. This review explores the phytochemical contents and anti-diabetic mechanisms of M. charantia (cucurbitaceae). Studies show that M. charantia contains several phytochemicals that have hypoglycemic effects, thus, the plant may be effective in the treatment/management of diabetes mellitus. Also, the biochemical and physiological basis of M. charantia anti-diabetic actions is explained. M. charantia exhibits its anti-diabetic effects via the suppression of MAPKs and NF-κβin pancreatic cells, promoting glucose and fatty acids catabolism, stimulating fatty acids absorption, inducing insulin production, ameliorating insulin resistance, activating AMPK pathway, and inhibiting glucose metabolism enzymes (fructose-1,6-bisphosphate and glucose-6-phosphatase). Reviewed literature was obtained from credible sources such as PubMed, Scopus, and Web of Science.
Collapse
|
32
|
Rolph KE, Cavanaugh SM, Wilson HE. First report of suspected glycogen storage disease type 1a occurring in an adult dog. J Small Anim Pract 2022; 63:713-716. [PMID: 35272391 DOI: 10.1111/jsap.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 02/13/2022] [Indexed: 11/29/2022]
Abstract
A 4-year-old female border collie was presented with haemoabdomen following the rupture of a hepatocellular carcinoma. After referral for ongoing elevation of alanine aminotransferase and alkaline phosphatase, the dog was found to have marked vacuolar hepatopathy due to glycogen accumulation within the liver, fasting hypoglycaemia and hyperlactataemia, and a negative response to glucagon stimulation testing. These changes were strongly suggestive of glycogen storage disease type 1a. Based on our literature search, this report documents the first adult canine to be diagnosed with suspected glycogen storage disease type 1a.
Collapse
Affiliation(s)
- K E Rolph
- Clinical Sciences Department and Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - S M Cavanaugh
- Clinical Sciences Department and Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - H E Wilson
- Langford Vets, University of Bristol, Bristol, BS40 5DU, UK
| |
Collapse
|
33
|
Derks TGJ, Rodriguez-Buritica DF, Ahmad A, de Boer F, Couce ML, Grünert SC, Labrune P, López Maldonado N, Fischinger Moura de Souza C, Riba-Wolman R, Rossi A, Saavedra H, Gupta RN, Valayannopoulos V, Mitchell J. Glycogen Storage Disease Type Ia: Current Management Options, Burden and Unmet Needs. Nutrients 2021; 13:3828. [PMID: 34836082 PMCID: PMC8621617 DOI: 10.3390/nu13113828] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Glycogen storage disease type Ia (GSDIa) is caused by defective glucose-6-phosphatase, a key enzyme in carbohydrate metabolism. Affected individuals cannot release glucose during fasting and accumulate excess glycogen and fat in the liver and kidney, putting them at risk of severe hypoglycaemia and secondary metabolic perturbations. Good glycaemic/metabolic control through strict dietary treatment and regular doses of uncooked cornstarch (UCCS) is essential for preventing hypoglycaemia and long-term complications. Dietary treatment has improved the prognosis for patients with GSDIa; however, the disease itself, its management and monitoring have significant physical, psychological and psychosocial burden on individuals and parents/caregivers. Hypoglycaemia risk persists if a single dose of UCCS is delayed/missed or in cases of gastrointestinal intolerance. UCCS therapy is imprecise, does not treat the cause of disease, may trigger secondary metabolic manifestations and may not prevent long-term complications. We review the importance of and challenges associated with achieving good glycaemic/metabolic control in individuals with GSDIa and how this should be balanced with age-specific psychosocial development towards independence, management of anxiety and preservation of quality of life (QoL). The unmet need for treatment strategies that address the cause of disease, restore glucose homeostasis, reduce the risk of hypoglycaemia/secondary metabolic perturbations and improve QoL is also discussed.
Collapse
Affiliation(s)
- Terry G. J. Derks
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (F.d.B.); (A.R.)
| | - David F. Rodriguez-Buritica
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA; (D.F.R.-B.); (H.S.)
| | - Ayesha Ahmad
- Department of Pediatrics, Division of Pediatric Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Foekje de Boer
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (F.d.B.); (A.R.)
| | - María L. Couce
- IDIS, CIBERER, MetabERN, University Clinical Hospital of Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany;
| | - Philippe Labrune
- APHP, Université Paris-Saclay, Hôpital Antoine-Béclère, 92140 Clamart, France;
- Inserm U 1195, Paris-Saclay University, 94276 Le Kremlin Bicêtre, France
| | - Nerea López Maldonado
- Piera Health Center, Catalan Institute of Health, 08007 Barcelona, Spain;
- Autonomous University of Barcelona, 08193 Barcelona, Spain
| | | | - Rebecca Riba-Wolman
- Connecticut Children’s Medical Center, Department of Pediatrics, Division of Endocrinology, University of Connecticut, Farmington, CT 06032, USA;
| | - Alessandro Rossi
- Division of Metabolic Diseases, Beatrix Children’s Hospital, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (F.d.B.); (A.R.)
