1
|
Pan H, Shi P, Zhong S, Ding X, Bao S, Zhao S, Chen J, Dai C, Zhang D, Qiu X, Liao B, Huang Z. Genome-wide identification and expression analysis of the ADH gene family in Artemisia annua L. under UV-B stress. FRONTIERS IN PLANT SCIENCE 2025; 16:1533225. [PMID: 40177011 PMCID: PMC11961895 DOI: 10.3389/fpls.2025.1533225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/20/2025] [Indexed: 04/05/2025]
Abstract
ADHs are key genes that catalyze the interconversion between alcohols and aldehydes, which play crucial roles in plant adaptation to a range of abiotic stresses. However, the characterization and evolutionary pathways of ADH genes in the antimalarial plant Artemisia annua are still unclear. This study identified 49 ADH genes in A. annua and conducted a detailed analysis of their structural features, conserved motifs, and duplication types, revealing that tandem and dispersed duplications are the primary mechanisms of gene expansion. Evolutionary analysis of ADH genes between A. annua (AanADH) and A. argyi (AarADH) revealed dynamic changes, with 35 genes identified deriving from their most recent common ancestor in both species. ADH1, crucial for artemisinin production, had two copies in both species, expanding via dispersed duplication in A. annua but whole-genome duplication in A. argyi. CREs and WGCNA analysis suggested that AanADH genes may be regulated by UV-B stress. Following short-term UV-B treatment, 16 DEGs were identified, including ADH1 (AanADH6 and AanADH7), and these genes were significantly downregulated after two hours treatment (UV2h) and upregulated after four hours treatment (UV4h). The expression changes of these genes were further confirmed by GO enrichment analysis and qRT-PCR experiments. Overall, this study comprehensively characterized the ADH gene family in A. annua and systematically identified AanADH genes that were responsive to UV-B stress, providing a foundation for further research on their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Hengyu Pan
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiqi Shi
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shan Zhong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Xiaoxia Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengye Bao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siyu Zhao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieting Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunyan Dai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Danchun Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baosheng Liao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Zhao M, Hu R, Lin Y, Yang Y, Chen Q, Li M, Zhang Y, Zhang Y, Wang Y, He W, Wang X, Tang H, Luo Y. Genome-Wide Analysis of Polygalacturonase Gene Family Reveals Its Role in Strawberry Softening. PLANTS (BASEL, SWITZERLAND) 2024; 13:1838. [PMID: 38999678 PMCID: PMC11244104 DOI: 10.3390/plants13131838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Fruit softening is a prominent attribute governing both longevity on shelves and commercial worth. Polygalacturonase (PG) plays a major role in strawberry fruit softening. However, the PG gene family in strawberry has not been comprehensively analyzed. In this study, 75 FaPG genes were identified in the octoploid strawberry genome, which were classified into three groups according to phylogenetic analysis. Subcellular localization prediction indicated that FaPGs are mostly localized to the plasma membrane, cytoplasm, and chloroplasts. Moreover, the expression of FaPGs during strawberry development and ripening of 'Benihoppe' and its softer mutant was estimated. The results showed that among all 75 FaPGs, most genes exhibited low expression across developmental stages, while two group c members (FxaC_21g15770 and FxaC_20g05360) and one group b member, FxaC_19g05040, displayed relatively higher and gradual increases in their expression trends during strawberry ripening and softening. FxaC_21g15770 was selected for subsequent silencing to validate its role in strawberry softening due to the fact that it exhibited the highest and most changed expression level across different developmental stages in 'Benihoppe' and its mutant. Silencing FxaC_21g15770 could significantly improve strawberry fruit firmness without affecting fruit color, soluble solids, cellulose, and hemicellulose. Conversely, silencing FxaC_21g15770 could significantly suppress the expression of other genes related to pectin degradation such as FaPG-like, FaPL, FaPME, FaCX, FaCel, FaGlu, FaXET, and FaEG. These findings provide basic information on the FaPG gene family for further functional research and indicate that FxaC_21g15770 plays a vital role in strawberry fruit softening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 625014, China; (M.Z.); (R.H.); (Y.L.); (Y.Y.); (Q.C.); (M.L.); (Y.Z.); (Y.Z.); (Y.W.); (W.H.); (X.W.); (H.T.)
| |
Collapse
|
3
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Tang F, Jiao B, Zhang M, He M, Su R, Luo K, Lan T. PtoMYB031, the R2R3 MYB transcription factor involved in secondary cell wall biosynthesis in poplar. FRONTIERS IN PLANT SCIENCE 2024; 14:1341245. [PMID: 38298604 PMCID: PMC10828011 DOI: 10.3389/fpls.2023.1341245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024]
Abstract
Introduction The biosynthesis of the secondary cell wall (SCW) is orchestrated by an intricate hierarchical transcriptional regulatory network. This network is initiated by first-layer master switches, SCW-NAC transcription factors, which in turn activate the second-layer master switches MYBs. These switches play a crucial role in regulating xylem specification and differentiation during SCW formation. However, the roles of most MYBs in woody plants are yet to be fully understood. Methods In this study, we identified and isolated the R2R3-MYB transcription factor, PtoMYB031, from Populus tomentosa. We explored its expression, mainly in xylem tissues, and its role as a transcriptional repressor in the nucleus. We used overexpression and RNA interference techniques in poplar, along with Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays, to analyze the regulatory effects of PtoMYB031. Results Overexpression of PtoMYB031 in poplar significantly reduced lignin, cellulose, and hemicellulose content, and inhibited vascular development in stems, resulting in decreased SCW thickness in xylem tissues. Gene expression analysis showed that structural genes involved in SCW biosynthesis were downregulated in PtoMYB031-OE lines. Conversely, RNA interference of PtoMYB031 increased these compounds. Additionally, PtoMYB031 was found to recruit the repressor PtoZAT11, forming a transcriptional inhibition complex. Discussion Our findings provide new insights into how PtoMYB031, through its interaction with PtoZAT11, forms a complex that can suppress the expression of key regulatory genes, PtoWND1A and PtoWND2B, in SCW biosynthesis. This study enhances our understanding of the transcriptional regulation involved in SCW formation in poplar, highlighting the significant role of PtoMYB031.
Collapse
Affiliation(s)
- Feng Tang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Meng Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Minghui He
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Ruiying Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ting Lan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Kamel H, Geitmann A. Strength in numbers: An isoform variety of homogalacturonan modifying enzymes may contribute to pollen tube fitness. PLANT PHYSIOLOGY 2023; 194:67-80. [PMID: 37819032 DOI: 10.1093/plphys/kiad544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Pectin is a major component of the cell wall in land plants. It plays crucial roles in cell wall assembly, cell growth, shaping, and signaling. The relative abundance of pectin in the cell wall is particularly high in rapidly growing organ regions and cell types. Homogalacturonan (HG), a polymer of 1,4-linked α-D-galacturonic acid, is a major pectin constituent in growing and dividing plant cells. In pollen tubes, an extremely rapidly growing cell type, HG is secreted at and inserted into the apical cell wall and is subject to further modification in muro by HG modifying enzymes (HGMEs). These enzymes, including pectin esterases and depolymerases, have multiple isoforms, some of which are specifically expressed in pollen. Given the importance of pectin chemistry for the fitness of pollen tubes, it is of interest to interrogate the potentially crucial roles these isoforms play in pollen germination and elongation. It is hypothesized that different HGME isoforms, through their action on apoplastic HG, may generate differential methylation and acetylation patterns endowing HG polysaccharides with specific, spatially and temporally varying properties that lead to a fine-tuned pattern of cell wall modification. In addition, these isoforms may be differentially activated and/or inhibited depending on the local conditions that may vary at subcellular resolution. In this Update we review the different HGME isoforms identified in recent years in Arabidopsis thaliana and postulate that the multiplicity of these isoforms may allow for specialized substrate recognition and conditional activation, leading to a sophisticated regulation scheme exemplified in the process that governs the dynamic properties of the cell wall in pollen tube growth.
Collapse
Affiliation(s)
- Hiba Kamel
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| |
Collapse
|
6
|
Yi X, Chen W, Guan J, Zhu J, Zhang Q, Yang H, Yang H, Zhong S, Chen C, Tan F, Ren T, Luo P. Genome-Wide Analysis of the Polygalacturonase Gene Family Sheds Light on the Characteristics, Evolutionary History, and Putative Function of Akebia trifoliata. Int J Mol Sci 2023; 24:16973. [PMID: 38069295 PMCID: PMC10707396 DOI: 10.3390/ijms242316973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Polygalacturonase (PG) is one of the largest families of hydrolytic enzymes in plants. It is involved in the breakdown of pectin in the plant cell wall and even contributes to peel cracks. Here, we characterize PGs and outline their expression profiles using the available reference genome and transcriptome of Akebia trifoliata. The average length and exon number of the 47 identified AktPGs, unevenly assigned on 14 chromosomes and two unassembled contigs, were 5399 bp and 7, respectively. The phylogenetic tree of 191 PGs, including 47, 57, 51, and 36 from A. trifoliata, Durio zibethinus, Actinidia chinensis, and Vitis vinifera, respectively, showed that AktPGs were distributed in all groups except group G and that 10 AktPGs in group E were older, while the remaining 37 AktPGs were younger. Evolutionarily, all AktPGs generally experienced whole-genome duplication (WGD)/segmental repeats and purifying selection. Additionally, the origin of conserved domain III was possibly associated with a histidine residue (H) substitute in motif 8. The results of both the phylogenetic tree and expression profiling indicated that five AktPGs, especially AktPG25, could be associated with the cracking process. Detailed information and data on the PG family are beneficial for further study of the postharvest biology of A. trifoliata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (W.C.); (J.G.); (J.Z.); (Q.Z.); (H.Y.); (H.Y.); (S.Z.); (C.C.); (F.T.); (T.R.)
| |
Collapse
|
7
|
Peng S, Liu Y, Xu Y, Zhao J, Gao P, Liu Q, Yan S, Xiao Y, Zuo SM, Kang H. Genome-Wide Association Study Identifies a Plant-Height-Associated Gene OsPG3 in a Population of Commercial Rice Varieties. Int J Mol Sci 2023; 24:11454. [PMID: 37511211 PMCID: PMC10380248 DOI: 10.3390/ijms241411454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Plant height is one of the most crucial components of plant structure. However, due to its complexity, the genetic architecture of rice plant height has not been fully elucidated. In this study, we performed a genome-wide association study (GWAS) to determine rice plant height using 178 commercial rice varieties and identified 37 loci associated with rice plant height (LAPH). Among these loci, in LAPH2, we identified a polygalacturonase gene, OsPG3, which was genetically and functionally associated with rice plant height. The rice plant exhibits a super dwarf phenotype when the knockout of the OsPG3 gene occurs via CRISPR-Cas9 gene-editing technology. RNA-Seq analysis indicated that OsPG3 modulates the expression of genes involved in phytohormone metabolism and cell-wall-biosynthesis pathways. Our findings suggest that OsPG3 plays a vital role in controlling rice plant height by regulating cell wall biosynthesis. Given that rice architecture is one of the most critical phenotypes in rice breeding, OsPG3 has potential in rice's molecular design breeding toward an ideal plant height.
