1
|
Liu S, Chen X, Qi X, Bai J, Tong B, Zhang D, Yin X, Yu P. The role of metal ion metabolism in the pathogenesis of diabetes and associated complications. Front Endocrinol (Lausanne) 2025; 16:1541809. [PMID: 40248148 PMCID: PMC12003104 DOI: 10.3389/fendo.2025.1541809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025] Open
Abstract
Diabetes is a growing health concern, accompanied by significant complications like cardiovascular disease, kidney disease, and retinopathy. Metal ions, including iron, zinc, and copper, play a crucial role in maintaining human health through their balance within the body. Disruptions in metal ion balance can intensify diabetic conditions. For instance, iron overload induces oxidative stress, which harms islet β cells and impacts vascular complications of diabetes. Abnormal copper levels heighten insulin resistance, and zinc deficiency has a strong connection with type 1 diabetes. Future in - depth exploration of the association between metal metabolism and diabetes holds the potential to uncover novel treatment avenues, enhancing both the quality of life and health prognosis for patients.
Collapse
Affiliation(s)
- Siyuan Liu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College. Nanchang University, Nanchang, Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Xuzhuo Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College. Nanchang University, Nanchang, Jiangxi, China; The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Xinrui Qi
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiahao Bai
- Laboratory of Pharmacy and Chemistry, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Bin Tong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong
Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China; Center for Clinical Precision Medicine, Jiujiang University, Jiujiang, China
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China; Department of Endocrinology and Metabolism, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Dajnowicz-Brzezik P, Żebrowska E, Maciejczyk M, Zalewska A, Chabowski A. α -lipoic acid supplementation reduces oxidative stress and inflammation in red skeletal muscle of insulin-resistant rats. Biochem Biophys Res Commun 2025; 742:151107. [PMID: 39667068 DOI: 10.1016/j.bbrc.2024.151107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/14/2024]
Abstract
α -lipoic acid (ALA) is an eight-carbon saturated fatty acid with strong antioxidant activity. Despite previous reports of ALA's protective properties in treating cardiovascular and metabolic diseases (including insulin resistance and diabetes), little is known about the compound's effects on skeletal muscle metabolism. In particular, the effect of ALA on glycooxidative and nitrosative damage in red muscles during insulin resistance is unknown. This study investigated the therapeutic potential of ALA on the antioxidant barrier as well as oxidative, nitrosative and carbonyl stress in the red skeletal muscle of rats with high-fat diet-induced insulin resistance. Male Wistar cmdb/outbred rats were divided into four equal groups: control diet (CTRL), high fat diet (HFD), CTRL + ALA (30 mg/kg body weight for 4 weeks; intragastrically) and HFD + ALA. Enzymatic and nonenzymatic antioxidant systems, protein and lipid glycoxidation, nitrosative stress, and selected inflammatory/apoptosis parameters were assessed using colorimetric, fluorimetric, and immune-enzymatic methods. ALA lowered body weight and glucose metabolism parameters in insulin-resistant rats. ALA not only strengthened enzymatic antioxidant defense (by increasing superoxide dismutase, catalase and glutathione peroxidase activity) but also stimulated the synthesis of non-enzymatic GSH. ALA supplementation inhibited lipid peroxidation (decreased lipid hydroperoxides and malondialdehyde content) and prevented protein oxidation (by lowering advanced oxidation protein products concentration) in red muscle. ALA's multifactorial actions on muscle tissue also included inhibition of inflammation and apoptosis, requiring further research to elucidate its effects in metabolic diseases.
Collapse
Affiliation(s)
- Patrycja Dajnowicz-Brzezik
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C st., 15-222, Bialystok, Poland.
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C st., 15-222, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C st., 15-222, Bialystok, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, M. Skłodowskiej-Curie 24A st., 15-276, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C st., 15-222, Bialystok, Poland
| |
Collapse
|
3
|
Figueroa AC, Díaz MS, Turco M, Fernández Trotta A, Marino B, Soria NW, Beltramo DM, Alasino RV. Effects of antioxidants on in vitro growth of Thecaphora frezzii. J Appl Microbiol 2024; 135:lxae306. [PMID: 39701825 DOI: 10.1093/jambio/lxae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024]
Abstract
AIMS Thecaphora frezzii, the causal agent of peanut smut, causes significant grain losses in Argentina. Current control strategies are insufficient to manage this pathogen. We investigate the effect of antioxidants on the in vitro development of T. frezzii hyphae, to identify compounds with antifungal activity, also evaluate protein and lipid profiles as potential targets for these compounds. METHODS AND RESULTS The antifungal activity was evaluated in both, solid and liquid media, and minimum inhibitory concentration and minimum fungicidal concentration were calculated. The protein profile was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis, while lipids were analyzed by thin-layer chromatography (TLC) and gas chromatography with flame ionization detection, both before and after hyphal treatment. Lipase activity was analyzed using agar Tween 20 and TLC, while lipid peroxidation was evaluated by the thiobarbituric acid-reactive substance (TBARS)assay. Microscopy was used to observe morphological and metabolic changes. Butylated hydroxyanisole, methylparaben, and lipoic acid showed inhibitory effects on T. frezzii. Lipoic acid was chosen for further study due to its lack of environmental toxicity. Lipoic acid induced the loss of cytosolic proteins, hydrolysis of triglycerides, and increased levels of free fatty acids, monoacylglycerols, and diacylglycerols. It also caused a decrease in ergosterol levels and alterations in the fungal cell wall and membrane, ultimately leading to cell death. CONCLUSIONS This study demonstrates the efficacy of lipoic acid in inhibiting the in vitro development of T. frezzii.
Collapse
Affiliation(s)
- Ana Cristina Figueroa
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - María Soledad Díaz
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - Mauricio Turco
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - Andrea Fernández Trotta
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - Bibiana Marino
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
| | - Néstor Walter Soria
- Cátedra de Biotecnología, Facultad de Ciencias de la salud, Unidad Asociada al CONICET: Área de Cs. Agrarias, Ingeniería, Cs. Biológicas, Universidad Católica de Córdoba, Avenida Armada Argentina 3555, X5016DHK Córdoba, Argentina
| | | | - Roxana Valeria Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba-CEPROCOR- Complejo Hospitalario, Santa María de Punilla, X6154 Córdoba, Argentina
- Consejo Nacional de Ciencia y Tecnología de Argentina-CONICET, Argentina
| |
Collapse
|
4
|
Ramadan G, Waheed G, Mohammed HA. Potential Antiallergic Activity of Two Chemically/Enzymatically-Modified Natural Products Against Active Atopic and Systemic Anaphylaxes in CD1 Mice Models. Immunol Invest 2024; 53:1359-1380. [PMID: 39258651 DOI: 10.1080/08820139.2024.2401551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Anaphylaxis is a globally increasing allergic reaction that is often fatal. Recently, our previous study reported the possibility of using the modified natural products "sodium R-lipoate (NaRLA) and enzymatically modified isoquercitrin (EMIQ)" as potential novel safe agents against the non-immunological-degranulation of mast cells. METHODS Here, we extended our previous findings by determining the antianaphylactic activity of 50 and 100 mg/kg body weight of NaRLA and EMIQ (given orally and prior to local or systemic challenge) in mice models of ovalbumin (OVA)-induced IgE-dependent active cutaneous anaphylaxis (ACA) and active systemic anaphylaxis (ASA) in comparison with sulfasalazine (SSZ, amast cell stabilizer). RESULTS The pre-treatment of mice with NaRLA or EMIQ completely succeeded, as SSZ, in suppression of the increased vascular permeability associated with IgE-dependent ACA and protected the OVA-sensitized mice from fatal ASA by reducing (p < .001) the skin mast cell degranulation, the elevated peritoneal histamine and interleukin-4 levels, along with decreasing the associated sever gastrointestinal and lung histopathological alterations and inflammation. The high dose of EMIQ prevented death in 70% of mice with anaphylactic shock, better than SSZ. DISCUSSION Our data indicated that NaRLA and EMIQ may be potential prophylactic and therapeutic candidates for the alleviation of atopic and systemic anaphylaxis.
Collapse
Affiliation(s)
- Gamal Ramadan
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Gehan Waheed
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
5
|
Superti F, Russo R. Alpha-Lipoic Acid: Biological Mechanisms and Health Benefits. Antioxidants (Basel) 2024; 13:1228. [PMID: 39456481 PMCID: PMC11505271 DOI: 10.3390/antiox13101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a bioactive molecule with significant health effects. The biological action of ALA has been ascribed to the characteristic antioxidant properties of the oxidized form (ALA) and its reduced counterpart the dihydrolipoic acid (DHLA) system. The ALA/DHLA combination represents an ideal antioxidant since it can quench radicals, is able to chelate metals, is amphiphilic, and has no major adverse effects. This unique system is able to scavenge reactive oxygen species, exerting a major effect on tissue levels of reduced forms of other antioxidants, including glutathione. For this reason, ALA is also known as the "antioxidant of antioxidants". This review analyzes the antioxidant, anti-inflammatory, and neuroprotective effects of ALA and discusses its applications as an ameliorative tool for chronic diseases and those associated with oxidative stress. Results from in vitro and in vivo studies demonstrated that ALA modulates various oxidative stress pathways suggesting its application, alone or in combination with other functional substances, as a useful support in numerous conditions, in which the balance oxidant-antioxidant is disrupted, such as neurodegenerative disorders. Based on several successful clinical studies, it has been also established that oral ALA supplements are clinically useful in relieving the complications of diabetes and other disorders including cardiovascular diseases and nerve discomforts suggesting that ALA can be considered a useful approach to improving our health.
Collapse
Affiliation(s)
- Fabiana Superti
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, RM, Italy;
- Association for Research on Integrative Oncology Therapies, (ARTOI) Foundation, Via Ludovico Micara, 73, 00165 Rome, RM, Italy
| | - Rosario Russo
- Giellepi S.p.A., Via G. Verdi, 41/Q, 20831 Seregno, MB, Italy
| |
Collapse
|
6
|
Fahmy MI, Khalaf SS, Elrayess RA. The neuroprotective effects of alpha lipoic acid in rotenone-induced Parkinson's disease in mice via activating PI3K/AKT pathway and antagonizing related inflammatory cascades. Eur J Pharmacol 2024; 980:176878. [PMID: 39127301 DOI: 10.1016/j.ejphar.2024.176878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024]
Abstract
Parkinson's disease (PD) is an idiopathic disease caused by the loss or degeneration of the dopaminergic (dopamine-producing) neurons in the brain and characterized by various inflammatory and apoptotic responses in the neuronal cells. Phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) axis is responsible for neuronal survival by providing a number of anti-inflammatory and anti-apoptotic milieu that prevent the progression of PD. Alpha-lipoic acid (ALA) is a natural cofactor that has antioxidant capacity and contributes to various metabolic processes. ALA can penetrate the blood-brain barrier and contribute to numerous neuroprotective effects. It can activate PI3K/AKT pathway with consequent reduction of different inflammatory and oxidative biomarkers. Our work aims to unfold the neuroprotective effects of ALA via targeting PI3k/AKT pathway. Forty male mice were divided into four groups: control, ALA (100 mg/kg/day; i.p.), rotenone (ROT) (1.5 mg/kg/2 days, i.p.) and rotenone + ALA for 21 days. ALA showed obvious neuroprotective effects via significant activation of PI3K/AKT pathway with subsequent decreasing level of Caspase-3. ALA resulted in prominent anti-inflammatory actions by decreasing interlukin-1β (IL-1β), tumor necrosis factor (TNF)-α and nuclear factor kabba (NFk)-B. ALA remarkably induced antioxidant activities via increasing reduced glutathione (GSH) and superoxide dismutase (SOD) levels as well as decreasing malondialdehyde (MDA) level. The substantial behavioral improvement reflected in these results was noticed in the ALA-treated mice as a reflection of the neuroprotective activities of ALA. In conclusion, ALA showed promising neuroprotective effects in rotenone-induced PD via activating the PI3K/AKT pathway and consequent inhibition of apoptotic and inflammatory biomarkers.
