1
|
Low CY, Gan WL, Lai SJ, Tam RSM, Tan JF, Dietl S, Chuah LH, Voelcker N, Bakhtiar A. Critical updates on oral insulin drug delivery systems for type 2 diabetes mellitus. J Nanobiotechnology 2025; 23:16. [PMID: 39815320 PMCID: PMC11737240 DOI: 10.1186/s12951-024-03062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by insulin resistance, leading to elevated blood sugar levels. Exogenous insulin can counteract the diminished response to insulin and effectively controlling blood glucose levels, thereby minimizing diabetes-related complications. However, given the injectable nature of exogenous insulin, apprehensions regarding its safety and the difficulties associated with its administration have hindered its widespread and prompt utilization. In this context, advanced oral insulin formulations can improve medication adherence in patients with diabetes and enhance their quality of life. Over the last 20 years, sophisticated pharmaceutical technologies have been utilized to provide insulin through oral formulations. Despite the limited absorption of oral insulin, these studies have demonstrated encouraging outcomes in translating clinical discoveries into commercialization. This review examines the advancements of several oral insulin formulations in preclinical and clinical trials, their effectiveness and safety characteristics, and potential implications for future treatment options.
Collapse
Affiliation(s)
- Chan Yew Low
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wei Ling Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Su Jeat Lai
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Rachel Su-May Tam
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Jie Fei Tan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Stefanie Dietl
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University Parkville Campus, 381 Royal Parade, Parkville, Australia
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, København, Denmark
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Nicolas Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University Parkville Campus, 381 Royal Parade, Parkville, Australia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
2
|
Paul S, Bhuyan S, Balasoupramanien DD, Palaniappan A. Muco-Adhesive and Muco-Penetrative Formulations for the Oral Delivery of Insulin. ACS OMEGA 2024; 9:24121-24141. [PMID: 38882129 PMCID: PMC11170654 DOI: 10.1021/acsomega.3c10305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024]
Abstract
Insulin, a pivotal anabolic hormone, regulates glucose homeostasis by facilitating the conversion of blood glucose to energy or storage. Dysfunction in insulin activity, often associated with pancreatic β cells impairment, leads to hyperglycemia, a hallmark of diabetes. Type 1 diabetes (T1D) results from autoimmune destruction of β cells, while type 2 diabetes (T2D) stems from genetic, environmental, and lifestyle factors causing β cell dysfunction and insulin resistance. Currently, insulin therapy is used for most of the cases of T1D, while it is used only in a few persistent cases of T2D, often supplemented with dietary and lifestyle changes. The key challenge in oral insulin delivery lies in overcoming gastrointestinal (GI) barriers, including enzymatic degradation, low permeability, food interactions, low bioavailability, and long-term safety concerns. The muco-adhesive (MA) and muco-penetrative (MP) formulations aim to enhance oral insulin delivery by addressing these challenges. The mucus layer, a hydrogel matrix covering epithelial cells in the GI tract, poses significant barriers to oral insulin absorption. Its structure, composition, and turnover rate influence interactions with insulin and other drug carriers. Some of the few factors that influence mucoadhesion and mucopenetration are particle size, surface charge distribution, and surface modifications. This review discusses the challenges associated with oral insulin delivery, explores the properties of mucus, and evaluates the strategies for achieving excellent MA and MP formulations, focusing on nanotechnology-based approaches. The development of effective oral insulin formulations holds the potential to revolutionize diabetes management, providing patients with a more convenient and patient-friendly alternative to traditional insulin administration methods.