Collapse
Affiliation(s)
- Shasha Peng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchen Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuchen Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Peng Gao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetic Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agriculture Sciences, Tianjin 300112, China
| | - Yinghui Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shi-Min Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Houxiang Kang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Wang Y, Fan Z, Zhai Y, Huang H, Vainstein A, Ma H. Polygalacturonase gene family analysis identifies FcPG12 as a key player in fig (Ficus carica L.) fruit softening. BMC PLANT BIOLOGY 2023; 23:320. [PMID: 37316788 DOI: 10.1186/s12870-023-04315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.
Collapse
Affiliation(s)
- Yuan Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhiyi Fan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanlei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hantang Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Alexander Vainstein
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Huiqin Ma
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
He P, Zhang J, Lv Z, Cui P, Xu X, George MS, Lu G. Genome-wide identification and expression analysis of the polygalacturonase gene family in sweetpotato. BMC PLANT BIOLOGY 2023; 23:300. [PMID: 37270475 PMCID: PMC10239142 DOI: 10.1186/s12870-023-04272-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polygalacturonase (PG), a crucial enzyme involved in pectin degradation, is associated with various plants' developmental and physiological processes such as seed germination, fruit ripening, fruit softening and plant organ abscission. However, the members of PG gene family in sweetpotato (Ipomoea batatas) have not been extensively identified. RESULTS In this study, there were 103 PG genes identified in sweetpotato genome, which were phylogenetically clustered into divergent six clades. The gene structure characteristics of each clade were basically conserved. Subsequently, we renamed these PGs according to their locations of the chromosomes. The investigation of collinearity between the PGs in sweetpotato and other four species, contained Arabidopsis thaliana, Solanum lycopersicum, Malus domestica and Ziziphus jujuba, revealed important clues about the potential evolution of the PG family in sweetpotato. Gene duplication analysis showed that IbPGs with collinearity relationships were all derived from segmental duplications, and these genes were under purifying selection. In addition, each promoter region of IbPG proteins contained cis-acting elements related to plant growth and development processes, environmental stress responses and hormone responses. Furthermore, the 103 IbPGs were differentially expressed in various tissues (leaf, stem, proximal end, distal end, root body, root stalk, initiative storage root and fibrous root) and under different abiotic stresses (salt, drought, cold, SA, MeJa and ABA treatment). IbPG038 and IbPG039 were down-regulated with salt, SA and MeJa treatment. According to the further investigation, we found that IbPG006, IbPG034 and IbPG099 had different patterns under the drought and salt stress in fibrous root of sweetpotato, which provided insights into functional differences among these genes. CONCLUSION A total of 103 IbPGs were identified and classified into six clades from sweetpotato genome. The results of RNA-Seq and qRT-PCR suggested that IbPG006, IbPG034 and IbPG099 might play a significant role in tissue specificity as well as drought and salt stress responses, which showed valuable information for further functional characterization and application of the IbPGs.
Collapse
Affiliation(s)
- Peiwen He
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jingzhen Zhang
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zunfu Lv
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Peng Cui
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ximing Xu
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Melvin Sidikie George
- Crop Science Department, Njala University, Njala Campus. Private Mail bag, Freetown, 999127, Sierra Leone
| | - Guoquan Lu
- Institute of Root and Tuber Crops, The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
10
|
Bai M, Tong P, Luo Q, Shang N, Huang H, Huai B, Wu H. CgPG21 is involved in the degradation of the cell wall during the secretory cavity formation in Citrus grandis 'Tomentosa' fruits. PLANT CELL REPORTS 2023:10.1007/s00299-023-03032-7. [PMID: 37219583 DOI: 10.1007/s00299-023-03032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/04/2023] [Indexed: 05/24/2023]
Abstract
MAIN CONCLUSION CgPG21 is mainly located in the cell wall, participates in the intercellular layer degradation of the cell wall during the formation of secretory cavity in the intercellular space-forming and lumen-expanding stages. The secretory cavity is a common structure in Citrus plants and is the main site for synthesis and accumulation of medicinal ingredients. The secretory cavity is formed in lysogenesis, when epithelial cells enter a process of programmed cell death. Pectinases are known to be involved in degradation of the cell wall during the cytolysis of secretory cavity cells, but the changes in cell structure, the dynamic characteristics of cell wall polysaccharides and the related genes regulating cell wall degradation are unclear. In this study, electron microscopy and cell wall polysaccharide-labeling techniques were used to study the main characteristics of cell wall degradation of the secreting cavity of Citrus grandis 'Tomentosa' fruits. At the same time, the full CDS length of the pectinase gene CgPG21 was cloned, encoding a protein composed of 480 amino acids. CgPG21 is mainly located in the cell wall, participates in the degradation of the intercellular layer of the cell wall during the development of the secretory cavity, and plays an important role in the formation of the secretory cavity in the intercellular space-forming and lumen-expanding stages. With the development of secretory cavity, the cell wall polysaccharides of epithelial cells gradually degrade. CgPG21 is mainly involved in the intercellular layer degradation.
Collapse
Affiliation(s)
- Mei Bai
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Panpan Tong
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qun Luo
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Shang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hailan Huang
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Huai
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wu
- Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
11
|
Chen H, Guo M, Dong S, Wu X, Zhang G, He L, Jiao Y, Chen S, Li L, Luo H. A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity. PLANT COMMUNICATIONS 2023; 4:100516. [PMID: 36597358 DOI: 10.1016/j.xplc.2023.100516] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
Artemisia argyi Lévl. et Vant., a perennial Artemisia herb with an intense fragrance, is widely used in traditional medicine in China and many other Asian countries. Here, we present a chromosome-scale genome assembly of A. argyi comprising 3.89 Gb assembled into 17 pseudochromosomes. Phylogenetic and comparative genomic analyses revealed that A. argyi underwent a recent lineage-specific whole-genome duplication (WGD) event after divergence from Artemisia annua, resulting in two subgenomes. We deciphered the diploid ancestral genome of A. argyi, and unbiased subgenome evolution was observed. The recent WGD led to a large number of duplicated genes in the A. argyi genome. Expansion of the terpene synthase (TPS) gene family through various types of gene duplication may have greatly contributed to the diversity of volatile terpenoids in A. argyi. In particular, we identified a typical germacrene D synthase gene cluster within the expanded TPS gene family. The entire biosynthetic pathways of germacrenes, (+)-borneol, and (+)-camphor were elucidated in A. argyi. In addition, partial deletion of the amorpha-4,11-diene synthase (ADS) gene and loss of function of ADS homologs may have resulted in the lack of artemisinin production in A. argyi. Our study provides new insights into the genome evolution of Artemisia and lays a foundation for further improvement of the quality of this important medicinal plant.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Miaoxian Guo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shuting Dong
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinling Wu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guobin Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Liu He
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Hongmei Luo
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
12
|
Yu Y, Beyene G, Villmer J, Duncan KE, Hu H, Johnson T, Doust AN, Taylor NJ, Kellogg EA. Grain shattering by cell death and fracture in Eragrostis tef. PLANT PHYSIOLOGY 2023; 192:222-239. [PMID: 36756804 PMCID: PMC10152664 DOI: 10.1093/plphys/kiad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/15/2022] [Accepted: 01/11/2023] [Indexed: 05/03/2023]
Abstract
Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Getu Beyene
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Justin Villmer
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Keith E Duncan
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Toni Johnson
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
13
|
Han X, Zhang J, Han S, Chong SL, Meng G, Song M, Wang Y, Zhou S, Liu C, Lou L, Lou X, Cheng L, Lin E, Huang H, Yang Q, Tong Z. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. PLANT COMMUNICATIONS 2022; 3:100410. [PMID: 35841151 PMCID: PMC9700126 DOI: 10.1016/j.xplc.2022.100410] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 05/15/2023]
Abstract
Terpenoids, including aromatic volatile monoterpenoids and sesquiterpenoids, function in defense against pathogens and herbivores. Phoebe trees are remarkable for their scented wood and decay resistance. Unlike other Lauraceae species investigated to date, Phoebe species predominantly accumulate sesquiterpenoids instead of monoterpenoids. Limited genomic data restrict the elucidation of terpenoid variation and functions. Here, we present a chromosome-scale genome assembly of a Lauraceae tree, Phoebe bournei, and identify 72 full-length terpene synthase (TPS) genes. Genome-level comparison shows pervasive lineage-specific duplication and contraction of TPS subfamilies, which have contributed to the extreme terpenoid variation within Lauraceae species. Although the TPS-a and TPS-b subfamilies were both expanded via tandem duplication in P. bournei, more TPS-a copies were retained and constitutively expressed, whereas more TPS-b copies were lost. The TPS-a genes on chromosome 8 functionally diverged to synthesize eight highly accumulated sesquiterpenes in P. bournei. The essential oil of P. bournei and its main component, β-caryophyllene, exhibited antifungal activities against the three most widespread canker pathogens of trees. The TPS-a and TPS-b subfamilies have experienced contrasting fates over the evolution of P. bournei. The abundant sesquiterpenoids produced by TPS-a proteins contribute to the excellent pathogen resistance of P. bournei trees. Overall, this study sheds light on the evolution and adaptation of terpenoids in Lauraceae and provides valuable resources for boosting plant immunity against pathogens in various trees and crops.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shuang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Sun Li Chong
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | | | - Minyan Song
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yang Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Shengcai Zhou
- Experimental Forest Farm of Qingyuan County, Qingyuan, Zhejiang 323800, China
| | - Chengcheng Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Luhuan Lou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiongzhen Lou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Longjun Cheng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Erpei Lin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Huahong Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
14
|
Liu Z, Yu W, Zhang X, Huang J, Wang W, Miao M, Hu L, Wan C, Yuan Y, Wu B, Lyu M. Genome-Wide Identification and Expression Analysis of Chitinase-like Genes in Petunia axillaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:1269. [PMID: 35567270 PMCID: PMC9100346 DOI: 10.3390/plants11091269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chitinase (EC 3.2.1.14) is a kind of chitin-degrading glycosidase, which plays important roles in the abiotic and biotic defense of plants. In this study, we conducted whole-genome annotation, molecular evolution, and gene expression analyses on the chitinase-like (CTL) gene family members of Petunia axillaris. Thirty-three Petunia axillarischitinase-like genes (PaCTLs) were identified from the latest Petunia genome database. According to the phylogenetic analyses, these genes were divided into GH18 and GH19 subgroups and further subdivided into five classes (Class I to Class V). Conserved motif arrangements indicated their functional relevance within each group. The expansion and homeology analyses showed that gene replication events played an important role in the evolution of PaCTLs and the increase of the GH18 subgroup members was the main reason for the expansion of the PaCTL gene family in the evolution progress. By qRT-PCR analysis, we found that most of the PaCTLs showed a very low expression level in the normal growing plants. But lots of PaCTLs showed upregulated expression profiles when the plants suffered different abiotic stress conditions. Among them, five PaCTLs responded to high temperature and exhibited significantly upregulate expression level. Correspondingly, many hormone responses, as well as biotic and abiotic stress elements were found in the promoters of PaCTLs by using cis-acting element analysis. These results provide a foundation for the exploration of PaCTLs' function and enrich the evolutionary process of the CTL gene family.