Collapse
Affiliation(s)
- Mohamed I Fahmy
- Pharmacology and Toxicology Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt.
| | - Samar S Khalaf
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
| | - Ranwa A Elrayess
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Namoju R, Chilaka KN. Protective effect of alpha‑lipoic acid against in utero cytarabine exposure-induced hepatotoxicity in rat female neonates. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6577-6589. [PMID: 38459988 DOI: 10.1007/s00210-024-03036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Cytarabine, an anti-metabolite drug, remains the mainstay of treatment for hematological malignancies. It causes various toxic effects including teratogenicity. Alpha lipoic acid (ALA) is a natural antioxidant reported to offer protection against hepatotoxicity induced by various pathological conditions, drugs, or chemicals. We investigated the protective effect of ALA against prenatal cytarabine exposure-induced hepatotoxicity in rat female neonates. A total of 30 dams were randomly assigned to five groups and received normal saline, ALA 200 mg/kg, cytarabine 12.5 mg/kg, cytarabine 25 mg/kg, and cytarabine 25 mg/kg + ALA 200 mg/kg, respectively, from gestational day (GD)8 to GD21. Cytarabine and ALA were administered via intraperitoneal and oral (gavage) routes, respectively. On postnatal day (PND)1, all the live female neonates (pups) were collected and weighed. The blood and liver from pups were carefully collected and used for histopathological, and biochemical evaluations. A significant and dose-dependent decrease in maternal food intake and weight gain was observed in the pregnant rats (dams) of the cytarabine groups as compared to the dams of the control group. The pups exposed to cytarabine showed a significant and dose-dependent (a) decrease in body weight, liver weight, hepatosomatic index, catalase, superoxide dismutase, glutathione, glutathione peroxidase, serum albumin levels and (b) increase in malondialdehyde, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, AST/ALT ratio, and histopathological anomalies. Maternal co-administration of ALA ameliorated these biochemical changes and histopathological abnormalities by combating oxidative stress. Future studies are warranted to explore the molecular mechanisms involved in the ALA's protective effects against prenatal cytarabine-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ramanachary Namoju
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| | - Kavitha N Chilaka
- Department of Pharmacology, GITAM School of Pharmacy, GITAM Deemed to be University, Visakhapatnam, Andhra Pradesh, 530045, India
| |
Collapse
|
8
|
Theodosis-Nobelos P, Rekka EA. The Antioxidant Potential of Vitamins and Their Implication in Metabolic Abnormalities. Nutrients 2024; 16:2740. [PMID: 39203876 PMCID: PMC11356998 DOI: 10.3390/nu16162740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Vitamins are micronutrients necessary for the normal function of the body. Although each vitamin has different physicochemical properties and a specific role in maintaining life, they may also possess a common characteristic, i.e., antioxidant activity. Oxidative stress can harm all the main biological structures leading to protein, DNA and lipid oxidation, with concomitant impairment of the cell. It has been established that oxidative stress is implicated in several pathological conditions such as atherosclerosis, diabetes, obesity, inflammation and metabolic syndrome. In this review we investigate the influence of oxidative stress on the above conditions, examine the interrelation between oxidative stress and inflammation and point out the importance of vitamins in these processes, especially in oxidative load manipulation and metabolic abnormalities.
Collapse
Affiliation(s)
| | - Eleni A. Rekka
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
9
|
Yan S, Lu J, Chen B, Yuan L, Chen L, Ju L, Cai W, Wu J. The Multifaceted Role of Alpha-Lipoic Acid in Cancer Prevention, Occurrence, and Treatment. Antioxidants (Basel) 2024; 13:897. [PMID: 39199143 PMCID: PMC11351715 DOI: 10.3390/antiox13080897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Alpha-lipoic acid (ALA) is a naturally occurring compound synthesized by mitochondria and widely distributed in both animal and plant tissues. It primarily influences cellular metabolism and oxidative stress networks through its antioxidant properties and is an important drug for treating metabolic diseases associated with oxidative damage. Nevertheless, research indicates that the mechanism by which ALA affects cancer cells is distinct from that observed in normal cells, exhibiting pro-oxidative properties. Therefore, this review aims to describe the main chemical and biological functions of ALA in the cancer environment, including its mechanisms and effects in tumor prevention and anticancer activity, as well as its role as an adjunctive drug in cancer therapy. We specifically focus on the interactions between ALA and various carcinogenic and anti-carcinogenic pathways and discuss ALA's pro-oxidative capabilities in the unique redox environment of cancer cells. Additionally, we elaborate on ALA's roles in nanomedicine, hypoxia-inducible factors, and cancer stem cell research, proposing hypotheses and potential explanations for currently unresolved issues.
Collapse
Affiliation(s)
- Shuai Yan
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Jiajie Lu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Bingqing Chen
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
| | - Liuxia Yuan
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Lin Chen
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Linglin Ju
- Institute of Liver Diseases, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China; (L.Y.); (L.C.); (L.J.)
| | - Weihua Cai
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| | - Jinzhu Wu
- Medical School, Nantong University, Nantong 226300, China; (S.Y.); (J.L.); (B.C.)
- Department of Hepatobiliary Surgery, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226300, China;
| |
Collapse
|
10
|
Jovičić-Bata J, Todorović N, Krstonošić V, Ristić I, Kovačević Z, Vuković M, Lalić-Popović M. Liquid- and Semisolid-Filled Hard Gelatin Capsules Containing Alpha-Lipoic Acid as a Suitable Dosage Form for Compounding Medicines and Dietary Supplements. Pharmaceutics 2024; 16:892. [PMID: 39065589 PMCID: PMC11279521 DOI: 10.3390/pharmaceutics16070892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Liquid-filled hard gelatin capsules may have pertinent advantages both for therapeutic effect and extemporaneous preparations of medicines. Alpha lipoic acid is a substance used in medicines and dietary supplements and there is a need for creating an appropriate formulation which would be suitable for each individual patient or consumer. Based on its biopharmaceutical and physical chemical characteristics, eight different capsule formulations were designed and characterized. Silicon dioxide was added to form a semisolid content and prevent leakage. The formulation filled with alpha lipoic acid solution in polyethylene glycol 400 showed the best performance. Although the addition of silicon dioxide to the formulation with polyethylene glycol 400 led to a change in both flow character and viscosity, the release rate did not show a statistically significant decrease (more than 85% of content was released after 5 min testing). Applied technique is a simple and an appropriate approach for compounding and could be used for other substances with similar properties.
Collapse
Affiliation(s)
- Jelena Jovičić-Bata
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (J.J.-B.); (V.K.); (M.V.); (M.L.-P.)
| | - Nemanja Todorović
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (J.J.-B.); (V.K.); (M.V.); (M.L.-P.)
| | - Veljko Krstonošić
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (J.J.-B.); (V.K.); (M.V.); (M.L.-P.)
| | - Ivan Ristić
- Faculty of Technology Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Zorana Kovačević
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Milana Vuković
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (J.J.-B.); (V.K.); (M.V.); (M.L.-P.)
| | - Mladena Lalić-Popović
- Department of Pharmacy, Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (J.J.-B.); (V.K.); (M.V.); (M.L.-P.)
- Centre for Medical and Pharmaceutical Investigations and Quality Control (CEMPhIC), Faculty of Medicine Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
11
|
Poljšak B, Milisav I. Decreasing Intracellular Entropy by Increasing Mitochondrial Efficiency and Reducing ROS Formation-The Effect on the Ageing Process and Age-Related Damage. Int J Mol Sci 2024; 25:6321. [PMID: 38928027 PMCID: PMC11203720 DOI: 10.3390/ijms25126321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
A hypothesis is presented to explain how the ageing process might be influenced by optimizing mitochondrial efficiency to reduce intracellular entropy. Research-based quantifications of entropy are scarce. Non-equilibrium metabolic reactions and compartmentalization were found to contribute most to lowering entropy in the cells. Like the cells, mitochondria are thermodynamically open systems exchanging matter and energy with their surroundings-the rest of the cell. Based on the calculations from cancer cells, glycolysis was reported to produce less entropy than mitochondrial oxidative phosphorylation. However, these estimations depended on the CO2 concentration so that at slightly increased CO2, it was oxidative phosphorylation that produced less entropy. Also, the thermodynamic efficiency of mitochondrial respiratory complexes varies depending on the respiratory state and oxidant/antioxidant balance. Therefore, in spite of long-standing theoretical and practical efforts, more measurements, also in isolated mitochondria, with intact and suboptimal respiration, are needed to resolve the issue. Entropy increases in ageing while mitochondrial efficiency of energy conversion, quality control, and turnover mechanisms deteriorate. Optimally functioning mitochondria are necessary to meet energy demands for cellular defence and repair processes to attenuate ageing. The intuitive approach of simply supplying more metabolic fuels (more nutrients) often has the opposite effect, namely a decrease in energy production in the case of nutrient overload. Excessive nutrient intake and obesity accelerate ageing, while calorie restriction without malnutrition can prolong life. Balanced nutrient intake adapted to needs/activity-based high ATP requirement increases mitochondrial respiratory efficiency and leads to multiple alterations in gene expression and metabolic adaptations. Therefore, rather than overfeeding, it is necessary to fine-tune energy production by optimizing mitochondrial function and reducing oxidative stress; the evidence is discussed in this paper.
Collapse
Affiliation(s)
- Borut Poljšak
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
| | - Irina Milisav
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia;
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Xu L, Zhang C, Bao J, Han G, Wang C, Cai Y, Xu G, Sun H, Liu M. Alpha-lipoic Acid Prevents Bone Loss in Type 2 Diabetes and Postmenopausal Osteoporosis Coexisting Conditions by Modulating the YAP/Glut4 Pathway. Cell Biochem Biophys 2024; 82:669-685. [PMID: 38261247 DOI: 10.1007/s12013-024-01216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
This study aims to characterize the bone-protecting effects of Alpha-lipoic acid (ALA), a potent antioxidant, against the detrimental effects of the coexistence of type 2 diabetes mellitus (T2DM) and postmenopausal osteoporosis (POP) and identify the possible mechanisms with particular reference to its modulation of YAP/Glut4 pathway. The T2DM and POP coexisting model was induced in mice by high fat diet (HFD) + Streptozocin (STZ) + ovariectomy (OVX). The mice in the treatment groups were given ALA for 10 weeks. In the in vitro study, MC3T3-E1 cells were induced with 500 μM methylglyoxal for 24 h with or without pretreatment with ALA for 24 h. The oxidative and antioxidative biomarkers, bone microarchitecture, histo-morphology, and related protein expression of apoptosis, osteogenic differentiation and the YAP/Glut4 pathway were detected. The results showed ALA could improve glucose tolerance, inhibit oxidative stress and apoptosis and alleviate bone loss. Further study by siRNA technology revealed that the YAP/Glut4 pathway was implicated in the pathogenesis of bone loss due to the coexistence of T2DM and POP. Taken together, the present study has demonstrated for the first time that ALA exerts potent protective effects against bone loss in T2DM and POP coexisting conditions by modulating the YAP/Glut4 pathway.
