1
|
Islam M, Yang Y, Simmons AJ, Shah VM, Musale KP, Xu Y, Tasneem N, Chen Z, Trinh LT, Molina P, Ramirez-Solano MA, Sadien ID, Dou J, Rolong A, Chen K, Magnuson MA, Rathmell JC, Macara IG, Winton DJ, Liu Q, Zafar H, Kalhor R, Church GM, Shrubsole MJ, Coffey RJ, Lau KS. Temporal recording of mammalian development and precancer. Nature 2024; 634:1187-1195. [PMID: 39478207 PMCID: PMC11525190 DOI: 10.1038/s41586-024-07954-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/15/2024] [Indexed: 11/02/2024]
Abstract
Temporal ordering of cellular events offers fundamental insights into biological phenomena. Although this is traditionally achieved through continuous direct observations1,2, an alternative solution leverages irreversible genetic changes, such as naturally occurring mutations, to create indelible marks that enables retrospective temporal ordering3-5. Using a multipurpose, single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo, with incorporation of cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during mouse embryonic development, unconventional developmental relationships between cell types and new epithelial progenitor states by their unique genetic histories. Analysis of mouse adenomas, coupled to multiomic and single-cell profiling of human precancers, with clonal analysis of 418 human polyps, demonstrated the occurrence of polyclonal initiation in 15-30% of colonic precancers, showing their origins from multiple normal founders. Our study presents a multimodal framework that lays the foundation for in vivo recording, integrating synthetic or natural indelible genetic changes with single-cell analyses, to explore the origins and timing of development and tumorigenesis in mammalian systems.
Collapse
Affiliation(s)
- Mirazul Islam
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yilin Yang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Vishal M Shah
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Krushna Pavan Musale
- Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Zhengyi Chen
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Linh T Trinh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Paola Molina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Iannish D Sadien
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Rolong
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ian G Macara
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hamim Zafar
- Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Martha J Shrubsole
- Department of Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert J Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
2
|
Morrison HA, Eden K, Trusiano B, Rothschild DE, Qin Y, Wade PA, Rowe AJ, Mounzer C, Stephens MC, Hanson KM, Brown SL, Holl EK, Allen IC. NF-κB Inducing Kinase Attenuates Colorectal Cancer by Regulating Noncanonical NF-κB Mediated Colonic Epithelial Cell Regeneration. Cell Mol Gastroenterol Hepatol 2024; 18:101356. [PMID: 38750899 PMCID: PMC11278896 DOI: 10.1016/j.jcmgh.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND & AIMS Dysregulated colonic epithelial cell (CEC) proliferation is a critical feature in the development of colorectal cancer. We show that NF-κB-inducing kinase (NIK) attenuates colorectal cancer through coordinating CEC regeneration/differentiation via noncanonical NF-κB signaling that is unique from canonical NF-kB signaling. METHODS Initial studies evaluated crypt morphology/functionality, organoid generation, transcriptome profiles, and the microbiome. Inflammation and inflammation-induced tumorigenesis were initiated in whole-body NIK knockout mice (Nik-/-) and conditional-knockout mice following administration of azoxymethane and dextran sulfate sodium. RESULTS Human transcriptomic data revealed dysregulated noncanonical NF-kB signaling. In vitro studies evaluating Nik-/- crypts and organoids derived from mature, nondividing CECs, and colonic stem cells exhibited increased accumulation and stunted growth, respectively. Transcriptomic analysis of Nik-/- cells revealed gene expression signatures associated with altered differentiation-regeneration. When assessed in vivo, Nik-/- mice exhibited more severe colitis with dextran sulfate sodium administration and an altered microbiome characterized by increased colitogenic microbiota. In the inflammation-induced tumorigenesis model, we observed both increased tumor burdens and inflammation in mice where NIK is knocked out in CECs (NikΔCEC). Interestingly, this was not recapitulated when NIK was conditionally knocked out in myeloid cells (NikΔMYE). Surprisingly, conditional knockout of the canonical pathway in myeloid cells (RelAΔMYE) revealed decreased tumor burden and inflammation and no significant changes when conditionally knocked out in CECs (RelAΔCEC). CONCLUSIONS Dysregulated noncanonical NF-κB signaling is associated with the development of colorectal cancer in a tissue-dependent manner and defines a critical role for NIK in regulating gastrointestinal inflammation and regeneration associated with colorectal cancer.