- Department of Translational Medicine, Section of Paediatrics, University of Naples “Federico II”, 80131 Naples, Italy
| | - Heather Saavedra
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA; (D.F.R.-B.); (H.S.)
| | - Rupal Naik Gupta
- Ultragenyx Pharmaceutical Inc., Novato, CA 94949, USA; (R.N.G.); (V.V.)
| | | | - John Mitchell
- Department of Pediatrics, Division of Pediatric Endocrinology, Montreal Children’s Hospital, McGill University Health Center, Montreal, QC H4A 3J1, Canada;
| |
Collapse
|
34
|
A Multidisciplinary Approach for Tophi Wounds Caused by Glycogen Storage Disease Type 1a: A Rare Case. Adv Skin Wound Care 2021; 34:1-5. [PMID: 34415259 DOI: 10.1097/01.asw.0000767328.20751.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT Glycogen storage diseases (GSDs) are a group of rare inherited metabolic disorders caused by enzyme deficiencies in glycogen catabolism. The more common type, GSD type Ia, is caused by glucose-6-phosphatase deficiency and often complicated by gout from hyperuricemia. Here, the authors report a rare case of a tophi wound caused by GSD type Ia in a Chinese patient. Difficulties in this case included the control of abnormal blood markers, especially uric acid; removal of tophi deposited in the tissues; restoration of hand function after wound healing; and patient adherence to treatment and follow-up. A multidisciplinary team was set up consisting of experts from the authors' wound care center and the departments of endocrinology, orthopedics, and rehabilitation. The wound healed in 53 days and was followed up for about 7 months. During follow-up, the patient's hand function returned to normal, and no new tophi formed. Because GSDs are a congenital lifelong condition, regular follow-ups are especially important.
Collapse
|
35
|
Hoogerland JA, Peeks F, Hijmans BS, Wolters JC, Kooijman S, Bos T, Bleeker A, van Dijk TH, Wolters H, Gerding A, van Eunen K, Havinga R, Pronk ACM, Rensen PCN, Mithieux G, Rajas F, Kuipers F, Reijngoud D, Derks TGJ, Oosterveer MH. Impaired Very-Low-Density Lipoprotein catabolism links hypoglycemia to hypertriglyceridemia in Glycogen Storage Disease type Ia. J Inherit Metab Dis 2021; 44:879-892. [PMID: 33739445 PMCID: PMC8360207 DOI: 10.1002/jimd.12380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 01/09/2023]
Abstract
Prevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc-/- ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc-/- mice. In hypoglycemic conditions, enhanced adipose tissue lipolysis was the main driver of liver steatosis, supported by elevated free fatty acid concentrations in GSD Ia mice and GSD Ia patients. Plasma very-low-density lipoprotein (VLDL) levels were increased in GSD Ia patients and in normoglycemic L-G6pc-/- mice, and further elevated in hypoglycemic L-G6pc-/- mice. VLDL-TG secretion rates were doubled in normo- and hypoglycemic L-G6pc-/- mice, while VLDL-TG catabolism was selectively inhibited in hypoglycemic L-G6pc-/- mice. In conclusion, fasting-induced hypoglycemia in L-G6pc-/- mice promotes adipose tissue lipolysis and arrests VLDL catabolism. This mechanism likely contributes to aggravated liver steatosis and dyslipidemia in GSD Ia patients with poor glycemic control and may explain clinical heterogeneity in hypertriglyceridemia between GSD Ia patients.
Collapse
Affiliation(s)
- Joanne A. Hoogerland
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Fabian Peeks
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Brenda S. Hijmans
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Justina C. Wolters
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Trijnie Bos
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Aycha Bleeker
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Theo H. van Dijk
- Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Henk Wolters
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Albert Gerding
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Karen van Eunen
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Rick Havinga
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Amanda C. M. Pronk
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Patrick C. N. Rensen
- Department of Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213LyonFrance
- Université de LyonLyonFrance
- Université Lyon 1VilleurbanneFrance
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213LyonFrance
- Université de LyonLyonFrance
- Université Lyon 1VilleurbanneFrance
| | - Folkert Kuipers
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Laboratory MedicineUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Dirk‐Jan Reijngoud
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Terry G. J. Derks
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of Metabolic Diseases, Beatrix Children's HospitalUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Maaike H. Oosterveer
- Department of PediatricsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
36
|
Monteiro VCL, de Oliveira BM, Dos Santos BB, Sperb-Ludwig F, Refosco LF, Nalin T, Derks TGJ, Moura de Souza CF, Schwartz IVD. A triple-blinded crossover study to evaluate the short-term safety of sweet manioc starch for the treatment of glycogen storage disease type Ia. Orphanet J Rare Dis 2021; 16:254. [PMID: 34082801 PMCID: PMC8173866 DOI: 10.1186/s13023-021-01877-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/21/2021] [Indexed: 01/30/2023] Open
Abstract
Background Glycogen storage disease type 1a (GSD Ia) is characterized by severe fasting hypoglycemia. The clinical management includes the administration of uncooked cornstarch (UCCS). Although such a diet approach is effective in achieving euglycemia, its impact on the quality of life of patients should be considered. In vitro analyses suggest a longer release of glucose when using sweet manioc starch (SMS). Methods We compared the efficacy and safety of the administration of SMS and UCCS during a short-fasting challenge in patients with GSD Ia in a randomized, triple-blind, phase I/II, cross-over study. GSD Ia patients aged ≥ 16 years and treated with UCCS were enrolled. Participants were hospitalized for two consecutive nights, receiving UCCS or SMS in each night. After the administration of the starches, glucose, lactate and insulin levels were measured in 1-h interval throughout the hospitalization period. The procedures were interrupted after 10 h of fasting or in a hypoglycemic episode (< 3.88 mmol/L). Results Eleven individuals (mean age: 21.6 ± 4.3 years; all presenting body mass index > 25 kg/m2) participated in the study. The average fasting period was 8.2 ± 2.0 h for SMS and 7.7 ± 2.3 h for UCCS (p = 0.04). SMS maintained euglycemia for a greater period over UCCS. Increased lactate concentrations were detected even in absence of hypoglycemia, not being influenced by the different starches investigated (p = 0.17). No significant difference was found in total cholesterol, HDL, triglycerides and uric acid levels in both arms. None of the patients showed severe adverse events. Conclusions SMS appears to be non-inferior to UCCS in the maintenance of euglycemia, thus emerging as a promising alternative to the treatment of GSD Ia.