Collapse
MESH Headings
- Thioctic Acid/pharmacology
- Thioctic Acid/therapeutic use
- Animals
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/drug therapy
- Mice
- Female
- Osteoporosis, Postmenopausal/metabolism
- Osteoporosis, Postmenopausal/drug therapy
- Glucose Transporter Type 4/metabolism
- YAP-Signaling Proteins/metabolism
- Oxidative Stress/drug effects
- Signal Transduction/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Mice, Inbred C57BL
- Apoptosis/drug effects
- Cell Line
- Diet, High-Fat/adverse effects
- Humans
- Ovariectomy/adverse effects
- Antioxidants/pharmacology
- Cell Differentiation/drug effects
- Transcription Factors/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/complications
- Osteogenesis/drug effects
Collapse
Affiliation(s)
- Lei Xu
- Office of Ethics Committee, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Chunfang Zhang
- Department of Pathology, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiawu Bao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Guozhu Han
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yuanqing Cai
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.
| | - Mozhen Liu
- Department of Orthopaedics, the First Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
13
|
Chilaka KN, Namoju R. Maternal supplementation of alpha-lipoic acid ameliorates prenatal cytarabine-induced mutilation in reproductive development and function in F1 male adult rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4035-4053. [PMID: 38010397 DOI: 10.1007/s00210-023-02852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
AIMS Cytarabine (CYT), a prevalent anticancer drug for blood cancers, detrimentally affects male reproductive development and function. Alpha-lipoic acid (ALA), a universal antioxidant, offers defense against chemical-induced reproductive dysfunction. Our study sought to explore ALA's protective role against prenatal CYT-induced reproductive impairment in F1 male adult rats. MAIN METHODS Pregnant rats were divided into 5 groups and administered normal saline, ALA 200 mg/kg, CYT 12.5 mg/kg, CYT 25 mg/kg, and CYT 25 mg/kg + ALA 200 mg/ kg from gestational day 8 to 21. On postnatal day 73, F1 male rats were sacrificed, and general, oxidative, steroidogenic, spermatogenic, histological, and morphometrical parameters were evaluated. KEY FINDINGS Prenatal CYT caused dose-dependent reductions in body weight, testis, and accessory gland weights; elevated oxidative stress; delayed puberty onset; sperm anomalies (decreased count, motility, viability, seminal fructose; increased morphological anomalies); impeded steroidogenesis (lower testosterone, follicle-stimulating hormone, luteinizing hormone, 3β-Hydroxysteroid dehydrogenase(HSD), 17β-HSD, and elevated cholesterol); and testicular histopathological and morphometric disturbances. Maternal supplementation of ALA was found to alleviate all the CYT-induced reproductive disruptions. SIGNIFICANCE The present work accentuates the beneficial actions of ALA against CYT-induced impairment in reproductive development and functions by combating disruptions in oxidative balance, steroidogenesis, spermatogenesis, and testicular histological aberrations. However, future experimental and clinical studies are warranted to explore the molecular mechanisms involved in the ALA's protection against prenatal CYT-induced testicular injury.
Collapse
Affiliation(s)
- Kavitha N Chilaka
- GITAM Institute of Pharmacy, GITAM Deemed to Be University, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Ramanachary Namoju
- GITAM Institute of Pharmacy, GITAM Deemed to Be University, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India.
- Department of Pharmacology, Bhaskar Pharmacy College, Jawaharlal Nehru Technical University, Hyderabad, Telangana, 500075, India.
| |
Collapse
|
14
|
Ma W, Geng Y, Liu Y, Pan H, Wang Q, Zhang Y, Wang L. The mechanisms of white matter injury and immune system crosstalk in promoting the progression of Parkinson's disease: a narrative review. Front Aging Neurosci 2024; 16:1345918. [PMID: 38863783 PMCID: PMC11165104 DOI: 10.3389/fnagi.2024.1345918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/13/2024] Open
Abstract
Parkinson's disease (PD) is neurodegenerative disease in middle-aged and elderly people with some pathological mechanisms including immune disorder, neuroinflammation, white matter injury and abnormal aggregation of alpha-synuclein, etc. New research suggests that white matter injury may be important in the development of PD, but how inflammation, the immune system, and white matter damage interact to harm dopamine neurons is not yet understood. Therefore, it is particularly important to delve into the crosstalk between immune cells in the central and peripheral nervous system based on the study of white matter damage in PD. This crosstalk could not only exacerbate the pathological process of PD but may also reveal new therapeutic targets. By understanding how immune cells penetrate through the blood-brain barrier and activate inflammatory responses within the central nervous system, we can better grasp the impact of structural destruction of white matter in PD and explore how this process can be modulated to mitigate or combat disease progression. Microglia, astrocytes, oligodendrocytes and peripheral immune cells (especially T cells) play a central role in its pathological process where these immune cells produce and respond to pro-inflammatory cytokines such as tumor necrosis factor (TNF-α), interleukin-1β(IL-1β) and interleukin-6(IL-6), and white matter injury causes microglia to become pro-inflammatory and release inflammatory mediators, which attract more immune cells to the damaged area, increasing the inflammatory response. Moreover, white matter damage also causes dysfunction of blood-brain barrier, allows peripheral immune cells and inflammatory factors to invade the brain further, and enhances microglia activation forming a vicious circle that intensifies neuroinflammation. And these factors collectively promote the neuroinflammatory environment and neurodegeneration changes of PD. Overall, these findings not only deepen our understanding of the complexity of PD, but also provide new targets for the development of therapeutic strategies focused on inflammation and immune regulation mechanisms. In summary, this review provided the theoretical basis for clarifying the pathogenesis of PD, summarized the association between white matter damage and the immune cells in the central and peripheral nervous systems, and then emphasized their potential specific mechanisms of achieving crosstalk with further aggravating the pathological process of PD.
Collapse
Affiliation(s)
- Wen Ma
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Yifan Geng
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Youhan Liu
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Huixin Pan
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| | - Yaohua Zhang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, China
| | - Liping Wang
- Graduate School of Education, Shandong Sport University, Jinan, Shandong, China
| |
Collapse
|
15
|
Ñaupas LVS, Gomes FDR, Ferreira ACA, Morais SM, Alves DR, Teixeira DIA, Alves BG, Watanabe Y, Figueiredo JR, Tetaping GM, Rodrigues APR. Alpha lipoic acid controls degeneration and ensures follicular development in ovine ovarian tissue cultured in vitro. Theriogenology 2024; 225:55-66. [PMID: 38795511 DOI: 10.1016/j.theriogenology.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
This study aims to evaluate the effects of adding alpha lipoic acid (ALA) to the in vitro ovarian tissue culture medium, either fresh or after vitrification/warming. For this purpose, 10 ovaries from five adult sheep were used. Each pair of ovaries gave rise to 16 fragments and were randomly distributed into two groups: fresh (n = 8) and vitrified (n = 8). Two fresh fragments were fixed immediately and considered the control, while another six were cultured in vitro for 14 days in the absence; presence of a constant (100 μM/0-14 day) or dynamic (50 μM/day 0-7 and 100 μM/day 8-14) concentration of ALA. As for the vitrified fragments, two were fixed and the other six were cultured in vitro under the same conditions described for the fresh group. All the fragments were subjected to morphological evaluation, follicular development and stromal density (classical histology), DNA fragmentation (TUNEL), senescence (Sudan Black), fibrosis (Masson's Trichome), and endoplasmic reticulum stress (immunofluorescence). Measurements of the antioxidant capacity against the free radicals 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and estradiol (E2) levels in the culture medium was performed. The results showed that in the absence of ALA, in vitro culture of vitrified ovarian fragments showed a significant reduction (P < 0.05) in follicular morphology and increased the presence of senescence and tissue fibrosis (P < 0.05). Dynamic ALA maintained E2 levels unchanged (P > 0.05) until the end of vitrified ovarian tissue culture and controlled the levels of ABTS and DPPH radicals in fresh or vitrified cultures. Therefore, it is concluded that ALA should be added to the vitrified ovarian tissue in vitro culture medium to reduce the damage that leads to loss of ovarian function. To ensure steroidogenesis during in vitro culture, ALA should be added dynamically (different concentrations throughout culture).
Collapse
Affiliation(s)
- L V S Ñaupas
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - F D R Gomes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - S M Morais
- Laboratory of Natural Products Chemistry, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - D R Alves
- Laboratory of Natural Products Chemistry, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - D I A Teixeira
- Laboratory of Image Diagnosis Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, E, Brazil
| | - B G Alves
- Ovid Research Company, Berkeley, CA, United States
| | - Y Watanabe
- Vitrogen YVF Biotech, Cravinhos, SP, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - G M Tetaping
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
16
|
Sztolsztener K, Chabowski A. Hepatic-Metabolic Activity of α-Lipoic Acid-Its Influence on Sphingolipid Metabolism and PI3K/Akt/mTOR Pathway in a Rat Model of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:1501. [PMID: 38794739 PMCID: PMC11124255 DOI: 10.3390/nu16101501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Excessive lipid deposition affects hepatic homeostasis and contributes to the development of insulin resistance as a crucial factor for the deterioration of simple steatosis to steatohepatitis. So, it is essential to search for an effective agent for a new therapy for hepatic steatosis development before it progresses to the more advanced stages. Our study aimed to evaluate the potential protective effect of α-lipoic acid (α-LA) administration on the intrahepatic metabolism of sphingolipid and insulin signaling transduction in rats with metabolic dysfunction-associated steatotic liver disease (MASLD). The experiment was conducted on male Wistar rats subjected to a standard diet or a high-fat diet (HFD) and an intragastrically α-LA administration for eight weeks. High-performance liquid chromatography (HPLC) was used to determine sphingolipid content. Immunoblotting was used to measure the expression of selected proteins from sphingolipid and insulin signaling pathways. Multiplex assay kit was used to assess the level of the phosphorylated form of proteins from PI3K/Akt/mTOR transduction. The results revealed that α-LA decreased sphinganine, dihydroceramide, and sphingosine levels and increased ceramide level. We also observed an increased the concentration of phosphorylated forms of sphingosine and sphinganine. Changes in the expression of proteins from sphingolipid metabolism were consistent with changes in sphingolipid pools. Treatment with α-LA activated the PI3K/Akt/mTOR pathway, which enhanced the hepatic phosphorylation of Akt and mTOR. Based on these data, we concluded that α-lipoic acid may alleviate glucose intolerance and may have a protective influence on the sphingolipid metabolism under HFD; thus, this antioxidant appears to protect from MASLD development and steatosis deterioration.