Collapse
Affiliation(s)
- Srijita Paul
- School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
- Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore Maryland21218, United States
| | - Snigdha Bhuyan
- School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
- Department of Biomedical Engineering, National University of Singapore, Singapore 119077
| | | | - Arunkumar Palaniappan
- Human Organ Manufacturing Engineering (HOME) Lab, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Emad-Eldin M, Balata GF, Elshorbagy EA, Hamed MS, Attia MS. Insulin therapy in type 2 diabetes: Insights into clinical efficacy, patient-reported outcomes, and adherence challenges. World J Diabetes 2024; 15:828-852. [PMID: 38766443 PMCID: PMC11099362 DOI: 10.4239/wjd.v15.i5.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 05/10/2024] Open
Abstract
Insulin therapy plays a crucial role in the management of type 2 diabetes as the disease progresses. Over the past century, insulin formulations have undergone significant modifications and bioengineering, resulting in a diverse range of available insulin products. These products show distinct pharmacokinetic and pharmacodynamic profiles. Consequently, various insulin regimens have em-erged for the management of type 2 diabetes, including premixed formulations and combinations of basal and bolus insulins. The utilization of different insulin regimens yields disparate clinical outcomes, adverse events, and, notably, patient-reported outcomes (PROs). PROs provide valuable insights from the patient's perspective, serving as a valuable mine of information for enhancing healthcare and informing clinical decisions. Adherence to insulin therapy, a critical patient-reported outcome, significantly affects clinical outcomes and is influenced by multiple factors. This review provides insights into the clinical effectiveness of various insulin preparations, PROs, and factors impacting insulin therapy adherence, with the aim of enhancing healthcare practices and informing clinical decisions for individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Mahmoud Emad-Eldin
- Department of Pharmacy Practice, Faculty of Pharmacy, Zagazig University, Zagazig HFQM+872, Al-Sharqia Governorate, Egypt
| | - Gehan F Balata
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo 44519, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al-Sharqia Governorate, Egypt
| | - Eman A Elshorbagy
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig 44519, Al-Sharqia Governorate, Egypt
| | - Mona S Hamed
- Department of Community at Faculty of Medicine, Zagazig University, Zagazig 44519, Al-Sharqia Governorate, Egypt
| | - Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al-Sharqia Governorate, Egypt
| |
Collapse
|
4
|
Zyryanov GV, Kopchuk DS, Kovalev IS, Santra S, Majee A, Ranu BC. Pillararenes as Promising Carriers for Drug Delivery. Int J Mol Sci 2023; 24:ijms24065167. [PMID: 36982244 PMCID: PMC10049520 DOI: 10.3390/ijms24065167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
Since their discovery in 2008 by N. Ogoshi and co-authors, pillararenes (PAs) have become popular hosts for molecular recognition and supramolecular chemistry, as well as other practical applications. The most useful property of these fascinating macrocycles is their ability to accommodate reversibly guest molecules of various kinds, including drugs or drug-like molecules, in their highly ordered rigid cavity. The last two features of pillararenes are widely used in various pillararene-based molecular devices and machines, stimuli-responsive supramolecular/host-guest systems, porous/nonporous materials, organic-inorganic hybrid systems, catalysis, and, finally, drug delivery systems. In this review, the most representative and important results on using pillararenes for drug delivery systems for the last decade are presented.
Collapse
Affiliation(s)
- Grigory V Zyryanov
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Dmitry S Kopchuk
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Igor S Kovalev
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russia
| | - Sougata Santra
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Adinath Majee
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Brindaban C Ranu
- Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russia
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [PMID: 36208724 DOI: 10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Currently, the only practical way to treat type 1 and advanced insulin-dependent type 2 diabetes mellitus (T1/2DM) is the frequent subcutaneous injection of insulin, which is significantly different physiologically from endogenous insulin secretion from pancreatic islets and can lead to hyperinsulinemia, pain, and infection in patients with poor compliance. Hence, oral insulin delivery has been actively pursued to revolutionize the treatment of insulin-dependent diabetes. In this review, we provide an overview of recent progress in developing poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) for oral insulin delivery. Different strategies for insulin-loaded PLGA NPs to achieve normoglycemic effects are discussed. Finally, challenges and future perspectives of PLGA NPs for oral insulin delivery are put forward.
Collapse
|
6
|
Pang H, Huang X, Xu ZP, Chen C, Han FY. Progress in oral insulin delivery by PLGA nanoparticles for the management of diabetes. Drug Discov Today 2023; 28:103393. [DOI: https:/doi.org/10.1016/j.drudis.2022.103393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2024]
|
7
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Raval J, Trivedi R, Suman S, Kukrety A, Prajapati P. NANO-BIOTECHNOLOGY AND ITS INNOVATIVE PERSPECTIVE IN DIABETES MANAGEMENT. Mini Rev Med Chem 2021; 22:89-114. [PMID: 34165408 DOI: 10.2174/1389557521666210623164052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Diabetes occurs due to the imbalance of glucose in the body known as glucose homeostasis, thus leading to metabolic changes in the body. The two stages hypoglycemia or hyperglycemia classify diabetes into various categories. Various bio-nanotechnological approaches are coupled up with nano particulates, polymers, liposome, various gold plated and solid lipid particulates, regulating transcellular transport, non specific cellular uptake, and paracellular transport, leading to oral, trans-dermal , pulmonary, buccal , nasal , specific gene oriented administration to avoid the patient's non compliance with the parental routes of administration. Phytochemicals are emerging strategies for the future prospects of diabetes management.
