1
|
Asante JJ, Barger SW. P-glycoprotein and Alzheimer's Disease: Threats and Opportunities. ASN Neuro 2025; 17:2495632. [PMID: 40264334 DOI: 10.1080/17590914.2025.2495632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects more than 50 million people worldwide. One of the hallmark features of AD is the accumulation of amyloid β-peptide (Aβ) protein in the brain. P-glycoprotein (P-gp) is a membrane-bound protein expressed in various tissues, including the cerebrovascular endothelium. It plays a crucial role in the efflux of toxic substances, including Aβ, from the brain. Aberrations in P-gp levels or activity have been implicated in the pathogenesis of AD by promoting the accumulation of Aβ in the brain. Therefore, modulating the P-gp function represents a promising therapeutic strategy for treating AD. P-gp has multiple substrate binding sites, creating the potential for substrates to fall into complementation groups based on these sites; two substrates in the same complementation group may compete with one other, but two substrates in different groups may exhibit cooperativity. Thus, a given P-gp substrate may interfere with Aβ efflux whereas another may promote clearance. These threats and opportunities, as well as other aspects of P-gp relevance to AD, are discussed here.
Collapse
Affiliation(s)
- Joseph Jr Asante
- Graduate Program in Bioinformatics, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Department of Neuroscience, Little Rock, AR, USA
- Geriatric Research, Education & Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| |
Collapse
|
2
|
Almutary AG, Begum MY, Kyada AK, Gupta S, Jyothi SR, Chaudhary K, Sharma S, Sinha A, Abomughaid MM, Imran M, Lakhanpal S, Babalghith AO, Abu-Seer EA, Avinash D, Alzahrani HA, Alhindi AA, Iqbal D, Kumar S, Jha NK, Alghamdi S. Inflammatory signaling pathways in Alzheimer's disease: Mechanistic insights and possible therapeutic interventions. Ageing Res Rev 2025; 104:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
The complex pathophysiology of Alzheimer's disease (AD) poses challenges for the development of therapies. Recently, neuroinflammation has been identified as a key pathogenic mechanism underlying AD, while inflammation has emerged as a possible target for the management and prevention of AD. Several prior studies have demonstrated that medications modulating neuroinflammation might lessen AD symptoms, mostly by controlling neuroinflammatory signaling pathways such as the NF-κB, MAPK, NLRP3, etc, and their respective signaling cascade. Moreover, targeting these inflammatory modalities with inhibitors, natural products, and metabolites has been the subject of intensive research because of their anti-inflammatory characteristics, with many studies demonstrating noteworthy pharmacological capabilities and potential clinical applications. Therefore, targeting inflammation is considered a promising strategy for treating AD. This review comprehensively elucidates the neuroinflammatory mechanisms underlying AD progression and the beneficial effects of inhibitors, natural products, and metabolites in AD treatment.
Collapse
Affiliation(s)
- Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, P.O. Box 59911, Abu Dhabi, United Arab Emirates
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ashish Kumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Swati Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Aashna Sinha
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sorabh Lakhanpal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ahmad O Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eman Adnan Abu-Seer
- Department of Epidemiology and Medical Statistic, Faculty of Public Health and Health Informatics, Umm Al-Qura University, Makkah, Saudi Arabia
| | - D Avinash
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Hassan A Alzahrani
- Department of Respiratory Care, Medical Cities at the Minister of Interior, MCMOl, Riyadh, Saudi Arabia
| | | | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Sandeep Kumar
- School of Pharmacy, Sharda University, Greater Noida, India; DST-FIST Laboratory, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Biosciences and Technology (SBT), Galgotias University, Greater Noida, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Zhuang X, Lin J, Song Y, Ban R, Zhao X, Xia Z, Wang Z, Zhang G. The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer's Disease. Neuromolecular Med 2024; 27:2. [PMID: 39751702 DOI: 10.1007/s12017-024-08815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder, and the vast majority of cases occur in elderly patients. Recently, the accumulation of Aβ and tau proteins has drawn considerable attention in AD research. This review explores the multifaceted interactions between these proteins and their contribution to the pathological landscape of AD, encompassing synaptic dysfunction, neuroinflammation, and PANoptosis. PANoptosis is a collective term for programmed cell death (PCD) modalities that encompass elements of apoptosis, pyroptosis, and necroptosis. The accumulation of Aβ peptides and tau proteins, along with the immune response in brain cells, may trigger PANoptosis, thus advancing the progression of the disease. Recent advancements in molecular imaging and genetics have provided deeper insights into the interactions between Aβ peptides, tau proteins, and the immune response. The review also discusses the role of mitochondrial dysregulation in AD. The exploration of the interplay between neurodegeneration, immune responses, and cell death offers promising avenues for the development of innovative treatments.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Jie Lin
- School of Basic Medicine Sciences, Shandong University, Jinan, China
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, 250012, China.
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
4
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Wu J, Tang J, Huang D, Wang Y, Zhou E, Ru Q, Xu G, Chen L, Wu Y. Effects and mechanisms of APP and its cleavage product Aβ in the comorbidity of sarcopenia and Alzheimer's disease. Front Aging Neurosci 2024; 16:1482947. [PMID: 39654807 PMCID: PMC11625754 DOI: 10.3389/fnagi.2024.1482947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Sarcopenia and AD are both classic degenerative diseases, and there is growing epidemiological evidence of their comorbidity with aging; however, the mechanisms underlying the biology of their commonality have not yet been thoroughly investigated. APP is a membrane protein that is expressed in tissues and is expressed not only in the nervous system but also in the NMJ and muscle. Deposition of its proteolytic cleavage product, Aβ, has been described as a central component of AD pathogenesis. Recent studies have shown that excessive accumulation and aberrant expression of APP in muscle lead to pathological muscle lesions, but the pathogenic mechanism by which APP and its proteolytic cleavage products act in skeletal muscle is less well understood. By summarizing and analyzing the literature concerning the role, pathogenicity and pathological mechanisms of APP and its cleavage products in the nervous system and muscles, we aimed to explore the intrinsic pathological mechanisms of myocerebral comorbidities and to provide new perspectives and theoretical foundations for the prevention and treatment of AD and sarcopenia comorbidities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| |
Collapse
|
6
|
Sharma V, Chander Sharma P, Reang J, Yadav V, Kumar Tonk R, Majeed J, Sharma K. Impact of GSK-3β and CK-1δ on Wnt signaling pathway in alzheimer disease: A dual target approach. Bioorg Chem 2024; 147:107378. [PMID: 38643562 DOI: 10.1016/j.bioorg.2024.107378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/02/2024] [Accepted: 04/14/2024] [Indexed: 04/23/2024]
Abstract
Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3β (GSK-3β) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3β and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3β and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3β and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3β and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.
Collapse
Affiliation(s)
- Vinita Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | | | - Jurnal Reang
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Vivek Yadav
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Rajiv Kumar Tonk
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India
| | - Jaseela Majeed
- School of Allied Health Sciences and Management, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPS, DPSRU, New Delhi, 110017, India; Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
7
|
Mihaylova R, Angelova VT, Tchekalarova J, Atanasova D, Ivanova P, Simeonova R. Tailored Melatonin- and Donepezil-Based Hybrids Targeting Pathognomonic Changes in Alzheimer's Disease: An In Vitro and In Vivo Investigation. Int J Mol Sci 2024; 25:5969. [PMID: 38892154 PMCID: PMC11172853 DOI: 10.3390/ijms25115969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
A plethora of pathophysiological events have been shown to play a synergistic role in neurodegeneration, revealing multiple potential targets for the pharmacological modulation of Alzheimer's disease (AD). In continuation to our previous work on new indole- and/or donepezil-based hybrids as neuroprotective agents, the present study reports on the beneficial effects of lead compounds of the series on key pathognomonic features of AD in both cellular and in vivo models. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the anti-fibrillogenic properties of 15 selected derivatives and identify quantitative changes in the formation of neurotoxic β-amyloid (Aβ42) species in human neuronal cells in response to treatment. Among the most promising compounds were 3a and 3c, which have recently shown excellent antioxidant and anticholinesterase activities, and, therefore, have been subjected to further in vivo investigation in mice. An acute toxicity study was performed after intraperitoneal (i.p.) administration of both compounds, and 1/10 of the LD50 (35 mg/kg) was selected for subacute treatment (14 days) with scopolamine in mice. Donepezil (DNPZ) and/or galantamine (GAL) were used as reference drugs, aiming to establish any pharmacological superiority of the multifaceted approach in battling hallmark features of neurodegeneration. Our promising results give first insights into emerging disease-modifying strategies to combine multiple synergistic activities in a single molecule.