Collapse
Affiliation(s)
- Zhuoyi Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
- College of Horticulture, South China Agriculture University, Guangzhou 510642, China
| | - Wenfei Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Xiaowen Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Jinfeng Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Wei Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Miao Miao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Li Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Chao Wan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Yuan Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Binghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Meiling Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| |
Collapse
|
15
|
Qin J, Wang F, Zhao Q, Shi A, Zhao T, Song Q, Ravelombola W, An H, Yan L, Yang C, Zhang M. Identification of Candidate Genes and Genomic Selection for Seed Protein in Soybean Breeding Pipeline. FRONTIERS IN PLANT SCIENCE 2022; 13:882732. [PMID: 35783963 PMCID: PMC9244705 DOI: 10.3389/fpls.2022.882732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 05/13/2023]
Abstract
Soybean is a primary meal protein for human consumption, poultry, and livestock feed. In this study, quantitative trait locus (QTL) controlling protein content was explored via genome-wide association studies (GWAS) and linkage mapping approaches based on 284 soybean accessions and 180 recombinant inbred lines (RILs), respectively, which were evaluated for protein content for 4 years. A total of 22 single nucleotide polymorphisms (SNPs) associated with protein content were detected using mixed linear model (MLM) and general linear model (GLM) methods in Tassel and 5 QTLs using Bayesian interval mapping (IM), single-trait multiple interval mapping (SMIM), single-trait composite interval mapping maximum likelihood estimation (SMLE), and single marker regression (SMR) models in Q-Gene and IciMapping. Major QTLs were detected on chromosomes 6 and 20 in both populations. The new QTL genomic region on chromosome 6 (Chr6_18844283-19315351) included 7 candidate genes and the Hap.X AA at the Chr6_19172961 position was associated with high protein content. Genomic selection (GS) of protein content was performed using Bayesian Lasso (BL) and ridge regression best linear unbiased prediction (rrBULP) based on all the SNPs and the SNPs significantly associated with protein content resulted from GWAS. The results showed that BL and rrBLUP performed similarly; GS accuracy was dependent on the SNP set and training population size. GS efficiency was higher for the SNPs derived from GWAS than random SNPs and reached a plateau when the number of markers was >2,000. The SNP markers identified in this study and other information were essential in establishing an efficient marker-assisted selection (MAS) and GS pipelines for improving soybean protein content.
Collapse
Affiliation(s)
- Jun Qin
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Fengmin Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qingsong Zhao
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Ainong Shi,
| | - Tiantian Zhao
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qijian Song
- Soybean Genomics and Improvement Lab, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Waltram Ravelombola
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Hongzhou An
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Long Yan
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Chunyan Yang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Chunyan Yang,
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Mengchen Zhang,
| |
Collapse
|
16
|
Guo H, Xiao C, Liu Q, Li R, Yan Z, Yao X, Hu H. Two galacturonosyltransferases function in plant growth, stomatal development, and dynamics. PLANT PHYSIOLOGY 2021; 187:2820-2836. [PMID: 34890462 PMCID: PMC8644590 DOI: 10.1093/plphys/kiab432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/23/2021] [Indexed: 05/27/2023]
Abstract
The mechanical properties of guard cell (GC) walls are important for stomatal development and stomatal response to external stimuli. However, the molecular mechanisms of pectin synthesis and pectin composition controlling stomatal development and dynamics remain poorly explored. Here, we characterized the role of two Arabidopsis (Arabidopsis thaliana) galacturonosyltransferases, GAUT10 and GAUT11, in plant growth, stomatal development, and stomatal dynamics. GAUT10 and GAUT11 double mutations reduced pectin synthesis and promoted homogalacturonan (HG) demethylesterification and demethylesterified HG degradation, resulting in larger stomatal complexes and smaller pore areas, increased stomatal dynamics, and enhanced drought tolerance of plants. In contrast, increased GAUT10 or GAUT11 expression impaired stomatal dynamics and drought sensitivity. Genetic interaction analyses together with immunolabeling analyses suggest that the methylesterified HG level is important in stomatal dynamics, and pectin abundance with the demethylesterified HG level controls stomatal dimension and stomatal size. Our results provide insight into the molecular mechanism of GC wall properties in stomatal dynamics, and highlight the role of GAUT10 and GAUT11 in stomatal dimension and dynamics through modulation of pectin biosynthesis and distribution in GC walls.
Collapse
Affiliation(s)
- Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing Liu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiqiang Yan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuan Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
17
|
Ohashi T, Sari N, Misaki R, Fujiyama K. Biochemical characterization of Arabidopsis clade F polygalacturonase shows a substrate preference toward oligogalacturonic acids. J Biosci Bioeng 2021; 133:1-7. [PMID: 34690060 DOI: 10.1016/j.jbiosc.2021.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Polygalacturonases (PGs) hydrolyze α-1,4-linked d-galacturonic acid (GalUA) in polygalacturonic acid. Previously, PG activity in pea seedlings was found in the Golgi apparatus, where pectin biosynthesis occurs. However, the corresponding genes encoding Golgi-localized PG proteins have never been identified in the higher plants. In this study, we cloned the 5 Arabidopsis genes encoding putative membrane-bound PGs from clade F PGs (AtPGFs) as the first step for the discovery of the Golgi-localized PGs. Five AtPGF proteins (AtPGF3, AtPGF6, AtPGF10, AtPGF14 and AtPGF16) were heterologously produced in Schizosaccharomyces pombe. Among these, only the AtPGF10 protein showed in vitro exo-type PG activity toward fluorogenic pyridylaminated-oligogalacturonic acids (PA-OGAs) as a substrate. The optimum PG activity was observed at pH 5.5 and 60°C. The recombinant AtPGF10 protein showed the maximum PG activities toward PA-OGA with 10 degrees of polymerization. The apparent Km values for the PA-OGAs with 7, 11 and 14 degrees of polymerization were 8.0, 22, and 5.9 μM, respectively. This is the first report of the identification and enzymatic characterization of AtPGF10 as PG carrying putative membrane-bound domain.
Collapse
Affiliation(s)
- Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nabilah Sari
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan; Cooperative Research Station in Southeast Asia (OU:CRS), Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
18
|
Genome-Wide Identification and Characterization of Polygalacturonase Gene Family in Maize ( Zea mays L.). Int J Mol Sci 2021; 22:ijms221910722. [PMID: 34639068 PMCID: PMC8509529 DOI: 10.3390/ijms221910722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/29/2022] Open
Abstract
Polygalacturonase (PG, EC 3.2.1.15) is a crucial enzyme for pectin degradation and is involved in various developmental processes such as fruit ripening, pollen development, cell expansion, and organ abscission. However, information on the PG gene family in the maize (Zea mays L.) genome and the specific members involved in maize anther development are still lacking. In this study, we identified 55 PG family genes from the maize genome and further characterized their evolutionary relationship and expression patterns. Phylogenetic analysis revealed that ZmPGs are grouped into six Clades, and gene structures of the same Clade are highly conserved, suggesting their functional conservation. The ZmPGs are randomly distributed across maize chromosomes, and collinearity analysis showed that many ZmPGs might be derived from tandem duplications and segmental duplications, and these genes are under purifying selection. Furthermore, gene expression analysis provided insights into possible functional divergence among ZmPGs. Based on the RNA-seq data analysis, we found that many ZmPGs are expressed in various tissues while 18 ZmPGs are highly expressed in maize anther, and their detailed expression profiles in different anther developmental stages were further investigated by using RT-qPCR analysis. These results provide valuable information for further functional characterization and application of the ZmPGs in maize.
Collapse
|
19
|
Ohara T, Takeuchi H, Sato J, Nakamura A, Ichikawa H, Yokoyama R, Nishitani K, Minami E, Satoh S, Iwai H. Structural Alteration of Rice Pectin Affects Cell Wall Mechanical Strength and Pathogenicity of the Rice Blast Fungus Under Weak Light Conditions. PLANT & CELL PHYSIOLOGY 2021; 62:641-649. [PMID: 33543762 DOI: 10.1093/pcp/pcab019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
Pectin, a component of the plant cell wall, is involved in cell adhesion and environmental adaptations. We generated OsPG-FOX rice lines with little pectin due to overexpression of the gene encoding a pectin-degrading enzyme [polygalacturonase (PG)]. Overexpression of OsPG2 in rice under weak light conditions increased the activity of PG, which increased the degradation of pectin in the cell wall, thereby reducing adhesion. Under weak light conditions, the overexpression of OsPG decreased the pectin content and cell adhesion, resulting in abnormally large intercellular gaps and facilitating invasion by the rice blast fungus. OsPG2-FOX plants had weaker mechanical properties and greater sensitivity to biotic stresses than wild-type (WT) plants. However, the expression levels of disease resistance genes in non-infected leaves of OsPG2-FOX were more than twice as high as those of the WT and the intensity of disease symptoms was reduced, compared with the WT. Under normal light conditions, overexpression of OsPG2 decreased the pectin content, but did not affect cell adhesion and sensitivity to biotic stresses. Therefore, PG plays a role in regulating intercellular adhesion and the response to biotic stresses in rice.