Collapse
Affiliation(s)
- Vaneisse C L Monteiro
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil
| | - Bibiana M de Oliveira
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil
| | - Bruna B Dos Santos
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil
| | - Fernanda Sperb-Ludwig
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil.,Basic Research and Advanced Investigations in Neurosciences Laboratory (B.R.A.I.N), Hospital de Clínicas de Porto Alegre, Ramiro Barcelos St., 2350, Porto Alegre, Brazil
| | - Lilia F Refosco
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil
| | - Tatiele Nalin
- Ultragenyx Brasil Farmacêutica Ltda, Presidente Juscelino Kubitchek Avenue, São Paulo, SP, 04543-011, Brazil
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Carolina F Moura de Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil
| | - Ida V D Schwartz
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil. .,Basic Research and Advanced Investigations in Neurosciences Laboratory (B.R.A.I.N), Hospital de Clínicas de Porto Alegre, Ramiro Barcelos St., 2350, Porto Alegre, Brazil. .,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil. .,NUCLIMED, Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos St., 2350, Porto Alegre, Brazil.
| |
Collapse
|
37
|
Jorge NB, Tommaso AMAD, Hessel G. ANTHROPOMETRIC AND DIETARY ASSESSMENT OF PATIENTS WITH GLYCOGENOSIS TYPE I. ACTA ACUST UNITED AC 2021; 39:e2020046. [PMID: 33566881 PMCID: PMC7875543 DOI: 10.1590/1984-0462/2021/39/2020046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/19/2020] [Indexed: 11/22/2022]
Abstract
Objective: To perform anthropometric and dietary evaluation of patients with glycogenosis type Ia and Ib. Methods: This cross-sectional study is composed of a sample of 11 patients with glycogenosis divided into two subgroups according to the classification of glycogenosis (type Ia=5 and type Ib=6), aged between 4 and 20 years. The analyzed anthropometric variables were weight, height, body mass index, and measures of lean and fat body mass, which were compared with reference values. For dietary assessment, a food frequency questionnaire was used to calculate energy and macronutrients intake as well as the amount of raw cornstarch consumed. Mann-Whitney U test and Fisher’s exact test were performed, considering a significance level of 5%. Results: Patients ingested raw cornstarch in the amount of 0.49 to 1.34 g/kg/dose at a frequency of six times a day, which is lower than recommended (1.75-2.50 g/kg/dose, four times a day). The amount of energy intake was, on average, 50% higher than energy requirements; however, carbohydrate intake was below the adequacy percentage in 5/11 patients. Short stature was found in 4/10 patients; obesity, in 3/11; and muscle mass deficit, in 7/11. There were no statistical differences between the subgroups. Conclusions: In patients with glycogenosis type I, there was deficit in growth and muscle mass, but no differences were found between the subgroups (Ia and Ib). Although the diet did not exceed the adequacy of carbohydrates, about 1/3 of the patients presented obesity, probably due to higher energy intake.
Collapse
|
38
|
Muzetti JH, do Valle DA, Santos MLSF, Telles BA, Cordeiro ML. Neurological Characteristics of Pediatric Glycogen Storage Disease. Front Endocrinol (Lausanne) 2021; 12:685272. [PMID: 34093448 PMCID: PMC8176209 DOI: 10.3389/fendo.2021.685272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Glycogen storage diseases (GSD) encompass a group of rare inherited diseases due dysfunction of glycogen metabolism. Hypoglycemia is the most common primary manifestation of GSD, and disturbances in glucose metabolism can cause neurological damage. The aims of this study were to first investigate the metabolic, genetic, and neurological profiles of children with GSD, and to test the hypothesis whether GSD type I would have greater neurological impact than GSD type IX. A cross-sectional study was conducted with 12 children diagnosed with GSD [Types: Ia (n=5); 1, Ib (n=1); 4, IXa (n=5); and 1, IXb (n=1)]. Genetic testing was conducted for the following genes using multigene panel analysis. The biochemical data and magnetic resonance imaging of the brain presented by the patients were evaluated. The criteria of adequate metabolic control were adopted based on the European Study on Glycogen Storage Disease type I consensus. Pathogenic mutations were identified using multigene panel analyses. The mutations and clinical chronology were related to the disease course and neuroimaging findings. Adequate metabolic control was achieved in 67% of patients (GSD I, 43%; GSD IX, 100%). Fourteen different mutations were detected, and only two co-occurring mutations were observed across families (G6PC c.247C>T and c.1039C>T). Six previously unreported variants were identified (5 PHKA2; 1 PHKB). The proportion of GSD IX was higher in our cohort compared to other studies. Brain imaging abnormalities were more frequent among patients with GSD I, early-symptom onset, longer hospitalization, and inadequate metabolic control. The frequency of mutations was similar to that observed among the North American and European populations. None of the mutations observed in PHKA2 have been described previously. Therefore, current study reports six GSD variants previously unknown, and neurological consequences of GSD I. The principal neurological impact of GSD appeared to be related to inadequate metabolic control, especially hypoglycemia.