Collapse
Affiliation(s)
- Holly A Morrison
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Kristin Eden
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Brie Trusiano
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Daniel E Rothschild
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Yufeng Qin
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Paul A Wade
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Audrey J Rowe
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Christina Mounzer
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Morgan C Stephens
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia
| | - Katherine M Hanson
- Via College of Osteopathic Medicine, Department of Cell Biology and Physiology, Spartanburg, South Carolina
| | - Stephan L Brown
- Via College of Osteopathic Medicine, Department of Cell Biology and Physiology, Spartanburg, South Carolina
| | - Eda K Holl
- Duke University, Department of Surgery, Durham, North Carolina
| | - Irving C Allen
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg, Virginia; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia; Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia.
| |
Collapse
|
3
|
Ran R, Muñoz Briones J, Jena S, Anderson NL, Olson MR, Green LN, Brubaker DK. Detailed survey of an in vitro intestinal epithelium model by single-cell transcriptomics. iScience 2024; 27:109383. [PMID: 38523788 PMCID: PMC10959667 DOI: 10.1016/j.isci.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
The co-culture of two adult human colorectal cancer cell lines, Caco-2 and HT29, on Transwell is commonly used as an in vitro gut mimic, yet the translatability of insights from such a system to adult human physiological contexts is not fully characterized. Here, we used single-cell RNA sequencing on the co-culture to obtain a detailed survey of cell type heterogeneity in the system and conducted a holistic comparison with human physiology. We identified the intestinal stem cell-, transit amplifying-, enterocyte-, goblet cell-, and enteroendocrine-like cells in the system. In general, the co-culture was fetal intestine-like, with less variety of gene expression compared to the adult human gut. Transporters for major types of nutrients were found in the majority of the enterocytes-like cells in the system. TLR 4 was not expressed in the sample, indicating that the co-culture model is incapable of mimicking the innate immune aspect of the human epithelium.
Collapse
Affiliation(s)
- Ran Ran
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Javier Muñoz Briones
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Interdisciplinary Life Science Program, West Lafayette, IN, USA
| | - Smrutiti Jena
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nicole L. Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Matthew R. Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Leopold N. Green
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Douglas K. Brubaker
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- The Blood, Heart, Lung, and Immunology Research Center, Case Western Reserve University, University Hospitals of Cleveland, Cleveland, OH, USA
| |
Collapse
|
4
|
Xu W, Goreczny GJ, Forsythe I, Brennan G, Stowell T, Brock K, Capella B, Turner CE. Hic-5 regulates extracellular matrix-associated gene expression and cytokine secretion in cancer associated fibroblasts. Exp Cell Res 2024; 435:113930. [PMID: 38237846 PMCID: PMC10923124 DOI: 10.1016/j.yexcr.2024.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The focal adhesion protein, Hic-5 plays a key role in promoting extracellular matrix deposition and remodeling by cancer associated fibroblasts within the tumor stroma to promote breast tumor cell invasion. However, whether stromal matrix gene expression is regulated by Hic-5 is still unknown. Utilizing a constitutive Hic-5 knockout, Mouse Mammary Tumor Virus-Polyoma Middle T-Antigen spontaneous breast tumor mouse model, bulk RNAseq analysis was performed on cancer associated fibroblasts isolated from Hic-5 knockout mammary tumors. Functional network analysis highlighted a key role for Hic-5 in extracellular matrix organization, with both structural matrix genes, as well as matrix remodeling genes being differentially expressed in relation to Hic-5 expression. The subcellular distribution of the MRTF-A transcription factor and expression of a subset of MRTF-A responsive genes was also impacted by Hic-5 expression. Additionally, cytokine array analysis of conditioned media from the Hic-5 and Hic-5 knockout cancer associated fibroblasts revealed that Hic-5 is important for the secretion of several key factors that are associated with matrix remodeling, angiogenesis and immune evasion. Together, these data provide further evidence of a central role for Hic-5 expression in cancer associated fibroblasts in regulating the composition and organization of the tumor stroma microenvironment to promote breast tumor progression.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Jnana Therapeutics, Boston, MA, USA
| | - Ian Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Zymo Research Corp, Huntington Beach, CA, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Theresa Stowell