Collapse
Affiliation(s)
- Jigar Raval
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| | - Riddhi Trivedi
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| | - Sonali Suman
- CDSCO, Meghaninagar, Ahmedabad, Gujarat 380003, India
| | | | - Prajesh Prajapati
- Institute of Research and Development, Gujarat Forensic Sciences University, Gandhinagar-382007, Gujarat, India
| |
Collapse
|
9
|
Cunningham SM, Tanner DA. A Review: The Prospect of Inhaled Insulin Therapy via Vibrating Mesh Technology to Treat Diabetes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5795. [PMID: 32785196 PMCID: PMC7460322 DOI: 10.3390/ijerph17165795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023]
Abstract
Background: Inhaled insulin has proven to be viable and, in some aspects, a more effective alternative to subcutaneous insulin. Past and present insulin inhaler devices have not found clinical or commercial success. Insulin inhalers create a dry powder or soft mist insulin aerosol, which does not provide the required uniform particle size or aerosol volume for deep lung deposition. Methods: The primary focus of this review is to investigate the potential treatment of diabetes with a wet insulin aerosol. Vibrating mesh nebulisers allow the passive inhalation of a fine wet mist aerosol for the administration of drugs to the pulmonary system in higher volumes than other small-volume nebulisers. Results: At present, there is a significant focus on vibrating mesh nebulisers from the pharmaceutical and biomedical industries for the systemic administration of pharmaceuticals for non-traditional applications such as vaccines or the treatment of diabetes. Systemic drug administration using vibrating mesh nebulisers leads to faster-acting pharmaceuticals with a reduction in drug latency. Conclusions: Systemic conditions such as diabetes, require the innovative development of custom vibrating mesh devices to provide the desired flow rates and droplet size for effective inhaled insulin administration.
Collapse
Affiliation(s)
| | - David A. Tanner
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland;
| |
Collapse
|
10
|
Chawla R, Makkar BM, Aggarwal S, Bajaj S, Das AK, Ghosh S, Gupta A, Gupta S, Jaggi S, Jana J, Keswadev J, Kalra S, Keswani P, Kumar V, Maheshwari A, Moses A, Nawal CL, Panda J, Panikar V, Ramchandani GD, Rao PV, Saboo B, Sahay R, Setty KR, Viswanathan V, Aravind SR, Banarjee S, Bhansali A, Chandalia HB, Das S, Gupta OP, Joshi S, Kumar A, Kumar KM, Madhu SV, Mittal A, Mohan V, Munichhoodappa C, Ramachandran A, Sahay BK, Sai J, Seshiah V, Zargar AH. RSSDI consensus recommendations on insulin therapy in the management of diabetes. Int J Diabetes Dev Ctries 2019. [DOI: 10.1007/s13410-019-00783-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Jeon YR, Jung SH, Kang SY, Kim YS, Jeon TH, Lee S, Yang YJ, Kim SM, Yoon JL. Associated Factors for Target Blood Pressure Achievement after Triple Combination Therapy in Hypertensive Patients. KOREAN JOURNAL OF HEALTH PROMOTION 2019; 19:16. [DOI: 10.15384/kjhp.2019.19.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Affiliation(s)
- Ye Rim Jeon
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - So Hyun Jung
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seo Young Kang
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Sik Kim
- Department of Family Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Tae Hee Jeon
- Department of Family Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Sangyeoup Lee
- Department of Family Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Yun-Jun Yang
- Department of Family Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Seon-Mee Kim
- Department of Family Medicine, Korea University Guro Hospital, Korea University School of Medicine, Seoul, Korea
| | - Jong Lull Yoon
- Department of Family Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| |
Collapse
|
12
|
Melkoumov A, St-Jean I, Banquy X, Leclair G, Leblond Chain J. GM1-Binding Conjugates To Improve Intestinal Permeability. Mol Pharm 2018; 16:60-70. [PMID: 30422668 DOI: 10.1021/acs.molpharmaceut.8b00776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs and proteins with poor intestinal permeability have a limited oral bioavailability. To remediate this problem, a receptor-mediated endocytosis and transcytosis approach was explored. Indeed, the nontoxic β subunit of cholera toxin (CTB) can cross the intestinal barrier by binding to receptor GM1. In this study, we explored the use of GM1-binding peptides and CTB as potential covalent carriers of poorly permeable molecules. GM1-binding peptides (G23, P3) and CTB were conjugated to poorly permeable