Collapse
Affiliation(s)
- Takashi Ohara
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Haruki Takeuchi
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Junya Sato
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Atsuko Nakamura
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Hiroaki Ichikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Ibaraki 305, 8634Japan
| | | | - Kazuhiko Nishitani
- Faculty of Science, Department of Biological Sciences, Kanagawa UniversityHiratsuka,Japan
| | - Eiichi Minami
- Institute of Agrobiological Sciences, National Agriculture and Food Research OrganizationTsukuba, Ibaraki 305, 8634Japan
| | - Shinobu Satoh
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| | - Hiroaki Iwai
- University of Tsukuba, Faculty of Life and Environmental SciencesTsukuba, Ibaraki 305, 8572Japan
| |
Collapse
|
20
|
Cao Y, Zhang Y, Chen Y, Yu N, Liaqat S, Wu W, Chen D, Cheng S, Wei X, Cao L, Zhang Y, Liu Q. OsPG1 Encodes a Polygalacturonase that Determines Cell Wall Architecture and Affects Resistance to Bacterial Blight Pathogen in Rice. RICE (NEW YORK, N.Y.) 2021; 14:36. [PMID: 33881659 PMCID: PMC8060378 DOI: 10.1186/s12284-021-00478-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Plant cell walls are the main physical barrier encountered by pathogens colonizing plant tissues. Alteration of cell wall integrity (CWI) can activate specific defenses by impairing proteins involved in cell wall biosynthesis, degradation and remodeling, or cell wall damage due to biotic or abiotic stress. Polygalacturonase (PG) depolymerize pectin by hydrolysis, thereby altering pectin composition and structures and activating cell wall defense. Although many studies of CWI have been reported, the mechanism of how PGs regulate cell wall immune response is not well understood. RESULTS Necrosis appeared in leaf tips at the tillering stage, finally resulting in 3-5 cm of dark brown necrotic tissue. ltn-212 showed obvious cell death and accumulation of H2O2 in leaf tips. The defense responses were activated in ltn-212 to resist bacterial blight pathogen of rice. Map based cloning revealed that a single base substitution (G-A) in the first intron caused incorrect splicing of OsPG1, resulting in a necrotic phenotype. OsPG1 is constitutively expressed in all organs, and the wild-type phenotype was restored in complementation individuals and knockout of wild-type lines resulted in necrosis as in ltn-212. Transmission electron microscopy showed that thicknesses of cell walls were significantly reduced and cell size and shape were significantly diminished in ltn-212. CONCLUSION These results demonstrate that OsPG1 encodes a PG in response to the leaf tip necrosis phenotype of ltn-212. Loss-of-function mutation of ltn-212 destroyed CWI, resulting in spontaneous cell death and an auto-activated defense response including reactive oxygen species (ROS) burst and pathogenesis-related (PR) gene expression, as well as enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). These findings promote our understanding of the CWI mediated defense response.
Collapse
Affiliation(s)
- Yongrun Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yue Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yuyu Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Shah Liaqat
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Weixun Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Daibo Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Xinghua Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Zhejiang, 310006, Hangzhou, China.
| |
Collapse
|
21
|
Liao J, Chen Z, Wei X, Tao K, Zhang J, Qin X, Pan Z, Ma W, Pan L, Yang S, Wang M, Ou X, Chen S. Identification of pollen and pistil polygalacturonases in Nicotiana tabacum and their function in interspecific stigma compatibility. PLANT REPRODUCTION 2020; 33:173-190. [PMID: 32880726 DOI: 10.1007/s00497-020-00393-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The pollen and pistil polygalacturonases in Nicotiana tabacum were identified and found to regulate pollen tube growth and interspecific compatibility. Polygalacturonase (PG) is one of the enzymes catalyzing the hydrolysis of pectin. This process plays important roles in the pollen and pistil. In this research, the pollen and pistil PGs in Nicotiana tabacum (NtPGs) were identified, and their expression, localization and the potential function in the pollen and interspecific stigma incompatibility were explored. The results showed that 118 NtPGs were retrieved from the genome of N. tabacum. The phylogenetic tree and RT-qPCR analysis led to the identification of 10 pollen PGs; among them, two, seven and one showed specifically higher expression levels in the early development of anthers, during pollen maturation and in mature anthers, respectively, indicating their function difference. Immunofluorescence analysis showed that PGs were located in the cytoplasm of (1) mature pollen and (2) in vitro grown pollen tubes, as well as in the wall of in vivo grown pollen tubes. Four NtPGs in clade A were identified as the pistil PGs, and the pistil PGs were not found in clade E. Significantly higher PGs expression was recorded after incompatible pollination in comparison with the compatible stigma, indicating a potential function of PGs in regulating stigma incompatibility. The influence of PGs on pollen tube growth was explored in vitro and partly in vivo, showing that high PGs activity inhibited pollen tube growth. The application of PGs on the otherwise compatible stigma resulted in pollen tube growth inhibition or failure of germination. These results further supported that increased PGs expression in incompatible stigma might be partially responsible for the interspecific stigma incompatibility in Nicotiana.
Collapse
Affiliation(s)
- Jugou Liao
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Zhiyun Chen
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Xuemei Wei
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Keliang Tao
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Jingwen Zhang
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Xiaojun Qin
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Zihui Pan
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Wenguang Ma
- Yunnan Academy of Tobacco Agricultural Sciences, Yuxi, 653100, China
| | - Lei Pan
- Yuxi China Tobacco Seed Co., Ltd., Yuxi, 653100, China
| | - Shuai Yang
- Yuxi China Tobacco Seed Co., Ltd., Yuxi, 653100, China
| | | | - Xiaokun Ou
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China.
| | - Suiyun Chen
- School of Ecology and Environmental Sciences, Biocontrol Engineering Research Center of Plant Diseases and Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China.
| |
Collapse
|
22
|
Wu Q, Li Y, Lyu M, Luo Y, Shi H, Zhong S. Touch-induced seedling morphological changes are determined by ethylene-regulated pectin degradation. SCIENCE ADVANCES 2020; 6:6/48/eabc9294. [PMID: 33246960 PMCID: PMC7695475 DOI: 10.1126/sciadv.abc9294] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/15/2020] [Indexed: 05/08/2023]
Abstract
How mechanical forces regulate plant growth is a fascinating and long-standing question. After germination underground, buried seedlings have to dynamically adjust their growth to respond to mechanical stimulation from soil barriers. Here, we designed a lid touch assay and used atomic force microscopy to investigate the mechanical responses of seedlings during soil emergence. Touching seedlings induced increases in cell wall stiffness and decreases in cell elongation, which were correlated with pectin degradation. We revealed that PGX3, which encodes a polygalacturonase, mediates touch-imposed alterations in the pectin matrix and the mechanics of morphogenesis. Furthermore, we found that ethylene signaling is activated by touch, and the transcription factor EIN3 directly associates with PGX3 promoter and is required for touch-repressed PGX3 expression. By uncovering the link between mechanical forces and cell wall remodeling established via the EIN3-PGX3 module, this work represents a key step in understanding the molecular framework of touch-induced morphological changes.
Collapse
Affiliation(s)
- Qingqing Wu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yue Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Mohan Lyu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yiwen Luo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Patterns of Expansion and Expression Divergence of the Polygalacturonase Gene Family in Brassica oleracea. Int J Mol Sci 2020; 21:ijms21165706. [PMID: 32784897 PMCID: PMC7461206 DOI: 10.3390/ijms21165706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Plant polygalacturonases (PGs) are closely related to cell-separation events during plant growth and development by degrading pectin. Identifying and investigating their diversification of evolution and expression could shed light on research on their function. We conducted sequence, molecular evolution, and gene expression analyses of PG genes in Brassica oleracea. Ninety-nine B. oleracea PGs (BoPGs) were identified and divided into seven clades through phylogenetic analysis. The exon/intron structures and motifs were conserved within, but divergent between, clades. The second conserved domain (GDDC) may be more closely related to the identification of PGs. There were at least 79 common ancestor PGs between Arabidopsis thaliana and B. oleracea. The event of whole genome triplication and tandem duplication played important roles in the rapid expansion of the BoPG gene family, and gene loss may be an important mechanism in the generation of the diversity of BoPGs. By evaluating the expression in five tissues, we found that most of the expressed BoPGs in clades A, B, and E showed ubiquitous expression characteristics, and the expressed BoPGs in clades C, D, and F were mainly responsible for reproduction development. Most of the paralogous gene pairs (76.2%) exhibited divergent expression patterns, indicating that they may have experienced neofunctionalization or subfunctionalization. The cis-elements analysis showed that up to 96 BoPGs contained the hormone response elements in their promoters. In conclusion, our comparative analysis may provide a valuable data foundation for the further functional analysis of BoPGs during the development of B. oleracea.
Collapse
|
24
|
Ye J, Yang X, Yang Z, Niu F, Chen Y, Zhang L, Song X. Comprehensive analysis of polygalacturonase gene family highlights candidate genes related to pollen development and male fertility in wheat (Triticum aestivum L.). PLANTA 2020; 252:31. [PMID: 32740680 DOI: 10.1007/s00425-020-03435-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Four polygalacturonase gene family members were highlighted that contribute to elucidate the roles of polygalacturonase during the fertility conversion process in male-sterile wheat. Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. Specific expressed PGs in anthers may be significant for male sterility research and hybrid wheat breeding, but they have not been characterized in wheat (Triticum aestivum L.). In this study, we systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified, which could be classified into six categories A-F according to their structure characteristics and phylogenetic comparisons with Arabidopsis and rice. Polyploidy and segmental duplications in wheat were proved to be mainly responsible for the expansion of the wheat PG gene family. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics, in which 12 TaPGs with spike-specific expression patterns were detected by qRT-PCR in different fertility anthers of KTM3315A, a thermo-sensitive cytoplasmic male-sterile wheat. Four of them specific upregulated (TaPG09, TaPG95, and TaPG93) or downregulated (TaPG87) at trinucleate stage of fertile anthers, and further aligning with the homologous in Arabidopsis revealed that they may undertake functions such as anther dehiscence, separation of pollen, pollen development, and pollen tube elongation, thereby inducing male fertility conversion in KTM3315A. These findings facilitate function investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.
Collapse
Affiliation(s)
- Jiali Ye
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiquan Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanru Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
25
|
Liu M, Wang J, Gou J, Wang X, Li Z, Yang X, Sun S. Overexpression of NtSnRK2.2 enhances salt tolerance in Nicotiana tabacum by regulating carbohydrate metabolism and lateral root development. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:537-543. [PMID: 32336321 DOI: 10.1071/fp19299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 05/25/2023]
Abstract
SnRK2 is a plant-specific protein kinase family implicated in environmental stress tolerance. Individual SnRK2 genes have acquired distinct regulatory properties in response to various environmental stresses. In this study, NtSnRK2.2, a SnRK2 subclass II member in Nicotiana tabacum L., was cloned and characterised. Sequence alignment analysis showed that SnRK2.2 exhibits widespread sequence differences across Nicotiana species. The tissue expression pattern of NtSnRK2.2 showed a root-predominant expression. To investigate its biological function, NtSnRK2.2 was overexpressed in tobacco, which subsequently resulted in increased soluble sugars and more lateral roots under a normal condition. A salt-stress tolerance assay showed that NtSnRK2.2-overexpressing plants exhibited enhanced salt tolerance, which was further confirmed based on its better root architecture and increase in soluble sugars, thereby implying that NtSnRK2.2 is a multifunctional regulatory factor in plants. Together, our results indicated the possible role played by NtSnRK2.2 in maintaining metabolic homeostasis via the regulation of carbohydrate metabolism in response to environmental stress.