Collapse
Affiliation(s)
- Julio Henrique Muzetti
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
- Department of Child Neurology, Hospital Pequeno Príncipe, Curitiba, Brazil
| | - Daniel Almeida do Valle
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
- Department of Child Neurology, Hospital Pequeno Príncipe, Curitiba, Brazil
| | | | | | - Mara L. Cordeiro
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
- Department of Psychiatry and Biological Behavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
- *Correspondence: Mara L. Cordeiro, ; orcid.org/0000-0002-0235-8001
| |
Collapse
|
39
|
Almodóvar-Payá A, Villarreal-Salazar M, de Luna N, Nogales-Gadea G, Real-Martínez A, Andreu AL, Martín MA, Arenas J, Lucia A, Vissing J, Krag T, Pinós T. Preclinical Research in Glycogen Storage Diseases: A Comprehensive Review of Current Animal Models. Int J Mol Sci 2020; 21:ijms21249621. [PMID: 33348688 PMCID: PMC7766110 DOI: 10.3390/ijms21249621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022] Open
Abstract
GSD are a group of disorders characterized by a defect in gene expression of specific enzymes involved in glycogen breakdown or synthesis, commonly resulting in the accumulation of glycogen in various tissues (primarily the liver and skeletal muscle). Several different GSD animal models have been found to naturally present spontaneous mutations and others have been developed and characterized in order to further understand the physiopathology of these diseases and as a useful tool to evaluate potential therapeutic strategies. In the present work we have reviewed a total of 42 different animal models of GSD, including 26 genetically modified mouse models, 15 naturally occurring models (encompassing quails, cats, dogs, sheep, cattle and horses), and one genetically modified zebrafish model. To our knowledge, this is the most complete list of GSD animal models ever reviewed. Importantly, when all these animal models are analyzed together, we can observe some common traits, as well as model specific differences, that would be overlooked if each model was only studied in the context of a given GSD.
Collapse
Affiliation(s)
- Aitana Almodóvar-Payá
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Mónica Villarreal-Salazar
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Noemí de Luna
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Gisela Nogales-Gadea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Grup de Recerca en Malalties Neuromusculars i Neuropediàtriques, Department of Neurosciences, Institut d’Investigacio en Ciencies de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Alberto Real-Martínez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
| | - Antoni L. Andreu
- EATRIS, European Infrastructure for Translational Medicine, 1081 HZ Amsterdam, The Netherlands;
| | - Miguel Angel Martín
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Joaquin Arenas
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), 28041 Madrid, Spain
| | - Alejandro Lucia
- Faculty of Sport Sciences, European University, 28670 Madrid, Spain;
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Thomas Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark; (J.V.); (T.K.)
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (A.A.-P.); (M.V.-S.); (A.R.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; (N.d.L.); (G.N.-G.); (M.A.M.); (J.A.)
- Correspondence: ; Tel.: +34-934894057
| |
Collapse
|
40
|
Daniel PV, Mondal P. Causative and Sanative dynamicity of ChREBP in Hepato-Metabolic disorders. Eur J Cell Biol 2020; 99:151128. [PMID: 33232883 DOI: 10.1016/j.ejcb.2020.151128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
ChREBP is the master regulator of carbohydrate dependent glycolytic and lipogenic flux within metabolic tissues. It plays a vital role in hyper-calorific milieu by activating glycolysis, lipogenesis along with pentose phosphate shunt and glycogen synthesis, fostering immediate reduction in the systemic glycemic levels. Liver being the primary organ to sense disproportionate dietary intake and linked physiological stress, stimulates ChREBP to perform the aforementioned processes. Activated ChREBP also inhibits lipolysis and encourages proper disposal of excessive triglycerides into adipocytes from the liver ablating hepatic intracellular lipid trafficking. Chronic overeating or onset of positive energy balance, hyper-activates ChREBP and signals development, intensification of hepato-metabolic disorders, and allied discrepancies in the whole-body metabolic functioning. ChREBP thus gets negatively connotated as the primary regulator of hepatic disorders, owing to its inherent features as the primary glycemic sensor and the only transcription factor that can transduce glucose-dependent glycolytic and lipogenic signals. Through this review, we - try to recapitulate and emphasize on the sanative events coordinated by ChREBP in several pathophysiological states. In totality, we aim to uncouple the disease-causing aspects of ChREBP from its positive attributes evoked during a metabolic crisis, in hepato-metabolic diseases.
Collapse
Affiliation(s)
- P Vineeth Daniel
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, H.P, India.
