1
|
Sayed N, Ali AE, Elsherbiny DM, Azab SS. Involvement of Autophagic Machinery in Neuropathogenesis: Targeting and Relevant Methods of Detection. Methods Mol Biol 2025; 2879:183-206. [PMID: 38441722 DOI: 10.1007/7651_2024_516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
The exquisite balance between cellular prosurvival and death pathways is extremely necessary for homeostasis. Different forms of programmed cell death have been widely studied and reported such as apoptosis, necroptosis, pyroptosis, and autophagy. Autophagy is a catabolic process important for normal cellular functioning. The main aim of this machinery is to degrade the misfolded or damaged proteins, unuseful organelles, and pathogens, which invade the cells, thereby maintaining cellular homeostasis and assuring the regular renewal of cell components. This prosurvival function of autophagy highlights its importance in many human diseases, as the disturbance of this tightly organized process ultimately causes detrimental effects. Interestingly, neurons are particularly susceptible to damage upon the presence of any alteration in the basal level of the autophagic activity; this could be due to their high metabolic demand, post-mitotic nature, and the contribution of autophagy in the different fundamental functions of neurons. Herein, we have reported the role of autophagy in different CNS disorders such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and epilepsy, besides the pharmacological agents targeting autophagy. Due to the significant contribution of autophagy in the pathogenesis of many diseases, it is crucial to develop effective methods to detect this dynamic process. In this chapter, we have summarized the most frequently employed techniques in studying and detecting autophagy including electron microscopy, fluorescence microscopy, Western blotting, intracellular protein degradation, and sequestration assay.
Collapse
Affiliation(s)
- Nourhan Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Alaa Emam Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa Mokhtar Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
2
|
Salin P, Melon C, Chassain C, Gubellini P, Pages G, Pereira B, Le Fur Y, Durif F, Kerkerian-Le Goff L. Interhemispheric reactivity of the subthalamic nucleus sustains progressive dopamine neuron loss in asymmetrical parkinsonism. Neurobiol Dis 2024; 191:106398. [PMID: 38182075 DOI: 10.1016/j.nbd.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive and asymmetrical degeneration of the nigrostriatal dopamine neurons and the unilateral presentation of the motor symptoms at onset, contralateral to the most impaired hemisphere. We previously developed a rat PD model that mimics these typical features, based on unilateral injection of a substrate inhibitor of excitatory amino acid transporters, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), in the substantia nigra (SN). Here, we used this progressive model in a multilevel study (behavioral testing, in vivo 1H-magnetic resonance spectroscopy, slice electrophysiology, immunocytochemistry and in situ hybridization) to characterize the functional changes occurring in the cortico-basal ganglia-cortical network in an evolving asymmetrical neurodegeneration context and their possible contribution to the cell death progression. We focused on the corticostriatal input and the subthalamic nucleus (STN), two glutamate components with major implications in PD pathophysiology. In the striatum, glutamate and glutamine levels increased from presymptomatic stages in the PDC-injected hemisphere only, which also showed enhanced glutamatergic transmission and loss of plasticity at corticostriatal synapses assessed at symptomatic stage. Surprisingly, the contralateral STN showed earlier and stronger reactivity than the ipsilateral side (increased intraneuronal cytochrome oxidase subunit I mRNA levels; enhanced glutamate and glutamine concentrations). Moreover, its lesion at early presymptomatic stage halted the ongoing neurodegeneration in the PDC-injected SN and prevented the expression of motor asymmetry. These findings reveal the existence of endogenous interhemispheric processes linking the primary injured SN and the contralateral STN that could sustain progressive dopamine neuron loss, opening new perspectives for disease-modifying treatment of PD.
Collapse
Affiliation(s)
- Pascal Salin
- Aix-Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Carine Chassain
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France
| | | | - Guilhem Pages
- INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France; INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Bruno Pereira
- University Hospital Clermont-Ferrand, Biostatisticis Unit (DRCI), Clermont-Ferrand, France
| | - Yann Le Fur
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Franck Durif
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | | |
Collapse
|
3
|
Zamanian MY, Ivraghi MS, Gupta R, Prasad KDV, Alsaab HO, Hussien BM, Ahmed H, Ramadan MF, Golmohammadi M, Nikbakht N, Oz T, Kujawska M. miR-221 and Parkinson's disease: A biomarker with therapeutic potential. Eur J Neurosci 2024; 59:283-297. [PMID: 38043936 DOI: 10.1111/ejn.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation and apoptosis. miR-221 promotes neuronal survival against oxidative stress and neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of these studies, (1) miR-221 protects PC12 cells against oxidative stress induced by 6-hydroxydopamine; (2) miR-221 prevents Bax/caspase-3 signalling activation by stopping Bim; (3) miR-221 has moderate predictive power for PD; (4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; and (5) miRNA-221 controls cell viability and apoptosis by manipulating the Akt signalling pathway in PD. This review study suggested that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - K D V Prasad
- Symbiosis Institute of Business Management (SIBM), Hyderabad, India
- Symbiosis International (Deemed University) (SIU), Hyderabad, Telangana, India
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, Islamic University, Najaf, Iraq
| | - Hazem Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
4
|
El-Latif AMA, Rabie MA, Sayed RH, Fattah MAAE, Kenawy SA. Inosine attenuates rotenone-induced Parkinson's disease in rats by alleviating the imbalance between autophagy and apoptosis. Drug Dev Res 2023; 84:1159-1174. [PMID: 37170799 DOI: 10.1002/ddr.22077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023]
Abstract
Growing evidence points to impaired autophagy as one of the major factors implicated in the pathophysiology of Parkinson's disease (PD). Autophagy is a downstream target of adenosine monophosphate-activated protein kinase (AMPK). Inosine has already demonstrated a neuroprotective effect against neuronal loss in neurodegenerative diseases, mainly due its anti-inflammatory and antioxidant properties. We, herein, aimed at investigating the neuroprotective effects of inosine against rotenone-induced PD in rats and to focus on the activation of AMPK-mediated autophagy. Inosine successfully increased p-AMPK/AMPK ratio in PD rats and improved their motor performance and muscular co-ordination (assessed by rotarod, open field, and grip strength tests, as well as by manual gait analysis). Furthermore, inosine was able to mitigate the rotenone-induced histopathological alterations and to restore the tyrosine hydroxylase immunoreactivity in PD rats' substantia nigra. Inosine-induced AMPK activation resulted in an autophagy enhancement, as demonstrated by the increased striatal Unc-S1-like kinase1 and beclin-1 expression, and also by the increment light chain 3II to light chain 3I ratio, along with the decline in striatal mammalian target of rapamycin and p62 protein expressions. The inosine-induced stimulation of AMPK also attenuated neuronal apoptosis and promoted antioxidant activity. Unsurprisingly, these neuroprotective effects were antagonized by a preadministration of dorsomorphin (an AMPK inhibitor). In conclusion, inosine exerted neuroprotective effects against the rotenone-induced neuronal loss via an AMPK activation and through the restoration of the imbalance between autophagy and apoptosis. These findings support potential application of inosine in PD treatment.
Collapse
Affiliation(s)
- Aya M Abd El-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sanaa A Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Chandrasekaran V, Hediyal TA, Anand N, Kendaganna PH, Gorantla VR, Mahalakshmi AM, Ghanekar RK, Yang J, Sakharkar MK, Chidambaram SB. Polyphenols, Autophagy and Neurodegenerative Diseases: A Review. Biomolecules 2023; 13:1196. [PMID: 37627261 PMCID: PMC10452370 DOI: 10.3390/biom13081196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Polyphenols are secondary metabolites from plant origin and are shown to possess a wide range of therapeutic benefits. They are also reported as regulators of autophagy, inflammation and neurodegeneration. The autophagy pathway is vital in degrading outdated organelles, proteins and other cellular wastes. The dysregulation of autophagy causes proteinopathies, mitochondrial dysfunction and neuroinflammation thereby contributing to neurodegeneration. Evidence reveals that polyphenols improve autophagy by clearing misfolded proteins in the neurons, suppress neuroinflammation and oxidative stress and also protect from neurodegeneration. This review is an attempt to summarize the mechanism of action of polyphenols in modulating autophagy and their involvement in pathways such as mTOR, AMPK, SIRT-1 and ERK. It is evident that polyphenols cause an increase in the levels of autophagic proteins such as beclin-1, microtubule-associated protein light chain (LC3 I and II), sirtuin 1 (SIRT1), etc. Although it is apparent that polyphenols regulate autophagy, the exact interaction of polyphenols with autophagy markers is not known. These data require further research and will be beneficial in supporting polyphenol supplementation as a potential alternative treatment for regulating autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Vichitra Chandrasekaran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Tousif Ahmed Hediyal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Nikhilesh Anand
- Department of Pharmacology, College of Medicine, American University of Antigua, Saint John’s P.O. Box W-1451, Antigua and Barbuda;
| | - Pavan Heggadadevanakote Kendaganna
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | | | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Ruchika Kaul Ghanekar
- Symbiosis Centre for Research and Innovation (SCRI), Symbiosis International (Deemed University), Pune 412115, India;
| | - Jian Yang
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.C.); (T.A.H.); (A.M.M.)