Collapse
Affiliation(s)
- Rositsa Mihaylova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| | - Violina T. Angelova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
- Department of Anatomy, Faculty of Medicine, Trakia University, 6003 Stara Zagora, Bulgaria
| | - Petja Ivanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (D.A.); (P.I.)
| | - Rumyana Simeonova
- Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria; (R.M.); (V.T.A.); (R.S.)
| |
Collapse
|
8
|
Chakkittukandiyil A, Chakraborty S, Kothandan R, Rymbai E, Muthu SK, Vasu S, Sajini DV, Sugumar D, Mohammad ZB, Jayaram S, Rajagopal K, Ramachandran V, Selvaraj D. Side effects based network construction and drug repositioning of ropinirole as a potential molecule for Alzheimer's disease: an in-silico, in-vitro, and in-vivo study. J Biomol Struct Dyn 2023; 42:10785-10799. [PMID: 37723871 DOI: 10.1080/07391102.2023.2258968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults. Drug repositioning is a process of finding new therapeutic applications for existing drugs. One of the methods in drug repositioning is to use the side-effect profile of a drug to identify a new therapeutic indication. The drugs with similar side-effects may act on similar biological targets and could affect the same biochemical process. In this study, we explored the Food and Drug Administration-approved drugs using PROMISCUOUS database to find those that have adverse effects profile comparable with the ligands being studied or used to treat AD. Here, we found that the ropinirole, a dopamine receptor agonist, shared a maximum number of side-effects with the drugs proven beneficial for treating AD. Furthermore, molecular modelling demonstrated that ropinirole exhibited strong binding affinity (-9.313 kcal/mol) and best ligand efficiency (0.49) with sigma-1 receptor. Here, we observed that the quaternary amino group of ropinirole is essential for binding with sigma-1 receptor. Molecular dynamic simulation indicated that the movement of the carboxy-terminal helices (α4/α5) could play a major role in the receptor's physiological functions. The neurotoxicity induced by Aβ25-35 in SH-SY5Y cells was reduced by ropinirole at concentrations 10, 30, and 50 µM. The effect on spatial learning and memory was examined in mice with Aβ25-35 induced memory deficit using the radial arm maze. Ropinirole (10 and 20 mg/kg) significantly improved the short and long-term memories in the radial arm maze test. Our results suggest that ropinirole has the potential to be repositioned for AD treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saurav Chakraborty
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Santhosh Kumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India
| | - Soumya Vasu
- Department of Pharmaceutical Chemistry, Sri Ramachandra Institute of Higher Education & Research, Porur, Chennai, Tamil Nadu, India
| | - Deepak Vasudevan Sajini
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Zubair Baba Mohammad
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saravanan Jayaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Vadivelan Ramachandran
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| |
Collapse
|
9
|
Chuang WH, Chou YT, Chen YH, Kuo TH, Liaw WF, Lu TT, Kao CF, Wang YM. Neuroprotective Effect of NO-Delivery Dinitrosyl Iron Complexes (DNICs) on Amyloid Pathology in the Alzheimer's Disease Cell Model. ACS Chem Neurosci 2023; 14:2922-2934. [PMID: 37533298 DOI: 10.1021/acschemneuro.3c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. β-amyloid1-42 (Aβ1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aβ aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(μ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aβ1-42. This study found that DNIC-COOH protected neuronal cells from Aβ-induced cytotoxicity, potentiated neuronal functions, and facilitated Aβ1-42 degradation through the NO-sGC-cGMP-AKT-GSK3β-CREB/MMP-9 pathway.
Collapse
Affiliation(s)
- Wen-Han Chuang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Ting Chou
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Hong Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Ting-Han Kuo
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chih-Fei Kao
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biomedical Science and Environmental Biology, Department of Dentistry, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Huang D, Wang Q, Cao Y, Yang H, Li M, Wu F, Zhang Y, Chen G, Wang Q. Multiscale NIR-II Imaging-Guided Brain-Targeted Drug Delivery Using Engineered Cell Membrane Nanoformulation for Alzheimer's Disease Therapy. ACS NANO 2023; 17:5033-5046. [PMID: 36867454 DOI: 10.1021/acsnano.2c12840] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Effective drug delivery in the central nervous system (CNS) needs to have long blood-circulation half-lives, to pass through the blood-brain barrier (BBB), and subsequently to be taken up by target cells. Herein, a traceable CNS delivery nanoformulation (RVG-NV-NPs) is developed by encapsulating bexarotene (Bex) and AgAuSe quantum dots (QDs) within Lamp2b-RVG-overexpressed neural stem cell (NSC) membranes. The high-fidelity near-infrared-II imaging by AgAuSe QDs offers a possibility of in vivo monitoring the multiscale delivery process of the nanoformulation from the whole-body to the single-cell scale. It was revealed the synergy of acetylcholine receptor-targeting of RVG and the natural brain-homing and low immunogenicity of NSC membranes prolong the blood circulation, facilitate BBB crossing and nerve cell targeting of RVG-NV-NPs. Thus, in Alzheimer's disease (AD) mice, the intravenous delivery of as low as 0.5% of oral dose Bex showed highly effective up-regulation of the apolipoprotein E expression, resulting rapid alleviation of ∼40% β-amyloid (Aβ) level in the brain interstitial fluid after a single dose administration. The pathological progression of Aβ in AD mice is completely suppressed during a 1 month treatment, thus effectively protecting neurons from Aβ-induced apoptosis and maintaining the cognitive abilities of AD mice.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qianwu Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuheng Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Meng Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Zhang L, Yong YY, Deng L, Wang J, Law BYK, Hu ML, Wu JM, Yu L, Wong VKW, Yu CL, Qin DL, Zhou XG, Wu AG. Therapeutic potential of Polygala saponins in neurological diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154483. [PMID: 36260972 DOI: 10.1016/j.phymed.2022.154483] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND There are many types of neurological diseases with complex etiologies. At present, most clinical drugs can only relieve symptoms but cannot cure these diseases. Radix Polygalae, a famous traditional Chinese medicine from the root of plants of the genus Polygala, has the traditional effect of treating insomnia, forgetfulness, and palpitation and improving intelligence and other symptoms of neurological diseases. Saponins are important bioactive components of plants of the genus Polygala and exhibit neuroprotective effects. PURPOSE This review aimed to summarize the traditional use of Polygala species and discuss the latest phytochemical, pharmacological, and toxicological findings, mainly with regard to Polygala saponins in the treatment of neurological disorders. METHODS Literature was searched and collected using databases, including PubMed, Science Direct, CNKI, and Google Scholar. The search terms used included "Polygala", "saponins", "neurological diseases", "Alzheimer's disease", "toxicity", etc., and combinations of these keywords. A total of 1202 papers were retrieved until August 2022, and we included 135 of these papers on traditional uses, phytochemistry, pharmacology, toxicology and other fields. RESULTS This literature review mainly reports on the traditional use of the Polygala genus and prescriptions containing Radix Polygalae in neurological diseases. Phytochemical studies have shown that plants of the genus Polygala mainly include saponins, flavonoids, oligosaccharide esters, alkaloids, coumarins, lignans, flavonoids, etc. Among them, saponins are the majority. Modern pharmacological studies have shown that Polygala saponins have neuroprotective effects on a variety of neurological diseases. Its mechanism of action involves autophagic degradation of misfolded proteins, anti-inflammatory, anti-apoptotic, antioxidative stress and so on. Toxicological studies have shown that Polygala saponins trigger gastrointestinal toxicity, and honey processing and glycosyl disruption of Polygala saponins can effectively ameliorate its gastrointestinal side effect. CONCLUSION Polygala saponins are the major bioactive components in plants of the genus Polygala that exhibit therapeutic potential in various neurological diseases. This review provides directions for the future study of Polygala saponins and references for the clinical use of prescriptions containing Radix Polygalae for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Li Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Lan Deng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR 99078, PR. China
| | - Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR 99078, PR. China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Materia Medica, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Education Ministry Key Laboratory of Medical Electrophysiology, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, PR. China.
| |
Collapse
|
12
|
Lawal SK, Olojede SO, Faborode OS, Aladeyelu OS, Matshipi MN, Sulaiman SO, Naidu ECS, Rennie CO, Azu OO. Nanodelivery of antiretroviral drugs to nervous tissues. Front Pharmacol 2022; 13:1025160. [PMID: 36425574 PMCID: PMC9680985 DOI: 10.3389/fphar.2022.1025160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 01/06/2025] Open
Abstract
Despite the development of effective combined antiretroviral therapy (cART), the neurocognitive impairments associated with human immunodeficiency virus (HIV) remain challenging. The presence of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCFB) impedes the adequate penetration of certain antiretroviral drugs into the brain. In addition, reports have shown that some antiretroviral drugs cause neurotoxicity resulting from their interaction with nervous tissues due to long-term systemic exposure. Therefore, the research into the effective therapeutic modality that would cater for the HIV-associated neurocognitive disorders (HAND) and ART toxicity is now receiving broad research attention. Thus, this review explores the latest information in managing HAND using a nanoparticle drug delivery system (NDDS). We discussed the neurotoxicity profile of various approved ART. Also, we explained the applications of silver nanoparticles (AgNPs) in medicine, their different synthesis methods and their interaction with nervous tissues. Lastly, while proposing AgNPs as useful nanoparticles in properly delivering ART to enhance effectiveness and minimize neurocognitive disorders, we hypothesize that the perceived toxicity of AgNPs could be minimized by taking appropriate precautions. One such precaution is using appropriate reducing and stabilizing agents such as trisodium citrate to reduce silver ion Ag + to ground state Ag0 during the synthesis. Also, the usage of medium-sized, spherical-shaped AgNPs is encouraged in AgNPs-based drug delivery to the brain due to their ability to deliver therapeutic agents across BBB. In addition, characterization and functionalization of the synthesized AgNPs are required during the drug delivery approach. Putting all these factors in place would minimize toxicity and enhance the usage of AgNPs in delivering therapeutic agents across the BBB to the targeted brain tissue and could cater for the HIV-associated neurocognitive disorders and neurotoxic effects of antiretroviral drugs (ARDs).