Collapse
Affiliation(s)
- Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, Mickiewicz 2C Str., 15-222 Bialystok, Poland;
| | | |
Collapse
|
17
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
18
|
Hosny EN, Sawie HG, Abou-Seif HS, Khadrawy YA. Effect of caffeine-chitosan nanoparticles and α-lipoic acid on the cardiovascular changes induced in rat model of obesity. Int Immunopharmacol 2024; 129:111627. [PMID: 38309094 DOI: 10.1016/j.intimp.2024.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
The current research aims to study the therapeutic efficacy of alpha-lipoic acid (α-LA) and caffeine-loaded chitosan nanoparticles (Caf-CNs) against cardiovascular complications induced by obesity. Rats were divided randomly into: control, high fat diet (HFD) induced obesity rat model, obese rats treated with α-LA and/or Caf-CNs. Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) as well as activities of lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) significantly increased in the serum of obese rats. In addition, plasma atherogenic index, atherogenic coefficient and Castelli's risk indices I and II showed a significant increase. Additionally, levels of malondialdehyde (MDA) and nitric oxide (NO) and activity of monoamine oxidase (MAO) were significantly elevated in heart tissues of obese rats. However, cardiac Na+/K+-ATPase and acetylcholinesterase (AchE) activities and reduced glutathione (GSH), serotonin (5-HT), norepinephrine (NE) and dopamine (DA) as well as serum high-density lipoprotein cholesterol (HDL-C) were significantly reduced in obese rats. Treatment with α-LA and/or Caf-CNs ameliorated almost all the biochemical and histopathological alterations caused by obesity. In conclusion, the present data revealed that α-LA and/or Caf-CNs may be an effective therapeutic approach against cardiac complications caused by obesity through their antilipemic, anti-atherogenic, antioxidant, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Hussein G Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Howida S Abou-Seif
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
19
|
Mosallaei N, Malaekeh-Nikouei A, Sarraf Shirazi S, Behmadi J, Malaekeh-Nikouei B. A comprehensive review on alpha-lipoic acid delivery by nanoparticles. BIOIMPACTS : BI 2024; 14:30136. [PMID: 39493899 PMCID: PMC11530970 DOI: 10.34172/bi.2024.30136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 11/05/2024]
Abstract
Alpha-lipoic acid (ALA) has garnered significant attention for its potential therapeutic benefits across a wide spectrum of health conditions. Despite its remarkable antioxidant properties, ALA is hindered by challenges such as low bioavailability, short half-life, and unpleasant odor. To overcome these limitations and enhance ALA's therapeutic efficacy, various nanoparticulate drug delivery systems have been explored. This comprehensive review evaluates the application of different nanoparticulate carriers, including lipid-based nanoparticles (solid lipid nanoparticles, niosomes, liposomes, nanostructured lipid carriers (NLCs), and micelles), nanoemulsions, polymeric nanoparticles (nanocapsules, PEGylated nanoparticles, and polycaprolactone nanoparticles), films, nanofibers, and gold nanoparticles, for ALA delivery. Each nanoparticulate system offers unique advantages, such as improved stability, sustained release, enhanced bioavailability, and targeted delivery. For example, ALA-loaded SLNs demonstrated benefits for skin care products and skin rejuvenation. ALA encapsulated in niosomes showed potential for treating cerebral ischemia, a condition largely linked to stroke. ALA-loaded cationic nanoemulsions showed promise for ophthalmic applications, reducing vascular injuries, and corneal disorders. Coating liposomes with chitosan further enhanced stability and performance, promoting drug absorption through the skin. This review provides a comprehensive overview of the advancements in nanoparticulate delivery systems for ALA, highlighting their potential to overcome the limitations of ALA administration and significantly enhance its therapeutic effectiveness. These innovative approaches hold promise for the development of improved ALA-based treatments across a broad spectrum of health conditions.
Collapse
Affiliation(s)
- Navid Mosallaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Setayesh Sarraf Shirazi
- Student research committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behmadi
- Student research committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
22
|
Sawie HG, Khadrawy YA, El-Gizawy MM, Mourad HH, Omara EA, Hosny EN. Effect of alpha-lipoic acid and caffeine-loaded chitosan nanoparticles on obesity and its complications in liver and kidney in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3017-3031. [PMID: 37306714 PMCID: PMC10567965 DOI: 10.1007/s00210-023-02507-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023]
Abstract
The present work investigated the effect of α-lipoic acid (ALA) and caffeine-loaded chitosan nanoparticles (CAF-CS NPs) on obesity and its hepatic and renal complications in rats. Rats were divided into control, rat model of obesity induced by high fat diet (HFD), and obese rats treated with ALA and/or CAF-CS NPs. At the end of the experiment, the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) and the levels of urea, creatinine, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were determined in the sera of animals. In addition, malondialdehyde (MDA), nitric oxide (NO), and reduced glutathione (GSH) were measured in hepatic and renal tissues. Renal Na+, K+-ATPase was assessed. The histopathological changes were examined in the hepatic and renal tissues. Obese rats showed a significant increase in AST, ALT, ALP, urea, and creatinine. This was associated with a significant increase in IL-1β, TNF-α, MDA, and NO. A significant decrease in hepatic and renal GSH and renal Na+, K+-ATPase activity was recorded in obese rats. Obese rats also showed histopathological alterations in hepatic and renal tissues. Treatment with ALA and/or CAF-CS NPs reduced the weight of obese rats and ameliorated almost all the hepatic and renal biochemical and histopathological changes induced in obese rats. In conclusion, the present findings indicate that ALA and/or CAF-CS NPs offered an effective therapy against obesity induced by HFD and its hepatic and renal complications. The therapeutic effect of ALA and CAF-CS NPs could be mediated through their antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Hussein G Sawie
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt
| | - Yasser A Khadrawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt
| | - Mayada M El-Gizawy
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt
| | - Hagar H Mourad
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt
| | - Enayat A Omara
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Eman N Hosny
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Behouth St, Giza, Egypt.
| |
Collapse
|
23
|
Álvarez-Córdoba M, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Gómez-Fernández D, Piñero-Pérez R, Reche-López D, Munuera-Cabeza M, Suárez-Carrillo A, Romero-González A, Romero-Domínguez JM, López-Cabrera A, Armengol JÁ, Sánchez-Alcázar JA. Patient-Derived Cellular Models for Polytarget Precision Medicine in Pantothenate Kinase-Associated Neurodegeneration. Pharmaceuticals (Basel) 2023; 16:1359. [PMID: 37895830 PMCID: PMC10609847 DOI: 10.3390/ph16101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The term neurodegeneration with brain iron accumulation (NBIA) brings together a broad set of progressive and disabling neurological genetic disorders in which iron is deposited preferentially in certain areas of the brain. Among NBIA disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by pathologic variants in the PANK2 gene codifying the enzyme pantothenate kinase 2 (PANK2). To date, there are no effective treatments to stop the progression of these diseases. This review discusses the utility of patient-derived cell models as a valuable tool for the identification of pharmacological or natural compounds for implementing polytarget precision medicine in PKAN. Recently, several studies have described that PKAN patient-derived fibroblasts present the main pathological features associated with the disease including intracellular iron overload. Interestingly, treatment of mutant cell cultures with various supplements such as pantothenate, pantethine, vitamin E, omega 3, α-lipoic acid L-carnitine or thiamine, improved all pathophysiological alterations in PKAN fibroblasts with residual expression of the PANK2 enzyme. The information provided by pharmacological screenings in patient-derived cellular models can help optimize therapeutic strategies in individual PKAN patients.
Collapse
Affiliation(s)
- Mónica Álvarez-Córdoba
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Marta Talaverón-Rey
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Suleva Povea-Cabello
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Paula Cilleros-Holgado
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - David Gómez-Fernández
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Rocío Piñero-Pérez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Diana Reche-López
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Manuel Munuera-Cabeza
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra Suárez-Carrillo
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Ana Romero-González
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Jose Manuel Romero-Domínguez
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - Alejandra López-Cabrera
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| | - José Ángel Armengol
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, 41013 Seville, Spain;
| | - José Antonio Sánchez-Alcázar
- Andalusian Centre for Developmental Biology (CABD-CSIC-Pablo de Olavide University), 41013 Seville, Spain; (M.Á.-C.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (D.G.-F.); (R.P.-P.); (D.R.-L.); (M.M.-C.); (A.S.-C.); (A.R.-G.); (J.M.R.-D.); (A.L.-C.)
| |
Collapse
|
24
|
Izadi A, Soukhtanloo M, Mirzavi F, Jalili-Nik M, Sadeghi A. Alpha-Lipoic Acid, Auraptene, and Particularly Their Combination Prevent the Metastasis of U87 Human Glioblastoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8618575. [PMID: 37496822 PMCID: PMC10368506 DOI: 10.1155/2023/8618575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Background The primary malignant brain tumor glioblastoma multiforme (GBM) is most commonly detected in individuals over 60 years old. The standard therapeutic approach for GBM is radiotherapy combined with temozolomide. Recently, herbal products, such as alpha-lipoic acid (ALA) and auraptene (AUR), have shown promising anticancer effects on various cancer cells and animal models. However, it is not well understood how ALA, AUR, and their combination in GBM work to combat cancer. Thus, the purpose of this study was to investigate the antimetastatic effects of the ALA-AUR combination on U87 human glioblastoma cells. Methods The inhibitory effects of ALA, AUR, and the ALA/AUR combination on the migration and metastasis of U87 cells were evaluated using a wound healing test and gelatin zymography. The expression levels of matrix metalloproteinase MMP-2 and MMP-9 were assessed at the transcriptional and translational levels using quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. Results Our findings revealed that combination therapy reduced cell migration and metastasis, which was indicated by the reduction in MMP-2/-9 expression both at mRNA and protein levels, as well as their enzymatic activity in U87 cells. Conclusion This study demonstrated that the combination of ALA and AUR effectively inhibited the migration and metastasis of U87 cells. Thus, given their safety and favorable specifications, the combination of these drugs can be a promising candidate for GBM treatment as primary or adjuvant therapy.