- Center for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| |
Collapse
|
6
|
Kumari S, Taliyan R, Dubey SK. Comprehensive Review on Potential Signaling Pathways Involving the Transfer of α-Synuclein from the Gut to the Brain That Leads to Parkinson's Disease. ACS Chem Neurosci 2023; 14:590-602. [PMID: 36724408 DOI: 10.1021/acschemneuro.2c00730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease is the second most prevalent neurological disease after Alzheimer's. Primarily, old age males are more affected than females. The aggregates of oligomeric forms of α-synuclein cause the loss of dopaminergic neurons in the substantia nigra pars compacta. Further, it leads to dopamine shortage in the striatum region. According to recent preclinical studies, environmental factors like pesticides, food supplements, pathogens, etc. enter the body through the mouth or nose and ultimately reach the gut. Further, these factors get accumulated in enteric nervous system which leads to misfolding of α-synuclein gene, and aggregation of this gene results in Lewy pathology in the gut and reaches to the brain through the vagus nerve. This evidence showed a strong bidirectional connection between the gut and the brain, which leads to gastrointestinal problems in Parkinson patients. Moreover, several studies reveal that patients with Parkinson experience more gastrointestinal issues in the early stages of the disease, such as constipation, increased motility, gut inflammation, etc. This review article focuses on the transmission of α-synuclein and the mechanisms involved in the link between the gut and the brain in Parkinson's disease. Also, this review explores the various pathways involved in Parkinson and current therapeutic approaches for the improvement of Parkinson's disease.
Collapse
Affiliation(s)
- Shobha Kumari
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science─Pilani, Pilani, 333031 Rajasthan, India
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science─Pilani, Pilani, 333031 Rajasthan, India
| | | |
Collapse
|
7
|
Mishra J, Bhatti GK, Sehrawat A, Singh C, Singh A, Reddy AP, Reddy PH, Bhatti JS. Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders. Life Sci 2022; 311:121153. [PMID: 36343743 PMCID: PMC9712237 DOI: 10.1016/j.lfs.2022.121153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
The high prevalence of neurodegenerative diseases has become a major public health challenge and is associated with a tremendous burden on individuals, society and federal governments worldwide. Protein misfolding and aggregation are the major pathological hallmarks of several neurodegenerative disorders. The cells have evolved several regulatory mechanisms to deal with aberrant protein folding, namely the classical ubiquitin pathway, where ubiquitination of protein aggregates marks their degradation via lysosome and the novel autophagy or mitophagy pathways. Autophagy is a catabolic process in eukaryotic cells that allows the lysosome to recycle the cell's own contents, such as organelles and proteins, known as autophagic cargo. Their most significant role is to keep cells alive in distressed situations. Mitophagy is also crucial for reducing abnormal protein aggregation and increasing organelle clearance and partly accounts for maintaining cellular homeostasis. Furthermore, substantial data indicate that any disruption in these homeostatic mechanisms leads to the emergence of several age-associated metabolic and neurodegenerative diseases. So, targeting autophagy and mitophagy might be a potential therapeutic strategy for a variety of health conditions.
Collapse
Affiliation(s)
- Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arti Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Arubala P Reddy
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
8
|
Shin JY, Kim DY, Lee J, Shin YJ, Kim YS, Lee PH. Priming mesenchymal stem cells with α-synuclein enhances neuroprotective properties through induction of autophagy in Parkinsonian models. STEM CELL RESEARCH & THERAPY 2022; 13:483. [PMID: 36153562 PMCID: PMC9509608 DOI: 10.1186/s13287-022-03139-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
Background Mesenchymal stem cells (MSCs) may be one of candidates for disease-modifying therapy in Parkinsonian diseases. As knowledge regarding the therapeutic properties of MSCs accumulates, some obstacles still remain to be overcome, especially, successful clinical translation requires the development of culture systems that mimic the natural MSC niche, while allowing clinical-scale cell expansion without compromising quality and function of the cells. In recent years, priming approaches using bioactive peptide or complement components have been investigated to enhance the therapeutic potential of MSCs. Methods We investigated an innovative priming strategy by conditioning the MSCs with α-synuclein (α-syn). To induce priming, MSCs were treated with different concentrations of α-syn and various time course. We evaluated whether α-syn enhances stemness properties of MSCs and priming MSCs with α-syn would modulate autophagy-related gene expression profiles. Results Treatment of naïve MSCs with α-syn upregulated transcriptional factors responsible for regulation of stemness, which was associated with the elevated expression of genes involved in glycolysis and cell re-programming. Primed MSCs with α-syn enhanced the expression of autophagy-regulating miRNA, and exosomes derived from primed MSCs were packed with autophagy-associated miRNA. In α-syn-overexpressing neuronal cells, primed MSCs with α-syn enhanced neuronal viability relative to naïve MSCs, through the induction of autophagy and lysosome activity. Animal study using an α-syn-overexpressing mice showed that the pro-survival effect of MSCs on dopaminergic neurons was more prominent in primed MSC-treated mice compared with that in naïve MSC-treated mice. Conclusions The present data suggest that MSC priming with α-syn exerts neuroprotective effects through augmented stemness and possibly the enhancement of autophagy-mediated α-syn modulation in Parkinsonian models. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03139-w.
Collapse
|
9
|
Chung I, Park HA, Kang J, Kim H, Hah SM, Lee J, Kim HS, Choi WS, Chung JH, Shin MJ. Neuroprotective effects of ATPase inhibitory factor 1 preventing mitochondrial dysfunction in Parkinson's disease. Sci Rep 2022; 12:3874. [PMID: 35264673 PMCID: PMC8907304 DOI: 10.1038/s41598-022-07851-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial dysfunction is a key element in the progression of Parkinson’s disease (PD). The inefficient operation of the electron transport chain (ETC) impairs energy production and enhances the generation of oxidative stress contributing to the loss of dopaminergic cells in the brain. ATPase inhibitory factor 1 (IF1) is a regulator of mitochondrial energy metabolism. IF1 binds directly to the F1Fo ATP synthase and prevents ATP wasting during compromised energy metabolism. In this study, we found treatment with IF1 protects mitochondria against PD-like insult in vitro. SH-SY5Y cells treated with IF1 were resistant to loss of ATP and mitochondrial inner membrane potential during challenge with rotenone, an inhibitor of complex I in the ETC. We further demonstrated that treatment with IF1 reversed rotenone-induced superoxide production in mitochondria and peroxide accumulation in whole cells. Ultimately, IF1 decreased protein levels of pro-apoptotic Bax, cleaved caspase-3, and cleaved PARP, rescuing SH-SY5Y cells from rotenone-mediated apoptotic death. Administration of IF1 significantly improved the results of pole and hanging tests performed by PD mice expressing human α-synuclein. This indicates that IF1 mitigates PD-associated motor deficit. Together, these findings suggest that IF1 exhibits a neuroprotective effect preventing mitochondrial dysfunction in PD pathology.
Collapse
Affiliation(s)
- InHyeok Chung
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.,Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea.,Biotechnology Research Center, MediandGene Inc., Seoul, Republic of Korea
| | - Han-A Park
- Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, USA
| | - Jun Kang
- Department of Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Heyyoung Kim
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Su Min Hah
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.,Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
| | - Juhee Lee
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea.,Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea.
| | - Ji Hyung Chung
- Department of Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Min-Jeong Shin
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea. .,Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea. .,School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Yang S, Park D, Manning L, Hill SE, Cao M, Xuan Z, Gonzalez I, Dong Y, Clark B, Shao L, Okeke I, Almoril-Porras A, Bai J, De Camilli P, Colón-Ramos DA. Presynaptic autophagy is coupled to the synaptic vesicle cycle via ATG-9. Neuron 2022; 110:824-840.e10. [PMID: 35065714 PMCID: PMC9017068 DOI: 10.1016/j.neuron.2021.12.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
Abstract
Autophagy is a cellular degradation pathway essential for neuronal health and function. Autophagosome biogenesis occurs at synapses, is locally regulated, and increases in response to neuronal activity. The mechanisms that couple autophagosome biogenesis to synaptic activity remain unknown. In this study, we determine that trafficking of ATG-9, the only transmembrane protein in the core autophagy pathway, links the synaptic vesicle cycle with autophagy. ATG-9-positive vesicles in C. elegans are generated from the trans-Golgi network via AP-3-dependent budding and delivered to presynaptic sites. At presynaptic sites, ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt endocytosis, including a lesion in synaptojanin 1 associated with Parkinson's disease, result in abnormal ATG-9 accumulation at clathrin-rich synaptic foci and defects in activity-induced presynaptic autophagy. Our findings uncover regulated key steps of ATG-9 trafficking at presynaptic sites and provide evidence that ATG-9 exo-endocytosis couples autophagosome biogenesis at presynaptic sites with the activity-dependent synaptic vesicle cycle.
Collapse
Affiliation(s)
- Sisi Yang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Daehun Park
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Laura Manning
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Sarah E Hill
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Mian Cao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Zhao Xuan
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ian Gonzalez
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Yongming Dong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Benjamin Clark
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Lin Shao
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Ifechukwu Okeke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Agustin Almoril-Porras
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA
| | - Jihong Bai
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Pietro De Camilli
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, 260 Whitney Avenue, YSB C167, New Haven, CT 06511, USA; Instituto de Neurobiología José del Castillo, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Boulevard del Valle, San Juan, PR 00901, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
11
|
Shola-Dare O, Bailess S, Flores CC, Vanderheyden WM, Gerstner JR. Glitazone Treatment Rescues Phenotypic Deficits in a Fly Model of Gaucher/Parkinson's Disease. Int J Mol Sci 2021; 22:ijms222312740. [PMID: 34884544 PMCID: PMC8657993 DOI: 10.3390/ijms222312740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s Disease (PD) is the most common movement disorder, and the strongest genetic risk factor for PD is mutations in the glucocerebrosidase gene (GBA). Mutations in GBA also lead to the development of Gaucher Disease (GD), the most common type of lysosomal storage disorder. Current therapeutic approaches fail to address neurological GD symptoms. Therefore, identifying therapeutic strategies that improve the phenotypic traits associated with GD/PD in animal models may provide an opportunity for treating neurological manifestations of GD/PD. Thiazolidinediones (TZDs, also called glitazones) are a class of compounds targeted for the treatment of type 2 diabetes, and have also shown promise for the treatment of neurodegenerative disease, including PD. Here, we tested the efficacy of glitazone administration during development in a fly GD model with deletions in the GBA homolog, dGBA1b (GBA1ΔTT/ΔTT). We observed an optimal dose of pioglitazone (PGZ) at a concentration of 1 μM that reduced sleep deficits, locomotor impairments, climbing defects, and restoration of normal protein levels of Ref(2)P, a marker of autophagic flux, in GBA1ΔTT/ΔTT mutant flies, compared to GBA1+/+ control flies. These data suggest that PGZ may represent a potential compound with which to treat GD/PD by improving function of lysosomal-autophagy pathways, a cellular process that removes misfolded or aggregated proteins.