Collapse
Affiliation(s)
- Sodiq Kolawole Lawal
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Oluwaseun Samuel Faborode
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
- Department of Physiology, Faculty of Basic Medical Sciences, Bingham University, Karu, Nasarawa State, Nigeria
| | - Okikioluwa Stephen Aladeyelu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Matome Nadab Matshipi
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sheu Oluwadare Sulaiman
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
- Graduate Program in Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Edwin Coleridge Stephen Naidu
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical Anatomy, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Onyemaechi Okpara Azu
- Department of Human, Biological and Translational Medical Sciences, School of Medicine, Hage Geingob Campus, University of Namibia, Windhoek, Namibia
| |
Collapse
|
13
|
Mahomed A, Pretorius C. Understanding the lived experiences of family caregivers of individuals with dementia in Soweto, a South African Township. DEMENTIA 2022; 21:2264-2287. [PMID: 35968611 PMCID: PMC9606014 DOI: 10.1177/14713012221118441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
This study was undertaken to understand South African family caregivers' lived experiences of individuals living with dementia in a predominantly Black African township. A homogenous sample of thirty family caregivers was recruited using purposeful sampling methods and interviewed using a semi-structured approach. Reflective Thematic Analysis (RTA) yielded four broad themes: Understanding Dementia, Struggles and Sacrifice, Mental Health and Protective Factors. Findings reflect how dementia is understood by family caregivers and their community, the struggles and sacrifices that they endure, the impact of caregiving on caregiver mental health and the protective factors that enable caregivers to cope, despite their difficulties. Our findings lead to new insights regarding dementia caregiving amongst family caregivers in South Africa. First, there appears to be a shift in perception - away from a cultural/spiritual paradigm - and a lack of pressure to conform to community conceptualizations of dementia among individual caregivers. Second, dementia caregiving had a negative effect on caregiver mental health and elicited stress, anxiety and grief reactions. Third, caregivers did not feel emotionally supported and expressed not receiving any assistance with their daily practical tasks. Fourth, before receiving a diagnosis, family caregivers were viewed as the perpetrators of abuse and/or neglect against their family members with dementia, instead of individuals with dementia being stigmatized by the community due to their behavioural symptoms. Additionally, help-seeking was not hindered by fear or stigma, but was motivated by caregiver distress as dementia-related behaviours began to manifest and caregivers feared being perceived as perpetrators of abuse. Psychoeducational interventions should be tailored to targeted population groups that are in need of further training to address the lack of awareness in communities, insufficient knowledge of dementia amongst healthcare professionals and the practical, emotional and psychological difficulties that family caregivers endure to facilitate mental health care and resilience.
Collapse
|
14
|
Tripathi SK, Kesharwani K, Kaul G, Akhir A, Saxena D, Singh R, Mishra NK, Pandey A, Chopra S, Joshi KB. Amyloid-β Inspired Short Peptide Amphiphile Facilitates Synthesis of Silver Nanoparticles as Potential Antibacterial Agents. ChemMedChem 2022; 17:e202200251. [PMID: 35684988 DOI: 10.1002/cmdc.202200251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Indexed: 11/11/2022]
Abstract
An amyloid-β inspired biocompatible short peptide amphiphile (sPA) molecule was used for controlled and targeted delivery of bioactive silver nanoparticles via transforming sPA nanostructures. Such sPA-AgNPs hybrid structures can be further used to develop antibacterial materials to combat emerging bacterial resistance. Due to the excellent antibacterial activity of silver, the growth of clinically relevant bacteria was inhibited in the presence of AgNPs-sPA hybrids. Bacterial tests demonstrated that the high biocompatibility and low cytotoxicity of the designed sPA allow it to work as a model drug delivery agent. It therefore shows great potential in locally addressing bacterial infections. The results of our study suggest that these nanodevices have the potential to trap and then engage in the facile delivery of their chemical payload at the target site, thereby working as potential delivery materials. This system has potential therapeutic value for the treatment of microbiota triggered progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyendra K Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abdul Akhir
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Narendra K Mishra
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Archna Pandey
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti B Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
15
|
Wang L, Xia H, Wu Y, Wang Y, Lin P, Lin S. Secoyanhusamine A, an Oxidatively Ring-Opened Isoquinoline Inner Salt From Corydalis yanhusuo. Front Chem 2022; 9:831173. [PMID: 35178381 PMCID: PMC8843934 DOI: 10.3389/fchem.2021.831173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Secoyanhusamine A (1), a rare rearranged seco-isoquinoline alkaloid derived from ring oxidative cleavage, was isolated from an aqueous extract of Corydalis yanhusuo tubers, together with its biosynthetic precursor dehydrocorybulbine (2). Secoyanhusamine A (1) was the first example of a highly oxidized isoquinoline inner salt resulting in a 5-(2-azanylethyl)-2-carboxylate-4-oxo-4H-pyran ring system. The biosynthetic pathway of 1 was also postulated. Secoyanhusamine A (1) exhibited potent inhibition against acetylcholinesterase (AChE) with an IC50 value of 0.81 ± 0.13 μM. Molecular simulation docking demonstrated that 1 created a strong interaction with the Asp-74 residue of AChE via attractive charge of the quaternary nitrogen.
Collapse
Affiliation(s)
- Lingyan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuzhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengcheng Lin
- College of Pharmaceutical Sciences, Qinghai University for Nationalities, Xining, China
- *Correspondence: Pengcheng Lin, ; Sheng Lin,
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Pengcheng Lin, ; Sheng Lin,
| |
Collapse
|
16
|
Heysieattalab S, Sadeghi L. Ecballium elaterium attenuates neuroinflammation in an animal model of Alzheimer's disease through modulation of nuclear factor κB pathway. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:89-100. [PMID: 35145898 PMCID: PMC8801219 DOI: 10.22038/ajp.2021.18881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Sustained inflammation, which could be promoted by Aβ aggregation and tau hyperphosphorylation, is a critical player in Alzheimer's disease (AD) pathogenesis. In the first phase, this study was designed to evaluate the anti-inflammatory properties of Ecballium elaterium (EE), as a Mediterranean therapeutic plant, and its effects on biochemical and behavioral signs of nucleus basalis of Meynert lesioned (NBML) rats, as an approved model of AD. In the second phase, we investigated the effect of EE on nuclear factor (NF)-κB pathway which is responsible for encoding proteins involved in the inflammatory cascade. MATERIALS AND METHODS Animals were divided randomly into four groups as following: control, NBML rats (AD), AD rats that were treated by high- and low-dose EE. Prostaglandins (PGs) levels were measured by enzyme-linked immunosorbent assay (ELISA) kits. Cyclooxygenase-2 (COX-2) and acetylcholinesterase (AChE) levels were assessed by fluorometric kit and Elman method, respectively. Behavioral signs were evaluated by Morris Water Maze (MWM) test and inflammatory proteins content was analyzed by immunoblotting method. RESULTS According to the results, treatment of NBML rats with EE fruit juice reduced PGs and cytokines more than 2-fold in comparison with AD rats through inhibition of COX-2 enzyme. Attenuation of inflammatory response in NBML rats was accompanied by reduced AChE activity (about 3-fold) and improved learning ability. Interestingly, EE reduced NF-κB expression for about 3-fold which resulted in a more than 10-fold increase in IκBα/P-IκBα ratio. CONCLUSION Our results confirmed the TNF-α/cytokines/NF-κB/COX-2 pathway involves as the main inflammatory response in NBML rats. We also provided biochemical and behavioral evidence which introduces EE as an anti-inflammatory adjuvant to improve pathophysiological signs in patients suffering from AD and related dementia.
Collapse
Affiliation(s)
| | - Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
Gulcan HO, Kosar M. The hybrid compounds as multi-target ligands for the treatment of Alzheimer's Disease: Considerations on Donepezil. Curr Top Med Chem 2021; 22:395-407. [PMID: 34766890 DOI: 10.2174/1568026621666211111153626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/31/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
The strategies to combat Alzheimer's Disease (AD) have been changing with respect to the failures of many drug candidates assessed in clinical studies, the complex pathophysiology of AD, and the limitations of the current drugs employed. So far, none of the targets, either validated or nonvalidated, have been shown to be purely causative in the generation and development of AD. Considering the progressive and the neurodegenerative characteristics of the disease, the main strategy has been based on the design of molecules capable of showing activity on more than one receptor, and it is defined as multi-target ligand design strategy. The hybrid molecule concept is an outcome of this approach. Donepezil, as one of the currently employed drugs for AD therapy, has also been utilized in hybrid drug design studies. This review has aimed to present the promising donepezil-like hybrid molecules introduced in the recent period. Particularly, multi-target ligands with additional activities concomitant to cholinesterase inhibition are preferred.
Collapse
Affiliation(s)
- Hayrettin Ozan Gulcan
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus, via Mersin 10, Turkey
| | - Muberra Kosar
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, T.R. North Cyprus, via Mersin 10, Turkey
| |
Collapse
|
18
|
Wang J, Cao H. Zebrafish and Medaka: Important Animal Models for Human Neurodegenerative Diseases. Int J Mol Sci 2021; 22:10766. [PMID: 34639106 PMCID: PMC8509648 DOI: 10.3390/ijms221910766] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Animal models of human neurodegenerative disease have been investigated for several decades. In recent years, zebrafish (Danio rerio) and medaka (Oryzias latipes) have become popular in pathogenic and therapeutic studies about human neurodegenerative diseases due to their small size, the optical clarity of embryos, their fast development, and their suitability to large-scale therapeutic screening. Following the emergence of a new generation of molecular biological technologies such as reverse and forward genetics, morpholino, transgenesis, and gene knockout, many human neurodegenerative disease models, such as Parkinson's, Huntington's, and Alzheimer's, were constructed in zebrafish and medaka. These studies proved that zebrafish and medaka genes are functionally conserved in relation to their human homologues, so they exhibit similar neurodegenerative phenotypes to human beings. Therefore, fish are a suitable model for the investigation of pathologic mechanisms of neurodegenerative diseases and for the large-scale screening of drugs for potential therapy. In this review, we summarize the studies in modelling human neurodegenerative diseases in zebrafish and medaka in recent years.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7#, Wuhan 430072, China;
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7#, Wuhan 430072, China;
- College of Advanced Agriculture Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Zaletel I, Milutinović K, Bajčetić M, Nowakowski RS. Differentiation of Amyloid Plaques Between Alzheimer's Disease and Non-Alzheimer's Disease Individuals Based on Gray-Level Co-occurrence Matrix Texture Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1146-1153. [PMID: 35105417 DOI: 10.1017/s1431927621012095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amyloid plaques, one of the main hallmarks of Alzheimer's disease (AD), are classified into diffuse (associated with cognitive impairment) and dense-core types (a common finding in brains of people without Alzheimer's disease (non-AD) and without impaired cognitive function) based on their morphology. We tried to determine the usability of gray-level co-occurrence matrix (GLCM) texture parameters of homogeneity and heterogeneity for the differentiation of amyloid plaque images obtained from AD and non-AD individuals. Images of amyloid-β (Aβ) immunostained brain tissue samples were obtained from the Aging, Dementia and Traumatic Brain Injury Project. A total of 1,039 plaques were isolated from different brain regions of 69 AD and non-AD individuals and used for further GLCM analysis. Images of Aβ stained plaques show higher values of heterogeneity parameters and lower values of homogeneity parameters in AD patients, and vice versa in non-AD patients. Additionally, GLCM analysis shows differences in Aβ plaque texture between different brain regions in non-AD patients and correlates with variables that characterize patient's dementia status. The present study shows that GLCM texture analysis is an efficient method to discriminate between different types of amyloid plaques based on their morphology and thus can prove as a valuable tool in the neuropathological investigation of dementia.