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Benjamin Capella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
5
|
Li D, Zhong C, Yang M, He L, Chang H, Zhu N, Celniker SE, Threadgill DW, Snijders AM, Mao JH, Yuan Y. Genetic and microbial determinants of azoxymethane-induced colorectal tumor susceptibility in Collaborative Cross mice and their implication in human cancer. Gut Microbes 2024; 16:2341647. [PMID: 38659246 PMCID: PMC11057575 DOI: 10.1080/19490976.2024.2341647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The insights into interactions between host genetics and gut microbiome (GM) in colorectal tumor susceptibility (CTS) remains lacking. We used Collaborative Cross mouse population model to identify genetic and microbial determinants of Azoxymethane-induced CTS. We identified 4417 CTS-associated single nucleotide polymorphisms (SNPs) containing 334 genes that were transcriptionally altered in human colorectal cancers (CRCs) and consistently clustered independent human CRC cohorts into two subgroups with different prognosis. We discovered a set of genera in early-life associated with CTS and defined a 16-genus signature that accurately predicted CTS, the majority of which were correlated with human CRCs. We identified 547 SNPs associated with abundances of these genera. Mediation analysis revealed GM as mediators partially exerting the effect of SNP UNC3869242 within Duox2 on CTS. Intestine cell-specific depletion of Duox2 altered GM composition and contribution of Duox2 depletion to CTS was significantly influenced by GM. Our findings provide potential novel targets for personalized CRC prevention and treatment.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, ZJ, China
| | - Chenhan Zhong
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mengyuan Yang
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
| | - Li He
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ning Zhu
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
- Department of Molecular and Cellular Medicine and Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Berkeley Biomedical Data Science Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ying Yuan
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, ZJ, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, ZJ, China
- Cancer Center, Zhejiang University, Hangzhou, ZJ, China
| |
Collapse
|
6
|
Islam M, Yang Y, Simmons AJ, Shah VM, Pavan MK, Xu Y, Tasneem N, Chen Z, Trinh LT, Molina P, Ramirez-Solano MA, Sadien I, Dou J, Chen K, Magnuson MA, Rathmell JC, Macara IG, Winton D, Liu Q, Zafar H, Kalhor R, Church GM, Shrubsole MJ, Coffey RJ, Lau KS. Temporal recording of mammalian development and precancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572260. [PMID: 38187699 PMCID: PMC10769302 DOI: 10.1101/2023.12.18.572260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Key to understanding many biological phenomena is knowing the temporal ordering of cellular events, which often require continuous direct observations [1, 2]. An alternative solution involves the utilization of irreversible genetic changes, such as naturally occurring mutations, to create indelible markers that enables retrospective temporal ordering [3-8]. Using NSC-seq, a newly designed and validated multi-purpose single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo , while incorporating assigned cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during murine embryonic development and identified new intestinal epithelial progenitor states by their unique genetic histories. NSC-seq analysis of murine adenomas and single-cell multi-omic profiling of human precancers as part of the Human Tumor Atlas Network (HTAN), including 116 scRNA-seq datasets and clonal analysis of 418 human polyps, demonstrated the occurrence of polyancestral initiation in 15-30% of colonic precancers, revealing their origins from multiple normal founders. Thus, our multimodal framework augments existing single-cell analyses and lays the foundation for in vivo multimodal recording, enabling the tracking of lineage and temporal events during development and tumorigenesis.
Collapse
|
7
|
Tarin M, Babaie M, Eshghi H, Matin MM, Saljooghi AS. Elesclomol, a copper-transporting therapeutic agent targeting mitochondria: from discovery to its novel applications. J Transl Med 2023; 21:745. [PMID: 37864163 PMCID: PMC10589935 DOI: 10.1186/s12967-023-04533-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/16/2023] [Indexed: 10/22/2023] Open
Abstract
Copper (Cu) is an essential element that is involved in a variety of biochemical processes. Both deficiency and accumulation of Cu are associated with various diseases; and a high amount of accumulated Cu in cells can be fatal. The production of reactive oxygen species (ROS), oxidative stress, and cuproptosis are among the proposed mechanisms of copper toxicity at high concentrations. Elesclomol (ELC) is a mitochondrion-targeting agent discovered for the treatment of solid tumors. In this review, we summarize the synthesis of this drug, its mechanisms of action, and the current status of its applications in the treatment of various diseases such as cancer, tuberculosis, SARS-CoV-2 infection, and other copper-associated disorders. We also provide some detailed information about future directions to improve its clinical performance.