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175001, H.P, India.
| |
Collapse
|
41
|
Knotek M, Novak R, Jaklin-Kekez A, Mrzljak A. Combined liver-kidney transplantation for rare diseases. World J Hepatol 2020; 12:722-737. [PMID: 33200012 PMCID: PMC7643210 DOI: 10.4254/wjh.v12.i10.722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Combined liver and kidney transplantation (CLKT) is indicated in patients with failure of both organs, or for the treatment of end-stage chronic kidney disease (ESKD) caused by a genetic defect in the liver. The aim of the present review is to provide the most up-to-date overview of the rare conditions as indications for CLKT. They are major indications for CLKT in children. However, in some of them (e.g., atypical hemolytic uremic syndrome or primary hyperoxaluria), CLKT may be required in adults as well. Primary hyperoxaluria is divided into three types, of which type 1 and 2 lead to ESKD. CLKT has been proven effective in renal function replacement, at the same time preventing recurrence of the disease. Nephronophthisis is associated with liver fibrosis in 5% of cases and these patients are candidates for CLKT. In alpha 1-antitrypsin deficiency, hereditary C3 deficiency, lecithin cholesterol acyltransferase deficiency and glycogen storage diseases, glomerular or tubulointerstitial disease can lead to chronic kidney disease. Liver transplantation as a part of CLKT corrects underlying genetic and consequent metabolic abnormality. In atypical hemolytic uremic syndrome caused by mutations in the genes for factor H, successful CLKT has been reported in a small number of patients. However, for this indication, CLKT has been largely replaced by eculizumab, an anti-C5 antibody. CLKT has been well established to provide immune protection of the transplanted kidney against donor-specific antibodies against class I HLA, facilitating transplantation in a highly sensitized recipient.
Collapse
Affiliation(s)
- Mladen Knotek
- Department of Medicine, Tree Top Hospital, Hulhumale 23000, Maldives
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Rafaela Novak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | | | - Anna Mrzljak
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia.
| |
Collapse
|
42
|
Shaughnessy MP, Spencer-Manzon M, Cowles RA. Antenatally detected liver and biliary pathology. Semin Pediatr Surg 2020; 29:150939. [PMID: 32861443 DOI: 10.1016/j.sempedsurg.2020.150939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Liver and biliary pathology in the neonate are rare and include a broad range of structural, neoplastic, infectious, genetic, and metabolic diseases. While most conditions present postnatally, antenatal detection is increasing given recent advances in antenatal imaging capabilities. In certain structural or obstructive liver diseases, antenatal detection now proves essential to help guide treatment and prevent morbidity. We review the epidemiology, pathophysiology, common antenatal diagnostic findings, and recommendations for surgical liver and biliary pathology in the neonate.
Collapse
Affiliation(s)
- Matthew P Shaughnessy
- Department of Surgery, Division of Pediatric Surgery, Yale University School of Medicine, 333 Cedar St., FMB 131, New Haven, CT 06510, USA
| | | | - Robert A Cowles
- Department of Surgery, Division of Pediatric Surgery, Yale University School of Medicine, 333 Cedar St., FMB 131, New Haven, CT 06510, USA.
| |
Collapse
|
43
|
Jung S, Gies V, Korganow AS, Guffroy A. Primary Immunodeficiencies With Defects in Innate Immunity: Focus on Orofacial Manifestations. Front Immunol 2020; 11:1065. [PMID: 32625202 PMCID: PMC7314950 DOI: 10.3389/fimmu.2020.01065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
The field of primary immunodeficiencies (PIDs) is rapidly evolving. Indeed, the number of described diseases is constantly increasing thanks to the rapid identification of novel genetic defects by next-generation sequencing. PIDs are now rather referred to as “inborn errors of immunity” due to the association between a wide range of immune dysregulation-related clinical features and the “prototypic” increased infection susceptibility. The phenotypic spectrum of PIDs is therefore very large and includes several orofacial features. However, the latter are often overshadowed by severe systemic manifestations and remain underdiagnosed. Patients with impaired innate immunity are predisposed to a variety of oral manifestations including oral infections (e.g., candidiasis, herpes gingivostomatitis), aphthous ulcers, and severe periodontal diseases. Although less frequently, they can also show orofacial developmental abnormalities. Oral lesions can even represent the main clinical manifestation of some PIDs or be inaugural, being therefore one of the first features indicating the existence of an underlying immune defect. The aim of this review is to describe the orofacial features associated with the different PIDs of innate immunity based on the new 2019 classification from the International Union of Immunological Societies (IUIS) expert committee. This review highlights the important role played by the dentist, in close collaboration with the multidisciplinary medical team, in the management and the diagnostic of these conditions.