Collapse
Affiliation(s)
- Ivan Zaletel
- Faculty of Medicine, Institute of Histology and Embryology "Aleksandar Đ. Kostić", University of Belgrade, Belgrade11000, Republic of Serbia
| | - Katarina Milutinović
- Faculty of Medicine, Institute of Histology and Embryology "Aleksandar Đ. Kostić", University of Belgrade, Belgrade11000, Republic of Serbia
| | - Miloš Bajčetić
- Faculty of Medicine, Institute of Histology and Embryology "Aleksandar Đ. Kostić", University of Belgrade, Belgrade11000, Republic of Serbia
| | - Richard S Nowakowski
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, 32306-4300, FL, USA
| |
Collapse
|
20
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
21
|
Das R, Rauf A, Akhter S, Islam MN, Emran TB, Mitra S, Khan IN, Mubarak MS. Role of Withaferin A and Its Derivatives in the Management of Alzheimer's Disease: Recent Trends and Future Perspectives. Molecules 2021; 26:3696. [PMID: 34204308 PMCID: PMC8234716 DOI: 10.3390/molecules26123696] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/02/2023] Open
Abstract
Globally, Alzheimer's disease (AD) is one of the most prevalent age-related neurodegenerative disorders associated with cognitive decline and memory deficits due to beta-amyloid deposition (Aβ) and tau protein hyperphosphorylation. To date, approximately 47 million people worldwide have AD. This figure will rise to an estimated 75.6 million by 2030 and 135.5 million by 2050. According to the literature, the efficacy of conventional medications for AD is statistically substantial, but clinical relevance is restricted to disease slowing rather than reversal. Withaferin A (WA) is a steroidal lactone glycowithanolides, a secondary metabolite with comprehensive biological effects. Biosynthetically, it is derived from Withania somnifera (Ashwagandha) and Acnistus breviflorus (Gallinero) through the mevalonate and non-mevalonate pathways. Mounting evidence shows that WA possesses inhibitory activities against developing a pathological marker of Alzheimer's diseases. Several cellular and animal models' particulates to AD have been conducted to assess the underlying protective effect of WA. In AD, the neuroprotective potential of WA is mediated by reduction of beta-amyloid plaque aggregation, tau protein accumulation, regulation of heat shock proteins, and inhibition of oxidative and inflammatory constituents. Despite the various preclinical studies on WA's therapeutic potentiality, less is known regarding its definite efficacy in humans for AD. Accordingly, the present study focuses on the biosynthesis of WA, the epidemiology and pathophysiology of AD, and finally the therapeutic potential of WA for the treatment and prevention of AD, highlighting the research and augmentation of new therapeutic approaches. Further clinical trials are necessary for evaluating the safety profile and confirming WA's neuroprotective potency against AD.
Collapse
Affiliation(s)
- Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Pakistan;
| | - Saima Akhter
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Mohammad Nazmul Islam
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (R.D.); (S.M.)
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan;
| | | |
Collapse
|
22
|
Daily oscillation of cognitive factors is modified in the temporal cortex of an amyloid β(1-42)-induced rat model of Alzheimer's disease. Brain Res Bull 2021; 170:106-114. [PMID: 33508401 DOI: 10.1016/j.brainresbull.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is a devastating disease characterized by loss of synapses and neurons in the elderly. Accumulation of the β-amyloid peptide (Aβ) in the brain is thought to be central to the pathogenesis of AD. ApoE plays a key role in normal and physiological clearance of Aß, since it facilitates the peptide intra- and extracellular proteolytic degradation. Besides the cognitive deficit, AD patients also show alterations in their circadian rhythms. The objective of this study was to investigate the effects of an i.c.v. injection of Aβ (1-42) peptide on the 24 h rhythms of Apo E, BMAL1, RORα, Bdnf and trkB mRNA and Aβ levels in the rat temporal cortex. We found that an i.c.v. injection of Aβ aggregates phase shifts daily Bdnf expression as well as Apo E, BMAL1, RORα, Aβ and decreased the mesor of TrkB rhythms. Thus, elevated Aβ peptide levels might modify the temporal patterns of cognition-related factors, probably; by affecting the clock factors rhythms as well as in the 24 h rhythms of Apo E.
Collapse
|
23
|
Effects of Amyloid Precursor Protein Overexpression on NF-κB, Rho-GTPase and Pro-Apoptosis Bcl-2 Pathways in Neuronal Cells. Rep Biochem Mol Biol 2021; 9:417-425. [PMID: 33969135 DOI: 10.52547/rbmb.9.4.417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder that causes cognitive dysfunction. Previous studies have suggested that amyloid plaques, mainly comprising of amyloid-beta peptides, play a pivotal role in AD pathophysiology. This study focuses on the evaluation of the effects of amyloid precursor protein (APP) overexpression on NF-κB, Rho-GTPase and Bcl-2 mediated pro-apoptotic pathways in neuronal cells. Methods A lentiviral transduction system was used to generate SH-SY5Y cells overexpressing APP. Immunoblotting was conducted to determine expression levels of NF-κB, Rho-GTPase, and Bcl-2 family proteins in the APP overexpressed cells. Results In the NF-κB signaling pathway, APP-overexpressing SH-SY5Y cells showed that there was a reduction of p-NF-κB (p< 0.05) and IKKα. Subsequently, there was upregulation of protein expression of NF-Κb, IKKβ and IκBα. On the other hand, protein expression of RhoC (p< 0.05) and Rac1/2/3 was upregulated as compared to the control group. Meanwhile, a decrease in RhoA, Cdc42 (p< 0.05) and p-Rac1/cdc42 protein levels was observed in the APP-overexpressed group. Lastly, in the pro-apoptotic pathway, the expression of Bcl-2, Bid, Bok and Puma (p< 0.05) was up regulated in the APP-overexpressed group. Downregulation of Bad and Bim expression was observed in the APP-overexpressed as compared to the control group, and Bax expression remained unchanged in the APP-overexpressed group. Conclusion APP overexpression regulated signaling in the NF-κB, Rho-GTPase and Bcl-2 family pathways in neuronal cells, suggesting that these are involved in promoting neuronal survival and modulating synaptic plasticity in AD. However, further studies are essential to elucidate the APP-mediated mechanism of action.
Collapse
|
24
|
Narayanan SE, Rehuman NA, Harilal S, Vincent A, Rajamma RG, Behl T, Uddin MS, Ashraf GM, Mathew B. Molecular mechanism of zinc neurotoxicity in Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43542-43552. [PMID: 32909132 DOI: 10.1007/s11356-020-10477-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Zinc (Zn) is an essential trace element for most organisms, including human beings. It plays a crucial role in several physiological processes such as catalytic reaction of enzymes, cellular growth, differentiation and metabolism, intracellular signaling, and modulation of nucleic acid structure. Zn containing above 50 metalloenzymes is responsible for proteins, receptors, and hormones synthesis and has a critical role in neurodevelopment. Zn also regulates excitatory and inhibitory neurotransmitters such as glutamate and GABA and is found in high concentration in the synaptic terminals of hippocampal mossy fibers that maintains cognitive function. It regulates LTP and LTD by regulation of AMPA and NMDA receptors. But an excess or deficiency of Zn becomes neurotoxic or cause impairment in growth or sexual maturation. There is mounting evidence that supports this idea of Zn becoming neurotoxic and being involved in the pathogenesis of AD. Zn dyshomeostasis in AD is an area that needs attention as moderate concentration of Zn is involved in the memory regulation via regulation of amyloid plaque. Dyshomeostasis of Zn is involved in the pathogenesis of diseases like AD, ALS, depression, PD, and schizophrenia.
Collapse
Affiliation(s)
- Siju Ellickal Narayanan
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Govt. Medical College, Kannur, 670503, India
| | - Nisha Abdul Rehuman
- Department of Pharmaceutical Chemistry, Dr. Joseph Mar Thoma Institute of Pharmaceutical Sciences & Research, Kayamkulam, Kerala, 690503, India
| | - Seetha Harilal
- Department of Pharmacy, Kerala University of Health Sciences, Thrissur, Kerala, India
| | - Anju Vincent
- P.G. Department of Pharmacology, College of Pharmaceutical Sciences, Govt. Medical College, Kannur, 670503, India
| | | | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala, 678557, India.
| |
Collapse
|
25
|
Argentati C, Tortorella I, Bazzucchi M, Emiliani C, Morena F, Martino S. The Other Side of Alzheimer's Disease: Influence of Metabolic Disorder Features for Novel Diagnostic Biomarkers. J Pers Med 2020; 10:E115. [PMID: 32899957 PMCID: PMC7563360 DOI: 10.3390/jpm10030115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Nowadays, the amyloid cascade hypothesis is the dominant model to explain Alzheimer's disease (AD) pathogenesis. By this hypothesis, the inherited genetic form of AD is discriminated from the sporadic form of AD (SAD) that accounts for 85-90% of total patients. The cause of SAD is still unclear, but several studies have shed light on the involvement of environmental factors and multiple susceptibility genes, such as Apolipoprotein E and other genetic risk factors, which are key mediators in different metabolic pathways (e.g., glucose metabolism, lipid metabolism, energetic metabolism, and inflammation). Furthermore, growing clinical evidence in AD patients highlighted the presence of affected systemic organs and blood similarly to the brain. Collectively, these findings revise the canonical understating of AD pathogenesis and suggest that AD has metabolic disorder features. This review will focus on AD as a metabolic disorder and highlight the contribution of this novel understanding on the identification of new biomarkers for improving an early AD diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06123 Perugia, Italy; (C.A.); (I.T.); (M.B.); (C.E.); (F.M.)