fluorescent probes such as fluorescein isothiocyanate (FITC) and albumin-FITC using triethylene glycol spacers and click chemistry. The affinity of the peptide conjugates with receptor GM1 was confirmed by isothermal titration calorimetry or microscale thermophoresis, and the results suggested the involvement of nonspecific interactions. Conjugating the model drugs to G23 and P3 improved the internalization into Caco-2 and T84 cells, although the process was not dependent on the amount of GM1 receptor. However, conjugation of bovine serum albumin FITC to CTB increased the internalization in the same cells in a GM1-dependent pathway. Peptide conjugates demonstrated a limited permeability through a Caco-2 monolayer, whereas G23 and CTB conjugates slightly enhanced permeability through a T84 cell monolayer compared to model drugs alone. Since CTB can improve the permeability of large macromolecules such as albumin, it is an interesting carrier for the improvement of oral bioavailability of various other macromolecules such as heparins, proteins, and siRNAs.
Collapse
Affiliation(s)
- Alexandre Melkoumov
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| | - Isabelle St-Jean
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| | - Xavier Banquy
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| | - Grégoire Leclair
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| | - Jeanne Leblond Chain
- Faculty of Pharmacy , Université de Montréal , H3C 3J7 Montréal , Québec , Canada
| |
Collapse
|
13
|
Huang PJ, Qu J, Saha P, Muliana A, Kameoka J. Microencapsulation of beta cells in collagen micro-disks via circular pneumatically actuated soft micro-mold (cPASMO) device. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae55e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Guan X, Chaffey PK, Wei X, Gulbranson DR, Ruan Y, Wang X, Li Y, Ouyang Y, Chen L, Zeng C, Koelsch TN, Tran AH, Liang W, Shen J, Tan Z. Chemically Precise Glycoengineering Improves Human Insulin. ACS Chem Biol 2018; 13:73-81. [PMID: 29090903 PMCID: PMC6287623 DOI: 10.1021/acschembio.7b00794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes is a leading cause of death worldwide and results in over 3 million annual deaths. While insulin manages the disease well, many patients fail to comply with injection schedules, and despite significant investment, a more convenient oral formulation of insulin is still unavailable. Studies suggest that glycosylation may stabilize peptides for oral delivery, but the demanding production of homogeneously glycosylated peptides has hampered transition into the clinic. We report here the first total synthesis of homogeneously glycosylated insulin. After characterizing a series of insulin glycoforms with systematically varied O-glycosylation sites and structures, we demonstrate that O-mannosylation of insulin B-chain Thr27 reduces the peptide's susceptibility to proteases and self-association, both critical properties for oral dosing, while maintaining full activity. This work illustrates the promise of glycosylation as a general mechanism for regulating peptide activity and expanding its therapeutic use.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Patrick K. Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xiuli Wei
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Daniel R Gulbranson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80303, United States
| | - Yuan Ruan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Yan Ouyang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80303, United States
| | - Liqun Chen
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Chen Zeng
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Theo N. Koelsch
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Amy H. Tran
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People’s Republic of China
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
15
|
Gedawy A, Martinez J, Al-Salami H, Dass CR. Oral insulin delivery: existing barriers and current counter-strategies. J Pharm Pharmacol 2017; 70:197-213. [DOI: 10.1111/jphp.12852] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022]
Abstract
Abstract
Objectives
The chronic and progressive nature of diabetes is usually associated with micro- and macrovascular complications where failure of pancreatic β-cell function and a general condition of hyperglycaemia is created. One possible factor is failure of the patient to comply with and adhere to the prescribed insulin due to the inconvenient administration route. This review summarizes the rationale for oral insulin administration, existing barriers and some counter-strategies trialled.