Collapse
Affiliation(s)
- Oluwanifemi Shola-Dare
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (O.S.-D.); (S.B.); (C.C.F.); (W.M.V.)
| | - Shelby Bailess
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (O.S.-D.); (S.B.); (C.C.F.); (W.M.V.)
| | - Carlos C. Flores
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (O.S.-D.); (S.B.); (C.C.F.); (W.M.V.)
| | - William M. Vanderheyden
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (O.S.-D.); (S.B.); (C.C.F.); (W.M.V.)
| | - Jason R. Gerstner
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA; (O.S.-D.); (S.B.); (C.C.F.); (W.M.V.)
- Steve Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
- Correspondence:
| |
Collapse
|
12
|
Arango D, Bittar A, Esmeral NP, Ocasión C, Muñoz-Camargo C, Cruz JC, Reyes LH, Bloch NI. Understanding the Potential of Genome Editing in Parkinson's Disease. Int J Mol Sci 2021; 22:9241. [PMID: 34502143 PMCID: PMC8430539 DOI: 10.3390/ijms22179241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
CRISPR is a simple and cost-efficient gene-editing technique that has become increasingly popular over the last decades. Various CRISPR/Cas-based applications have been developed to introduce changes in the genome and alter gene expression in diverse systems and tissues. These novel gene-editing techniques are particularly promising for investigating and treating neurodegenerative diseases, including Parkinson's disease, for which we currently lack efficient disease-modifying treatment options. Gene therapy could thus provide treatment alternatives, revolutionizing our ability to treat this disease. Here, we review our current knowledge on the genetic basis of Parkinson's disease to highlight the main biological pathways that become disrupted in Parkinson's disease and their potential as gene therapy targets. Next, we perform a comprehensive review of novel delivery vehicles available for gene-editing applications, critical for their successful application in both innovative research and potential therapies. Finally, we review the latest developments in CRISPR-based applications and gene therapies to understand and treat Parkinson's disease. We carefully examine their advantages and shortcomings for diverse gene-editing applications in the brain, highlighting promising avenues for future research.
Collapse
Affiliation(s)
- David Arango
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Amaury Bittar
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Camila Ocasión
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (C.O.); (L.H.R.)
| | - Natasha I. Bloch
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia; (D.A.); (A.B.); (N.P.E.); (C.M.-C.); (J.C.C.)
| |
Collapse
|
13
|
Barbaro JM, Cuervo AM, Berman JW. HIV Increases the Inhibitory Impact of Morphine and Antiretrovirals on Autophagy in Primary Human Macrophages: Contributions to Neuropathogenesis. Cells 2021; 10:2183. [PMID: 34571832 PMCID: PMC8470112 DOI: 10.3390/cells10092183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
HIV enters the CNS early after peripheral infection, establishing reservoirs in perivascular macrophages that contribute to development of HIV-associated neurocognitive disorders (HAND) in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy (ART). Opioid use may contribute to dysregulated macrophage functions resulting in more severe neurocognitive symptoms in PWH taking opioids. Macroautophagy helps maintain quality control in long-lived cell types, such as macrophages, and has been shown to regulate, in part, some macrophage functions in the CNS that contribute to HAND. Using Western blotting and confocal immunofluorescence in primary human macrophages, we demonstrated that morphine and a commonly prescribed ART regimen induce bulk autophagy. Morphine and ART also inhibited completion of autophagy. HIV infection increased these inhibitory effects. We also examined two types of selective autophagy that degrade aggregated proteins (aggrephagy) and dysfunctional mitochondria (mitophagy). Morphine and ART inhibited selective autophagy mediated by p62 regardless of HIV infection, and morphine inhibited mitophagic flux in HIV-infected cells demonstrating potential mitotoxicity. These results indicate that inhibition of autophagy, both in bulk and selective, in CNS macrophages may mediate neurocognitive dysfunction in PWH using opioids. Increasing autophagic activity in the context of HIV may represent a novel therapeutic strategy for reducing HAND in these individuals.
Collapse
Affiliation(s)
- John M. Barbaro
- Montefiore Medical Center, Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Ana Maria Cuervo
- Montefiore Medical Center, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
| | - Joan W. Berman
- Montefiore Medical Center, Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA;
- Montefiore Medical Center, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
14
|
Li H, Kim J, Tran HNK, Lee CH, Hur J, Kim MC, Yang HO. Extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan Reduces Behavioral Defect and Enhances Autophagy in Experimental Models of Parkinson's Disease. Neuromolecular Med 2021; 23:428-443. [PMID: 33432492 DOI: 10.1007/s12017-020-08643-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/24/2020] [Indexed: 02/05/2023]
Abstract
The 20% ethanol extract of Polygala tenuifolia, Angelica tenuissima, and Dimocarpus longan (WIN-1001X) was derived from a modified version of Korean traditional herbal formula 'Chungsimyeolda-tang' which has been used for the treatment of cerebrovascular disorders. The Parkinson's disease presents with impaired motor functions and loss of dopaminergic neurons. However, the treatment for Parkinson's disease is not established until now. This study aims to elucidate the therapeutic advantages of WIN-1001X on animal models of Parkinson's disease. WIN-1001X administration successfully relieved the Parkinsonism symptoms in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mice tested by rota-rod and pole tests. The loss of tyrosine hydroxylase activities in substantia nigra and striatum was also attenuated by administration of WIN-1001X. In mice with sub-chronical MPTP injections, autophagy-related proteins, such as LC3, beclin-1, mTOR, and p62, were measured using the immunoblot assay. The results were favorable to induction of autophagy after the WIN-1001X administration. WIN-1001X treatment on 6-hydroxydopamine-injected rats also exhibited protective effects against striatal neuronal damage and loss of dopaminergic cells. Such protection is expected to be due to the positive regulation of autophagy by administration of WIN-1001X with confirmation both in vivo and in vitro. In addition, an active compound, onjisaponin B was isolated and identified from WIN-1001X. Onjisaponin B also showed significant autophagosome-inducing effect in human neuroblastoma cell line. Our study suggests that relief of Parkinsonism symptoms and rescue of tyrosine hydroxylase activity in dopaminergic neurons are affected by autophagy enhancing effect of WIN-1001X which the onjisaponin B is one of the major components of activity.
Collapse
Affiliation(s)
- Huan Li
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.,College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Joonki Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Huynh Nguyen Khanh Tran
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Chang Hwan Lee
- Central Research Institute, WhanIn Pharm. Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Jonghyun Hur
- Central Research Institute, WhanIn Pharm. Co., Ltd., Suwon, Gyeonggi-do, 16229, Republic of Korea
| | - Min Cheol Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea
| | - Hyun Ok Yang
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, 25451, Republic of Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea. .,College of Life Sciences, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
15
|
Currim F, Singh J, Shinde A, Gohel D, Roy M, Singh K, Shukla S, Mane M, Vasiyani H, Singh R. Exosome Release Is Modulated by the Mitochondrial-Lysosomal Crosstalk in Parkinson's Disease Stress Conditions. Mol Neurobiol 2021; 58:1819-1833. [PMID: 33404982 DOI: 10.1007/s12035-020-02243-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta region of the brain. The main pathological hallmark involves cytoplasmic inclusions of α-synuclein and mitochondrial dysfunction, which is observed in other part of the central nervous system other than SN suggesting the spread of pathogenesis to bystander neurons. The inter-neuronal communication through exosomes may play an important role in the spread of the disease; however, the mechanisms are not well elucidated. Mitochondria and its role in inter-organellar crosstalk with multivesicular body (MVB) and lysosome and its role in modulation of exosome release in PD is not well understood. In the current study, we investigated the mitochondria-lysosome crosstalk modulating the exosome release in neuronal and glial cells. We observed that PD stress showed enhanced release of exosomes in dopaminergic neurons and glial cells. The PD stress condition in these cells showed fragmented network and mitochondrial dysfunction which further leads to functional deficit of lysosomes and hence inhibition of autophagy flux. Neuronal and glial cells treated with rapamycin showed enhanced autophagy and inhibited the exosomal release. The results here suggest that maintenance of mitochondrial function is important for the lysosomal function and hence exosomal release which is important for the pathogenesis of PD.