| |
Collapse
|
26
|
Lolak N, Boga M, Tuneg M, Karakoc G, Akocak S, Supuran CT. Sulphonamides incorporating 1,3,5-triazine structural motifs show antioxidant, acetylcholinesterase, butyrylcholinesterase, and tyrosinase inhibitory profile. J Enzyme Inhib Med Chem 2020; 35:424-431. [PMID: 31899985 PMCID: PMC6968691 DOI: 10.1080/14756366.2019.1707196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A series of 16 novel benzenesulfonamides incorporating 1,3,5-triazine moieties substituted with aromatic amines, dimethylamine, morpholine and piperidine were investigated. These compounds were assayed for antioxidant properties by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, 2,2`-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical decolarisation assay and metal chelating methods. They were also investigated as inhibitors of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase, which are associated with several diseases such as Alzheimer, Parkinson and pigmentation disorders. These benzenesulfonamides showed moderate DPPH radical scavenging and metal chelating activity, and low ABTS cation radical scavenging activity. Compounds 2 b, 3d and 3 h showed inhibitory potency against AChE with % inhibition values of >90. BChE was also effectively inhibited by most of the synthesised compounds with >90% inhibition potency. Tyrosinase was less inhibited by these compounds.
Collapse
Affiliation(s)
- Nabih Lolak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Muhammed Tuneg
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Gulcin Karakoc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adiyaman University, Adiyaman, Turkey
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
27
|
Budni J, de Oliveira J. Amyloid beta 1–42-induced animal model of dementia. GENETICS, NEUROLOGY, BEHAVIOR, AND DIET IN DEMENTIA 2020:865-880. [DOI: 10.1016/b978-0-12-815868-5.00054-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
28
|
Sadeghi L, Yekta R, Dehghan G. The inhibitory effects of bile acids on catalytic and non-catalytic functions of acetylcholinesterase as a therapeutic target in Alzheimer’s disease. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Plazas E, Casoti R, Avila Murillo M, Batista Da Costa F, Cuca LE. Metabolomic profiling of Zanthoxylum species: Identification of anti-cholinesterase alkaloids candidates. PHYTOCHEMISTRY 2019; 168:112128. [PMID: 31557705 DOI: 10.1016/j.phytochem.2019.112128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The isolation of bioactive compounds from natural sources is a key step in drug discovery and development, however, this procedure is usually expensive and difficult due to the complexity and the limited amounts of the metabolites in the extracts. Thus, rational or targeting isolations are becoming more popular to reduce the bottlenecks in bioactive natural products research. In this study, we used a LC-MS-based metabolomic approach and biochemometric statistical tools (PCA and OPLS-DA) to identify potential anti-cholinesterase alkaloids predictors in Zanthoxylum genus (Rutaceae). For this purpose, 41 alkaloid extracts from nine Colombian Zanthoxylum species were screened by UHPLC-UV-HRMS and inhibitory activity against Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE). Based on the screening results, a multivariate statistical analysis (MVA) and selection of anti-cholinesterase candidates were performed using the S-plot from the OPLS-DA model. The supervised analysis (OPLS-DA) paring the anti-cholinesterase screening and LC-HRMS data showed at least 11 ChE inhibition markers which could have contributed in the differentiation of active and inactive extracts. The predictors were tentatively identified by comparing chromatographic retention times (Rt) and accurate mass and MS2 fragmentation patterns. In general, the inhibition markers correspond to four types of isoquinoline alkaloids: tetrahydroprotoberberines, protoberberines, dihydrobenzophenanthridines and benzophenanthridines. The most active extracts from Z. schreberi and Z. monophylum showed the highest presence of berberine and chelerythrine, previously reported as cholinesterase inhibitors. Thus, to validate the results of the OPLS-DA model, three alkaloids from the bark of Z. schreberi (identified as berberine, chelerythrine and columbamine) were bio-directed isolated, and all of them showed strong inhibition against both enzymes. These findings support our statistical models and contribute to the rational search of anticholinesterase alkaloids. Therefore, LC-MS-based metabolomic approach combined with chemometric statistical analysis are shown as useful tools for the isolation of targeted bioactive natural products, contributing to improve the research and development stages of lead compounds.
Collapse
Affiliation(s)
- Erika Plazas
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia.
| | - Rosana Casoti
- AsterBioChem Research Team, University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Av. Do Café s/n, 140440-903, Ribeirão Petro, SP, Brazil
| | - Monica Avila Murillo
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia
| | - Fernando Batista Da Costa
- AsterBioChem Research Team, University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Av. Do Café s/n, 140440-903, Ribeirão Petro, SP, Brazil
| | - Luis Enrique Cuca
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia
| |
Collapse
|
30
|
Chalatsa I, Arvanitis DA, Mikropoulou EV, Giagini A, Papadopoulou-Daifoti Z, Aligiannis N, Halabalaki M, Tsarbopoulos A, Skaltsounis LA, Sanoudou D. Beneficial Effects of Sideritis scardica and Cichorium spinosum against Amyloidogenic Pathway and Tau Misprocessing in Alzheimer's Disease Neuronal Cell Culture Models. J Alzheimers Dis 2019; 64:787-800. [PMID: 29914017 DOI: 10.3233/jad-170862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Natural products are a significantly underutilized source of potential treatments against human disease. Alzheimer's disease (AD) is a prime example of conditions that could be amenable to such treatments as suggested by recent findings. OBJECTIVE Aiming to identify novel potentially therapeutic approaches against AD, we assessed the effects of Cichorium spinosum and Sideritis scardica extracts, both distinct components of the Mediterranean diet. METHODS/RESULTS After the detailed characterization of the extracts' composition using LC-HRMS methods, they were evaluated on two AD neuronal cell culture models, namely the AβPP overexpressing SH-SY5Y-AβPP and the hyperphosphorylated tau expressing PC12-htau. Initially their effect on cell viability of SH-SY5Y and PC12 cells was examined, and subsequently their downstream effects on AβPP and tau processing pathways were investigated in the SH-SY5Y-AβPP and PC12-htau cells. We found that the S. scardica and C. spinosum extracts have similar effects on tau, as they both significantly decrease total tau, the activation of the GSK3β, ERK1 and/or ERK2 kinases of tau, as well as tau hyperphosphorylation. Furthermore, both extracts appear to promote AβPP processing through the alpha, non-amyloidogenic pathway, albeit through partly different mechanisms. CONCLUSIONS These findings suggest that C. spinosum and S. scardica could have a notable potential in the prevention and/or treatment of AD, and merit further investigations at the in vivo level.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni V Mikropoulou
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Giagini
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Zeta Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Bioanalytical, GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
31
|
Jojo GM, Kuppusamy G, Selvaraj K, Baruah UK. Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with excisting diabetic drugs. J Diabetes Metab Disord 2019; 18:229-242. [PMID: 31275894 DOI: 10.1007/s40200-019-00405-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Late onset Alzheimer's disease (AD) is the most common cause of dementia among elderly. The exact cause of the disease is until now unknown and there is no complete cure for the disease. Growing evidence suggest that AD is a metabolic disorder associated with impairment in brain insulin signalling. These findings enriched the scope for the repurposing of diabetic drugs in AD management. Even though many of these drugs are moving in a positive direction in the ongoing clinical studies, the extent of the success has seen to influence by several properties of these drugs since they were originally designed to manage the peripheral insulin resistance. In depth understandings of these properties is hence highly significant to optimise the use of diabetic drugs in the clinical management of AD; which is the primary aim of the present review article.
Collapse
Affiliation(s)
- Gifty M Jojo
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| |
Collapse
|
32
|
Gut Microbiota Disorder, Gut Epithelial and Blood-Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways. Neuromolecular Med 2019; 21:205-226. [PMID: 31115795 DOI: 10.1007/s12017-019-08547-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Emerging evidences indicate a critical role of the gut microbiota in etiopathogenesis of dementia, a debilitating multifactorial disorder characterized by progressive deterioration of cognition and behavior that interferes with the social and professional functions of the sufferer. Available data suggest that gut microbiota disorder that triggers development of dementia is characterized by substantial reduction in specific species belonging to the Firmicutes and Bacteroidetes phyla and presence of pathogenic species, predominantly, pro-inflammatory bacteria of the Proteobacteria phylum. These changes in gut microbiota microecology promote the production of toxic metabolites and pro-inflammatory cytokines, and reduction in beneficial substances such as short chain fatty acids and other anti-inflammatory factors, thereby, enhancing destruction of the gut epithelial barrier with concomitant activation of local and distant immune cells as well as dysregulation of enteric neurons and glia. This subsequently leads to blood-brain barrier dysfunctions that trigger neuroinflammatory reactions and predisposes to apoptotic neuronal and glial cell death, particularly in the hippocampus and cerebral cortex, which underlie the development of dementia. However, the molecular switches that control these processes in the histo-hematic barriers of the gut and brain are not exactly known. This review integrates very recent data on the molecular mechanisms that link gut microbiota disorder to gut epithelial and blood-brain barrier dysfunctions, underlying the development of dementia. The signaling pathways that link gut microbiota disorder with impairment in cognition and behavior are also discussed. The review also highlights potential therapeutic options for dementia.