Collapse
Affiliation(s)
- Azam Izadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Soukhtanloo
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Jalili-Nik
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Skibska B, Kochan E, Stanczak A, Lipert A, Skibska A. Antioxidant and Anti-inflammatory Effects of α-Lipoic Acid on Lipopolysaccharide-induced Oxidative Stress in Rat Kidney. Arch Immunol Ther Exp (Warsz) 2023; 71:16. [PMID: 37378741 DOI: 10.1007/s00005-023-00682-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
α-Lipoic acid (α-LA) is a naturally occurring organosulfur component. Oxidative stress plays an essential role in the pathogenesis of various diseases, such as kidney and cardiovascular diseases, diabetes, neurodegenerative disorders, cancer and aging. Kidneys are especially vulnerable to oxidative stress and damage. The aim of the study was to evaluate the effect of α-LA on lipopolysaccharide (LPS)-induced oxidative stress parameters in rat kidneys. The experimental rats were divided into four groups: I-control (0.9% NaCl i.v.); II-α-LA (60 mg/kg b.w. i.v.); III-LPS (30 mg/kg b.w. i.v.); and IV-LPS + LA (30 mg/kg b.w. i.v. and 60 mg/kg b.w. i.v., respectively). In kidney homogenates the concentration of thiobarbituric acid reactive substances (TBARS), hydrogen peroxide (H2O2), sulfhydryl groups (-SH), total protein, superoxide dismutase (SOD), total glutathione (tGSH), reduced glutathione (GSH), glutathione disulphide (GSSG) and the GSH/GSSG ratio were determined. In addition, the levels of tumour necrosis factor (TNF)-α, and interleukin (IL)-6 were measured to assess inflammation and was estimated kidney oedema. Studies have shown that α-LA administered after LPS administration attenuated kidney oedema and significantly decreased TBARS, H2O2, TNF-α, and IL-6 levels in rat kidneys. α-LA also resulted in increase -SH group, total protein, and SOD levels and ameliorated the GSH redox status when compared to the LPS group. The results suggest that α-LA plays an important role against LPS-induced oxidative stress in kidney tissue as well as downregulating the expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Beata Skibska
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Stanczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Anna Lipert
- Department of Sports Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Skibska
- Department of Biomolecular Chemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
26
|
Rodella U, Honisch C, Gatto C, Ruzza P, D'Amato Tóthová J. Antioxidant Nutraceutical Strategies in the Prevention of Oxidative Stress Related Eye Diseases. Nutrients 2023; 15:nu15102283. [PMID: 37242167 DOI: 10.3390/nu15102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review aims to discuss the delicate balance between the physiological production of reactive oxygen species and the role of antioxidant nutraceutical molecules in managing radicals in the complex anatomical structure of the eye. Many molecules and enzymes with reducing and antioxidant potential are present in different parts of the eye. Some of these, such as glutathione, N-acetylcysteine, α-lipoic acid, coenzyme Q10, and enzymatic antioxidants, are endogenously produced by the body. Others, such as plant-derived polyphenols and carotenoids, vitamins B2, C, and E, zinc and selenium, and omega-3 polyunsaturated fatty acids, must be obtained through the diet and are considered essential nutrients. When the equilibrium between the production of reactive oxygen species and their scavenging is disrupted, radical generation overwhelms the endogenous antioxidant arsenal, leading to oxidative stress-related eye disorders and aging. Therefore, the roles of antioxidants contained in dietary supplements in preventing oxidative stress-based ocular dysfunctions are also discussed. However, the results of studies investigating the efficacy of antioxidant supplementation have been mixed or inconclusive, indicating a need for future research to highlight the potential of antioxidant molecules and to develop new preventive nutritional strategies.
Collapse
Affiliation(s)
- Umberto Rodella
- Fondazione Banca degli Occhi del Veneto Onlus (FBOV), 30174 Zelarino, Italy
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy
| | - Claudio Gatto
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy
| | - Jana D'Amato Tóthová
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| |
Collapse
|
27
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
28
|
Islam MS, Aryal ACS, Rahman MM, Abry MF, Salman NSM, Ahmed ZM. Inhibition of Silver Diamine Fluoride-induced Tooth Discoloration by Using Natural Antioxidant: In Vitro Study. J Contemp Dent Pract 2023; 24:278-284. [PMID: 38149804 DOI: 10.5005/jp-journals-10024-3512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
AIM Silver diamine fluoride (SDF) is a well-known caries preventive aid capable of arresting carious lesions and preventing secondary caries formation. Despite having the caries prevention potential, the clinical use of SDF is limited due to the tooth discoloration caused by SDF. The objective of this study was to evaluate the efficiency of natural antioxidants to inhibit SDF-induced tooth discoloration. MATERIALS AND METHODS A total of 32 bovine teeth were polished to create a 6 mm circular window on the middle 1/3 (for enamel) or on the cervical 1/3 (for dentin) of the labial surface. Specimens were treated either with SDF alone or SDF followed by ascorbic acid (AA)/alpha lipoic acid (ALA)/7th generation bonding materials. The color parameters Lightness (L*), Chroma (C*), and Hue (H*) of the tooth window were measured at pretreatment, 1-hour, 1-week, and 1-month posttreatment using a digital color chromometer. RESULTS Repeated measure ANOVA showed a significant tooth color alteration at 1-hour posttreatment. The L* and H* values dropped and C* value elevated significantly in 1-hour posttreatment measurement. All experimental groups showed significant tooth color alteration after treatment (p < 0.05) and were unable to reverse the discoloration even after 1-month period except the ALA group which did not show any significant (p > 0.05) color alteration compared with the pretreatment value. CONCLUSIONS Within the limitation of the in vitro model and according to the results of this study, it can be concluded that ALA has the potential to prevent SDF-induced tooth discoloration; however, AA was unable to prevent the discoloration. CLINICAL SIGNIFICANCE SDF induces discoloration of enamel and dentin can be reversed by applying Alpha lipoic acid immediacy after SDF application.
Collapse
Affiliation(s)
- Md Sofiqul Islam
- Department of Operative Dentistry, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates, Phone: +971 7 2222593(ext-147); +971 58 8204155, e-mail: ;
| | - A C Smriti Aryal
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Muhammed Mustahsen Rahman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Maryam Fuad Abry
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Noor Sayed Majed Salman
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| | - Zainab Mohamed Ahmed
- RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras Al-Khaimah, United Arab Emirates
| |
Collapse
|
29
|
Genazzani AD, Genazzani AR. Polycystic Ovary Syndrome as Metabolic Disease: New Insights on Insulin Resistance. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:71-77. [PMID: 37313240 PMCID: PMC10258623 DOI: 10.17925/ee.2023.19.1.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 06/15/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a very frequent disease that affects reproductive ability and menstrual regularity. Other than the criteria established at the Rotterdam consensus, in these last few years a new issue, insulin resistance, has been found frequently, and at a very high grade, in patients with PCOS. Insulin resistance occurs for several factors, such as overweight and obesity, but it is now clear that it occurs in patients with PCOS with normal weight, thus supporting the hypothesis that insulin resistance is independent of body weight. Evidence shows that a complex pathophysiological situation occurs that impairs post-receptor insulin signalling, especially in patients with PCOS and familial diabetes. In addition, patients with PCOS have a high incidence of non-alcoholic fatty liver disease related to the hyperinsulinaemia. This narrative review focuses on the recent new insights about insulin resistance in patients with PCOS, to better understand the metabolic impairment accounting for most of the clinical signs/symptoms of PCOS.
Collapse
Affiliation(s)
- Alessandro D Genazzani
- Gynaecological Endocrinology Center, Department of Obstetrics and Gynaecology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea R Genazzani
- Department of Obstetrics and Gynaecology, University of Pisa, Pisa, Italy
| |
Collapse
|
30
|
Talaverón-Rey M, Álvarez-Córdoba M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Gómez-Fernández D, Romero-González A, Suárez-Carrillo A, Munuera-Cabeza M, Cilleros-Holgado P, Reche-López D, Piñero-Pérez R, Sánchez-Alcázar JA. Alpha-lipoic acid supplementation corrects pathological alterations in cellular models of pantothenate kinase-associated neurodegeneration with residual PANK2 expression levels. Orphanet J Rare Dis 2023; 18:80. [PMID: 37046296 PMCID: PMC10091671 DOI: 10.1186/s13023-023-02687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenerative diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A (CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 4'-phosphopantetheinyl proteins which are essential for mitochondrial metabolism. METHODS This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and protein expression levels of PANK2, mitochondrial ACP (mtACP), 4''-phosphopantetheinyl and lipoylated proteins, as well as pyruvate dehydrogenase (PDH) and Complex I activity were examined. RESULTS Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neurons derived from mutant fibroblasts. CONCLUSIONS Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of α-LA.
Collapse
Affiliation(s)
- Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-UPO), Universidad Pablo de Olavide, 41013, Seville, Spain.
| |
Collapse
|
31
|
Nedić O, Penezić A, Minić S, Radomirović M, Nikolić M, Ćirković Veličković T, Gligorijević N. Food Antioxidants and Their Interaction with Human Proteins. Antioxidants (Basel) 2023; 12:antiox12040815. [PMID: 37107190 PMCID: PMC10135064 DOI: 10.3390/antiox12040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Common to all biological systems and living organisms are molecular interactions, which may lead to specific physiological events. Most often, a cascade of events occurs, establishing an equilibrium between possibly competing and/or synergistic processes. Biochemical pathways that sustain life depend on multiple intrinsic and extrinsic factors contributing to aging and/or diseases. This article deals with food antioxidants and human proteins from the circulation, their interaction, their effect on the structure, properties, and function of antioxidant-bound proteins, and the possible impact of complex formation on antioxidants. An overview of studies examining interactions between individual antioxidant compounds and major blood proteins is presented with findings. Investigating antioxidant/protein interactions at the level of the human organism and determining antioxidant distribution between proteins and involvement in the particular physiological role is a very complex and challenging task. However, by knowing the role of a particular protein in certain pathology or aging, and the effect exerted by a particular antioxidant bound to it, it is possible to recommend specific food intake or resistance to it to improve the condition or slow down the process.
Collapse
Affiliation(s)
- Olgica Nedić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
- Correspondence:
| | - Ana Penezić
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| | - Simeon Minić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana Radomirović
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Nikolić
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Tanja Ćirković Veličković
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
32
|
Tripathi AK, Ray AK, Mishra SK, Bishen SM, Mishra H, Khurana A. Molecular and Therapeutic Insights of Alpha-Lipoic Acid as a Potential Molecule for Disease Prevention. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:272-287. [PMID: 36778891 PMCID: PMC9904877 DOI: 10.1007/s43450-023-00370-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Alpha-lipoic acid is an organic, sulfate-based compound produced by plants, humans, and animals. As a potent antioxidant and a natural dithiol compound, it performs a crucial role in mitochondrial bioenergetic reactions. A healthy human body, on the other hand, can synthesize enough α-lipoic acid to scavenge reactive oxygen species and increase endogenous antioxidants; however, the amount of α-lipoic acid inside the body decreases significantly with age, resulting in endothelial dysfunction. Molecular orbital energy and spin density analysis indicate that the sulfhydryl (-SH) group of molecules has the greatest electron donating activity, which would be responsible for the antioxidant potential and free radical scavenging activity. α-Lipoic acid acts as a chelating agent for metal ions, a quenching agent for reactive oxygen species, and a reducing agent for the oxidized form of glutathione and vitamins C and E. α-Lipoic acid enantiomers and its reduced form have antioxidant, cognitive, cardiovascular, detoxifying, anti-aging, dietary supplement, anti-cancer, neuroprotective, antimicrobial, and anti-inflammatory properties. α-Lipoic acid has cytotoxic and antiproliferative effects on several cancers, including polycystic ovarian syndrome. It also has usefulness in the context of female and male infertility. Although α-lipoic acid has numerous clinical applications, the majority of them stem from its antioxidant properties; however, its bioavailability in its pure form is low (approximately 30%). However, nanoformulations have shown promise in this regard. The proton affinity and electron donating activity, as a redox-active agent, would be responsible for the antioxidant potential and free radical scavenging activity of the molecule. This review discusses the most recent clinical data on α-lipoic acid in the prevention, management, and treatment of a variety of diseases, including coronavirus disease 2019. Based on current evidence, the preclinical and clinical potential of this molecule is discussed. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-023-00370-1.