Collapse
Affiliation(s)
- Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Kritarth Singh
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Hitesh Vasiyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
16
|
Wang XW, Yuan LJ, Yang Y, Zhang M, Chen WF. IGF-1 inhibits MPTP/MPP +-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER. Am J Physiol Endocrinol Metab 2020; 319:E734-E743. [PMID: 32865008 DOI: 10.1152/ajpendo.00071.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Autophagy dysfunctions are involved in the pathogenesis of Parkinson's disease (PD). In the present study, we aimed to evaluate the involvement of G protein-coupled estrogen receptor (GPER) in the inhibitory effect of insulin-like growth factor-1 (IGF-1) against excessive autophagy in PD animal and cellular models. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment significantly induced mouse movement disorder and decreased the protein level of tyrosine hydroxylase (TH) in the substantia nigra (SN) and dopamine (DA) content in striatum. Along with the dopamine neuron injury, we observed significant upregulations of microtubule-associated light chain-3 II (LC3-II) and α-synuclein as well as a downregulation of P62 in MPTP-treated mice. These changes could be restored by IGF-1 pretreatment. Cotreatment with IGF-1R antagonist JB-1 or GPER antagonist G15 could block the neuroprotective effects of IGF-1. 1-Methy-4-phenylpyridinium (MPP+) treatment could also excessively activate autophagy along with the reduction of cell viability in SH-SY5Y cells. IGF-1 could inhibit the neurotoxicity through promoting the phosphorylation of Akt and mammalian target of rapamycin (mTOR), which could also be antagonized by JB-1 or G15. These data suggest that IGF-1 inhibits MPTP/MPP+-induced autophagy on dopaminergic neurons through the IGF-1R/PI3K-Akt-mTOR pathway and GPER.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Liang-Jie Yuan
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
- School of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Ye Yang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mei Zhang
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wen-Fang Chen
- Department of Physiology, Shandong Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines, Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
17
|
Alpha-Synuclein and LRRK2 in Synaptic Autophagy: Linking Early Dysfunction to Late-Stage Pathology in Parkinson's Disease. Cells 2020; 9:cells9051115. [PMID: 32365906 PMCID: PMC7290471 DOI: 10.3390/cells9051115] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
The lack of effective disease-modifying strategies is the major unmet clinical need in Parkinson’s disease. Several experimental approaches have attempted to validate cellular targets and processes. Of these, autophagy has received considerable attention in the last 20 years due to its involvement in the clearance of pathologic protein aggregates and maintenance of neuronal homeostasis. However, this strategy mainly addresses a very late stage of the disease, when neuropathology and neurodegeneration have likely “tipped over the edge” and disease modification is extremely difficult. Very recently, autophagy has been demonstrated to modulate synaptic activity, a process distinct from its catabolic function. Abnormalities in synaptic transmission are an early event in neurodegeneration with Leucine-Rich Repeat Kinase 2 (LRRK2) and alpha-synuclein strongly implicated. In this review, we analyzed these processes separately and then discussed the unification of these biomolecular fields with the aim of reconstructing a potential “molecular timeline” of disease onset and progression. We postulate that the elucidation of these pathogenic mechanisms will form a critical basis for the design of novel, effective disease-modifying therapies that could be applied early in the disease process.
Collapse
|
18
|
Finkbeiner S. The Autophagy Lysosomal Pathway and Neurodegeneration. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033993. [PMID: 30936119 DOI: 10.1101/cshperspect.a033993] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The autophagy lysosomal pathway (ALP) is a major mechanism for degrading intracellular macromolecules. The catabolic products can then be used by the cell for energy or as building blocks to make other macromolecules. Since its discovery, a variety of cellular pathways have emerged that target components with varying specificity for lysosomal degradation. Under some circumstances, lysosomes may release their contents into the extracellular space where they may serve signaling or pathogenic functions. The ALP is active in healthy cells, and the level of activity can be regulated by nutrient-sensing and metabolic signaling pathways. The ALP is the primary pathway by which lipids and damaged organelles are degraded and may be the only pathway capable of degrading aggregated proteins. As such, there has been intense interest in understanding the role of the ALP in the accumulation of aggregated misfolded proteins characteristic of many of the major adult-onset neurodegenerative diseases. This review focuses on recent advances in our understanding of the ALP and its potential relationship to the pathogenesis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Steven Finkbeiner
- Gladstone Institutes, San Francisco, California 94158.,Departments of Neurology and Physiology, University of California, San Francisco, California 94158
| |
Collapse
|
19
|
Joshi V, Upadhyay A, Prajapati VK, Mishra A. How autophagy can restore proteostasis defects in multiple diseases? Med Res Rev 2020; 40:1385-1439. [PMID: 32043639 DOI: 10.1002/med.21662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Cellular evolution develops several conserved mechanisms by which cells can tolerate various difficult conditions and overall maintain homeostasis. Autophagy is a well-developed and evolutionarily conserved mechanism of catabolism, which endorses the degradation of foreign and endogenous materials via autolysosome. To decrease the burden of the ubiquitin-proteasome system (UPS), autophagy also promotes the selective degradation of proteins in a tightly regulated way to improve the physiological balance of cellular proteostasis that may get perturbed due to the accumulation of misfolded proteins. However, the diverse as well as selective clearance of unwanted materials and regulations of several cellular mechanisms via autophagy is still a critical mystery. Also, the failure of autophagy causes an increase in the accumulation of harmful protein aggregates that may lead to neurodegeneration. Therefore, it is necessary to address this multifactorial threat for in-depth research and develop more effective therapeutic strategies against lethal autophagy alterations. In this paper, we discuss the most relevant and recent reports on autophagy modulations and their impact on neurodegeneration and other complex disorders. We have summarized various pharmacological findings linked with the induction and suppression of autophagy mechanism and their promising preclinical and clinical applications to provide therapeutic solutions against neurodegeneration. The conclusion, key questions, and future prospectives sections summarize fundamental challenges and their possible feasible solutions linked with autophagy mechanism to potentially design an impactful therapeutic niche to treat neurodegenerative diseases and imperfect aging.
Collapse
Affiliation(s)
- Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| | - Vijay K Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Karwar, India
| |
Collapse
|
20
|
Sivanesam K, Andersen N. Pre-structured hydrophobic peptide β-strands: A universal amyloid trap? Arch Biochem Biophys 2019; 664:51-61. [PMID: 30707943 PMCID: PMC7094768 DOI: 10.1016/j.abb.2019.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 01/21/2023]
Abstract
Amyloid fibril formation has long been studied because of the variety of proteins that are capable of adopting this structure despite sharing little sequence homology. This makes amyloid fibrils a challenging focus for inhibition studies because the peptides and proteins that form amyloid fibrils cannot be targeted based on a sequence motif. Most peptide inhibitors that target specific amyloidogenic proteins rely heavily on sequence recognition to ensure that the inhibitory peptide is able to bind its target. This approach is limited to targeting one amyloidogenic protein at a time. However, there is increasing evidence of cross-reactivity between amyloid-forming polypeptides. It has therefore become more useful to study the similarities between these proteins that goes beyond their sequence homology. Indeed, the observation that amyloidogenic proteins adopt similar secondary structures along the pathway to fibril formation opens the way to an interesting investigation: the development of inhibitors that could be universal amyloid traps. The review below will analyze two specific amyloidogenic proteins, α-synuclein and human amylin, and introduce a small number of peptides that have been shown to be capable of inhibiting the amyloidogenesis of both of these very dissimilar polypeptides. Some of the inhibitory peptide motifs may indeed, be applicable to Aβ and other amyloidogenic systems.
Collapse
|
21
|
Ng SW, Chan Y, Chellappan DK, Madheswaran T, Zeeshan F, Chan YL, Collet T, Gupta G, Oliver BG, Wark P, Hansbro N, Hsu A, Hansbro PM, Dua K, Panneerselvam J. Molecular modulators of celastrol as the keystones for its diverse pharmacological activities. Biomed Pharmacother 2019; 109:1785-1792. [DOI: 10.1016/j.biopha.2018.11.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/10/2018] [Accepted: 11/10/2018] [Indexed: 12/30/2022] Open
|
22
|
Fracassi A, Marangoni M, Rosso P, Pallottini V, Fioramonti M, Siteni S, Segatto M. Statins and the Brain: More than Lipid Lowering Agents? Curr Neuropharmacol 2019; 17:59-83. [PMID: 28676012 PMCID: PMC6341496 DOI: 10.2174/1570159x15666170703101816] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/24/2017] [Accepted: 06/26/2017] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Statins represent a class of medications widely prescribed to efficiently treat dyslipidemia. These drugs inhibit 3-βhydroxy 3β-methylglutaryl Coenzyme A reductase (HMGR), the rate-limiting enzyme of mevalonate (MVA) pathway. Besides cholesterol, MVA pathway leads to the production of several other compounds, which are essential in the regulation of a plethora of biological activities, including in the central nervous system. For these reasons, statins are able to induce pleiotropic actions, and acquire increased interest as potential and novel modulators in brain processes, especially during pathological conditions. OBJECTIVE The purpose of this review is to summarize and examine the current knowledge about pharmacokinetic and pharmacodynamic properties of statins in the brain. In addition, effects of statin on brain diseases are discussed providing the most up-to-date information. METHODS Relevant scientific information was identified from PubMed database using the following keywords: statins and brain, central nervous system, neurological diseases, neurodegeneration, brain tumors, mood, stroke. RESULTS 315 scientific articles were selected and analyzed for the writing of this review article. Several papers highlighted that statin treatment is effective in preventing or ameliorating the symptomatology of a number of brain pathologies. However, other studies failed to demonstrate a neuroprotective effect. CONCLUSION Even though considerable research studies suggest pivotal functional outcomes induced by statin therapy, additional investigation is required to better determine the pharmacological effectiveness of statins in the brain, and support their clinical use in the management of different neuropathologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Segatto
- Address correspondence to this author at the Department of Sense Organs, Sapienza University, viale del Policlinico 155, 00186 Rome, Italy; E-mail:
| |
Collapse
|
23
|
Salazar C, Ruiz-Hincapie P, Ruiz LM. The Interplay among PINK1/PARKIN/Dj-1 Network during Mitochondrial Quality Control in Cancer Biology: Protein Interaction Analysis. Cells 2018; 7:cells7100154. [PMID: 30274236 PMCID: PMC6210981 DOI: 10.3390/cells7100154] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022] Open
Abstract
PARKIN (E3 ubiquitin ligase PARK2), PINK1 (PTEN induced kinase 1) and DJ-1 (PARK7) are proteins involved in autosomal recessive parkinsonism, and carcinogenic processes. In damaged mitochondria, PINK1’s importing into the inner mitochondrial membrane is prevented, PARKIN presents a partial mitochondrial localization at the outer mitochondrial membrane and DJ-1 relocates to mitochondria when oxidative stress increases. Depletion of these proteins result in abnormal mitochondrial morphology. PINK1, PARKIN, and DJ-1 participate in mitochondrial remodeling and actively regulate mitochondrial quality control. In this review, we highlight that PARKIN, PINK1, and DJ-1 should be regarded as having an important role in Cancer Biology. The STRING database and Gene Ontology (GO) enrichment analysis were performed to consolidate knowledge of well-known protein interactions for PINK1, PARKIN, and DJ-1 and envisage new ones. The enrichment analysis of KEGG pathways showed that the PINK1/PARKIN/DJ-1 network resulted in Parkinson disease as the main feature, while the protein DJ-1 showed enrichment in prostate cancer and p53 signaling pathway. Some predicted transcription factors regulating PINK1, PARK2 (PARKIN) and PARK7 (DJ-1) gene expression are related to cell cycle control. We can therefore suggest that the interplay among PINK1/PARKIN/DJ-1 network during mitochondrial quality control in cancer biology may occur at the transcriptional level. Further analysis, like a systems biology approach, will be helpful in the understanding of PINK1/PARKIN/DJ-1 network.