Collapse
|
33
|
Pardeshi R, Bolshette N, Gadhave K, Arfeen M, Ahmed S, Jamwal R, Hammock BD, Lahkar M, Goswami SK. Docosahexaenoic Acid Increases the Potency of Soluble Epoxide Hydrolase Inhibitor in Alleviating Streptozotocin-Induced Alzheimer's Disease-Like Complications of Diabetes. Front Pharmacol 2019; 10:288. [PMID: 31068802 PMCID: PMC6491817 DOI: 10.3389/fphar.2019.00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
Diabetes is a risk factor for Alzheimer's disease and it is associated with significant memory loss. In the present study, we hypothesized that the soluble epoxide hydrolase (sEH) inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl)-urea (also known as TPPU) could alleviate diabetes-aggravated Alzheimer's disease-like symptoms by improving memory and cognition, and reducing the oxidative stress and inflammation associated with this condition. Also, we evaluated the effect of edaravone, an antioxidant on diabetes-induced Alzheimer's-like complications and the additive effect of docosahexaenoic acid (DHA) on the efficacy of TPPU. Diabetes was induced in male Sprague-Dawley rats by intraperitoneally administering streptozotocin (STZ). Six weeks after induction of diabetes, animals were either treated with vehicle, edaravone (3 or 10 mg/kg), TPPU (1 mg/kg) or TPPU (1 mg/kg) + DHA (100 mg/kg) for 2 weeks. The results demonstrate that the treatments increased the memory response of diabetic rats, in comparison to untreated diabetic rats. Indeed, DHA + TPPU were more effective than TPPU alone in reducing the symptoms monitored. All drug treatments reduced oxidative stress and minimized inflammation in the brain of diabetic rats. Expression of the amyloid precursor protein (APP) was increased in the brain of diabetic rats. Treatment with edaravone (10 mg/kg), TPPU or TPPU + DHA minimized the level of APP. The activity of acetylcholinesterase (AChE) which metabolizes acetylcholine was increased in the brain of diabetic rats. All the treatments except edaravone (3 mg/kg) were effective in decreasing the activity of AChE and TPPU + DHA was more efficacious than TPPU alone. Intriguingly, the histological changes in hippocampus after treatment with TPPU + DHA showed significant protection of neurons against STZ-induced neuronal damage. Overall, we found that DHA improved the efficacy of TPPU in increasing neuronal survival and memory, decreasing oxidative stress and inflammation possibly by stabilizing anti-inflammatory and neuroprotective epoxides of DHA. In the future, further evaluating the detailed mechanisms of action of sEH inhibitor and DHA could help to develop a strategy for the management of Alzheimer's-like complications in diabetes.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Nityanand Bolshette
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Mohammad Arfeen
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Rohitash Jamwal
- Biomedical and Pharmaceutical Sciences, The University of Rhode Island, Kingston, RI, United States
| | - Bruce D. Hammock
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Mangala Lahkar
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sumanta Kumar Goswami
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
34
|
Jojo GM, Kuppusamy G. Scope of new formulation approaches in the repurposing of pioglitazone for the management of Alzheimer’s disease. J Clin Pharm Ther 2019; 44:337-348. [DOI: 10.1111/jcpt.12808] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Gifty M. Jojo
- Department of Pharmaceutics JSS College of Pharmacy Ootacamund India
- JSS Academy of Higher Education and Research Mysuru India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics JSS College of Pharmacy Ootacamund India
- JSS Academy of Higher Education and Research Mysuru India
| |
Collapse
|
35
|
Akocak S, Boga M, Lolak N, Tuneg M, Sanku RKK. Design, synthesis and biological evaluation of 1,3-diaryltriazene-substituted sulfonamides as antioxidant, acetylcholinesterase and butyrylcholinesterase inhibitors. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.516444] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
36
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
37
|
Zhang L, Xu J, Gao J, Chen P, Yin M, Zhao W. Decreased immunoglobulin G in brain regions of elder female APOE4-TR mice accompany with Aβ accumulation. IMMUNITY & AGEING 2019; 16:2. [PMID: 30700991 PMCID: PMC6347753 DOI: 10.1186/s12979-018-0142-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022]
Abstract
Background Apolipoprotein E4 (APOE4) and ageing are the most important known risk factors for late-onset Alzheimer’s disease (AD). In the present study, we determined the alterations of IgG, CD19, and Aβ in various brain regions of uninfected male and female APOE3- and APOE4-TR mice at the age of 3 and 10 months to elucidate impacts of AD risk factors on alterations of brain IgG. Results Positive staining for IgG was distributed across the brain, including neocortex, entorhinal cortex, hippocampus, thalamus and cerebellum. IgG positive staining was mainly located on microglia, but not astrocytes. Some IgG positive neurons were also observed, but only in mediodorsal thalamic nucleus. Compared with APOE3-TR mice, 10-month-old female APOE4-TR mice had lower IgG level in AD susceptible brain regions such as neocortex, entorhinal cortex and hippocampus, but no significant changes in thalamus and cerebellum, two regions nearly intact in AD. In addition, the expression of CD19, a specific marker for mature B cells, was significantly reduced in the hippocampus of 10-month-old female APOE4-TR mice. Although there were no obvious differences in plasma IgG levels between APOE4- and age matched female APOE3-TR mice, significant decreased B cell amount in blood of 10-month-old female APOE4-TR mice have also been found. Moreover, more obvious positive staining for Aβ was observed in the cortex of 10-month-old female APOE4-TR mice than other groups. Conclusions Our study demonstrated that AD risk factors were associated with IgG alterations in various brain regions, which might result from the defects of humoral immunity and lead to the impairment of IgG-mediated clearance of Aβ by microglia, therefore facilitated AD progression.
Collapse
Affiliation(s)
- Lihang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Juan Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Jinchao Gao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Peiqing Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
38
|
Pretorius L, Kell DB, Pretorius E. Iron Dysregulation and Dormant Microbes as Causative Agents for Impaired Blood Rheology and Pathological Clotting in Alzheimer's Type Dementia. Front Neurosci 2018; 12:851. [PMID: 30519157 PMCID: PMC6251002 DOI: 10.3389/fnins.2018.00851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease and other similar dementias are debilitating neurodegenerative disorders whose etiology and pathogenesis remain largely unknown, even after decades of research. With the anticipated increase in prevalence of Alzheimer’s type dementias among the more susceptible aging population, the need for disease-modifying treatments is urgent. While various hypotheses have been put forward over the last few decades, we suggest that Alzheimer’s type dementias are triggered by external environmental factors, co-expressing in individuals with specific genetic susceptibilities. These external stressors are defined in the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis, previously put forward. This hypothesis is consistent with current literature in which serum ferritin levels of individuals diagnosed with Alzheimer’s disease are significantly higher compared those of age- and gender-matched controls. While iron dysregulation contributes to oxidative stress, it also causes microbial reactivation and virulence of the so-called dormant blood (and tissue) microbiome. Dysbiosis (changes in the microbiome) or previous infections can contribute to the dormant blood microbiome (atopobiosis1), and also directly promotes systemic inflammation via the amyloidogenic formation and shedding of potent inflammagens such as lipopolysaccharides. The simultaneous iron dysregulation and microbial aberrations affect the hematological system, promoting fibrin amylodiogenesis, and pathological clotting. Systemic inflammation and oxidative stress can contribute to blood brain barrier permeability and the ensuing neuro-inflammation, characteristic of Alzheimer’s type dementias. While large inter-individual variability exists, especially concerning disease pathogenesis, the IDDM hypothesis acknowledges primary causative factors which can be targeted for early diagnosis and/or for prevention of disease progression.
Collapse
Affiliation(s)
- Lesha Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, Manchester, United Kingdom.,The Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Etheresia Pretorius
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
39
|
Welcome MO. Current Perspectives and Mechanisms of Relationship between Intestinal Microbiota Dysfunction and Dementia: A Review. Dement Geriatr Cogn Dis Extra 2018; 8:360-381. [PMID: 30483303 PMCID: PMC6244112 DOI: 10.1159/000492491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Accumulating data suggest a crucial role of the intestinal microbiota in the development and progression of neurodegenerative diseases. More recently, emerging reports have revealed an association between intestinal microbiota dysfunctions and dementia, a debilitating multifactorial disorder, characterized by progressive deterioration of cognition and behavior that interferes with the social and professional life of the sufferer. However, the mechanisms of this association are not fully understood. SUMMARY In this review, I discuss recent data that suggest mechanisms of cross-talk between intestinal microbiota dysfunction and the brain that underlie the development of dementia. Potential therapeutic options for dementia are also discussed. The pleiotropic signaling of the metabolic products of the intestinal microbiota together with their specific roles in the maintenance of both the intestinal and blood-brain barriers as well as regulation of local, distant, and circulating immunocytes, and enteric, visceral, and central neural functions are integral to a healthy gut and brain. KEY MESSAGES Research investigating the effect of intestinal microbiota dysfunctions on brain health should focus on multiple interrelated systems involving local and central neuroendocrine, immunocyte, and neural signaling of microbial products and transmitters and neurohumoral cells that not only maintain intestinal, but also blood brain-barrier integrity. The change in intestinal microbiome/dysbiome repertoire is crucial to the development of dementia.