Collapse
Affiliation(s)
- Sophie Jung
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Centre de Référence Maladies Rares Orales et Dentaires (O-Rares), Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg, France.,Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France
| | - Vincent Gies
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Université de Strasbourg, Faculté de Pharmacie, Illkirch-Graffenstaden, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France
| | - Anne-Sophie Korganow
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| | - Aurélien Guffroy
- Université de Strasbourg, INSERM UMR_S 1109 "Molecular ImmunoRheumatology", Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Service d'Immunologie Clinique et de Médecine Interne, Centre de Référence des Maladies Auto-immunes Systémiques Rares (RESO), Centre de Compétences des Déficits Immunitaires Héréditaires, Strasbourg, France.,Université de Strasbourg, Faculté de Médecine, Strasbourg, France
| |
Collapse
|
44
|
Wicker C, Roda C, Perry A, Arnoux JB, Brassier A, Castelle M, Servais A, Donadieu J, Bouchereau J, Pigneur B, Labrune P, Ruemmele FM, de Lonlay P. Infectious and digestive complications in glycogen storage disease type Ib: Study of a French cohort. Mol Genet Metab Rep 2020; 23:100581. [PMID: 32300528 PMCID: PMC7152669 DOI: 10.1016/j.ymgmr.2020.100581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
Glycogenosis type Ib (GSD1B) causes not only hypoglycemia but also infections and “Crohn's disease like” inflammatory bowel disease (IBD) that can significantly impair patient's quality of life. We retrospectively evaluated infectious and digestive complications in 9 French patients (3 girls, 6 boys) diagnosed at 0.8 years on average, with a mean follow-up of 19.1 years. Infections occurred earlier than IBD, at mean ages of 1.7 and 3.8 years, respectively. The number of acute hospitalizations was 0.7/year due to infectious (0.4/year) or digestive symptoms (0.4/year). Clinical presentations allowed separating patients into mild (n = 5) and severe (n = 4) intestinal involvement. Patients in the severe group had more serious digestive symptoms but also earlier neutropenia (median 0.3 vs. 1.5 years, p =0 .046) with a tendency to a lower neutrophil count (NC) during follow-up, and a higher number of acute hospitalizations (median 1.3/year vs. 0.2/year, p =0 .014) due to digestive symptoms (median 0.6/year vs. 0.05/year, p = 0,012) and infections (median 0.8/year vs. 0.2/year, p =0 .014). Treatments included G-CSF and cotrimoxazole (n = 7), 5-aminosalicylic acid (n = 2), and a polymeric solution enriched in the anti-inflammatory cytokine TGF-β (n = 4, “severe” group), and immunomodulatory treatment (n = 1). In conclusion, infections and IBD are rare but severe complications in GSD1B. Neutropenia tended to be more prevalent in the severe IBD group than in the mild IBD group. Dietetic treatment with specific anti-inflammatory solutions seems particularly appropriate in these patients.
Collapse
Key Words
- ANC, Absolute Neutrophil Count
- Anti-inflammatory solutions
- CD, Crohn's disease
- CRP, C-reactive protein
- EEN, Exclusive Enteral Nutrition
- EN, Enteral Nutrition
- ENT, Ear, Nose and Throat
- ESR, erythrocyte sedimentation rate
- G-CSF, Granulocyte colony-stimulating factor
- G6PT, glucose-6-phosphate translocase
- GSD1, Glycogen storage disease type I
- Glycogen storage disease type 1B
- Harvey Bradshaw score
- IBD, Inflammatory Bowel Disease
- Inflammatory bowel disease
- Neutropenia
- PEN, Partial Enteral Nutrition
- SD, Standard Deviation
Collapse
Affiliation(s)
- Camille Wicker
- Reference Center for Inherited Metabolic Diseases, Necker Hospital, APHP, Filière G2 M, MetabERN, Paris, France
| | - Célina Roda
- Paris University, CRESS, HERA (Health Environmental Risk Assessment) team, INSERM, INRA, F-75004 Paris, France
| | - Ariane Perry
- Reference Center for Inherited Metabolic Diseases, Antoine Béclère Hospital, APHP, Filière G2M, MetabERN, Clamart, France.,Paris Sud University, Paris Saclay, and INSERM, U 1995, France
| | - Jean Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker Hospital, APHP, Filière G2 M, MetabERN, Paris, France
| | - Anais Brassier
- Reference Center for Inherited Metabolic Diseases, Necker Hospital, APHP, Filière G2 M, MetabERN, Paris, France
| | - Martin Castelle
- Hematology, Necker Hospital, APHP, Paris Descartes University, Paris, France
| | - Aude Servais
- Reference Center for Inherited Metabolic Diseases, Necker Hospital, APHP, Filière G2 M, MetabERN, Paris, France
| | - Jean Donadieu
- Hematology Department, Trousseau Hospital, APHP, Paris, France
| | - Juliette Bouchereau
- Reference Center for Inherited Metabolic Diseases, Necker Hospital, APHP, Filière G2 M, MetabERN, Paris, France.,Paris Descartes University- Sorbonne Paris Cité, Paris Faculty of Medecine, Paris, France
| | - Bénédicte Pigneur
- Paediatric Gastroentérology Department, Necker Hospital, APHP, Paris, France
| | - Philippe Labrune
- Reference Center for Inherited Metabolic Diseases, Antoine Béclère Hospital, APHP, Filière G2M, MetabERN, Clamart, France.,Paris Sud University, Paris Saclay, and INSERM, U 1995, France
| | - Frank M Ruemmele