Collapse
Affiliation(s)
- Celia Salazar
- Instituto de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| | - Paula Ruiz-Hincapie
- School of Engineering and Technology, University of Hertfordshire, Hatfield AL 10 9AB, UK.
| | - Lina María Ruiz
- Instituto de Investigaciones Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| |
Collapse
|
24
|
Beauchamp LC, Chan J, Hung LW, Padman BS, Vella LJ, Liu XM, Coleman B, Bush AI, Lazarou M, Hill AF, Jacobson L, Barnham KJ. Ablation of tau causes an olfactory deficit in a murine model of Parkinson's disease. Acta Neuropathol Commun 2018; 6:57. [PMID: 29976255 PMCID: PMC6032546 DOI: 10.1186/s40478-018-0560-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease is diagnosed upon the presentation of motor symptoms, resulting from substantial degeneration of dopaminergic neurons in the midbrain. Prior to diagnosis, there is a lengthy prodromal stage in which non-motor symptoms, including olfactory deficits (hyposmia), develop. There is limited information about non-motor impairments and there is a need for directed research into these early pathogenic cellular pathways that precede extensive dopaminergic death in the midbrain. The protein tau has been identified as a genetic risk factor in the development of sporadic PD. Tau knockout mice have been reported as an age-dependent model of PD, and this study has demonstrated that they develop motor deficits at 15-months-old. We have shown that at 7-month-old tau knockout mice present with an overt hyposmic phenotype. This olfactory deficit correlates with an accumulation of α-synuclein, as well as autophagic impairment, in the olfactory bulb. This pathological feature becomes apparent in the striatum and substantia nigra of 15-month-old tau knockout mice, suggesting the potential for a spread of disease. Initial primary cell culture experiments have demonstrated that ablation of tau results in the release of α-synuclein enriched exosomes, providing a potential mechanism for disease spread. These alterations in α-synuclein level as well as a marked autophagy impairment in the tau knockout primary cells recapitulate results seen in the animal model. These data implicate a pathological role for tau in early Parkinson's disease.
Collapse
Affiliation(s)
- Leah C. Beauchamp
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
- The Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Jacky Chan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Lin W. Hung
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Benjamin S. Padman
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Laura J. Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Xiang M. Liu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Bradley Coleman
- The Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Ashley I. Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Michael Lazarou
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Andrew F. Hill
- The Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010 Australia
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3083 Australia
| | - Laura Jacobson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
- The Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010 Australia
- The Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
25
|
Triggering of inflammasome by impaired autophagy in response to acute experimental Parkinson's disease: involvement of the PI3K/Akt/mTOR pathway. Neuroreport 2018; 28:996-1007. [PMID: 28902711 PMCID: PMC5610561 DOI: 10.1097/wnr.0000000000000871] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several lines of evidence suggest that the inflammasome activation is involved in the progression of neurodegenerative diseases. However, the relation between Parkinson's disease (PD) and the inflammasome is still unclear. This study was designed to assess the involvement of inflammasome in acute experimental PD. Specifically, acute PD was induced in C57BL/6 mice by an injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At seven days from MPTP induction, mice were euthanized and the midbrains were sampled to carry out immunohistochemical evaluations and western blot analysis. Our results show the activation of Nod-like receptor-3 inflammasome in acute MPTP mice, as suggested by the increase of nuclear factor-κB expression, which represents the first signal for inflammasome induction. The Nod-like receptor-3 assembly induces the activation of caspase-1, which in turn activates interleukin-1β and interleukin-18 production, as confirmed by our evaluations. A dysregulation of autophagy system was also found in acute MPTP mice by looking at the expression of Beclin-1, LC-3, and Bcl-2, chosen as markers of autophagy. Thus, in an effort to identify the molecular mechanism underlying the well-known crosstalk between autophagy and the inflammasome, we evaluated the involvement of the phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, which plays a key role in autophagy. Our results showed a clear upregulation of this signaling after MPTP induction. Taken together, our findings suggest that the triggering of inflammasome could be linked to impaired autophagy because of aberrant upstream activation of the PI3K/Akt/mTOR pathway. Finally, our results propose the inflammasome as a new potential therapeutic target in the management of PD.
Collapse
|
26
|
Nooraei MS, Noori-Zadeh A, Darabi S, Rajaei F, Golmohammadi Z, Abbaszadeh HA. Low Level of Autophagy-Related Gene 10 (ATG10) Expression in the 6-Hydroxydopamine Rat Model of Parkinson's Disease. IRANIAN BIOMEDICAL JOURNAL 2018; 22:15-21. [PMID: 28734275 PMCID: PMC5712380 DOI: 10.22034/ibj.22.1.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022]
Abstract
Background Autophagy is a mechanism disassembling the damaged organelles from the cell. This study attempted to examine the expression of several autophagy-related genes in Parkinson’s disease (PD) rat model. Methods The male Wistar rats were divided into three groups as control, sham, and lesion. In the latter group, the PD rat model was induced by the injection of 6-hydroxydopamine in the striatum. The behavioral test was conducted one (baseline) and four weeks after the surgery through apomorphine hydrochloride. Then the RT-PCR technique was employed to evaluate the expressions of p62/SQSTM, autophagy-related genes (ATG)5, ATG12, ATG16L1, ATG10, as well as GAPDH and LC3. Results By injecting apomorphine, the striatal lesion group showed a significant contralateral rotation at fourth week as compared to the baseline. The examination of p62, ATG5, ATG12, ATG16L1, and LC3 expressions using RT-PCR revealed that p62, ATG5, ATG12, LC3, and ATG16L1 were expressed in the substantia nigra of PD rat model, while ATG10 was not expressed. Conclusion ATG10 expression is necessary for the initiation of autophagy. Thus, these results show that autophagy deregulation occurs in the initiation stages of the process in the rat model of PD.
Collapse
Affiliation(s)
- Marzieh Shams Nooraei
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zohreh Golmohammadi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hojjat Allah Abbaszadeh
- Hearing Disorder Research center, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
27
|
Wei CC, Chang CH, Liao VHC. Anti-Parkinsonian effects of β-amyrin are regulated via LGG-1 involved autophagy pathway in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:118-125. [PMID: 29157804 DOI: 10.1016/j.phymed.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease that is associated with aging and is characterized as a movement disorder. Currently, there is still no complete therapy for PD. In recent years, the identification and characterization of medicinal plants to cure or treat PD has gained increasing scientific interest. PURPOSE In this study, we investigated a pentacyclic triterpenoid compound, β-amyrin, which is found in many medicinal plants for its anti-Parkinsonian effects, using Caenorhabditis elegans (C. elegans) disease models and their underlying mechanisms. METHODS C. elegans treated or untreated with β-amyrin were investigated for oxidative stress resistance, neurodegeneration, and α-synuclein aggregation assays. The C. elegans ortholog of Atg8/LC3, LGG-1 that is involved in the autophagy pathway was also evaluated by quantitative RT-PCR and transgenic strain experiments. RESULTS β-Amyrin exerted excellent antioxidant activity and reduced intracellular oxygen species in C. elegans. Using the transgenic strain BZ555, β-amyrin showed a protective effect on dopaminergic neurons reducing cell damage induced by 6-hydroxydopamine (6-OHDA). In addition, β-amyrin significantly reduced the α-synuclein aggregation in the transgenic strain NL5901. Moreover, β-amyrin up-regulated LGG-1 mRNA expression and increased the number of localized LGG-1 puncta in the transgenic strain DA2123. CONCLUSION The results from this study suggest that the anti-Parkinsonian effects of β-amyrin might be regulated via LGG-1 involved autophagy pathway in C. elegans. Therefore, β-amyrin may be useful for therapeutic applications or supplements to treat or slow the progression of PD.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
28
|
Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun 2017; 8:1763. [PMID: 29176575 PMCID: PMC5701254 DOI: 10.1038/s41467-017-01609-x] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/03/2017] [Indexed: 11/09/2022] Open
Abstract
Endoplasmic reticulum (ER) and lysosomes coordinate a network of key cellular processes including unfolded protein response (UPR) and autophagy in response to stress. How ER stress is signaled to lysosomes remains elusive. Here we find that ER disturbance activates chaperone-mediated autophagy (CMA). ER stressors lead to a PERK-dependent activation and recruitment of MKK4 to lysosomes, activating p38 MAPK at lysosomes. Lysosomal p38 MAPK directly phosphorylates the CMA receptor LAMP2A at T211 and T213, which causes its membrane accumulation and active conformational change, activating CMA. Loss of ER stress-induced CMA activation sensitizes cells to ER stress-induced death. Neurotoxins associated with Parkinson’s disease fully engages ER-p38 MAPK–CMA pathway in the mouse brain and uncoupling it results in a greater loss of SNc dopaminergic neurons. This work identifies the coupling of ER and CMA as a critical regulatory axis fundamental for physiological and pathological stress response. The endoplasmic reticulum (ER) and lysosome are central to cellular stress responses, but it is unclear how ER stress is signaled to lysosomes. Here the authors show that ER stress activates chaperone-mediated autophagy (CMA) via direct phosphorylation of the CMA receptor LAMP2A by the lysosomal p38 MAPK.