Collapse
Affiliation(s)
- Amit Kumar Tripathi
- School of Basic and Applied Science, Galgotias University, Gautam Buddha Nagar, UP Noida, India
- Molecular Biology Unit, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 India
| | - Anup Kumar Ray
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 India
| | - Siddharth Mall Bishen
- Department of Physics, Banaras Hindu University, Mahila Maha Vidyalaya, Varanasi, India
| | - Hirdyesh Mishra
- Department of Physics, Banaras Hindu University, Mahila Maha Vidyalaya, Varanasi, India
| | - Aman Khurana
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
33
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
34
|
Mehta JK, Kaur G, Buttar HS, Bagabir HA, Bagabir RA, Bagabir SA, Haque S, Tuli HS, Telessy IG. Role of the renin-angiotensin system in the pathophysiology of coronary heart disease and heart failure: Diagnostic biomarkers and therapy with drugs and natural products. Front Physiol 2023; 14:1034170. [PMID: 36909245 PMCID: PMC9995912 DOI: 10.3389/fphys.2023.1034170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in blood pressure regulation. In some cases, this steering mechanism is affected by various deleterious factors (mainly via the overactivation of the RAS) causing cardiovascular damage, including coronary heart disease (CHD) that can ultimately lead to chronic heart failure (CHF). This not only causes cardiovascular disability and absenteeism from work but also imposes significant healthcare costs globally. The incidence of cardiovascular diseases has escalated exponentially over the years with the major outcome in the form of CHD, stroke, and CHF. The involvement of the RAS in various diseases has been extensively researched with significant limelight on CHD. The RAS may trigger a cascade of events that lead to atherosclerotic mayhem, which causes CHD and related aggravation by damaging the endothelial lining of blood vessels via various inflammatory and oxidative stress pathways. Although there are various diagnostic tests and treatments available in the market, there is a constant need for the development of procedures and therapeutic strategies that increase patient compliance and reduce the associated side effects. This review highlights the advances in the diagnostic and treatment domains for CHD, which would help in subjugating the side effects caused by conventional therapy.
Collapse
Affiliation(s)
- Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Harpal S Buttar
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Rania Abubaker Bagabir
- Department of Hematology and Immunology, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetics Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Istvan G Telessy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| |
Collapse
|
35
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
36
|
Song F, Lin J, Zhang H, Guo Y, Mao Y, Liu Z, Li G, Wang Y. Long-Term Sleep Deprivation-Induced Myocardial Remodeling and Mitochondrial Dysfunction in Mice Were Attenuated by Lipoic Acid and N-Acetylcysteine. Pharmaceuticals (Basel) 2022; 16:51. [PMID: 36678548 PMCID: PMC9866495 DOI: 10.3390/ph16010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The impact of long-term sleep deprivation on the heart and its underlying mechanisms are poorly understood. The present study aimed to investigate the impact of chronic sleep deprivation (CSD) on the heart and mitochondrial function and explore an effective drug for treating CSD-induced heart dysfunction. We used a modified method to induce CSD in mice; lipoic acid (LA) and N-acetylcysteine (NAC) were used to treat CSD mice. Echocardiography, hematoxylin-eosin (H&E) staining, Sirius red staining, and immunohistochemistry were used to determine heart function and cardiac fibrosis. The serum levels of brain natriuretic peptide (BNP), superoxide Dismutase (SOD), micro malondialdehyde (MDA), and glutathione (GSH) were measured to determine cardiovascular and oxidative stress-related damage. Transmission electron microscopy was used to investigate mitochondrial damage. RNA-seq and Western blotting were used to explore related pathways. We found that the left ventricular ejection fraction (LVEF) and fraction shortening (LVFS) values were significantly decreased and myocardial hypertrophy was induced, accompanied by damaged mitochondria, elevated reactive oxygen species (ROS), and reduced SOD levels. RNA-sequence analysis of the heart tissue showed that various differentially expressed genes in the metabolic pathway were enriched. Sirtuin 1 (Sirt1) and Glutathione S-transferase A3 (Gsta3) may be responsible for CSD-induced heart and mitochondrial dysfunction. Pharmacological inhibition of ROS by treating CSD mice with LA and NAC effectively reduced heart damage and mitochondrial dysfunction by regulating Sirt1 and Gsta3 expression. Our data contribute to understanding the pathways of CSD-induced heart dysfunction, and pharmacological targeting to ROS may represent a strategy to prevent CSD-induced heart damage.
Collapse
Affiliation(s)
- Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Jiale Lin
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Houjian Zhang
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Yuli Guo
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Yijie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Zuguo Liu
- Department of Ophthalmology, Xiang’an Hospital and Xiamen Eye Center Affiliated to Xiamen University, Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen 361102, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, China
| |
Collapse
|
37
|
Espíndola KMM, Varela ELP, de Albuquerque RDFV, Figueiredo RA, dos Santos SM, Malcher NS, da S. Seabra PS, Fonseca ADN, de Azevedo Sousa KM, de Oliveira SBB, Carneiro ADS, Coleman MD, Monteiro MC. Alpha-Lipoic Acid and Its Enantiomers Prevent Methemoglobin Formation and DNA Damage Induced by Dapsone Hydroxylamine: Molecular Mechanism and Antioxidant Action. Int J Mol Sci 2022; 24:ijms24010057. [PMID: 36613503 PMCID: PMC9820452 DOI: 10.3390/ijms24010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 12/24/2022] Open
Abstract
Dapsone (DDS) therapy can frequently lead to hematological side effects, such as methemoglobinemia and DNA damage. In this study, we aim to evaluate the protective effect of racemic alpha lipoic acid (ALA) and its enantiomers on methemoglobin induction. The pre- and post-treatment of erythrocytes with ALA, ALA isomers, or MB (methylene blue), and treatment with DDS-NOH (apsone hydroxylamine) was performed to assess the protective and inhibiting effect on methemoglobin (MetHb) formation. Methemoglobin percentage and DNA damage caused by dapsone and its metabolites were also determined by the comet assay. We also evaluated oxidative parameters such as SOD, GSH, TEAC (Trolox equivalent antioxidant capacity) and MDA (malondialdehyde). In pretreatment, ALA showed the best protector effect in 2.5 µg/mL of DDS-NOH. ALA (1000 µM) was able to inhibit the induced MetHb formation even at the highest concentrations of DDS-NOH. All ALA tested concentrations (100 and 1000 µM) were able to inhibit ROS and CAT activity, and induced increases in GSH production. ALA also showed an effect on DNA damage induced by DDS-NOH (2.5 µg/mL). Both isomers were able to inhibit MetHb formation and the S-ALA was able to elevate GSH levels by stimulating the production of this antioxidant. In post-treatment with the R-ALA, this enantiomer inhibited MetHb formation and increased GSH levels. The pretreatment with R-ALA or S-ALA prevented the increase in SOD and decrease in TEAC, while R-ALA decreased the levels of MDA; and this pretreatment with R-ALA or S-ALA showed the effect of ALA enantiomers on DNA damage. These data show that ALA can be used in future therapies in patients who use dapsone chronically, including leprosy patients.
Collapse
Affiliation(s)
- Kaio Murilo Monteiro Espíndola
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Everton Luiz Pompeu Varela
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | | | - Rosiane Araújo Figueiredo
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Sávio Monteiro dos Santos
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Nívea Silva Malcher
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Pamela Suelen da S. Seabra
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Andréia do Nascimento Fonseca
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Karla Marcely de Azevedo Sousa
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Susan Beatriz Batista de Oliveira
- Central Laboratory of the State of Pará-CLSP, Belém 66823-010, PA, Brazil
- Postgraduate Program in Neuroscience and Cell Biology, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Agnaldo da Silva Carneiro
- Postgraduate Program in Medicinal Chemistry and Molecular Modeling, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
| | - Michael D. Coleman
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Marta Chagas Monteiro
- Postgraduate Program in Pharmacology and Biochemistry, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Laboratory Immunology, Microbiology and In Vitro Assays (LABEIM), Faculty of Pharmacy, Federal University of Pará/UFPA, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
38
|
Alpha-Lipoic Acid as an Antioxidant Strategy for Managing Neuropathic Pain. Antioxidants (Basel) 2022; 11:antiox11122420. [PMID: 36552628 PMCID: PMC9774895 DOI: 10.3390/antiox11122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain (NP) is the most prevalent and debilitating form of chronic pain, caused by injuries or diseases of the somatosensory system. Since current first-line treatments only provide poor symptomatic relief, the search for new therapeutic strategies for managing NP is an active field of investigation. Multiple mechanisms contribute to the genesis and maintenance of NP, including damage caused by oxidative stress. The naturally occurring antioxidant alpha-lipoic acid (ALA) is a promising therapeutic agent for the management of NP. Several pre-clinical in vitro and in vivo studies as well as clinical trials demonstrate the analgesic potential of ALA in the management of NP. The beneficial biological activities of ALA are reflected in the various patents for the development of ALA-based innovative products. This review demonstrates the therapeutic potential of ALA in the management of NP by discussing its analgesic effects by multiple antioxidant mechanisms as well as the use of patented ALA-based products and how technological approaches have been applied to enhance ALA's pharmacological properties.
Collapse
|
39
|
Effect of Alpha-Lipoic Acid Supplementation on Low-Grade Squamous Intraepithelial Lesions-Double-Blind, Randomized, Placebo-Controlled Trial. Healthcare (Basel) 2022; 10:healthcare10122434. [PMID: 36553960 PMCID: PMC9778332 DOI: 10.3390/healthcare10122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Low-grade squamous intraepithelial lesion (SIL) is a cytologic diagnosis etiologically related to human papilloma virus (HPV) infection that leads to the release of inflammation mediators, the formation of reactive oxygen species (ROS) and decreased levels of antioxidants in tissues, which is why antioxidants might be considered effective against SIL progression. This randomized double-blind placebo-controlled study aimed to investigate the effectiveness of alpha-lipoic acid (ALA) supplementation (600 mg/day) on the regression of low-grade SIL in 100 patients. Low-grade SIL was determined after the cytological screening, colposcopic examination and targeted biopsy and histological confirmation of cytological−colposcopic diagnosis. Inflammation parameters and the presence of HPV were determined by standard laboratory methods. Dietary and lifestyle habits were investigated using a standardized and validated semi-quantitative food questionnaire (FFQ). ALA supplementation significantly reduced the proportion of patients with low-grade cytological abnormalities, in comparison to placebo. Given the obtained level of significance (p < 0.001), the presented results indicate that short-term ALA supplementation shows a clinically significant effect on cervical cytology. Future studies should focus on the use of innovative formulations of ALA that might induce bioavailability and therapeutic efficiency against HPV infection and the investigation of synergistic effects of concurrent dietary/lifestyle modification and ALA supplementation in both low-grade and high-grade SIL.