Key findings
Oral insulin mimics the physiology of endogenous insulin secreted by pancreas. Following the intestinal absorption of oral insulin, it reaches the liver at high concentration via the portal vein. Oral insulin on the other hand has the potential to protect pancreatic β-cells from autoimmune destruction. Structural modification, targeting a particular tissue/receptor, and the use of innovative pharmaceutical formulations such as nanoparticles represent strategies introduced to improve oral insulin bioavailability. They showed promising results in overcoming the hurdles facing oral insulin delivery, although delivery is far from ideal.
Summary
The use of advanced pharmaceutical technologies and further research in particulate carrier system delivery predominantly nanoparticle utilization would offer useful tools in delivering insulin via the oral route which in turn would potentially improve diabetic patient compliance to insulin and the overall management of diabetes.
Collapse
Affiliation(s)
- Ahmed Gedawy
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia
| | - Jorge Martinez
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia
| | - Hani Al-Salami
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Bentley, WA, Australia
- Curtin Health Innovation Research Institute, Bentley, WA, Australia
| |
Collapse
|
16
|
Kalra S, Baruah MP, Sahay R, Kishor K. Pentads and Hexads in Diabetes Care: Numbers as Targets; Numbers as Tools. Indian J Endocrinol Metab 2017; 21:794-796. [PMID: 29285436 PMCID: PMC5729661 DOI: 10.4103/ijem.ijem_281_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
| | | | - Rakesh Sahay
- Department of Endocrinology, Osmania Medical College, Hyderabad, India
| | - Kamal Kishor
- Department of Cardiology, Rama Specialty Hospital, Karnal, India
| |
Collapse
|
17
|
Mao R, Wu D, Hu S, Zhou K, Wang M, Wang Y. Secretory expression and surface display of a new and biologically active single-chain insulin (SCI-59) analog by lactic acid bacteria. Appl Microbiol Biotechnol 2017; 101:3259-3271. [PMID: 28120013 DOI: 10.1007/s00253-017-8125-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
Insulin plays an important role in drug therapies for diabetes mellitus and as the main route of insulin delivery, subcutaneous injection may cause local discomfort, hypoglycemia, hyperinsulinemia, and patient non-compliance. Therefore, oral delivery of insulin is more preferred. However, there is a low bioavailability due to insulin degradation by proteolytic enzymes and severe pH conditions along the gastrointestinal tract. In order to use the food-grade bacteria lactic acid bacteria (LAB) as oral delivery vehicles, a new and bioactive single-chain insulin (SCI-59) analog, containing the insulin B- and A-chains connected by an eight-residue linker (RSRGLPFR), was secretory expressed in Lactococcus lactis NZ3900 without using an antibiotic resistance gene and displayed onto the surface of various non-viable bacteria (NVBs) without genetic modification. Both the free SCI-59 and SCI-59 displayed on the surface of NVBs are biologically active as assayed by their ability to stimulate Akt signaling in differentiated 3T3-L1 adipocytes. Modification of the pH of the medium by NaOH addition at early time during induction can enhance the bioactivity of SCI-59. The C-terminal fused anchoring domain, three LysM repeats, does not affect the formation of disulfide bonds and/or the folding of SCI-59, and SCI-59 could be exposed properly and fully when SCI-59-3LysM bound to the surface of NVBs. Compared to the free form SCI-59, SCI-59 displayed on the surface of NVBs is more stable in simulate gastric juice. It may open new prospects for possible oral treatments of diabetes using live LAB secreting or NVBs carrying bioactive SCI analogs.