- Paediatric Gastroentérology Department, Necker Hospital, APHP, Paris, France.,Paris Descartes University- Sorbonne Paris Cité, Paris Faculty of Medecine, Paris, France.,Institut Imagine, INSERM U 1163, Paris, France
| | - Pascale de Lonlay
- Reference Center for Inherited Metabolic Diseases, Necker Hospital, APHP, Filière G2 M, MetabERN, Paris, France.,Paris Descartes University- Sorbonne Paris Cité, Paris Faculty of Medecine, Paris, France.,Institut Imagine, INSERM U 1163, Paris, France.,Institut Necker Enfants Malades, INSERM, Unit 1151, Paris, France
| |
Collapse
|
45
|
Ballavenuto JMA, de Oliveira JDD, Alves RJ. Glycogen Storage Disease Type I (Von Gierke disease): Report of Two Cases with Severe Dyslipidemia. Arq Bras Cardiol 2020; 114:23-26. [PMID: 32428104 PMCID: PMC8149108 DOI: 10.36660/abc.20190037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Julia Maria Avelino Ballavenuto
- Santa Casa de Misericórdia de São PauloSão PauloSPBrasilIrmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP - Brasil
| | - Jéssica D´Ório Dantas de Oliveira
- Santa Casa de Misericórdia de São PauloSão PauloSPBrasilIrmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP - Brasil
| | - Renato Jorge Alves
- Santa Casa de Misericórdia de São PauloSão PauloSPBrasilIrmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, SP - Brasil
| |
Collapse
|
46
|
Proteobacteria Overgrowth and Butyrate-Producing Taxa Depletion in the Gut Microbiota of Glycogen Storage Disease Type 1 Patients. Metabolites 2020; 10:metabo10040133. [PMID: 32235604 PMCID: PMC7240959 DOI: 10.3390/metabo10040133] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
A life-long dietary intervention can affect the substrates’ availability for gut fermentation in metabolic diseases such as the glycogen-storage diseases (GSD). Besides drug consumption, the main treatment of types GSD-Ia and Ib to prevent metabolic complications is a specific diet with definite nutrient intakes. In order to evaluate how deeply this dietary treatment affects gut bacteria, we compared the gut microbiota of nine GSD-I subjects and 12 healthy controls (HC) through 16S rRNA gene sequencing; we assessed their dietary intake and nutrients, their microbial short chain fatty acids (SCFAs) via gas chromatography and their hematic values. Both alpha-diversity and phylogenetic analysis revealed a significant biodiversity reduction in the GSD group compared to the HC group, and highlighted profound differences of their gut microbiota. GSD subjects were characterized by an increase in the relative abundance of Enterobacteriaceae and Veillonellaceae families, while the beneficial genera Faecalibacterium and Oscillospira were significantly reduced. SCFA quantification revealed a significant increase of fecal acetate and propionate in GSD subjects, but with a beneficial role probably reduced due to unbalanced bacterial interactions; nutritional values correlated to bacterial genera were significantly different between experimental groups, with nearly opposite cohort trends.
Collapse
|
47
|
Kim YM, Choi JH, Lee BH, Kim GH, Kim KM, Yoo HW. Predominance of the c.648G > T G6PC gene mutation and late complications in Korean patients with glycogen storage disease type Ia. Orphanet J Rare Dis 2020; 15:45. [PMID: 32046761 PMCID: PMC7014716 DOI: 10.1186/s13023-020-1321-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/28/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Glycogen storage disease (GSD) Ia, caused by mutations in the glucose-6-phosphatase (G6PC) gene, is characterized by hepatomegaly, hypoglycemia, lactic acidosis, dyslipidemia, and hyperuricemia. This study aimed to investigate clinical and molecular features and late complications in Korean patients with GSD Ia. RESULTS Fifty-four Korean patients (33 males and 21 females) from 47 unrelated families, who were diagnosed with GSD Ia, based on genetic and biochemical data, between 1999 and 2017, were included in this study. The median age at diagnosis was 3.9 years (range: 5 months to 42 years), and the follow-up period was 8.0 ± 6.8 years. Most patients presented with hepatomegaly during infancy, but hypoglycemic symptoms were not predominant. Genetic analysis showed that all the patients had at least one c.648G > T allele. Homozygous c.648G > T mutations in the G6PC gene were identified in 34 families (72.3%), and compound heterozygotes with c.648G > T were found in the other families. The allele frequency of c.648G > T was 86.2% (81/94), and p.F51S, p.R83H, p.G122D, p.Y128*, p.G222R, and p.T255A were identified. Of 26 adult patients, 14 had multiple hepatic adenomas, and two were diagnosed with hepatocellular carcinoma. Thirteen patients showed renal complications, and seven patients presented gout, despite preventive allopurinol treatment. Twelve patients had osteoporosis, and two patients had pulmonary hypertension. The final heights were 157.9 cm (standard deviation score: - 3.1) in males and 157.8 cm (standard deviation score: - 0.6) in females. CONCLUSION In our Korean patients with GSD Ia, the most common mutation in the G6PC gene was c.648G > T, suggesting a founder effect. Because of only mild hypoglycemia, the patients tended to be diagnosed late. Thus, adult patients with GSD Ia eventually developed diverse and serious complications, which indicates a need for careful monitoring and proper management of this disease.