Collapse
|
40
|
Alshammari GM, Abdelhalim MA, Al-Ayed MS, Al-Harbi LN, Yahya MA. The Protective Effect of α-Lipoic Acid against Gold Nanoparticles (AuNPs)-Mediated Liver Damage Is Associated with Upregulating Nrf2 and Suppressing NF-κB. Nutrients 2022; 14:nu14163327. [PMID: 36014833 PMCID: PMC9414933 DOI: 10.3390/nu14163327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/21/2022] Open
Abstract
This study examined if regulating the keap-1? Nrf2 antioxidant pathway mediated gold nanoparticles (AuNPs) induced liver damage, and examined the protective effect of co-supplement of α-lipoic acid (α-LA). Rats were separated into 4 groups (n = 8/each) as control, α-LA (200 mg/kg), AuNPs (5 µg/2.85 × 1011), and AuNPs (5 µg/2.85 × 1011) + α-LA (200 mg/kg). After 7 days, AuNPs induced severe degeneration in the livers of rats with the appearance of some fatty changes. In addition, it increased serum levels of alanine aminotransferase (ALT) and gamma-glutamyl transferase (ɣ-GTT), and aspartate aminotransferase (AST), as well as liver levels of malondialdehyde (MDA). Concomitantly, AuNPs significantly depleted hepatic levels of total glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) but increased hepatic levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). It also reduced mRNA levels of B-cell lymphoma 2 (Bcl2) and heme oxygenase-1 (HO-1) but significantly increased those of Bax and cleaved caspase-3, as well as the ratio of Bax/Bcl2. In addition, AuNPs enhanced the total and nuclear levels of NF-κB p65 but reduced the mRNA and total and nuclear protein levels of Nrf2. Of note, AuNPs did not affect the mRNA levels of keap-1. All these events were reversed by α-LA in the AuNPs-treated rats. In conclusion, α-LA attenuated AuNPs-mediated liver damage in rats by suppressing oxidative stress and inflammation, effects that are associated with upregulation/activation of Nrf2.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
41
|
Petrillo T, Semprini E, Tomatis V, Arnesano M, Ambrosetti F, Battipaglia C, Sponzilli A, Ricciardiello F, Genazzani AR, Genazzani AD. Putative Complementary Compounds to Counteract Insulin-Resistance in PCOS Patients. Biomedicines 2022; 10:biomedicines10081924. [PMID: 36009471 PMCID: PMC9406066 DOI: 10.3390/biomedicines10081924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most frequent endocrine-metabolic disorder among women at reproductive age. The diagnosis is based on the presence of at least two out of three criteria of the Rotterdam criteria (2003). In the last decades, the dysmetabolic aspect of insulin resistance and compensatory hyperinsulinemia have been taken into account as the additional key features in the etiopathology of PCOS, and they have been widely studied. Since PCOS is a complex and multifactorial syndrome with different clinical manifestations, it is difficult to find the gold standard treatment. Therefore, a great variety of integrative treatments have been reported to counteract insulin resistance. PCOS patients need a tailored therapeutic strategy, according to the patient’s BMI, the presence or absence of familiar predisposition to diabetes, and the patient’s desire to achieve pregnancy or not. The present review analyzes and discloses the main clinical insight of such complementary substances.
Collapse
Affiliation(s)
- Tabatha Petrillo
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Elisa Semprini
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Veronica Tomatis
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Melania Arnesano
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Fedora Ambrosetti
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christian Battipaglia
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Alessandra Sponzilli
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Francesco Ricciardiello
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Andrea R. Genazzani
- Department of Obstetrics and Gynecology, University of Pisa, 56126 Pisa, Italy
| | - Alessandro D. Genazzani
- Gynecological Endocrinology Center, Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia, 41121 Modena, Italy
- Correspondence:
| |
Collapse
|
42
|
Buchholzer ML, Kirch M, Kirchner C, Knöss W. Toxicological assessment compilation of selected examples of raw materials for homeopathic and anthroposophic medicinal products - Part 2. Regul Toxicol Pharmacol 2022; 134:105215. [PMID: 35842056 DOI: 10.1016/j.yrtph.2022.105215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
The present successor article comprises more than 180 substances representing a continuative compilation of toxicologically evaluated starting materials prompted by the wide use and high number of homeopathic and anthroposophic medicinal products (HMP) on the market together with the broad spectrum of active substances of botanical, mineral, chemical or animal origin contained therein, and by the equally important requirement of applying adequate safety principles as with conventional human medicinal products in line with the European regulatory framework. The February 2019 issue of the Regulatory Toxicology and Pharmacology journal includes the antecedent article bearing the same title and entailing safety evaluations of more than 170 raw materials processed in HMP. This part 2 article highlights scientific evaluation following recognized methods used in toxicology with a view to drug-regulatory authority's assessment principles and practice in the context of HMP, and offers useful systematic, scientifically substantiated and simultaneously pragmatic approaches in differentiated HMP risk assessment. As a unique feature, both articles provide the most extensive publicly available systematic compilation of a considerable number of substances processed in HMP as a transparent resource for applicants, pharmaceutical manufacturers, the scientific community and healthcare authorities to actively support regulatory decision making in practice.
Collapse
Affiliation(s)
- Marie-Luise Buchholzer
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany(1).
| | - Marion Kirch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany(1)
| | - Christiane Kirchner
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany(1)
| | - Werner Knöss
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany(1)
| |
Collapse
|
43
|
Roszkowska AM, Spinella R, Oliverio GW, Postorino EI, Signorino GA, Rusciano D, Aragona P. Effects of the Topical Use of the Natural Antioxidant Alpha-Lipoic Acid on the Ocular Surface of Diabetic Patients with Dry Eye Symptoms. FRONT BIOSCI-LANDMRK 2022; 27:202. [PMID: 35866400 DOI: 10.31083/j.fbl2707202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 06/07/2022] [Indexed: 01/03/2025]
Abstract
PURPOSE The purpose of this study is to investigate the effects of the treatment with eye-drops based on a combination of antioxidant and mucomimetic molecules, namely 0.1% alpha-lipoic acid (ALA) and 0.3% hydroxy-propyl-methylcellulose (HPMC) on the ocular surface of diabetic patients with dry eye symptoms. METHODS Seventy patients, 42 M and 28 F, aged from 50 to79 years (mean 62.1 ± 10.5), affected by type II diabetes mellitus, were enrolled and divided in two groups treated for 2 months as follows: Group 1 (35 patients), received topical ALA/HPMC three times a day, Group 2 (35 patients) received topical HPMC (0.3%) alone, three times a day. The main outcome measures were: Ocular Surface Disease Index (OSDI), tear film break-up time (TBUT), corneal fluorescein staining, Schirmer I test, corneal sensitivity. An examination of tear film morphology with confocal microscopy was carried out in a subset of patients of each group at baseline and after two months. Statistical analysis was performed with t-test for the parametric data and Mann-Whitney U-test or chi-squared test for the nonparametric data. RESULTS Both treatments resulted in significant improvements of BUT, OSDI and tear film morphology, although the improvements observed in group 1 showed a higher trend than what observed for group 2. Moreover, only in group 1 a significant improvement was visible for corneal staining, and no significant improvements were observed in any group for Schirmer I and sensitivity. CONCLUSIONS These results confirmed the efficacy of HPMC in the treatment of diabetic dry eye and indicated that the addition of a strong self-regenerating antioxidant like ALA may give a distinctive advantage for the healing of corneal defects (as evidenced by corneal staining), beside improving HPMC efficacy on three other parameters (BUT, OSDI score, tear morphology). Therefore, the addition of a strong antioxidant like ALA can be helpful in preventing or treating ocular surface defects in diabetic patients, in which the oxidative damage is predominant.
Collapse
Affiliation(s)
- Anna M Roszkowska
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy
- Ophthalmology Department, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland
| | - Rosaria Spinella
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy
| | - Giovanni W Oliverio
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy
| | - Elisa I Postorino
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy
| | - Giuseppe A Signorino
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy
| | - Dario Rusciano
- Fidia Pharmaceuticals, Research Center, 95123 Catania, Italy
| | - Pasquale Aragona
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98125 Messina, Italy
| |
Collapse
|
44
|
Alhakamy NA, Mohamed GA, Fahmy UA, Eid BG, Al-Rabia MW, Khedr AIM, Nasrullah MZ, Ibrahim SRM, Abdel-Naim AB, Ahmed OAA, Md S. Thioctamer: a novel thioctic acid-glatiramer acetate nanoconjugate expedites wound healing in diabetic rats. Drug Deliv 2022; 29:1776-1784. [PMID: 35642489 PMCID: PMC9176700 DOI: 10.1080/10717544.2022.2081382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The current work aims to design thioctic acid (TA) and glatiramer acetate (GA) nanoconjugate (thioctamer) loaded hydrogel formula as well as evaluation of thioctamer preclinical efficacy in expediting wound healing in a rat model of the diabetic wound. Thioctamer was prepared by conjugation of GA and TA in a 1:1 molar ratio. Particle size, zeta potential, and thermodynamic stability of the prepared thioctamer were assessed. Thioctamer was loaded in hydroxypropyl methylcellulose-based hydrogel and in vitro release study was investigated. The ability of thioctamer to enhance the process of wound healing in diabetic rats was investigated by assessing wound contraction and immunohistochemical assessment of the inflammation markers IL-6 and TNF-α. The results demonstrated that thioctamer showed particle size of 137 ± 21.4 nm, polydispersity index (PDI) of 0.235, and positive zeta potential value of 7.43 ± 4.95 mV. On day 7 of making a skin excision, diabetic rat wounds administered thioctamer preparation showed almost complete healing (95.6 ± 8.6%). Meanwhile, % of wound contraction in animals treated with TA or GA groups exhibited values amounting to 56.5 ± 5.8% and 62.6 ± 7.1%, respectively. Histological investigation showed that the highest healing rate was noted in the thioctamer group animals, as the surface of the wound was nearly fully protected by regenerated epithelium with keratinization, with few inflammatory cells noticed. Thioctamer significantly (p<.05) inhibited IL-6 and TNF-α expression as compared with sections obtained from the negative control, TA, GA, or positive control group animals on day 7. The evidence of the ability of thioctamer to significantly expedite wound healing in the diabetic rats is presented.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed W Al-Rabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amgad I M Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed Z Nasrullah
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia.,Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
45
|
Ben Salem M, Affes H, Dhouibi R, Charfi S, Turki M, Hammami S, Ayedi F, Sahnoun Z, Zeghal KM, Ksouda K. Preventive effect of Artichoke ( Cynara scolymus L.) in kidney dysfunction against high fat-diet induced obesity in rats. Arch Physiol Biochem 2022; 128:586-592. [PMID: 31855072 DOI: 10.1080/13813455.2019.1703755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A high-fat diet (HFD) promotes oxidative stress, which contributes to the development of kidney dysfunction. We examined the protective effects of an ethanol extract of artichoke leaves (EEA) compared to Atorvastatin (ATOR) in the kidney of Wistar rats fed a high-fat diet. The experimental animals were divided into five groups: control (Cont), HFD, HFD treated with EEA (200 mg/kg), HFD treated with EEA (400 mg/kg), and HFD treated with ATOR. Organ weights, lipid profile, renal markers, and antioxidants enzymes were measured. Oral administration of EEA (200 and 400 mg/kg) for 60 days showed a significant decrease in organ weights and kidney markers levels accompanied by decreasing in oxidative stress biomarkers as compared to HFD groups. The histological findings showed a renoprotective effect of artichoke extract. These findings suggest that EEA exerts anti-oxidant kidney effects in HFD- induced obese rats.