Collapse
Affiliation(s)
- Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Babaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M. Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh. Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Han N, Yuan M, Yan L, Tang H. Emerging Insights into Liver X Receptor α in the Tumorigenesis and Therapeutics of Human Cancers. Biomolecules 2023; 13:1184. [PMID: 37627249 PMCID: PMC10452869 DOI: 10.3390/biom13081184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Liver X receptor α (LXRα), a member of the nuclear receptor superfamily, is identified as a protein activated by ligands that interacts with the promoters of specific genes. It regulates cholesterol, bile acid, and lipid metabolism in normal physiological processes, and it participates in the development of some related diseases. However, many studies have demonstrated that LXRα is also involved in regulating numerous human malignancies. Aberrant LXRα expression is emerging as a fundamental and pivotal factor in cancer cell proliferation, invasion, apoptosis, and metastasis. Herein, we outline the expression levels of LXRα between tumor tissues and normal tissues via the Oncomine and Tumor Immune Estimation Resource (TIMER) 2.0 databases; summarize emerging insights into the roles of LXRα in the development, progression, and treatment of different human cancers and their diversified mechanisms; and highlight that LXRα can be a biomarker and therapeutic target in diverse cancers.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Man Yuan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Sharma R, Bhattu M, Tripathi A, Verma M, Acevedo R, Kumar P, Rajput VD, Singh J. Potential medicinal plants to combat viral infections: A way forward to environmental biotechnology. ENVIRONMENTAL RESEARCH 2023; 227:115725. [PMID: 37001848 DOI: 10.1016/j.envres.2023.115725] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The viral diseases encouraged scientific community to evaluate the natural antiviral bioactive components rather than protease inhibitors, harmful organic molecules or nucleic acid analogues. For this purpose, medicinal plants have been gaining tremendous importance in the field of attenuating the various kinds of infectious and non-infectious diseases. Most of the commonly used medicines contains the bioactive components/phytoconstituents that are generally extracted from medicinal plants. Moreover, the medicinal plants offer many advantages for the recovery applications of infectious disease especially in viral infections including HIV-1, HIV-2, Enterovirus, Japanese Encephalitis Virus, Hepatitis B virus, Herpes Virus, Respiratory syncytial virus, Chandipura virus and Influenza A/H1N1. Considering the lack of acceptable drug candidates and the growing antimicrobial resistance to existing drug molecules for many emerging viral diseases, medicinal plants may offer best platform to develop sustainable/efficient/economic alternatives against viral infections. In this regard, for exploring and analyzing large volume of scientific data, bibliometric analysis was done using VOS Viewer shedding light on the emerging areas in the field of medicinal plants and their antiviral activity. This review covers most of the plant species that have some novel bioactive compound like gnidicin, gniditrin, rutin, apigenin, quercetin, kaempferol, curcumin, tannin and oleuropin which showed high efficacy to inhibit the several disease causing virus and their mechanism of action in HIV, Covid-19, HBV and RSV were discussed. Moreover, it also delves the in-depth mechanism of medicinal with challenges and future prospective. Therefore, this work delves the key role of environment in the biological field.
Collapse
Affiliation(s)
- Rhydum Sharma
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Ashutosh Tripathi
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Roberto Acevedo
- San Sebastián University, Campus Bellavista 7, Santiago, Chile
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
10
|
Chen P, Huang R, Hazbun TR. Unlocking the Mysteries of Alpha-N-Terminal Methylation and its Diverse Regulatory Functions. J Biol Chem 2023:104843. [PMID: 37209820 PMCID: PMC10293735 DOI: 10.1016/j.jbc.2023.104843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Protein post-translation modifications (PTMs) are a critical regulatory mechanism of protein function. Protein α-N-terminal (Nα) methylation is a conserved PTM across prokaryotes and eukaryotes. Studies of the Nα methyltransferases responsible for Να methylation and their substrate proteins have shown that the PTM involves diverse biological processes, including protein synthesis and degradation, cell division, DNA damage response, and transcription regulation. This review provides an overview of the progress toward the regulatory function of Να methyltransferases and their substrate landscape. More than 200 proteins in humans and 45 in yeast are potential substrates for protein Nα methylation based on the canonical recognition motif, XP[KR]. Based on recent evidence for a less stringent motif requirement, the number of substrates might be increased, but further validation is needed to solidify this concept. A comparison of the motif in substrate orthologs in selected eukaryotic species indicates intriguing gain and loss of the motif across the evolutionary landscape. We discuss the state of knowledge in the field that has provided insights into the regulation of protein Να methyltransferases and their role in cellular physiology and disease. We also outline the current research tools that are key to understanding Να methylation. Finally, challenges are identified and discussed that would aid in unlocking a system-level view of the roles of Να methylation in diverse cellular pathways.