Collapse
Affiliation(s)
- Yoo-Mi Kim
- Department of Pediatrics, Chungnam National University Hospital, Chungnam National University, College of Medicine, Daejeon, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea
| | - Beom-Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea.,Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea
| | - Kyung-Mo Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea. .,Department of Medical Genetics, Asan Medical Center Children's Hospital, University of Ulsan, College of Medicine, Seoul, Korea.
| |
Collapse
|
48
|
Yavarow ZA, Kang HR, Waskowicz LR, Bay BH, Young SP, Yen PM, Koeberl DD. Fenofibrate rapidly decreases hepatic lipid and glycogen storage in neonatal mice with glycogen storage disease type Ia. Hum Mol Genet 2020; 29:286-294. [PMID: 31816064 PMCID: PMC7003036 DOI: 10.1093/hmg/ddz290] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022] Open
Abstract
Glycogen storage disease type Ia (GSD Ia) is caused by autosomal mutations in glucose-6-phosphatase α catalytic subunit (G6PC) and can present with severe hypoglycemia, lactic acidosis and hypertriglyceridemia. In both children and adults with GSD Ia, there is over-accumulation of hepatic glycogen and triglycerides that can lead to steatohepatitis and a risk for hepatocellular adenoma or carcinoma. Here, we examined the effects of the commonly used peroxisomal proliferated activated receptor α agonist, fenofibrate, on liver and kidney autophagy and lipid metabolism in 5-day-old G6pc -/- mice serving as a model of neonatal GSD Ia. Five-day administration of fenofibrate decreased the elevated hepatic and renal triglyceride and hepatic glycogen levels found in control G6pc -/- mice. Fenofibrate also induced autophagy and promoted β-oxidation of fatty acids and stimulated gene expression of acyl-CoA dehydrogenases in the liver. These findings show that fenofibrate can rapidly decrease hepatic glycogen and triglyceride levels and renal triglyceride levels in neonatal G6pc -/- mice. Moreover, since fenofibrate is an FDA-approved drug that has an excellent safety profile, our findings suggest that fenofibrate could be a potential pharmacological therapy for GSD Ia in neonatal and pediatric patients as well as for adults. These findings may also apply to non-alcoholic fatty liver disease, which shares similar pathological and metabolic changes with GSD Ia.
Collapse
Affiliation(s)
- Zollie A Yavarow
- Department of Pharmacology, Duke University, Durham NC 27710, USA
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham NC 27710, USA
| | - Hye-Ri Kang
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham NC 27710, USA
| | - Lauren R Waskowicz
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham NC 27710, USA
| | - Boon-Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Sarah P Young
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham NC 27710, USA
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke—National University of Singapore Graduate Medical School Singapore, Singapore 169547, Singapore
| | - Dwight D Koeberl
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
49
|
Farah BL, Yen PM, Koeberl DD. Links between autophagy and disorders of glycogen metabolism - Perspectives on pathogenesis and possible treatments. Mol Genet Metab 2020; 129:3-12. [PMID: 31787497 PMCID: PMC7836271 DOI: 10.1016/j.ymgme.2019.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/17/2023]
Abstract
The glycogen storage diseases are a group of inherited metabolic disorders that are characterized by specific enzymatic defects involving the synthesis or degradation of glycogen. Each disorder presents with a set of symptoms that are due to the underlying enzyme deficiency and the particular tissues that are affected. Autophagy is a process by which cells degrade and recycle unneeded or damaged intracellular components such as lipids, glycogen, and damaged mitochondria. Recent studies showed that several of the glycogen storage disorders have abnormal autophagy which can disturb normal cellular metabolism and/or mitochondrial function. Here, we provide a clinical overview of the glycogen storage disorders, a brief description of autophagy, and the known links between specific glycogen storage disorders and autophagy.
Collapse
Affiliation(s)
- Benjamin L Farah
- Department of Pathology, Singapore General Hospital, Singapore, Singapore.
| | - Paul M Yen
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA..
| |
Collapse
|
50
|
Shimizu S, Sakamoto S, Horikawa R, Fukuda A, Uchida H, Takeda M, Yanagi Y, Irie R, Yoshioka T, Kasahara M. Longterm Outcomes of Living Donor Liver Transplantation for Glycogen Storage Disease Type 1b. Liver Transpl 2020; 26:57-67. [PMID: 31587472 DOI: 10.1002/lt.25649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) type 1b (Online Mendelian Inheritance in Man [OMIM] 232220) is an autosomal recessive inborn error of carbohydrate metabolism caused by defects in glucose-6-phosphate translocase. GSD1b patients have severe hypoglycemia with several clinical manifestations of hepatomegaly, obesity, a doll-like face, and neutropenia. Liver transplantation (LT) has been indicated for severe glucose intolerance, poor metabolic control (PMC), and poor growth (PG). We retrospectively reviewed 11 children with GSD1b who underwent living donor liver transplantation (LDLT) at the National Center for Child Health and Development in Tokyo, Japan. Between November 2005 and December 2018, 495 children underwent LDLT with an overall 10-year patient and graft survival of 90.6% and 88.9%, respectively. Of these, LT was indicated for 11 patients with GSD1b. All patients are doing well with the stabilization of glucose intolerance and decreased hospitalization for infectious complications. Demand for granulocyte colony-stimulating factor significantly decreased. However, although LT stabilized the blood glucose level, the platelet function was not improved. The posttransplant developmental quotient (DQ) remained similar to the pretransplant DQ without deterioration. LDLT is a feasible procedure for GSD1b patients with regard to the longterm prognosis. LT should be considered for patients with severe glucose intolerance to protect the cognitive function against hypoglycemic encephalopathy and to ameliorate PMC and PG.
Collapse
Affiliation(s)
- Seiichi Shimizu
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Reiko Horikawa
- Department of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Masahiro Takeda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Yanagi
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Rie Irie
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Yoshioka
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|