Collapse
Affiliation(s)
- Maryem Ben Salem
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Hanen Affes
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Raouia Dhouibi
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Slim Charfi
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Mouna Turki
- Biochemistry Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Serria Hammami
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fatma Ayedi
- Biochemistry Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Zouheir Sahnoun
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Khaled Mounir Zeghal
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Kamilia Ksouda
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| |
Collapse
|
46
|
Namoju R, Chilaka NK. Maternal supplementation of α-lipoic acid attenuates prenatal cytarabine exposure-induced oxidative stress, steroidogenesis suppression and testicular damage in F1 male rat fetus. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cytarabine (Ara-C) is an anticancer drug, which is considered as the mainstay in the treatment of hematological malignancies, known to cause various teratogenic effects. Alpha-lipoic acid (ALA) is a natural antioxidant and its supplementation proved to improve pregnancy outcomes in several pathological conditions. We aimed at exploring the benefits of maternal supplementation of ALA against in-utero Ara-C exposure-induced testicular toxicity in rat fetuses.
Methods
Pregnant rats (dams) received normal saline (control group), ALA 200 mg/kg (ALA group), Ara-C 12.5 mg/kg (Ara-C 12.5 group), Ara-C 25 mg/kg (Ara-C 25 group), and Ara-C 25 mg/kg + ALA 200 mg/kg (protection group) from gestational day (GD)8 to GD21. Ara-C and ALA were administered via the intraperitoneal and oral routes, respectively. The day of parturition was considered as postnatal day (PND)1. On PND1, all the live male pups were collected. The maternal parameters evaluated include (a) food intake, (b) bodyweight, and (c) oxidative stress (OS) markers. The fetal parameters evaluated include (a) bodyweight, (b) anogenital distances (AGD), (c) testicular weight (d) testicular testosterone levels (e) testicular histopathology, and (f) morphometrical parameters.
Results
A significant and dose-dependent decrease in maternal food intake, weight gain, and an increase in oxidative stress (OS) were observed in the pregnant rats of the Ara-C groups as compared to pregnant rats of the control group. Further, a significant and dose-dependent (a) reduction in bodyweight, AGD, testicular weight, and testosterone levels, (b) increase in OS, and (c) structural and morphometrical anomalies in fetal testes were observed in fetuses of Ara-C groups as compared to fetuses of the control rats. These deleterious effects observed in the Ara-C groups were found to be diminished in the pregnant rats and fetuses of the Protection group as compared to the pregnant rats and fetuses of the Ara-C 25 group.
Conclusions
From the results of this study, we conclude that the maternal supplementation of ALA may ameliorate the Ara-C exposure-induced impairment in prenatal development and function of the testes in the rat fetuses. However, future experimental and clinical studies are warranted to explore the possible mechanisms involved in the protection offered by maternal supplementation of ALA against Ara-C induced testicular toxicity.
Graphical Abstract
Collapse
|
47
|
Abdulghani M, Naser A. Estimation of pharmacokinetic parameters of alpha-lipoic acid in the chicks model. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2022. [DOI: 10.47419/bjbabs.v3i02.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background and objective: Alpha-lipoic acid is a drug used to treat diabetic neuropathy, and it has other uses as a dietary supplement. The target of the study was to investigate the concentration of therapeutic doses of Alpha-lipoic acid in the blood plasma of broiler chicks to define the pharmacokinetic parameters.
Methods: A randomized controlled study was performed on thirty-five healthy broiler chicks of seven days old, chicks were injected into the peritoneum with a single dose of analgesic ED50 80mg /kg b.wt, following injection of the drug, blood samples were collected at 0.25, 0.5, 1, 2, 4, 24 h (five chicks per time) from the jugular vein. Then the blood plasma was obtained, the concentrations of Alpha-lipoic acid in blood plasma samples were determined utilizing UV Spectrometric Method, the pharmacokinetic parameters were determined by the PKSolver program. Time versus concentration curve for Alpha-lipoic acid was obtained from the program. The pharmacokinetic parameters were determined with non-compartmental models.
Results: The concentration of Alpha-lipoic acid in the blood plasma of chicks injected with Alpha lipoic at a dose (80 mg/kg) were 134.6±7.17, 178.5±4.10 ,192.4±7.83 ,158.5±11.05 ,147.1±10.16, 122.8±7.09 µg/ml at times 0.25, 0.5, 1, 2, 4, and 24 hours respectively. The maximum plasma concentration was 192.4µg/ml during a period of 1 hour of injection. The terminal elimination half-life was 65hours, the terminal phase elimination rate constant was 0.011 h-1 , the mean residence time was 94h, and the area under the curve from time 0 to infinity was 14960 µg.h/ml.
Conclusions: Our study concluded that the peak of the analgesic effect of alpha lipoic acid was one hour after treatment; furthermore, it is characterized by a long elimination half-life and a poor clearance from the chick’s body, which is reflected in the long effects of its pharmacological properties
Collapse
|
48
|
Najafi N, Mehri S, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of alpha lipoic acid on metabolic syndrome: A comprehensive review. Phytother Res 2022; 36:2300-2323. [PMID: 35234312 DOI: 10.1002/ptr.7406] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS) is a multifactorial disease with medical conditions such as hypertension, diabetes, obesity, dyslipidemia, and insulin resistance. Alpha-lipoic acid (α-LA) possesses various pharmacological effects, including antidiabetic, antiobesity, hypotensive, and hypolipidemia actions. It exhibits reactive oxygen species scavenger properties against oxidation and age-related inflammation and refines MetS components. Also, α-LA activates the 5' adenosine monophosphate-activated protein kinase and inhibits the NFκb. It can decrease cholesterol biosynthesis, fatty acid β-oxidation, and vascular stiffness. α-LA decreases lipogenesis, cholesterol biosynthesis, low-density lipoprotein and very low-density lipoprotein levels, and atherosclerosis. Moreover, α-LA increases insulin secretion, glucose transport, and insulin sensitivity. These changes occur via PI3K/Akt activation. On the other hand, α-LA treats central obesity by increasing adiponectin levels and mitochondrial biogenesis and can reduce food intake mainly by SIRT1 stimulation. In this review, the most relevant articles have been discussed to determine the effects of α-LA on different components of MetS with a special focus on different molecular mechanisms behind these effects. This review exhibits the potential properties of α-LA in managing MetS; however, high-quality studies are needed to confirm the clinical efficacy of α-LA.
Collapse
Affiliation(s)
- Nahid Najafi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Harguindey S, Alfarouk K, Polo Orozco J, Reshkin SJ, Devesa J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23052454. [PMID: 35269597 PMCID: PMC8910484 DOI: 10.3390/ijms23052454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The pH-related metabolic paradigm has rapidly grown in cancer research and treatment. In this contribution, this recent oncological perspective has been laterally assessed for the first time in order to integrate neurodegeneration within the energetics of the cancer acid-base conceptual frame. At all levels of study (molecular, biochemical, metabolic, and clinical), the intimate nature of both processes appears to consist of opposite mechanisms occurring at the far ends of a physiopathological intracellular pH/extracellular pH (pHi/pHe) spectrum. This wide-ranging original approach now permits an increase in our understanding of these opposite processes, cancer and neurodegeneration, and, as a consequence, allows us to propose new avenues of treatment based upon the intracellular and microenvironmental hydrogen ion dynamics regulating and deregulating the biochemistry and metabolism of both cancer and neural cells. Under the same perspective, the etiopathogenesis and special characteristics of multiple sclerosis (MS) is an excellent model for the study of neurodegenerative diseases and, utilizing this pioneering approach, we find that MS appears to be a metabolic disease even before an autoimmune one. Furthermore, within this paradigm, several important aspects of MS, from mitochondrial failure to microbiota functional abnormalities, are analyzed in depth. Finally, and for the first time, a new and integrated model of treatment for MS can now be advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
- Correspondence: ; Tel.: +34-629-047-141
| | - Khalid Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Julián Polo Orozco
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
50
|
Vakali E, Rigopoulos D, Carrillo AE, Flouris AD, Dinas PC. Effects of Alpha-lipoic Acid Supplementation on Human Diabetic Nephropathy: A Systematic Review and Meta-analysis. Curr Diabetes Rev 2022; 18:e140921196457. [PMID: 34521329 DOI: 10.2174/1573399817666210914103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is kidney dysfunction, which occurs due to elevated urine albumin excretion rate and reduced glomerular filtration rate. Studies on animals have shown that alpha-lipoic acid (ALA) supplementation can reduce the development of DN. OBJECTIVES We performed a systematic review and meta-analysis to examine the effects of ALA supplementation on biological indices (albumin, creatinine, etc.) indicative of human DN. METHODS The search procedure included PubMed Central, Embase, Cochrane Library (trials), and Web of Science (protocol registration: INPLASY202060095). RESULTS We found that ALA supplementation decreased 24h urine albumin excretion rate in patients with diabetes (standardized mean difference=-2.27; confidence interval (CI)=(-4.09)-(-0.45); I2=98%; Z=2.44; p=0.01). A subgroup analysis revealed that the results of studies examining only ALA did not differ from those examined ALA in combination with additional medicines (Chisquared= 0.19; p=0.66; I2=0%), while neither ALA nor ALA plus medication had an effect on 24h urine albumin excretion rate (p>0.05). Also, ALA supplementation decreased urine albumin mg/l (mean difference (MD)=-12.95; CI=(-23.88)-(-2.02); I2=44%; Z=2.32; p=0.02) and urine albumin to creatinine ratio (MD=-26.96; CI=(-35.25)-(-18.67); I2=0%; Z=6.37; p<0.01) in patients with diabetes. When the studies examining ALA plus medication were excluded, it was found that ALA supplementation had no effect on urine albumin mg/l (p>0.05) but did significantly decrease urine albumin to creatinine ratio (MD=-25.88, CI=(34.40-(-17.36), I2=0%, Z=5.95, p<0.00001). CONCLUSION The available evidence suggests that ALA supplementation does not improve biological indices that reflect DN in humans. Overall, we identified limited evidence, and therefore, the outcomes should be considered with caution.
Collapse
Affiliation(s)
- Elena Vakali
- Medical School, National and Kapodistrian University of Athens, Athens, GR11527, Greece
| | - Dimitrios Rigopoulos
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, GR42100, Greece
| | - Andres E Carrillo
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, GR42100, Greece
- Department of Exercise Science, Chatham University, Pittsburgh, PA15232, USA
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, GR42100, Greece
| | - Petros C Dinas
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, GR42100, Greece
| |
Collapse
|