Collapse
Affiliation(s)
- Minghong Liu
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, Guizhou, Zunyi 563000, China
| | - Jian Wang
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan, Hubei, Wuhan 430040, China
| | - Jianyu Gou
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, Guizhou, Zunyi 563000, China
| | - Xiaoyan Wang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi, Guizhou, Zunyi 563000, China
| | - Zhigang Li
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan, Hubei, Wuhan 430040, China
| | - Xiaoliang Yang
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan, Hubei, Wuhan 430040, China
| | - Shuguang Sun
- China Tobacco Hubei Industrial Limited Liability Company, Wuhan, Hubei, Wuhan 430040, China; and Corresponding author.
| |
Collapse
|
26
|
Huang W, Chen M, Zhao T, Han F, Zhang Q, Liu X, Jiang C, Zhong C. Genome-Wide Identification and Expression Analysis of Polygalacturonase Gene Family in Kiwifruit ( Actinidia chinensis) during Fruit Softening. PLANTS (BASEL, SWITZERLAND) 2020; 9:E327. [PMID: 32143507 PMCID: PMC7154832 DOI: 10.3390/plants9030327] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022]
Abstract
Polygalacturonase (PG) is an essential hydrolytic enzyme responsible for pectin degradation and thus plays an important role in fruit softening and other cell separation processes. PG protein is encoded by a multigene family, however, the members of PG gene family in kiwifruit (Actinidia chinensis) have not been extensively identified. In this study, a total of 51 AcPG genes in kiwifruit genome were identified. They are phylogenetically clustered into seven clades, and of them AcPG4 and AcPG18 with other known PG genes involved in fruit softening from peach, pear, papaya and melon form a small cluster together. The members of kiwifruit PG gene family consist of three to nine exons and two to eight introns, and their exon/intron structures are generally conserved in all clades except the clade D and E. During fruit softening of kiwifruit 'Donghong' under ambient temperature, cell wall modifying enzymes, including PG, PL (pectate and pectin lyases), and PE (pectinesterase, also known as pectin methylesterase, PME) showed a different activity profile, and of them, PG and PE activities largely correlated with the change of pectin content and firmness. Moreover, only 11 AcPG genes were highly or moderately expressed in softening fruit, and of which three AcPG genes (AcPG4, AcPG18, and AcPG8, especially the former two) has been found to strongly correlate with the profile of PG activity and pectin content, as well as fruit firmness, suggesting that they maybe play an important role in fruit softening. Thus, our findings not only benefit the functional characterization of kiwifruit PG genes, but also provide a subset of potential PG candidate genes for further genetic manipulation.
Collapse
Affiliation(s)
- Wenjun Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Meiyan Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tingting Zhao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Fei Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaoli Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| | - Changying Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Caihong Zhong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (W.H.); (M.C.); (T.Z.); (F.H.); (Q.Z.); (C.J.)
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
27
|
Sun CQ, Chen FD, Teng NJ, Yao YM, Shan X, Dai ZL. Transcriptomic and proteomic analysis reveals mechanisms of low pollen-pistil compatibility during water lily cross breeding. BMC PLANT BIOLOGY 2019; 19:542. [PMID: 31805858 PMCID: PMC6896271 DOI: 10.1186/s12870-019-2166-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/26/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND In water lily (Nymphaea) hybrid breeding, breeders often encounter non-viable seeds, which make it difficult to transfer desired or targeted genes of different Nymphaea germplasm. We found that pre-fertilization barriers were the main factor in the failure of the hybridization of Nymphaea. The mechanism of low compatibility between the pollen and stigma remains unclear; therefore, we studied the differences of stigma transcripts and proteomes at 0, 2, and 6 h after pollination (HAP). Moreover, some regulatory genes and functional proteins that may cause low pollen-pistil compatibility in Nymphaea were identified. RESULTS RNA-seq was performed for three comparisons (2 vs 0 HAP, 6 vs 2 HAP, 6 vs 0 HAP), and the number of differentially expressed genes (DEGs) was 8789 (4680 were up-regulated), 6401 (3020 were up-regulated), and 11,284 (6148 were up-regulated), respectively. Using label-free analysis, 75 (2 vs 0 HAP) proteins (43 increased and 32 decreased), nine (6 vs 2 HAP) proteins (three increased and six decreased), and 90 (6 vs 0 HAP) proteins (52 increased and 38 decreased) were defined as differentially expressed proteins (DEPs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs and DEPs were mainly involved in cell wall organization or biogenesis, S-adenosylmethionine (SAM) metabolism, hydrogen peroxide decomposition and metabolism, reactive oxygen species (ROS) metabolism, secondary metabolism, secondary metabolite biosynthesis, and phenylpropanoid biosynthesis. CONCLUSIONS Our transcriptomic and proteomic analysis highlighted specific genes, incuding those in ROS metabolism, biosynthesis of flavonoids, SAM metabolism, cell wall organization or biogenesis and phenylpropanoid biosynthesis that warrant further study in investigations of the pollen-stigma interaction of water lily. This study strengthens our understanding of the mechanism of low pollen-pistil compatibility in Nymphaea at the molecular level, and provides a theoretical basis for overcoming the pre-fertilization barriers in Nymphaea in the future.
Collapse
Affiliation(s)
- Chun-Qing Sun
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, Jurong, 212400, China
| | - Fa-Di Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nian-Jun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue-Mei Yao
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, Jurong, 212400, China
| | - Xi Shan
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, Jurong, 212400, China
| | - Zhong-Liang Dai
- Zhenjiang Institute of Agricultural Science in Jiangsu Hilly Areas, Jurong, 212400, China.
| |
Collapse
|
28
|
Zhang H, Li W, Niu D, Wang Z, Yan X, Yang X, Yang Y, Cui H. Tobacco transcription repressors NtJAZ: Potential involvement in abiotic stress response and glandular trichome induction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:388-397. [PMID: 31226508 DOI: 10.1016/j.plaphy.2019.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Members of the Jasmonate ZIM domain (JAZ) proteins act as transcriptional repressors in the jasmonate (JA) hormonal response. To characterize the potential roles of JAZ gene family in plant development and abiotic stress response, fifteen JAZs were identified based on the genome of Nicotiana tabacum. Structural analysis confirmed the presence of single Jas and TIFY motif. Tissue expression pattern analysis indicated that NtJAZ-2, -3, -5, and -10 were highly expressed in roots and NtJAZ-11 was expressed only in the cotyledons. The transcript level of NtJAZ-3, -5, -9, and -10 in the stem epidermis was higher than that in the stem without epidermis. Dynamic expression of NtJAZs exposed to abiotic stress and phytohormone indicated that the expression of most NtJAZs was activated by salicylic acid, methyl jasmonate, gibberellic acid, cold, salt, and heat stresses. With abscisic acid treatment, NtJAZ-1, -2, and -3 were not activated; NtJAZ-4, -5, and -6 were up-regulated; and the remaining NtJAZ genes were inhibited. With drought stress, the expression of NtJAZ-1, -2, -3, -4, -5, -6, -7, and -8 was up-regulated, whereas the transcript of the remaining genes was inhibited. Moreover, high concentration MeJA (more than 1 mM MeJA) had an effect on secreting trichome induction, but inhabited the plant growth. Nine NtJAZs may play important role in secreting trichome induction. These results indicate that the JAZ proteins are convergence points for various phytohormone signal networks, which are involved in abiotic stress responses.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenjiao Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dexin Niu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaojun Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoxiao Yan
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xinling Yang
- Technology Center, China Tobacco Henan Industrial Co, Ltd., Zhengzhou, 450000, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co, Ltd., Zhengzhou, 450000, China
| | - Hong Cui
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
29
|
Khan N, Fatima F, Haider MS, Shazadee H, Liu Z, Zheng T, Fang J. Genome-Wide Identification and Expression Profiling of the Polygalacturonase ( PG) and Pectin Methylesterase ( PME) Genes in Grapevine ( Vitis vinifera L.). Int J Mol Sci 2019; 20:ijms20133180. [PMID: 31261768 PMCID: PMC6651664 DOI: 10.3390/ijms20133180] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/21/2019] [Accepted: 06/27/2019] [Indexed: 01/07/2023] Open
Abstract
In pectin regulation, polygalacturonases (PGs) and pectin methylesterases (PMEs) are critical components in the transformation, disassembly network, and remodeling of plant primary cell walls. In the current study, we identified 36 PG and 47 PME genes using the available genomic resources of grapevine. Herein, we provide a comprehensive overview of PGs and PMEs, including phylogenetic and collinearity relationships, motif and gene structure compositions, gene duplications, principal component analysis, and expression profiling during developmental stages. Phylogenetic analysis of PGs and PMEs revealed similar domain composition patterns with Arabidopsis. The collinearity analysis showed high conservation and gene duplications with purifying selection. The type of duplications also varied in terms of gene numbers in PGs (10 dispersed, 1 proximal, 12 tandem, and 13 segmental, respectively) and PMEs (23 dispersed, 1 proximal, 16 tandem, and 7 segmental, respectively). The tissue-specific response of PG and PME genes based on the reported transcriptomic data exhibited diverged expression patterns in various organs during different developmental stages. Among PGs, VvPG8, VvPG10, VvPG13, VvPG17, VvPG18, VvPG19, VvPG20, VvPG22, and VvPG23 showed tissue- or organ-specific expression in majority of the tissues during development. Similarly, in PMEs, VvPME3, VvPME4, VvPME5, VvPME6, VvPME19, VvPME21, VvPME23, VvPME29, VvPME31, and VvPME32 suggested high tissue-specific response. The gene ontology (GO), Kyoto Encyclopedia of Genes and Genomics (KEGG) enrichment, and cis-elements prediction analysis also suggested the putative functions of PGs and PMEs in plant development, such as pectin and carbohydrate metabolism, and stress activities. Moreover, qRT-PCR validation of 32 PG and PME genes revealed their role in various organs of grapevines (i.e., root, stem, tendril, inflorescence, flesh, skins, and leaves). Therefore, these findings will lead to novel insights and encourage cutting-edge research on functional characterization of PGs and PMEs in fruit crop species.