Collapse
Affiliation(s)
- Ruifeng Mao
- State Key Laboratory of Virology, College of Life Sciences|, Wuhan University, Wuhan, 430072, China
| | - Dongli Wu
- State Key Laboratory of Virology, College of Life Sciences|, Wuhan University, Wuhan, 430072, China
| | - Shimeng Hu
- State Key Laboratory of Virology, College of Life Sciences|, Wuhan University, Wuhan, 430072, China
| | - Kangping Zhou
- State Key Laboratory of Virology, College of Life Sciences|, Wuhan University, Wuhan, 430072, China
| | - Man Wang
- Institute of Translational Medicine, Medical College of Qingdao University, Qingdao, 266021, China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences|, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
Ahmadi V, Karnoosh-Yamchi J, Aliasgharzadeh A, Ostad-Rahimi A, Nikniaz Z, Salehi R, Mobasseri M. The Effect of Nanohydrogel Oral Insulin Therapy on Serum Glucose and Insulin Level in Patients with Type 2 Diabetes: A Pilot Study. PHARMACEUTICAL SCIENCES 2016. [DOI: 10.15171/ps.2016.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Kaklotar D, Agrawal P, Abdulla A, Singh RP, Mehata AK, Singh S, Mishra B, Pandey BL, Trigunayat A, Muthu MS. Transition from passive to active targeting of oral insulin nanomedicines: enhancement in bioavailability and glycemic control in diabetes. Nanomedicine (Lond) 2016; 11:1465-86. [DOI: 10.2217/nnm.16.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oral insulin nanomedicines are effective tools for therapy and management of both Type I and Type II diabetes. This review summarizes the various nanocarriers developed so far in the literature for oral delivery of insulin. It includes lipid-based (i.e., solid lipid nanoparticles and liposomes) and polymeric-based insulin nanomedicines (i.e., chitosan nanoparticles, alginate nanoparticles, dextran nanoparticles and nanoparticles of synthetic polymers) for sustained, controlled and targeted oral delivery of insulin. Mainly, goblet cell-targeting, vitamin B12 receptor-targeting, folate receptor-targeting and transferrin receptor-targeting aspects were focused. Currently, passive and active targeting approaches of oral insulin nanomedicines have improved the oral absorption of insulin and its bioavailability (up to 14%) that produced effective glycaemic control in in vivo models. These results indicate a promising future of oral insulin nanomedicines for the treatment of diabetes.
Collapse
Affiliation(s)
- Dhansukh Kaklotar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Poornima Agrawal
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Allabakshi Abdulla
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul P Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Abhishesh K Mehata
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjay Singh
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Bajarangprasad L Pandey
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anshuman Trigunayat
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
20
|
Abstract
Recent advances in the fields of molecular biology and biotechnology have allowed for the large-scale production and subsequent exploitation of the therapeutic potential of protein- and peptide-based drugs. The facilitation of delivery of this class of drugs must be tailored to meet the requirements and often the limitations dictated by the route of delivery chosen. The aim of this review is to comprehensively discuss several routes of drug delivery, detailing the uses and exploitation of each, from origins to present day approaches. Specific reference is made to the compatibility or incompatibility of each approach in the facilitation of the delivery of drugs of protein origin. Additionally, the physiological nature of the delivery route and the inherent physiological obstacles that must be considered when determining the most suitable approach to drug design and delivery enhancement are also addressed. Examples of novel protein-based drug designs and delivery methodologies that illustrate such enhancement strategies are explored.
Collapse
|
21
|
Burova TV, Grinberg NV, Tur DR, Papkov VS, Dubovik AS, Shibanova ED, Bairamashvili DI, Grinberg VY, Khokhlov AR. Ternary interpolyelectrolyte complexes insulin-poly(methylaminophosphazene)-dextran sulfate for oral delivery of insulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2273-2281. [PMID: 23339768 DOI: 10.1021/la303860t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ternary interpolyelectrolyte complexes of insulin with biodegradable synthetic cationic polymer, poly(methylaminophosphazene) hydrochloride (PMAP), and dextran sulfate (DS) were investigated by means of turbidimetry, dynamic light scattering, phase analysis, and high-sensitivity differential scanning calorimetry. Formation of ternary insoluble stoichiometric Insulin-PMAP-DS complexes was detected under conditions imitating the human gastric environment (pH 2, 0.15 M NaCl). A complete immobilization of insulin in the complexes was observed in a wide range of the reaction mixture compositions. The ternary complexes were shown to dissolve and dissociate under conditions imitating the human intestinal environment (pH 8.3, 0.15 M NaCl). The products of the complex dissociation were free insulin and soluble binary Insulin-PMAP complexes. The conformational stability of insulin in the soluble complexes of various compositions was investigated by high-sensitivity differential scanning calorimetry. The dependence of the excess denaturation free energy of insulin in these complexes on the PMAP content was obtained. The binding constants of the folded and unfolded forms of insulin to the PMAP polycation were estimated. Proteolysis of insulin involved in the insoluble ternary complexes by pepsin was investigated under physiological conditions. It was found that the complexes ensure an almost 100% protection of insulin against proteolytic degradation. The obtained results provide a perspective basis for development of oral insulin preparations.