Collapse
|
29
|
Poststroke Induction of α-Synuclein Mediates Ischemic Brain Damage. J Neurosci 2017; 36:7055-65. [PMID: 27358461 DOI: 10.1523/jneurosci.1241-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED α-Synuclein (α-Syn), one of the most abundant proteins in the CNS, is known to be a major player in the neurodegeneration observed in Parkinson's disease. We currently report that transient focal ischemia upregulates α-Syn protein expression and nuclear translocation in neurons of the adult rodent brain. We further show that knockdown or knock-out of α-Syn significantly decreases the infarction and promotes better neurological recovery in rodents subjected to focal ischemia. Furthermore, α-Syn knockdown significantly reduced postischemic induction of phospho-Drp1, 3-nitrotyrosine, cleaved caspase-3, and LC-3 II/I, indicating its role in modulating mitochondrial fragmentation, oxidative stress, apoptosis, and autophagy, which are known to mediate poststroke neuronal death. Transient focal ischemia also significantly upregulated serine-129 (S129) phosphorylation (pα-Syn) of α-Syn and nuclear translocation of pα-Syn. Furthermore, knock-out mice that lack PLK2 (the predominant kinase that mediates S129 phosphorylation) showed better functional recovery and smaller infarcts when subjected to transient focal ischemia, indicating a detrimental role of S129 phosphorylation of α-Syn. In conclusion, our studies indicate that α-Syn is a potential therapeutic target to minimize poststroke brain damage. SIGNIFICANCE STATEMENT Abnormal aggregation of α-synuclein (α-Syn) has been known to cause Parkinson's disease and other chronic synucleinopathies. However, even though α-Syn is linked to pathophysiological mechanisms similar to those that produce acute neurodenegerative disorders, such as stroke, the role of α-Syn in such disorder is not clear. We presently studied whether α-Syn mediates poststroke brain damage and more importantly whether preventing α-Syn expression is neuroprotective and leads to better physiological and functional outcome after stroke. Our study indicates that α-Syn is a potential therapeutic target for stroke therapy.
Collapse
|
30
|
Wan W, Jin L, Wang Z, Wang L, Fei G, Ye F, Pan X, Wang C, Zhong C. Iron Deposition Leads to Neuronal α-Synuclein Pathology by Inducing Autophagy Dysfunction. Front Neurol 2017; 8:1. [PMID: 28138322 PMCID: PMC5237641 DOI: 10.3389/fneur.2017.00001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/04/2017] [Indexed: 11/13/2022] Open
Abstract
Growing evidence has indicated that iron deposition in the substantia nigra plays an important role in Parkinson’s disease (PD). However, the underlying mechanism is still elusive. Using primary dopaminergic neurons and SH-SY5Y cells cultured in vitro, we observed that iron loading increased α-synuclein and reactive oxygen species (ROS) levels in these cells but did not affect the intracellular α-synuclein mRNA levels. Furthermore, iron loading significantly downregulated Beclin-1 levels and decreased the ratio of microtubule-associated protein 1 light chain 3 isoforms (LC3 II/LC3 I). However, a significant change in the levels of autophagy-related gene 5 (Atg5) was not observed in either neurons or SH-SY5Y cells after iron treatment. After treatment with rapamycin, the iron loading-induced increase in the α-synuclein level was significantly reversed and ROS generation was alleviated in both cultured neurons and SH-SY5Y cells. These results indicate that the inhibition of autophagy is critical for the pathological alterations in α-synuclein induced by iron loading. Moreover, treatment with vitamin E did not affect the increase in the α-synuclein levels but significantly eliminated the iron-induced ROS production. Together, our study shows that autophagy dysfunction contributes to iron-induced α-synuclein pathology.
Collapse
Affiliation(s)
- Wenbin Wan
- Department of Neurology, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Lirong Jin
- Department of Neurology, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Zigao Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Neurology, Jingshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Wang
- Experimental Research Center, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Fanlong Ye
- Department of Neurology, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Changpeng Wang
- Department of Neurology, Zhongshan Hospital, Fudan University , Shanghai , China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University , Shanghai , China
| |
Collapse
|
31
|
Sivanesam K, Andersen NH. Modulating the Amyloidogenesis of α-Synuclein. Curr Neuropharmacol 2016; 14:226-37. [PMID: 26517049 PMCID: PMC4857621 DOI: 10.2174/1570159x13666151030103153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022] Open
Abstract
Alpha-Synuclein is found in the neuronal cells but its native function is not well known. While α -synuclein is an intrinsically disordered protein that adopts a helical conformation upon membrane binding, numerous studies have shown that oligomeric β-forms of this protein are cytotoxic. This response to misfolded species contributes to Parkinson's Disease etiology and symptoms. The resulting amyloid fibrils are an established diagnostic in Parkinson's Disease. In this review, we focus on strategies that have been used to inhibit the amyloidogenesis of α -synuclein either by stabilizing the native state, or by redirecting the pathway to less toxic aggregates. Small molecules such as polyphenols, peptides as well as large proteins have proven effective at protecting cells against the cytotoxicity of α-synuclein. These strategies may lead to the development of therapeutic agents that could prove useful in combating this disease.
Collapse
Affiliation(s)
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
32
|
Jalewa J, Sharma MK, Hölscher C. Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells. J Neurochem 2016; 139:55-67. [DOI: 10.1111/jnc.13736] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Jaishree Jalewa
- Division of Biomedical and Life Sciences; Faculty of Health and Medicine; Lancaster University; Lancaster LA1 4YQ UK
| | - Mohit Kumar Sharma
- Division of Biomedical and Life Sciences; Faculty of Health and Medicine; Lancaster University; Lancaster LA1 4YQ UK
| | - Christian Hölscher
- Division of Biomedical and Life Sciences; Faculty of Health and Medicine; Lancaster University; Lancaster LA1 4YQ UK
| |
Collapse
|
33
|
Shahpiri Z, Bahramsoltani R, Hosein Farzaei M, Farzaei F, Rahimi R. Phytochemicals as future drugs for Parkinson’s disease: a comprehensive review. Rev Neurosci 2016; 27:651-68. [DOI: 10.1515/revneuro-2016-0004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
AbstractParkinson’s disease (PD) is the second most common chronic neurodegenerative disease that affects motor skills and cognitive performance. The conventional therapeutic approaches for the management of PD are just able to alleviate symptoms. Exploring for achieving novel substances with therapeutic benefits in PD patients is the focus of a wide range of current investigations. The aim of the present study is to comprehensively review phytochemicals with protective or therapeutic activities in PD and focus on their neuropsychopharmacological mechanisms. Various subgroups of polyphenols (flavonoids, phenolic acids, stilbenes, and lignanes) and terpenes are the most abundant groups of phytochemicals with well-established antiparkinsonian effects. Other phytochemical categories, such as alkaloids, cinnamates, carbohydrates, amino acids, and fatty acid amides, also have some representatives with positive effects in PD. Phytochemicals perform their antiparkinsonian effect through several mechanisms of action, including suppressing apoptosis (via the reduction of Bax/Bcl-2, caspase-3, -8, and -9, and α-synuclein accumulation), decreasing dopaminergic neuronal loss and dopamine depletion, reducing the expression of proinflammatory cytokines (such as prostaglandin E2, interleukin-6, interleukin-1β, and nuclear factor-κB), and modulating nuclear and cellular inflammatory signaling, elevation of neurotrophic factors, and improvement of antioxidant status. Plant-derived natural products can be considered as future pharmaceutical drugs or adjuvant treatment with conventional therapeutic approaches to improve their efficacy and alleviate their psychological adverse effects in the management of PD. Well-designed clinical trials are mandatory to evaluate the protective and healing benefits of phytochemicals as promising future drugs in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zahra Shahpiri
- 1Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 14176-53761, Iran (Islamic Republic of)
| | - Roodabeh Bahramsoltani
- 1Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 14176-53761, Iran (Islamic Republic of)
- 2Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran (Islamic Republic of)
| | - Mohammad Hosein Farzaei
- 3Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran (Islamic Republic of)
- 4Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran (Islamic Republic of)
| | - Fatemeh Farzaei
- 4Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran (Islamic Republic of)
| | - Roja Rahimi
- 1Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 14176-53761, Iran (Islamic Republic of)
| |
Collapse
|
34
|
Cipolat Mis MS, Brajkovic S, Frattini E, Di Fonzo A, Corti S. Autophagy in motor neuron disease: Key pathogenetic mechanisms and therapeutic targets. Mol Cell Neurosci 2016; 72:84-90. [PMID: 26837042 DOI: 10.1016/j.mcn.2016.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a lysosome-dependant intracellular degradation process that eliminates long-lived proteins as well as damaged organelles from the cytoplasm. An increasing body of evidence suggests that dysregulation of this system plays a pivotal role in the etiology and/or progression of neurodegenerative diseases including motor neuron disorders. Herein, we review the latest findings that highlight the involvement of autophagy in the pathogenesis of amyotrophic lateral sclerosis (ALS) and the potential role of this pathway as a target of therapeutic purposes. Autophagy promotes the removal of toxic, cytoplasmic aggregate-prone pathogenetic proteins, enhances cell survival, and modulates inflammation. The existence of several drugs targeting this pathway can facilitate the translation of basic research to clinical trials for ALS and other motor neuron diseases.