Collapse
Affiliation(s)
- Nadeem Khan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fizza Fatima
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Muhammad Salman Haider
- Key laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hamna Shazadee
- College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongjie Liu
- Key laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Zheng
- Key laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- Key laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
30
|
Kim J, Chun JP, Tucker ML. Transcriptional Regulation of Abscission Zones. PLANTS 2019; 8:plants8060154. [PMID: 31174352 PMCID: PMC6631628 DOI: 10.3390/plants8060154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Precise and timely regulation of organ separation from the parent plant (abscission) is consequential to improvement of crop productivity as it influences both the timing of harvest and fruit quality. Abscission is tightly associated with plant fitness as unwanted organs (petals, sepals, filaments) are shed after fertilization while seeds, fruits, and leaves are cast off as means of reproductive success or in response to abiotic/biotic stresses. Floral organ abscission in Arabidopsis has been a useful model to elucidate the molecular mechanisms that underlie the separation processes, and multiple abscission signals associated with the activation and downstream pathways have been uncovered. Concomitantly, large-scale analyses of omics studies in diverse abscission systems of various plants have added valuable insights into the abscission process. The results suggest that there are common molecular events linked to the biosynthesis of a new extracellular matrix as well as cell wall disassembly. Comparative analysis between Arabidopsis and soybean abscission systems has revealed shared and yet disparate regulatory modules that affect the separation processes. In this review, we discuss our current understanding of the transcriptional regulation of abscission in several different plants that has improved on the previously proposed four-phased model of organ separation.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong-Pil Chun
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA Bldg. 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| |
Collapse
|
31
|
Rui Y, Chen Y, Yi H, Purzycki T, Puri VM, Anderson CT. Synergistic Pectin Degradation and Guard Cell Pressurization Underlie Stomatal Pore Formation. PLANT PHYSIOLOGY 2019; 180:66-77. [PMID: 30804009 PMCID: PMC6501081 DOI: 10.1104/pp.19.00135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 05/05/2023]
Abstract
Stomatal pores are vital for the diffusion of gasses into and out of land plants and are, therefore, gatekeepers for photosynthesis and transpiration. Although much published literature has described the intercellular signaling and transcriptional regulators involved in early stomatal development, little is known about the cellular details of the local separation between sister guard cells that give rise to the stomatal pore or how formation of this pore is achieved. Using three-dimensional (3D) time-lapse imaging, we found that stomatal pore formation in Arabidopsis (Arabidopsis thaliana) is a highly dynamic process involving pore initiation and enlargement and traverses a set of morphological milestones in 3D. Confocal imaging data revealed an enrichment of exocytic machinery, de-methyl-esterified pectic homogalacturonan (HG), and an HG-degrading enzyme at future pore sites, suggesting that both localized HG deposition and degradation might function in pore formation. By manipulating HG modification via enzymatic, chemical, and genetic perturbations in seedling cotyledons, we found that augmenting HG modification promotes pore formation, whereas preventing HG de-methyl-esterification delays pore initiation and inhibits pore enlargement. Through mechanical modeling and experimentation, we tested whether pore formation is an outcome of sister guard cells being pulled away from each other upon turgor increase. Osmotic treatment to reduce turgor pressure did not prevent pore initiation but did lessen pore enlargement. Together, these data provide evidence that HG delivery and modification, and guard cell pressurization, make functional contributions to stomatal pore initiation and enlargement.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Yintong Chen
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Taylor Purzycki
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Virendra M Puri
- Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Lignocellulose Structure and Formation, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
32
|
Genome-Wide Identification and Analysis of Polygalacturonase Genes in Solanum lycopersicum. Int J Mol Sci 2018; 19:ijms19082290. [PMID: 30081560 PMCID: PMC6121401 DOI: 10.3390/ijms19082290] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023] Open
Abstract
Polygalacturonase (PG), a large hydrolase family in plants, is involved in pectin disassembly of the cell wall in plants. The present study aims to characterize PG genes and investigate their expression patterns in Solanum lycopersicum. We identified 54 PG genes in the tomato genome and compared their amino acid sequences with their Arabidopsis counterpart. Subsequently, we renamed these PG genes according to their Arabidopsis homologs. Phylogenetic and evolutionary analysis revealed that these tomato PG genes could be classified into seven clades, and within each clade the exon/intron structures were conserved. Expression profiles analysis through quantitive real-time polymerase chain reaction (qRT-PCR) revealed that most SlPGs had specific or high expression patterns in at least one organ, and particularly five PG genes (SlPG14, SlPG15, SlPG49, SlPG70, and SlPG71) associated with fruit development. Promoter analysis showed that more than three cis-elements associated with plant hormone response, environmental stress response or specific organ/tissue development exhibited in each SlPG promoter regions. In conclusion, our results may provide new insights for the further study of PG gene function during plant development.
Collapse
|
33
|
Estornell LH, Landberg K, Cierlik I, Sundberg E. SHI/ STY Genes Affect Pre- and Post-meiotic Anther Processes in Auxin Sensing Domains in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:150. [PMID: 29491878 PMCID: PMC5817092 DOI: 10.3389/fpls.2018.00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/29/2018] [Indexed: 05/13/2023]
Abstract
In flowering plants, mature sperm cells are enclosed in pollen grains formed in structures called anthers. Several cell layers surrounding the central sporogenous cells of the anther are essential for directing the developmental processes that lead to meiosis, pollen formation, and the subsequent pollen release. The specification and function of these tissues are regulated by a large number of genetic factors. Additionally, the plant hormone auxin has previously been shown to play important roles in the later phases of anther development. Using the R2D2 auxin sensor system we here show that auxin is sensed also in the early phases of anther cell layer development, suggesting that spatiotemporal regulation of auxin levels is important for early anther morphogenesis. Members of the SHI/STY transcription factor family acting as direct regulators of YUC auxin biosynthesis genes have previously been demonstrated to affect early anther patterning. Using reporter constructs we show that SHI/STY genes are dynamically active throughout anther development and their expression overlaps with those of three additional downstream targets, PAO5, EOD3 and PGL1. Characterization of anthers carrying mutations in five SHI/STY genes clearly suggests that SHI/STY transcription factors affect anther organ identity. In addition, their activity is important to repress periclinal cell divisions as well as premature entrance into programmed cell death and cell wall lignification, which directly influences the timing of anther dehiscence and the pollen viability. The SHI/STY proteins also prevent premature pollen germination suggesting that they may play a role in the induction or maintenance of pollen dormancy.
Collapse
|
34
|
Yang Y, Yu Y, Liang Y, Anderson CT, Cao J. A Profusion of Molecular Scissors for Pectins: Classification, Expression, and Functions of Plant Polygalacturonases. FRONTIERS IN PLANT SCIENCE 2018; 9:1208. [PMID: 30154820 PMCID: PMC6102391 DOI: 10.3389/fpls.2018.01208] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/27/2018] [Indexed: 05/21/2023]
Abstract
In plants, the construction, differentiation, maturation, and degradation of the cell wall are essential for development. Pectins, which are major constituents of primary cell walls in eudicots, function in multiple developmental processes through their synthesis, modification, and degradation. Several pectin modifying enzymes regulate pectin degradation via different modes of action. Polygalacturonases (PGs), which function in the last step of pectin degradation, are a crucial class of pectin-modifying enzymes. Based on differences in their hydrolyzing activities, PGs can be divided into three main types: exo-PGs, endo-PGs, and rhamno-PGs. Their functions were initially investigated based on the expression patterns of PG genes and measurements of total PG activity in organs. In most plant species, PGs are encoded by a large, multigene family. However, due to the lack of genome sequencing data in early studies, the number of identified PG genes was initially limited. Little was initially known about the evolution and expression patterns of PG family members in different species. Furthermore, the functions of PGs in cell dynamics and developmental processes, as well as the regulatory pathways that govern these functions, are far from fully understood. In this review, we focus on how recent studies have begun to fill in these blanks. On the basis of identified PG family members in multiple species, we review their structural characteristics, classification, and molecular evolution in terms of plant phylogenetics. We also highlight the diverse expression patterns and biological functions of PGs during various developmental processes, as well as their mechanisms of action in cell dynamic processes. How PG functions are potentially regulated by hormones, transcription factors, environmental factors, pH and Ca2+ is discussed, indicating directions for future research into PG function and regulation.
Collapse
Affiliation(s)
- Yang Yang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Youjian Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Hangzhou, China
| | - Ying Liang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, PA, United States
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania, PA, United States
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture – Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- *Correspondence: Jiashu Cao,
| |
Collapse
|
35
|
Anand G, Yadav S, Tanveer A, Nasim J, Singh NK, Dubey AK, Yadav D. Genome-Wide Assessment of Polygalacturonases-Like (PGL) Genes of Medicago truncatula, Sorghum bicolor, Vitis vinifera and Oryza sativa Using Comparative Genomics Approach. Interdiscip Sci 2017; 10:704-721. [PMID: 29243204 DOI: 10.1007/s12539-017-0230-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/03/2017] [Accepted: 04/01/2017] [Indexed: 11/24/2022]
Abstract
The polygalacturonases (PG) is one of the important members of pectin-degrading glycoside hydrolases of the family GH28. In plants, PG represents multigene families associated with diverse processes. In the present study, an attempt has been made to investigate the diversity of PG genes among monocots and dicots with respect to phylogeny, gene duplication and subcellular localization to get an insight into the evolutionary and functional attributes. The genome-wide assessment of Medicago truncatula, Vitis vinifera Sorghum bicolor, and Oryza sativa L. ssp. japonica genomes revealed 53, 49, 38 and 35 PG-like (PGL) genes, respectively. The predominance of glyco_hydro_28 domain, hydrophilic nature and genes with multiple introns were uniformly observed. The subcellular localization showed the presence of signal sequences targeting the secretory pathways. The phylogenetic tree constructed marked uniformity with three distinct clusters for each plant irrespective of the variability in the genome sizes. The site-specific selection pressure analysis based on K a/K s values showed predominance of purifying selection pressures among different groups identified in these plants. The functional divergence analysis revealed significant site-specific selective constraints. Results of site-specific selective pressure analysis throw light on the functional diversity of PGs in various plant processes and hence its constitutive nature. These findings are further strengthened by functional divergence analysis which reveals functionally diverse groups in all the four species representing monocots and dicots. The outcome of the present work could be utilized for deciphering the novel functions of PGs in plants.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India
| | - Sangeeta Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India
| | - Aiman Tanveer
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India
| | - Jeya Nasim
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India
| | - Nitish K Singh
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India.,Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Amit K Dubey
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, Uttar Pradesh, 273 009, India.
| |
Collapse
|
36
|
Rui Y, Xiao C, Yi H, Kandemir B, Wang JZ, Puri VM, Anderson CT. POLYGALACTURONASE INVOLVED IN EXPANSION3 Functions in Seedling Development, Rosette Growth, and Stomatal Dynamics in Arabidopsis thaliana. THE PLANT CELL 2017; 29:2413-2432. [PMID: 28974550 PMCID: PMC5774581 DOI: 10.1105/tpc.17.00568] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 05/05/2023]
Abstract
Plant cell separation and expansion require pectin degradation by endogenous pectinases such as polygalacturonases, few of which have been functionally characterized. Stomata are a unique system to study both processes because stomatal maturation involves limited separation between sister guard cells and stomatal responses require reversible guard cell elongation and contraction. However, the molecular mechanisms for how stomatal pores form and how guard cell walls facilitate dynamic stomatal responses remain poorly understood. We characterized POLYGALACTURONASE INVOLVED IN EXPANSION3 (PGX3), which is expressed in expanding tissues and guard cells. PGX3-GFP localizes to the cell wall and is enriched at sites of stomatal pore initiation in cotyledons. In seedlings, ablating or overexpressing PGX3 affects both cotyledon shape and the spacing and pore dimensions of developing stomata. In adult plants, PGX3 affects rosette size. Although stomata in true leaves display normal density and morphology when PGX3 expression is altered, loss of PGX3 prevents smooth stomatal closure, and overexpression of PGX3 accelerates stomatal opening. These phenotypes correspond with changes in pectin molecular mass and abundance that can affect wall mechanics. Together, these results demonstrate that PGX3-mediated pectin degradation affects stomatal development in cotyledons, promotes rosette expansion, and modulates guard cell mechanics in adult plants.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Chaowen Xiao
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Baris Kandemir
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - James Z Wang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Virendra M Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
37
|
Ohashi T, Jinno J, Inoue Y, Ito S, Fujiyama K, Ishimizu T. A polygalacturonase localized in the Golgi apparatus in Pisum sativum. J Biochem 2017; 162:193-201. [PMID: 28338792 DOI: 10.1093/jb/mvx014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/30/2017] [Indexed: 11/13/2022] Open
Abstract
Pectin is a plant cell wall constituent that is mainly composed of polygalacturonic acid (PGA), a linear α1,4-d-galacturonic acid (GalUA) backbone. Polygalacturonase (PG) hydrolyzes the α1,4-linkages in PGA. Nearly all plant PGs identified thus far are secreted as soluble proteins. Here we describe the microsomal PG activity in pea (Pisum sativum) epicotyls and present biochemical evidence that it was localized to the Golgi apparatus, where pectins are biosynthesized. The microsomal PG was purified, and it was enzymatically characterized. The purified enzyme showed maximum activity towards pyridylaminated oligogalacturonic acids with six degrees of polymerization (PA-GalUA6), with a Km value of 11 μM for PA-GalUA6. The substrate preference of the enzyme was complementary to that of PGA synthase. The main PG activity in microsomes was detected in the Golgi fraction by sucrose density gradient ultracentrifugation. The activity of the microsomal PG was lower in rapidly growing epicotyls, in contrast to the high expression of PGA synthase. The role of this PG in the regulation of pectin biosynthesis or plant growth is discussed.