Collapse
Affiliation(s)
- Menizibeya O. Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria
| |
Collapse
|
40
|
Rasool M, Malik A, Waquar S, Tul-Ain Q, Jafar TH, Rasool R, Kalsoom A, Ghafoor MA, Sehgal SA, Gauthaman K, Naseer MI, Al-Qahtani MH, Pushparaj PN. In-Silico Characterization and in-Vivo Validation of Albiziasaponin-A, Iso-Orientin, and Salvadorin Using a Rat Model of Alzheimer's Disease. Front Pharmacol 2018; 9:730. [PMID: 30123124 PMCID: PMC6085546 DOI: 10.3389/fphar.2018.00730] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia, excessive acetylcholinesterase (AChE) activity, formation of neurotoxic amyloid plaque, and tau protein aggregation. Based on literature survey, we have shortlisted three important target proteins (AChE, COX2, and MMP8) implicated in the pathogenesis of AD and 20 different phytocompounds for molecular docking experiments with these three target proteins. The 3D-structures of AChE, COX2, and MMP8 were predicted by homology modeling by MODELLER and the threading approach by using ITASSER. Structure evaluations were performed using ERRAT, Verify3D, and Rampage softwares. The results based on molecular docking studies confirmed that there were strong interactions of these phytocompounds with AChE, COX2, and MMP8. The top three compounds namely Albiziasaponin-A, Iso-Orientin, and Salvadorin showed least binding energy and highest binding affinity among all the scrutinized compounds. Post-docking analyses showed the following free energy change for Albiziasaponin-A, Salvadorin, and Iso-Orientin (-9.8 to -15.0 kcal/mol) as compared to FDA approved drugs (donepezil, galantamine, and rivastigmine) for AD (-6.6 to -8.2 Kcal/mol) and interact with similar amino acid residues (Pro-266, Asp-344, Trp-563, Pro-568, Tyr-103, Tyr-155, Trp-317, and Tyr-372) with the target proteins. Furthermore, we have investigated the antioxidant and anticholinesterase activity of these top three phytochemicals namely, Albiziasaponin-A, Iso-Orientin, and Salvadorin in colchicine induced rat model of AD. Sprague Dawley (SD) rat model of AD were developed using bilateral intracerebroventricular (ICV) injection of colchicine (15 μg/rat). After the induction of AD, the rats were subjected to treatment with phytochemicals individually or in combination for 3 weeks. The serum samples were further analyzed for biomarkers such as 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), matrix metalloproteinase-8 (MMP-8), isoprostanes-2 alpha (isoP-2α), and acetylcholine esterase (AChE) using conventional Enzyme Linked Immunosorbent Assay (ELISA) method. Additionally, the status of lipid peroxidation was estimated calorimetrically by measuring thiobarbituric acid reactive substances (TBARS). Here, we observed a statistically significant reduction (P < 0.05) in the oxidative stress and inflammatory markers in the treatment groups receiving mono and combinational therapies using Albiziasaponin-A, Iso-Orientin, and Salvadorin as compared to colchicine alone group. Besides, the ADMET profiles of these phytocompounds were very promising and, hence, these potential neuroprotective agents may further be taken for preclinical studies either as mono or combinational therapy for AD.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Qura Tul-Ain
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Tassadaq H. Jafar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aasia Kalsoom
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad A. Ghafoor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sheikh A. Sehgal
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Kalamegam Gauthaman
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad I. Naseer
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H. Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter N. Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
41
|
Malar DS, Suryanarayanan V, Prasanth MI, Singh SK, Balamurugan K, Devi KP. Vitexin inhibits Aβ25-35 induced toxicity in Neuro-2a cells by augmenting Nrf-2/HO-1 dependent antioxidant pathway and regulating lipid homeostasis by the activation of LXR-α. Toxicol In Vitro 2018; 50:160-171. [DOI: 10.1016/j.tiv.2018.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/01/2017] [Accepted: 03/10/2018] [Indexed: 12/22/2022]
|
42
|
Reactive Astrocytes as Drug Target in Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4160247. [PMID: 29888263 PMCID: PMC5977027 DOI: 10.1155/2018/4160247] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a neurodegenerative disease characterized by deposition of extracellular amyloid-β, intracellular neurofibrillary tangles, and loss of cortical neurons. However, the mechanism underlying neurodegeneration in Alzheimer's disease (AD) remains to be explored. Many of the researches on AD have been primarily focused on neuronal changes. Current research, however, broadens to give emphasis on the importance of nonneuronal cells, such as astrocytes. Astrocytes play fundamental roles in several cerebral functions and their dysfunctions promote neurodegeneration and, eventually, retraction of neuronal synapses, which leads to cognitive deficits found in AD. Astrocytes become reactive as a result of deposition of Aβ, which in turn have detrimental consequences, including decreased glutamate uptake due to reduced expression of uptake transporters, altered energy metabolism, altered ion homeostasis (K+ and Ca+), increased tonic inhibition, and increased release of cytokines and inflammatory mediators. In this review, recent insights on the involvement of, tonic inhibition, astrocytic glutamate transporters and aquaporin in the pathogenesis of Alzheimer's disease are provided. Compounds which increase expression of GLT1 have showed efficacy for AD in preclinical studies. Tonic inhibition mediated by GABA could also be a promising target and drugs that block the GABA synthesizing enzyme, MAO-B, have shown efficacy. However, there are contradictory evidences on the role of AQP4 in AD.
Collapse
|
43
|
Nguyen TT, Giau VV, Vo TK. Current advances in transdermal delivery of drugs for Alzheimer's disease. Indian J Pharmacol 2018; 49:145-154. [PMID: 28706327 PMCID: PMC5497436 DOI: 10.4103/0253-7613.208143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a common, progressive, fatal neurodegenerative disorder, which will play an increasingly important role both socially and financially in the aging populations. Treatments for AD show modest improvements in cognition and global functioning among patients. Furthermore, the oral administration of treating AD has had some drawbacks that decrease the medication adherence and efficacy of the therapy. Transdermal drugs are proposed as an alternative remedy to overcome the disadvantages of current pharmaceutical dosage options for this chronic disorder. They could have different strengths, such as offering a stable diffusion of active substance, avoiding the first pass metabolism, and reducing system adverse reactions. This article reviews the technical principles, novel techniques of transdermal delivery drug, and prospects for future development for the management of cognitive and behavioral dysfunctions in AD patients.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Department of Pharmacy, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam, Korea.,Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam, Korea
| | - Vo Van Giau
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam, Korea.,Department of Food Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh City, Vietnam
| | - Tuong Kha Vo
- Vietnam Sports Hospital, Ministry of Culture, Sports and Tourism, Nam Tu Liem District, Hanoi City, Vietnam
| |
Collapse
|
44
|
Ghosh DK, Roy A, Ranjan A. Aggregation-prone Regions in HYPK Help It to Form Sequestration Complex for Toxic Protein Aggregates. J Mol Biol 2018; 430:963-986. [DOI: 10.1016/j.jmb.2018.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/24/2022]
|
45
|
Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc Natl Acad Sci U S A 2018; 115:E2403-E2409. [PMID: 29463708 DOI: 10.1073/pnas.1718435115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, nongenetic animal models to study the onset and development of Alzheimer's disease (AD) have appeared, such as the intrahippocampal infusion of peptides present in Alzheimer amyloid plaques [i.e., amyloid-β (Aβ)]. Nonpharmacological approaches to AD treatment also have been advanced recently, which involve combinations of behavioral interventions whose specific effects are often difficult to determine. Here we isolate the neuroprotective effects of three of these interventions-environmental enrichment (EE), anaerobic physical exercise (AnPE), and social enrichment (SE)-on Aβ-induced oxidative stress and on impairments in learning and memory induced by Aβ. Wistar rats were submitted to 8 wk of EE, AnPE, or SE, followed by Aβ infusion in the dorsal hippocampus. Short-term memory (STM) and long-term memory (LTM) of object recognition (OR) and social recognition (SR) were evaluated. Biochemical assays determined hippocampal oxidative status: reactive oxygen species, lipid peroxidation by thiobarbituric acid reactive substance (TBARS) test, and total antioxidant capacity by ferric reducing/antioxidant power (FRAP), as well as acetylcholinesterase activity. Aβ infusion resulted in memory deficits and hippocampal oxidative damage. EE and AnPE prevented all memory deficits (STM and LTM of OR and SR) and lipid peroxidation (i.e., TBARS). SE prevented only the SR memory deficits and the decrease of total antioxidant capacity decrease (i.e., FRAP). Traditionally, findings obtained with EE protocols do not allow discrimination of the roles of the three individual factors involved. Here we demonstrate that EE and physical exercise have better neuroprotective effects than SE in memory deficits related to Aβ neurotoxicity in the AD model tested.
Collapse
|
46
|
Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. RKIP-Mediated NF-κB Signaling is involved in ELF-MF-mediated improvement in AD rat. Int J Med Sci 2018; 15:1658-1666. [PMID: 30588189 PMCID: PMC6299414 DOI: 10.7150/ijms.28411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
In a previous study, we reported the positive effects of extremely low frequency electromagnetic field (ELF-MF) exposure on Alzheimer's disease (AD) rats; however, the underlying mechanism remains unclear. In addition, we found that Raf-1 kinase inhibitor protein (RKIP) was downregulated by microwave exposure in the rat hippocampus. Our hypothesis was that RKIP-mediated NF-κB pathway signaling is involved in the effect of ELF-MF on the AD rat. In this study, D-galactose intraperitoneal (50 mg/kg/d for 42 d) and Aβ25-35 hippocampal (5 μL/unilateral, bilateral, single-dose) injection were implemented to establish an AD rat model. Animals were exposed to 50 Hz and 400 µT ELF-MF for 60 continuous days. The spatial memory ability of the rat was then tested using the Morris water maze. Protein expression and interaction were detected by western blotting and co-immunoprecipitation for RKIP-mediated NF-κB pathway factors. The results showed that ELF-MF exposure partially improved the cognitive disorder, upregulated the levels of RKIP, TAK1, and the RKIP/TAK1 interaction, but downregulated p-IKK levels in AD rats. These results indicated that RKIP-mediated NF-κB pathway signaling plays an important role in the ELF-MF exposure-mediated improvements in the AD rat. Our study suggested that ELF-MF exposure might have a potential therapeutic value for AD. Further in depth studies are required in the future.