Collapse
Affiliation(s)
- Maria Sara Cipolat Mis
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Simona Brajkovic
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Emanuele Frattini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Alessio Di Fonzo
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Stefania Corti
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, Istituto Di Ricovero e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy.
| |
Collapse
|
35
|
Wang JD, Cao YL, Li Q, Yang YP, Jin M, Chen D, Wang F, Wang GH, Qin ZH, Hu LF, Liu CF. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy 2015; 11:2057-2073. [PMID: 26649942 PMCID: PMC4824582 DOI: 10.1080/15548627.2015.1100930] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Autophagy dysfunction is implicated in the pathogenesis of Parkinson disease (PD). BECN1/Beclin 1 acts as a critical regulator of autophagy and other cellular processes; yet, little is known about the function and regulation of BECN1 in PD. In this study, we report that dopamine D2 and D3 receptor (DRD2 and DRD3) activation by pramipexole and quinpirole could enhance BECN1 transcription and promote autophagy activation in several cell lines, including PC12, MES23.5 and differentiated SH-SY5Y cells, and also in tyrosine hydroxylase positive primary midbrain neurons. Moreover, we identified a novel FOS (FBJ murine osteosarcoma viral oncogene homolog) binding sequence (5′-TGCCTCA-3′) in the rat and human Becn1/BECN1 promoter and uncovered an essential role of FOS binding in the enhancement of Becn1 transcription in PC12 cells in response to the dopamine agonist(s). In addition, we demonstrated a critical role of intracellular Ca2+ elevation, followed by the enhanced phosphorylation of CAMK4 (calcium/calmodulin-dependent protein kinase IV) and CREB (cAMP responsive element binding protein) in the increases of FOS expression and autophagy activity. More importantly, pramipexole treatment ameliorated the SNCA/α-synuclein accumulation in rotenone-treated PC12 cells that overexpress wild-type or A53T mutant SNCA by promoting autophagy flux. This effect was also demonstrated in the substantia nigra and the striatum of SNCAA53T transgenic mice. The inhibition of SNCA accumulation by pramipexole was attenuated by cotreatment with the DRD2 and DRD3 antagonists and Becn1 siRNAs. Thus, our findings suggest that DRD2 and DRD3 agonist(s) may induce autophagy activation via a BECN1-dependent pathway and have the potential to reduce SNCA accumulation in PD.
Collapse
Affiliation(s)
- Jian-Da Wang
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China.,b Institute of Neuroscience; Soochow University ; Suzhou , China.,c Department of Pediatrics ; Second Affiliated Hospital; School of Medicine, Zhejiang University ; Hangzhou, Zhejiang , China
| | - Yu-Lan Cao
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China.,b Institute of Neuroscience; Soochow University ; Suzhou , China
| | - Qian Li
- b Institute of Neuroscience; Soochow University ; Suzhou , China.,d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Ya-Ping Yang
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China
| | - Mengmeng Jin
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China
| | - Dong Chen
- d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Fen Wang
- b Institute of Neuroscience; Soochow University ; Suzhou , China
| | - Guang-Hui Wang
- d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Zheng-Hong Qin
- d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Li-Fang Hu
- b Institute of Neuroscience; Soochow University ; Suzhou , China.,d Department of Pharmacology ; Soochow University; College of Pharmaceutical Sciences ; Suzhou , China
| | - Chun-Feng Liu
- a Department of Neurology ; Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases; The Second Affiliated Hospital of Soochow University; Soochow University ; Suzhou , China.,b Institute of Neuroscience; Soochow University ; Suzhou , China
| |
Collapse
|
36
|
Shehata M, Inokuchi K. Does autophagy work in synaptic plasticity and memory? Rev Neurosci 2015; 25:543-57. [PMID: 24651020 DOI: 10.1515/revneuro-2014-0002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022]
Abstract
Many studies have reported the roles played by regulated proteolysis in neural plasticity and memory. Within this context, most of the research focused on the ubiquitin-proteasome system and the endosome-lysosome system while giving lesser consideration to another major protein degradation system, namely, autophagy. Although autophagy intersects with many of the pathways known to underlie synaptic plasticity and memory, only few reports related autophagy to synaptic remodeling. These pathways include PI3K-mTOR pathway and endosome-dependent proteolysis. In this review, we will discuss several lines of evidence supporting a physiological role of autophagy in memory processes, and the possible mechanistic scenarios for how autophagy could fulfill this function.
Collapse
|
37
|
A heme oxygenase-1 transducer model of degenerative and developmental brain disorders. Int J Mol Sci 2015; 16:5400-19. [PMID: 25761244 PMCID: PMC4394483 DOI: 10.3390/ijms16035400] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/28/2015] [Accepted: 02/22/2015] [Indexed: 12/17/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In “stressed” astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy and may thereby contribute to the pathological iron deposition and bioenergetic failure documented in Alzheimer disease, Parkinson disease and certain neurodevelopmental conditions. Glial HO-1 expression may also impact neuroplasticity and cell survival by modulating brain sterol metabolism and the proteasomal degradation of neurotoxic proteins. The glial HO-1 response may represent a pivotal transducer of noxious environmental and endogenous stressors into patterns of neural damage and repair characteristic of many human degenerative and developmental CNS disorders.
Collapse
|
38
|
Inhibition of Mitochondrial Clearance and Cu/Zn-SOD Activity Enhance 6-Hydroxydopamine-Induced Neuronal Apoptosis. Mol Neurobiol 2015; 53:777-791. [DOI: 10.1007/s12035-014-9087-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/29/2014] [Indexed: 01/19/2023]
|
39
|
Licker V, Burkhard PR. Proteomics as a new paradigm to tackle Parkinson’s disease research challenges. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2014.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
40
|
Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, Tian L, He M, Lu Y, Li M, Zhang Y, Zhong M, Xiang Y, Deng L, Zhou Z, Yu Z. Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy 2014; 9:1780-800. [DOI: 10.4161/auto.25665] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
41
|
Yew MY, Koh RY, Chye SM, Othman I, Ng KY. Edible bird's nest ameliorates oxidative stress-induced apoptosis in SH-SY5Y human neuroblastoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:391. [PMID: 25308934 PMCID: PMC4210536 DOI: 10.1186/1472-6882-14-391] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 10/01/2014] [Indexed: 12/21/2022]
Abstract
Background Parkinson’s disease (PD) is the second most common neurodegenerative disorder affecting the senile population with manifestation of motor disability and cognitive impairment. Reactive oxygen species (ROS) is implicated in the progression of oxidative stress-related apoptosis and cell death of the midbrain dopaminergic neurons. Its interplay with mitochondrial functionality constitutes an important aspect of neuronal survival in the perspective of PD. Edible bird’s nest (EBN) is an animal-derived natural food product made of saliva secreted by swiftlets from the Aerodamus genus. It contains bioactive compounds which might confer neuroprotective effects to the neurons. Hence this study aims to investigate the neuroprotective effect of EBN extracts in the neurotoxin-induced in vitro PD model. Methods EBN was first prepared into pancreatin-digested crude extract and water extract. In vitro PD model was generated by exposing SH-SY5Y cells to neurotoxin 6-hydroxydopamine (6-OHDA). Cytotoxicity of the extracts on SH-SY5Y cells was tested using MTT assay. Then, microscopic morphological and nuclear examination, cell viability test and ROS assay were performed to assess the protective effect of EBN extracts against 6-OHDA-induced cellular injury. Apoptotic event was later analysed with Annexin V-propidium iodide flow cytometry. To understand whether the mechanism underlying the neuroprotective effect of EBN was mediated via mitochondrial or caspase-dependent pathway, mitochondrial membrane potential (MMP) measurement and caspase-3 quantification were carried out. Results Cytotoxicity results showed that crude EBN extract did not cause SH-SY5Y cell death at concentrations up to 75 μg/ml while the maximum non-toxic dose (MNTD) of water extract was double of that of crude extract. Morphological observation and nuclear staining suggested that EBN treatment reduced the level of 6-OHDA-induced apoptotic changes in SH-SY5Y cells. MTT study further confirmed that cell viability was better improved with crude EBN extract. However, water extract exhibited higher efficacy in ameliorating ROS build up, early apoptotic membrane phosphatidylserine externalization as well as inhibition of caspase-3 cleavage. None of the EBN treatment had any effect on MMP. Conclusions Current findings suggest that EBN extracts might confer neuroprotective effect against 6-OHDA-induced degeneration of dopaminergic neurons, particularly through inhibition of apoptosis. Thus EBN may be a viable nutraceutical option to protect against oxidative stress-related neurodegenerative disorders such as PD.