Collapse
Affiliation(s)
- Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Jun Jinno
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiyuki Inoue
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shoko Ito
- Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
38
|
Li DD, Xue JS, Zhu J, Yang ZN. Gene Regulatory Network for Tapetum Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:1559. [PMID: 28955355 PMCID: PMC5601042 DOI: 10.3389/fpls.2017.01559] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/28/2017] [Indexed: 05/19/2023]
Abstract
In flowering plants, male gametophyte development occurs in the anther. Tapetum, the innermost of the four anther somatic layers, surrounds the developing reproductive cells to provide materials for pollen development. A genetic pathway of DYT1-TDF1-AMS-MS188 in regulating tapetum development has been proven. Here we used laser microdissection and pressure catapulting to capture and analyze the transcriptome data for the Arabidopsis tapetum at two stages. With a comprehensive analysis by the microarray data of dyt1, tdf1, ams, and ms188 mutants, we identified possible downstream genes for each transcription factor. These transcription factors regulate many biological processes in addition to activating the expression of the other transcription factor. Briefly, DYT1 may also regulate early tapetum development via E3 ubiquitin ligases and many other transcription factors. TDF1 is likely involved in redox and cell degradation. AMS probably regulates lipid transfer proteins, which are involved in pollen wall formation, and other E3 ubiquitin ligases, functioning in degradating proteins produced in previous processes. MS188 is responsible for most cell wall-related genes, functioning both in tapetum cell wall degradation and pollen wall formation. These results propose a more complex gene regulatory network for tapetum development and function.
Collapse
|
39
|
Merelo P, Agustí J, Arbona V, Costa ML, Estornell LH, Gómez-Cadenas A, Coimbra S, Gómez MD, Pérez-Amador MA, Domingo C, Talón M, Tadeo FR. Cell Wall Remodeling in Abscission Zone Cells during Ethylene-Promoted Fruit Abscission in Citrus. FRONTIERS IN PLANT SCIENCE 2017; 8:126. [PMID: 28228766 PMCID: PMC5296326 DOI: 10.3389/fpls.2017.00126] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Abscission is a cell separation process by which plants can shed organs such as fruits, leaves, or flowers. The process takes place in specific locations termed abscission zones. In fruit crops like citrus, fruit abscission represents a high percentage of annual yield losses. Thus, understanding the molecular regulation of abscission is of capital relevance to control production. To identify genes preferentially expressed within the citrus fruit abscission zone (AZ-C), we performed a comparative transcriptomics assay at the cell type resolution level between the AZ-C and adjacent fruit rind cells (non-abscising tissue) during ethylene-promoted abscission. Our strategy combined laser microdissection with microarray analysis. Cell wall modification-related gene families displayed prominent representation in the AZ-C. Phylogenetic analyses of such gene families revealed a link between phylogenetic proximity and expression pattern during abscission suggesting highly conserved roles for specific members of these families in abscission. Our transcriptomic data was validated with (and strongly supported by) a parallel approach consisting on anatomical, histochemical and biochemical analyses on the AZ-C during fruit abscission. Our work identifies genes potentially involved in organ abscission and provides relevant data for future biotechnology approaches aimed at controlling such crucial process for citrus yield.
Collapse
Affiliation(s)
- Paz Merelo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Javier Agustí
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Vicent Arbona
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Mário L. Costa
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | | | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume ICastelló de la Plana, Spain
| | - Silvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do PortoPorto, Portugal
| | - María D. Gómez
- Departamento de Desarrollo y Acción Hormonal en Plantas, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Miguel A. Pérez-Amador
- Departamento de Desarrollo y Acción Hormonal en Plantas, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Concha Domingo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Manuel Talón
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
| | - Francisco R. Tadeo
- Centre de Genòmica, Institut Valencià d' AgràriesValència, Spain
- *Correspondence: Francisco R. Tadeo
| |
Collapse
|
40
|
Qian M, Zhang Y, Yan X, Han M, Li J, Li F, Li F, Zhang D, Zhao C. Identification and Expression Analysis of Polygalacturonase Family Members during Peach Fruit Softening. Int J Mol Sci 2016; 17:E1933. [PMID: 27869753 PMCID: PMC5133928 DOI: 10.3390/ijms17111933] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/01/2023] Open
Abstract
Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin degradation during fruit softening. However, the roles of PG family members in fruit softening remain unclear. We identified 45 PpPG genes in the peach genome which are clustered into six subclasses. PpPGs consist of four to nine exons and three to eight introns, and the exon/intron structure is basically conserved in all but subclass E. Only 16 PpPG genes were expressed in ripening fruit, and their expression profiles were analyzed during storage in two peach cultivars with different softening characteristics. Eight PGs (PpPG1, -10, -12, -13, -15, -23, -21, and -22) in fast-softening "Qian Jian Bai" (QJB) fruit and three PGs (PpPG15, -21, and -22) in slow-softening "Qin Wang" (QW) fruit exhibited softening-associated patterns; which also were affected by ethylene treatment. Our results suggest that the different softening characters in QW and QJB fruit is related to the amount of PG members. While keeping relatively lower levels during QW fruit softening, the expression of six PGs (PpPG1, -10, -12, -11, -14, and -35) rapidly induced by ethylene. PpPG24, -25 and -38 may not be involved in softening of peach fruit.
Collapse
Affiliation(s)
- Ming Qian
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yike Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiangyan Yan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jinjin Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Fang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Furui Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
41
|
Wang F, Sun X, Shi X, Zhai H, Tian C, Kong F, Liu B, Yuan X. A Global Analysis of the Polygalacturonase Gene Family in Soybean (Glycine max). PLoS One 2016; 11:e0163012. [PMID: 27657691 PMCID: PMC5033254 DOI: 10.1371/journal.pone.0163012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/01/2016] [Indexed: 01/27/2023] Open
Abstract
Polygalacturonase is one of the pectin hydrolytic enzymes involved in various developmental and physiological processes such as seed germination, organ abscission, pod and anther dehiscence, and xylem cell formation. To date, no systematic analysis of polygalacturonase incorporating genome organization, gene structure, and expression profiling has been conducted in soybean (Glycine max var. Williams 82). In this study, we identified 112 GmPG genes from the soybean Wm82.a2v1 genome. These genes were classified into three groups, group I (105 genes), group II (5 genes), and group III (2 genes). Fifty-four pairs of duplicate paralogous genes were preferentially identified from duplicated regions of the soybean genome, which implied that long segmental duplications significantly contributed to the expansion of the GmPG gene family. Moreover, GmPG transcripts were analyzed in various tissues using RNA-seq data. The results showed the differential expression of 64 GmPGs in the tissue and partially redundant expression of some duplicate genes, while others showed functional diversity. These findings suggested that the GmPGs were retained by substantial subfunctionalization during the soybean evolutionary processes. Finally, evolutionary analysis based on single nucleotide polymorphisms (SNPs) in wild and cultivated soybeans revealed that 107 GmPGs had selected site(s), which indicated that these genes may have undergone strong selection during soybean domestication. Among them, one non-synonymous SNP of GmPG031 affected floral development during selection, which was consistent with the results of RNA-seq and evolutionary analyses. Thus, our results contribute to the functional characterization of GmPG genes in soybean.
Collapse
Affiliation(s)
- Feifei Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Sun
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin, 150081, China
| | - Xinyi Shi
- School of Computer Science and Technology, Heilongjiang University, Harbin, 150080, China
| | - Hong Zhai
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin, 150081, China
| | - Changen Tian
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin, 150081, China
| | - Baohui Liu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin, 150081, China
- * E-mail: (XY); (BL)
| | - Xiaohui Yuan
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin, 150081, China
- * E-mail: (XY); (BL)
| |
Collapse
|
42
|
Liang Y, Yu Y, Cui J, Lyu M, Xu L, Cao J. A comparative analysis of the evolution, expression, and cis-regulatory element of polygalacturonase genes in grasses and dicots. Funct Integr Genomics 2016; 16:641-656. [DOI: 10.1007/s10142-016-0503-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/19/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
|
43
|
Duan W, Huang Z, Song X, Liu T, Liu H, Hou X, Li Y. Comprehensive analysis of the polygalacturonase and pectin methylesterase genes in Brassica rapa shed light on their different evolutionary patterns. Sci Rep 2016; 6:25107. [PMID: 27112365 PMCID: PMC4844994 DOI: 10.1038/srep25107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/08/2016] [Indexed: 02/03/2023] Open
Abstract
Pectins are fundamental polysaccharides in the plant primary cell wall. Polygalacturonases (PGs) and pectin methylesterases (PMEs), major components of the pectin remodeling and disassembly network, are involved in cell separation processes during many stages of plant development. A comprehensive study of these genes in plants could shed light on the evolution patterns of their structural development. In this study, we conducted whole-genome annotation, molecular evolution and gene expression analyses of PGs and PMEs in Brassica rapa and 8 other plant species. A total of 100 PGs and 110 PMEs were identified in B. rapa; they primarily diverged from 12–18 MYA and PMEs were retained more than PGs. Along with another 305 PGs and 348 PMEs in the 8 species, two different expansion or evolution types were discovered: a new branch of class A PGs appeared after the split of gymnosperms and angiosperms, which led to the rapid expansion of PGs; the pro domain was obtained or lost in the proPMEs through comprehensive analyses among PME genes. In addition, the PGs and PMEs exhibit diverged expression patterns. These findings will lead to novel insight regarding functional divergence and conservation in the gene families and provide more support for molecular evolution analyses.