Collapse
Affiliation(s)
- Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao Liu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dewen Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Akbarnejad Z, Esmaeilpour K, Shabani M, Asadi-Shekaari M, Saeedi Goraghani M, Ahmadi-Zeidabadi M. Spatial memory recovery in Alzheimer's rat model by electromagnetic field exposure. Int J Neurosci 2017; 128:691-696. [PMID: 29185809 DOI: 10.1080/00207454.2017.1411353] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Although studies have shown a potential association between extremely low frequency electromagnetic fields (ELF-EMFs) exposure and Alzheimer's disease (AD), few studies have been conducted to investigate the effects of weak magnetic fields on brain functions such as cognitive functions in animal models. Therefore, this study aimed to investigate the effect of ELF-EMF exposure (50 Hz, 10 mT) on spatial learning and memory changes in AD rats. METHODS Amyloid-β (Aβ) 1-42 was injected into lateral ventricle to establish an AD rat model. The rats were divided into six groups: Group I (control); Group II (surgical sham); Group III (AD) Alzheimer's rat model; Group IV (MF) rats exposed to ELF-MF for 14 consecutive days; Group V (Aβ injection+M) rats exposed to magnetic field for 14 consecutive days from day 0 to 14 days after the Aβ peptide injection; Group VI (AD+M) rats exposed to magnetic field for 14 consecutive days after 2 weeks of Aβ peptide injection from 14th to 28th day . Morris water maze investigations were performed. RESULTS AD rats showed a significant impairment in learning and memory compared to control rats. The results showed that ELF-MF improved the learning and memory impairments in Aβ injection+M and AD+M groups. CONCLUSION Our results showed that application of ELF-MF not only has improving effect on different cognitive disorder signs of AD animals, but also disrupts the processes of AD rat model formation.
Collapse
Affiliation(s)
- Zeinab Akbarnejad
- a Neuroscience Research Center , Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran.,b ENT and Head & Neck Research Center , Iran University of Medical Sciences (IUMS) , Tehran , Iran
| | - Khadijeh Esmaeilpour
- a Neuroscience Research Center , Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Mohammad Shabani
- a Neuroscience Research Center , Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Majid Asadi-Shekaari
- a Neuroscience Research Center , Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Monavvar Saeedi Goraghani
- a Neuroscience Research Center , Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| | - Meysam Ahmadi-Zeidabadi
- a Neuroscience Research Center , Institute of Neuropharmacology, Kerman University of Medical Sciences , Kerman , Iran
| |
Collapse
|
48
|
Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Sci Rep 2017; 7:17922. [PMID: 29263397 PMCID: PMC5738385 DOI: 10.1038/s41598-017-17911-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.
Collapse
|
49
|
Rajmohamed MA, Natarajan S, Palanisamy P, Abdulkader AM, Govindaraju A. Antioxidant and Cholinesterase Inhibitory Activities of Ethyl Acetate Extract of Terminalia chebula: Cell-free In vitro and In silico Studies. Pharmacogn Mag 2017; 13:S437-S445. [PMID: 29142396 PMCID: PMC5669079 DOI: 10.4103/pm.pm_57_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative disorder clinically characterized by memory loss and impaired cognitive function. Cholinergic enzyme deficiency and oxidative stress are the two major factors implicated in the pathogenesis of AD. The symptomatic treatment, as of now, is the use of cholinesterase inhibitors toward cholinergic "downturn." Therefore, there is a search for compounds that will be useful in focused therapies. There has been suggestion that Terminalia chebula fruit would be a potential source. Objective To assess the anticholinesterase and antioxidant activities of T. chebula fruit which is widely practiced in the Ayurvedic medicines for memory enhancement. Materials and Methods Ethyl acetate extract of T. chebula fruit (TCEA) was subjected to phytochemical investigation of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities and cell-free antioxidant activity. TCEA was further subjected to gas chromatography-mass spectrum (GC-MS) analysis. The bioactive compounds were analyzed for molecular docking with AChE and BuChE proteins. Results TCEA exhibited potent AChE and BuChE inhibitory activities comparable to the standard drug donepezil. In vitro cell-free antioxidant assays demonstrated that TCEA possesses excellent free radical scavenging activity, reducing power, and potent metal-chelating activity. Total polyphenolic content of TCEA was 596.75 ± 0.35 µg gallic acid equivalents/mg of extract, which correlates with the antioxidant activity of TCEA. Molecular docking of compounds expounded in GC-MS analysis for AChE and BuChE enzyme activities revealed that methyl N-(N-benzyloxycarbonyl-beta-l-aspartyl)-beta-d-glucosaminide as the most potent compound with good predicted activities. Conclusion Overall, the results revealed that the bioactive molecule methyl N-(N-benzyloxycarbonyl-beta-l-aspartyl)-beta-d-glucosaminide present in TCEA is a potential depressant for the treatment of AD and related neurodegenerative disorders. SUMMARY The present study was carried out to assess the neuroprotective effect of Terminalia chebula fruit and its phytoconstituent. Phytochemical analysis of fruit ethyl acetate extract of T. chebula (TCEA) showed the presence of alkaloid, cardiac glycoside, and tannin. TCEA showed potent acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activities when compared to standard drug donepezil. Results of in vitro antioxidant assays revealed excellent free radical scavenging activity, reducing power, and potent metal-chelating activity. Gas chromatography-mass spectrum analysis illustrated the presence of 22 active compounds, among which methyl N-(N-benzyloxycarbonyl-beta-l-aspartyl)-beta-d-glucosaminide exhibited potent AChE and BuChE inhibition analyzed through in silico studies. Abbreviations used: AD: Alzheimer's disease; TCEA: Ethyl acetate extract of Terminalia chebula; GC-MS: Gas chromatography-mass spectrum; ROS: Reactive oxygen species; RNS: Reactive nitrogen species; AChE: Acetylcholinesterase; BuChE: Butyrylcholinesterase; NFT: Neurofibrillary tangles; Aμ: μ-amyloid; NSAIDS: Nonsteroidal anti-inflammatory drugs; FDA: Food and Drug Administration; RT: Room temperature; HCl: Hydrochloric acid; ATCI: Acetylthiocholine iodide; BTCI: Butyrylthiocholine iodide; BHT: Butylated hydroxytoluene; DPPH: 2,2-diphenyl-1-picrylhydrazyl; TCA: Trichloroacetic acid; GAE: Gallic acid equivalent; NICT: National Institute of Information and Communications Technology; 3D: Three-dimensional; PDB: Protein data bank; OPLS: Optimized potentials for liquid simulations; XP: Extra precision; SD: Standard deviation; ANOVA: Analysis of variance; EDTA: Ethylenediaminetetraacetic acid.
Collapse
Affiliation(s)
- Mohamed Asik Rajmohamed
- Centre for Pheromone Technology, Department of Animal Science, School of Life Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.,National Center for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Suganthy Natarajan
- Centre for Pheromone Technology, Department of Animal Science, School of Life Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.,Department of Nanoscience and Technology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Premkumar Palanisamy
- Department of Biochemistry, Molecular Gerontology Laboratory, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Akbarsha Mohammad Abdulkader
- National Center for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.,Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Archunan Govindaraju
- Centre for Pheromone Technology, Department of Animal Science, School of Life Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.,National Center for Alternatives to Animal Experiments, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
50
|
Barh D, García-Solano ME, Tiwari S, Bhattacharya A, Jain N, Torres-Moreno D, Ferri B, Silva A, Azevedo V, Ghosh P, Blum K, Conesa-Zamora P, Perry G. BARHL1 Is Downregulated in Alzheimer's Disease and May Regulate Cognitive Functions through ESR1 and Multiple Pathways. Genes (Basel) 2017; 8:genes8100245. [PMID: 28956815 PMCID: PMC5664095 DOI: 10.3390/genes8100245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022] Open
Abstract
The Transcription factor BarH like homeobox 1 (BARHL1) is overexpressed in medulloblastoma and plays a role in neurogenesis. However, much about the BARHL1 regulatory networks and their functions in neurodegenerative and neoplastic disorders is not yet known. In this study, using a tissue microarray (TMA), we report for the first time that BARHL1 is downregulated in hormone-negative breast cancers and Alzheimer’s disease (AD). Furthermore, using an integrative bioinformatics approach and mining knockout mouse data, we show that: (i) BARHL1 and Estrogen Receptor 1 (ESR1) may constitute a network that regulates Neurotrophin 3 (NTF3)- and Brain Derived Neurotrophic Factor (BDNF)-mediated neurogenesis and neural survival; (ii) this is probably linked to AD pathways affecting aberrant post-translational modifications including SUMOylation and ubiquitination; (iii) the BARHL1-ESR1 network possibly regulates β-amyloid metabolism and memory; and (iv) hsa-mir-18a, having common key targets in the BARHL1-ESR1 network and AD pathway, may modulate neuron death, reduce β-amyloid processing and might also be involved in hearing and cognitive decline associated with AD. We have also hypothesized why estrogen replacement therapy improves AD condition. In addition, we have provided a feasible new mechanism to explain the abnormal function of mossy fibers and cerebellar granule cells related to memory and cognitive decline in AD apart from the Tau and amyloid pathogenesis through our BARHL1-ESR1 axis.
Collapse
Affiliation(s)
- Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal 721172, India.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - María E García-Solano
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain.
- Catholic University of Murcia (UCAM), 30107 Murcia, Spain.
| | - Sandeep Tiwari
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal 721172, India.
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Antaripa Bhattacharya
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal 721172, India.
| | - Neha Jain
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal 721172, India.
| | - Daniel Torres-Moreno
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain.
- Catholic University of Murcia (UCAM), 30107 Murcia, Spain.
| | - Belén Ferri
- Department of Pathology, Virgen Arrixaca University Hospital (HUVA), Ctra. Madrid Cartagena sn, 30120 El Palmar, Spain.
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 01-Guamá, Belém, PA 66075-110, Brazil.
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | - Preetam Ghosh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal 721172, India.
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Kenneth Blum
- Department of Psychiatry & McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Pablo Conesa-Zamora
- Department of Pathology, Santa Lucía General University Hospital (HGUSL), C/Mezquita s/n, 30202 Cartagena, Spain.
- Catholic University of Murcia (UCAM), 30107 Murcia, Spain.
| | - George Perry
- UTSA Neurosciences Institute and Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA.
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|