Collapse
|
42
|
Zhang H, Duan C, Yang H. Defective autophagy in Parkinson's disease: lessons from genetics. Mol Neurobiol 2014; 51:89-104. [PMID: 24990317 DOI: 10.1007/s12035-014-8787-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/09/2014] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative movement disorder. Genetic studies over the past two decades have greatly advanced our understanding of the etiological basis of PD and elucidated pathways leading to neuronal degeneration. Recent studies have suggested that abnormal autophagy, a well conserved homeostatic process for protein and organelle turnover, may contribute to neurodegeneration in PD. Moreover, many of the proteins related to both autosomal dominant and autosomal recessive PD, such as α-synuclein, PINK1, Parkin, LRRK2, DJ-1, GBA, and ATPA13A2, are also involved in the regulation of autophagy. We propose that reduced autophagy enhances the accumulation of α-synuclein, other pathogenic proteins, and dysfunctional mitochondria in PD, leading to oxidative stress and neuronal death.
Collapse
Affiliation(s)
- H Zhang
- Center of Parkinson's Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing, 100069, China
| | | | | |
Collapse
|
43
|
Mishra AK, ur Rasheed MS, Shukla S, Tripathi MK, Dixit A, Singh MP. Aberrant Autophagy and Parkinsonism: Does Correction Rescue from Disease Progression? Mol Neurobiol 2014; 51:893-908. [DOI: 10.1007/s12035-014-8744-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
|
44
|
Coffey EE, Beckel JM, Laties AM, Mitchell CH. Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer's disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 2014; 263:111-24. [PMID: 24418614 PMCID: PMC4028113 DOI: 10.1016/j.neuroscience.2014.01.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 12/27/2022]
Abstract
Mutation in presenilin 1 (PS1) is one of the leading causes of familial Alzheimer's disease (fAD). PS1 mutation exacerbates the autophagic and lysosomal pathology in AD patients, leading to accumulation of partially degraded material in bloated lysosomes and autophagosomes - a pathology that bears some resemblance to other diseases characterized by elevated lysosomal pH, like age-related macular degeneration. In this study, we examined the effect of the PS1-fAD mutation A246E on lysosomal pH and lysosomal function, and asked whether restoration of lysosomal pH could reverse some of these changes. Lysosomal pH was elevated by 0.2-0.3 pH units in human fibroblasts with the PS1-fAD mutation. The lysosomal alkalization in PS1-fAD fibroblasts was supported by a reduction in the pH-dependent cleavage of cathepsin D and by a reduction in binding of boron-dipyrromethene (BODIPY) FL-pepstatin A to the cathepsin D active site. PS1-fAD cells had increased LC3B-II/-I ratios and p62 levels, consistent with impaired lysosomal degradation and analogous to changes induced by lysosomal alkalinization with chloroquine. PS1-fAD fibroblasts had increased expression of ATP6V1B2, ATG5, BECN1 TFEB mRNA, and of ATP6V1B2, ATG5 and beclin at the protein level, consistent with chronic impairment of autophagic and lysosomal functions in the mutant cells. Critically, cyclic adenosine monophosphate (cAMP) treatment reacidified lysosomal pH in mutant PS1-fAD; cAMP also increased the availability of active cathepsin D and lowered the LC3B-II/-I ratio. These results confirm a small elevation in the lysosomal pH of human PS1-fAD fibroblasts, demonstrate that this lysosomal alkalization is associated with chronic changes in autophagy and degradation, and suggest that treatment to reacidify the lysosomes with cAMP can reverse these changes.
Collapse
Affiliation(s)
- E E Coffey
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - J M Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - A M Laties
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - C H Mitchell
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
45
|
Assous M, Had-Aissouni L, Gubellini P, Melon C, Nafia I, Salin P, Kerkerian-Le-Goff L, Kachidian P. Progressive Parkinsonism by acute dysfunction of excitatory amino acid transporters in the rat substantia nigra. Neurobiol Dis 2014; 65:69-81. [PMID: 24480091 DOI: 10.1016/j.nbd.2014.01.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive degeneration of substantia nigra (SN) dopamine neurons, involving a multifactorial cascade of pathogenic events. Here we explored the hypothesis that dysfunction of excitatory amino acid transporters (EAATs) might be involved. Acutely-induced dysfunction of EAATs in the rat SN, by single unilateral injection of their substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC), triggers a neurodegenerative process mimicking several PD features. Dopamine neurons are selectively affected, consistent with their sustained excitation by PDC measured by slice electrophysiology. The anti-oxidant N-acetylcysteine and the NMDA receptor antagonists ifenprodil and memantine provide neuroprotection. Besides oxidative stress and NMDA receptor-mediated excitotoxicity, glutathione depletion and neuroinflammation characterize the primary insult. Most interestingly, the degeneration progresses overtime with unilateral to bilateral and caudo-rostral evolution. Transient adaptive changes in dopamine function markers in SN and striatum accompany cell loss and axonal dystrophy, respectively. Motor deficits appear when neuron loss exceeds 50% in the most affected SN and striatal dopamine tone is dramatically reduced. These findings outline a functional link between EAAT dysfunction and several PD pathogenic mechanisms/pathological hallmarks, and provide a novel acutely-triggered model of progressive Parkinsonism.
Collapse
Affiliation(s)
- Maxime Assous
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Laurence Had-Aissouni
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Paolo Gubellini
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Christophe Melon
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Imane Nafia
- Fluofarma, 2 Rue Robert Escarpit, 33607, Pessac, France
| | - Pascal Salin
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France
| | - Lydia Kerkerian-Le-Goff
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France.
| | - Philippe Kachidian
- Aix-Marseille Université, CNRS, IBDML, UMR7288, 13009, Case 907, Parc Scientifique de Luminy, 13009 Marseille, France.
| |
Collapse
|
46
|
Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging. Neurobiol Aging 2014; 35:96-108. [DOI: 10.1016/j.neurobiolaging.2013.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/28/2013] [Accepted: 07/04/2013] [Indexed: 01/25/2023]
|
47
|
Perfeito R, Cunha-Oliveira T, Rego AC. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2013; 62:186-201. [PMID: 23743292 DOI: 10.1016/j.freeradbiomed.2013.05.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
Collapse
Affiliation(s)
- Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
48
|
Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 2013; 48:883-903. [PMID: 23761046 DOI: 10.1007/s12035-013-8477-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson's disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson's disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria.
Collapse
|
49
|
Xiong N, Xiong J, Jia M, Liu L, Zhang X, Chen Z, Huang J, Zhang Z, Hou L, Luo Z, Ghoorah D, Lin Z, Wang T. The role of autophagy in Parkinson's disease: rotenone-based modeling. Behav Brain Funct 2013; 9:13. [PMID: 23497442 PMCID: PMC3606411 DOI: 10.1186/1744-9081-9-13] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/06/2013] [Indexed: 12/11/2022] Open
Abstract
Background Autophagy-mediated self-digestion of cytoplasmic inclusions may be protective against neurodegenerative diseases such as Parkinson’s disease (PD). However, excessive autophagic activation evokes autophagic programmed cell death. Methods In this study, we aimed at exploring the role of autophagy in the pathogenesis of rotenone-induced cellular and animal models for PD. Results Reactive oxygen species over-generation, mitochondrial membrane potential reduction or apoptosis rate elevation occurred in a dose-dependent fashion in rotenone-treated human neuroblastoma cell line SH-SY5Y. The time- and dose-dependent increases in autophagic marker microtubule-associated protein1 light chain 3 (LC3) expression and decreases in autophagic adaptor protein P62 were observed in this cellular model. LC3-positive autophagic vacuoles were colocalized with alpha-synuclein-overexpressed aggregations. Moreover, the number of autophagic vacuoles was increased in rotenone-based PD models in vitro and in vivo. Conclusions These data, along with our previous finding showing rotenone-induced toxicity was prevented by the autophagy enhancers and was aggravated by the autophagy inhibitors in SH-SY5Y, suggest that autophagy contributes to the pathogenesis of PD, attenuates the rotenone toxicity and possibly represents a new subcellular target for treating PD.
Collapse
Affiliation(s)
- Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei, 430022, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen D, Zhu C, Wang X, Feng X, Pang S, Huang W, Hawley RG, Yan B. A novel and functional variant within the ATG5 gene promoter in sporadic Parkinson's disease. Neurosci Lett 2013; 538:49-53. [PMID: 23384565 DOI: 10.1016/j.neulet.2013.01.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/15/2013] [Accepted: 01/20/2013] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Majority of PD are sporadic, for which genetic causes remain largely unknown. Alpha-synuclein, the main component of Lewy bodies, plays a central role in the PD pathogenesis. Macroautophagy is a highly conserved cellular process that digests dysfunctional macromolecules and damaged organelles. Accumulating evidence indicates that macroautophagy (hereafter referred to as autophagy) is involved in alpha-synuclein degradation. Dysregulation of autophagy has been observed in the brain tissues from PD patients and animal models. We hypothesized that change expression levels of autophagy-related genes (ATG), including ATG5, may contribute to PD. In this study, we genetically and functionally analyzed the ATG5 gene promoter in groups of sporadic PD patients and ethnic-matched healthy controls. A novel heterozygous variant, 106774459T>A, was identified in one female patient, but in none of controls, which significantly enhanced transcriptional activities of the ATG5 gene promoter. Furthermore, ATG5 gene expression level in the PD patient was significantly elevated than that in controls. Four novel heterozygous variants, 106774423C>A, 106774418C>A, 106774382C>A and 106774206G>A, were only found in controls. The variant, 106774464C>T, and SNP-106774030A>G (rs510432) were found in PD patients and controls with similar frequencies. Collectively, the variant identified in PD patient may change ATG5 protein levels and alter autophagy activities, contributing to PD onset as a risk factor.
Collapse
Affiliation(s)
- Dongfeng Chen
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | | | | | | | | | | | | | | |
Collapse
|