Collapse
Affiliation(s)
- Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhinan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.,Center of Genomics and Computational Biology, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hailong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Alagna F, Cirilli M, Galla G, Carbone F, Daddiego L, Facella P, Lopez L, Colao C, Mariotti R, Cultrera N, Rossi M, Barcaccia G, Baldoni L, Muleo R, Perrotta G. Transcript Analysis and Regulative Events during Flower Development in Olive (Olea europaea L.). PLoS One 2016; 11:e0152943. [PMID: 27077738 PMCID: PMC4831748 DOI: 10.1371/journal.pone.0152943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/20/2016] [Indexed: 02/04/2023] Open
Abstract
The identification and characterization of transcripts involved in flower organ development, plant reproduction and metabolism represent key steps in plant phenotypic and physiological pathways, and may generate high-quality transcript variants useful for the development of functional markers. This study was aimed at obtaining an extensive characterization of the olive flower transcripts, by providing sound information on the candidate MADS-box genes related to the ABC model of flower development and on the putative genetic and molecular determinants of ovary abortion and pollen-pistil interaction. The overall sequence data, obtained by pyrosequencing of four cDNA libraries from flowers at different developmental stages of three olive varieties with distinct reproductive features (Leccino, Frantoio and Dolce Agogia), included approximately 465,000 ESTs, which gave rise to more than 14,600 contigs and approximately 92,000 singletons. As many as 56,700 unigenes were successfully annotated and provided gene ontology insights into the structural organization and putative molecular function of sequenced transcripts and deduced proteins in the context of their corresponding biological processes. Differentially expressed genes with potential regulatory roles in biosynthetic pathways and metabolic networks during flower development were identified. The gene expression studies allowed us to select the candidate genes that play well-known molecular functions in a number of biosynthetic pathways and specific biological processes that affect olive reproduction. A sound understanding of gene functions and regulatory networks that characterize the olive flower is provided.
Collapse
Affiliation(s)
- Fiammetta Alagna
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Marco Cirilli
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Giulio Galla
- Laboratory of Plant Genetics and Genomics, DAFNAE, University of Padova, Legnaro (PD), Italy
| | - Fabrizio Carbone
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Loretta Daddiego
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Paolo Facella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Loredana Lopez
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| | - Chiara Colao
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
| | - Roberto Mariotti
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Nicolò Cultrera
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Martina Rossi
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Plant Genetics and Genomics, DAFNAE, University of Padova, Legnaro (PD), Italy
| | - Luciana Baldoni
- Institute of Biosciences and Bioresources, National Research Council, Perugia, Italy
- * E-mail: (RM); (LB)
| | - Rosario Muleo
- Laboratory of Molecular Ecophysiology and Biotechnology of Woody Plants, Department of Agricultural and Forestry Science, University of Tuscia, Viterbo, Italy
- * E-mail: (RM); (LB)
| | - Gaetano Perrotta
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TRISAIA Research Center, Rotondella (MT), Italy
| |
Collapse
|
45
|
Gu C, Wang L, Wang W, Zhou H, Ma B, Zheng H, Fang T, Ogutu C, Vimolmangkang S, Han Y. Copy number variation of a gene cluster encoding endopolygalacturonase mediates flesh texture and stone adhesion in peach. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1993-2005. [PMID: 26850878 PMCID: PMC4783375 DOI: 10.1093/jxb/erw021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Texture is an important attribute affecting consumer perception of fruit quality. Peach melting flesh and flesh adhesion to stone (endocarp) are simply inherited and controlled by the F-M locus on linkage group (LG) 4. Here, we report that two genes encoding endopolygalacturonase (endoPG) in the F-M locus, designated PpendoPGF and PpendoPGM, are associated with the melting flesh and stone adhesion traits. PpendoPGM controls melting flesh while PpendoPGF has pleiotropic effects on both melting flesh and stone adhesion. The F-M locus has three allelic copy number variants of endoPG, H1 (PpendoPGF and PpendoPGM), H2 (PpendoPGM), and H3 (null). The H2 haplotype represents the ancestral one while the H1 and H3 haplotypes are two variants due to duplication and deletion of PpendoPGM, respectively. Accessions with H1H1, H1H2, or H1H3 genotypes show the freestone or semi-freestone and melting flesh phenotype, while both H2H2 and H2H3 accessions have the clingstone and melting flesh phenotype. The H3H3 accessions have the clingstone and non-melting flesh phenotype. Our study not only demonstrates a driving role of gene copy number variations in flesh texture diversification in fruit trees, but also provides a useful diagnostic tool for early seedling selection in peach breeding programmes.
Collapse
Affiliation(s)
- Chao Gu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
| | - Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
| | - Wei Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Baiquan Ma
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Hongyu Zheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ting Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Collins Ogutu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Sornkanok Vimolmangkang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Sino-African Joint Research Center, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, China College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
46
|
Anderson CT. We be jammin': an update on pectin biosynthesis, trafficking and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:495-502. [PMID: 26590862 DOI: 10.1093/jxb/erv501] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pectins are complex polysaccharides that contain acidic sugars and are major determinants of the cohesion, adhesion, extensibility, porosity and electrostatic potential of plant cell walls. Recent evidence has solidified their positions as key regulators of cellular growth and tissue morphogenesis, although important details of how they achieve this regulation are still missing. Pectins are also hypothesized to function as ligands for wall integrity sensors that enable plant cells to respond to intrinsic defects in wall biomechanics and to wall degradation by attacking pathogens. This update highlights recent advances in our understanding of the biosynthesis of pectins, how they are delivered to the cell surface and become incorporated into the cell wall matrix and how pectins are modified over time in the apoplast. It also poses unanswered questions for further research into this enigmatic but essential class of carbohydrate polymers.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
47
|
Kim J, Yang J, Yang R, Sicher RC, Chang C, Tucker ML. Transcriptome Analysis of Soybean Leaf Abscission Identifies Transcriptional Regulators of Organ Polarity and Cell Fate. FRONTIERS IN PLANT SCIENCE 2016; 7:125. [PMID: 26925069 PMCID: PMC4756167 DOI: 10.3389/fpls.2016.00125] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 05/19/2023]
Abstract
Abscission, organ separation, is a developmental process that is modulated by endogenous and environmental factors. To better understand the molecular events underlying the progression of abscission in soybean, an agriculturally important legume, we performed RNA sequencing (RNA-seq) of RNA isolated from the leaf abscission zones (LAZ) and petioles (Non-AZ, NAZ) after treating stem/petiole explants with ethylene for 0, 12, 24, 48, and 72 h. As expected, expression of several families of cell wall modifying enzymes and many pathogenesis-related (PR) genes specifically increased in the LAZ as abscission progressed. Here, we focus on the 5,206 soybean genes we identified as encoding transcription factors (TFs). Of the 5,206 TFs, 1,088 were differentially up- or down-regulated more than eight-fold in the LAZ over time, and, within this group, 188 of the TFs were differentially regulated more than eight-fold in the LAZ relative to the NAZ. These 188 abscission-specific TFs include several TFs containing domains for homeobox, MYB, Zinc finger, bHLH, AP2, NAC, WRKY, YABBY, and auxin-related motifs. To discover the connectivity among the TFs and highlight developmental processes that support organ separation, the 188 abscission-specific TFs were then clustered based on a >four-fold up- or down-regulation in two consecutive time points (i.e., 0 and 12 h, 12 and 24 h, 24 and 48 h, or 48 and 72 h). By requiring a sustained change in expression over two consecutive time intervals and not just one or several time intervals, we could better tie changes in TFs to a particular process or phase of abscission. The greatest number of TFs clustered into the 0 and 12 h group. Transcriptional network analysis for these abscission-specific TFs indicated that most of these TFs are known as key determinants in the maintenance of organ polarity, lateral organ growth, and cell fate. The abscission-specific expression of these TFs prior to the onset of abscission and their functional properties as defined by studies in Arabidopsis indicate that these TFs are involved in defining the separation cells and initiation of separation within the AZ by balancing organ polarity, roles of plant hormones, and cell differentiation.
Collapse
Affiliation(s)
- Joonyup Kim
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD, USA
- *Correspondence: Joonyup Kim
| | - Jinyoung Yang
- Crop Systems and Global Change Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Richard C. Sicher
- Crop Systems and Global Change Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD, USA
| | - Mark L. Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of AgricultureBeltsville, MD, USA
- Mark L. Tucker
| |
Collapse
|
48
|
Liang Y, Yu Y, Shen X, Dong H, Lyu M, Xu L, Ma Z, Liu T, Cao J. Dissecting the complex molecular evolution and expression of polygalacturonase gene family in Brassica rapa ssp. chinensis. PLANT MOLECULAR BIOLOGY 2015; 89:629-46. [PMID: 26506823 DOI: 10.1007/s11103-015-0390-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/06/2015] [Indexed: 05/22/2023]
Abstract
Polygalacturonases (PGs) participate in pectin disassembly of cell wall and belong to one of the largest hydrolase families in plants. In this study, we identified 99 PG genes in Brassica rapa. Comprehensive analysis of phylogeny, gene structures, physico-chemical properties and coding sequence evolution demonstrated that plant PGs should be classified into seven divergent clades and each clade's members had specific sequence and structure characteristics, and/or were under specific selection pressures. Genomic distribution and retention rate analysis implied duplication events and biased retention contributed to PG family's expansion. Promoter divergence analysis using "shared motif method" revealed a significant correlation between regulatory and coding sequence evolution of PGs, and proved Clades A and E were of ancient origin. Quantitative real-time PCR analysis showed that expression patterns of PGs displayed group specificities in B. rapa. Particularly, nearly half of PG family members, especially those of Clades C, D and F, closely relates to reproductive development. Most duplicates showed similar expression profiles, suggesting dosage constraints accounted for preservation after duplication. Promoter-GUS assay further indicated PGs' extensive roles and possible redundancy during reproductive development. This work can provide a scientific classification of plant PGs, dissect the internal relationships between their evolution and expressions, and promote functional researches.
Collapse
Affiliation(s)
- Ying Liang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Youjian Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, 311300, China.
| | - Xiuping Shen
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Heng Dong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Meiling Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Liai Xu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhiming Ma
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Kent LM, Loo TS, Melton LD, Mercadante D, Williams MAK, Jameson GB. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control. J Biol Chem 2015; 291:1289-306. [PMID: 26567911 DOI: 10.1074/jbc.m115.673152] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 12/17/2022] Open
Abstract
Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged.
Collapse
Affiliation(s)
- Lisa M Kent
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Trevor S Loo
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Laurence D Melton
- From Riddet Institute and School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Davide Mercadante
- From Riddet Institute and Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg, 69118 Heidelberg, Germany, and
| | - Martin A K Williams
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand, MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North 4442, New Zealand
| | - Geoffrey B Jameson
- From Riddet Institute and Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand, MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North 4442, New Zealand
| |
Collapse
|
50
|
Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. FRONTIERS IN PLANT SCIENCE 2015; 6:523. [PMID: 26236321 PMCID: PMC4500915 DOI: 10.3389/fpls.2015.00523] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.
Collapse
|