Collapse
Affiliation(s)
- Tatiana V Burova
- AN Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Devadasu VR, Bhardwaj V, Kumar MNVR. Can controversial nanotechnology promise drug delivery? Chem Rev 2012; 113:1686-735. [PMID: 23276295 DOI: 10.1021/cr300047q] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Venkat Ratnam Devadasu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | | | | |
Collapse
|
23
|
Abstract
INTRODUCTION Although insulin products and treatment strategies have improved significantly, clinical challenges still exist. Meeting glycemic goals while minimizing glucose variability and hypoglycemia is of utmost importance when considering existing insulin therapies and designing investigational insulin treatments. METHODS A PubMed search identified relevant, peer-reviewed articles related to the evolution of insulin development for this nonsystematic review. Search terms included "animal insulin," "synthetic insulin," "regular human insulin," "insulin lispro," "insulin aspart," "insulin glulisine," "insulin glargine," "insulin detemir," "insulin degludec," "biphasic human insulin," "insulin premixes," "ultra-long acting," "oral insulin," and "inhaled insulin." RESULTS While the discovery of animal insulin significantly decreased mortality rates from diabetes, issues with availability and large variability between batches led to difficulty in determining proper doses and, subsequently, challenges in achieving glycemic control and avoiding hypoglycemia. The development of synthetic insulin created a more readily available supply, but hypoglycemia still persisted. Recombinant DNA technology solved insulin production problems and allowed for the development of better retarding agents, but pharmacokinetic/pharmacodynamic profiles still did not mimic natural insulin. Insulin premixes offered improved glycemic control, decreased intrapatient variability versus self-mixing, and required fewer injections per day; however, patient adherence remained a problem due to the need to inject 30-60 minutes before a meal for optimal control. This prompted the development of rapid-acting insulin analogs that could be injected right before a meal and long-acting insulin analogs with flatter time-action profiles. CONCLUSION Despite advances in insulin development, a need to provide more physiologic basal insulin coverage and reduce hypoglycemic risk in patients with diabetes remains. Newer insulin analogs and more convenient routes of insulin delivery have shown promising safety and efficacy results. Many patients with diabetes have not reached glycemic goals on currently available insulins. Additional studies are necessary to tailor optimal insulin delivery strategies to specific subsets of diabetes patients.
Collapse
|
24
|
Meetoo D, McAllister G, West A, Turnbull M. In pursuit of excellence in diabetes care: trends in insulin delivery. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2012; 21:588-595. [PMID: 22875294 DOI: 10.12968/bjon.2012.21.10.588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Diabetes mellitus has been estimated to affect 2.9 million people in the UK. Large-scale clinical trials conclusively demonstrate that elevated blood glucose levels are associated with an increased risk of micro- and macrovascular complications. The high rates of morbidity and mortality associated with this condition demonstrate how important effective glycaemic control is. Subcutaneous insulin injection continues to be the mainstay of therapy for all people with type 1 diabetes mellitus and the majority of individuals with type 2 diabetes mellitus. However, there are a number of barriers to insulin therapy. For example, conventional insulin delivery is arguably time consuming. Furthermore, it has been associated with common errors, such as inaccurate dosing and administration (National Patient Safety Agency, 2010). Insulin pen devices have various advantages over conventional delivery. Their ease of use and incorporation into busy lifestyles may improve diabetes control with much less effort, while maintaining adherence and quality of life. Research in insulin delivery shows there is a prospect of needle-free delivery in the near future. Despite such progress, the role of the healthcare professionals in involving, assessing, supporting and educating people having insulin therapy, including the attainment of the agreed blood glucose levels, cannot be overestimated.
Collapse
|
25
|
Henriksen K, Christiansen C, Karsdal MA. Serological biochemical markers of surrogate efficacy and safety as a novel approach to drug repositioning. Drug Discov Today 2011; 16:967-75. [DOI: 10.1016/j.drudis.2011.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/14/2011] [Accepted: 06/20/2011] [Indexed: 12/27/2022]
|