Collapse
Affiliation(s)
- Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tony R Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
11
|
Zhao X, Lu M, Liu Z, Zhang M, Yuan H, Dan Z, Wang D, Ma B, Yang Y, Yang F, Sun R, Li L, Dang C. Comprehensive analysis of alfa defensin expression and prognosis in human colorectal cancer. Front Oncol 2023; 12:974654. [PMID: 36703795 PMCID: PMC9872005 DOI: 10.3389/fonc.2022.974654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is a serious threat to human health. Screening new biomarkers can provide basis for improving the prognosis and individualized treatment of CRC. Although some members of the defensin family were found increased in pancreatic cancer and CRC, their exact function and clinical significance remain unclear. Methods In this study, the expression, correlation, mutation, and functional enrichment of several defensin family members in pancreatic cancer and CRC were analyzed using tumor public databases and verified in several patients. Results Results showed no significant correlation between the expression levels of DEFA1-4 and CRC. The expression levels of DEFA5 and DEFA6 significantly increased in CRC tissues compared with those in normal tissues. DEFA5 may be associated with better prognosis of CRC, while DEFA6 may be associated with poor prognosis. Immunohistochemistry (IHC) experiments showed that the expression of DEFA6 was significantly higher in adenoma than in normal mucosa and slightly higher in carcinoma than in normal mucosa. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that DEFAs were closely related to hsa05202: transcriptional misregulation in cancer and Hsa04015: Rap1 signaling pathway. DEFA5 may be a stable and good prognostic marker, and DEFA6 may be a poor prognostic marker in CRC of metastasis. Conclusion Overall, DEFA5 and DEFA6 have a certain degree of sensitivity and specificity in predicting CRC.
Collapse
Affiliation(s)
- Xinliang Zhao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China,Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mengnan Lu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhigang Liu
- Department of Thoracic Surgery, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China
| | - Mingming Zhang
- Department of Medical Section, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Hongmei Yuan
- Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Zhaoqiang Dan
- Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Daihua Wang
- Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Bingbing Ma
- Department of Cardio-Thoracic Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Yanqi Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Funing Yang
- Department of General Surgery, 521 Hospital of Norinco Group, Xi’an, Shaanxi, China
| | - Ruifang Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Ruifang Sun, ; Lin Li, ; Chengxue Dang,
| | - Lin Li
- Department of Clinical Laboratory, Shaanxi Provincial Tumor Hospital, Xi’an, Shaanxi, China,*Correspondence: Ruifang Sun, ; Lin Li, ; Chengxue Dang,
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Ruifang Sun, ; Lin Li, ; Chengxue Dang,
| |
Collapse
|
12
|
Zhou Q, Wu W, Jia K, Qi G, Sun XS, Li P. Design and characterization of PROTAC degraders specific to protein N-terminal methyltransferase 1. Eur J Med Chem 2022; 244:114830. [PMID: 36228414 PMCID: PMC10520980 DOI: 10.1016/j.ejmech.2022.114830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022]
Abstract
Protein N-terminal methylation catalyzed by N-terminal methyltransferase 1 (NTMT1) is an emerging methylation present in eukaryotes, playing important regulatory roles in various biological and cellular processes. Although dysregulation of NTMT1 has been linked to many diseases such as colorectal cancer, their molecular and cellular mechanisms remain elusive due to inaccessibility to an effective cellular probe. Here we report the design, synthesis, and characterization of the first-in-class NTMT1 degraders based on proteolysis-targeting chimera (PROTAC) strategy. Through a brief structure-activity relationship (SAR) study of linker length, a cell permeable degrader 1 involving a von Hippel-Lindau (VHL) E3 ligase ligand was developed and demonstrated to reduce NTMT1 protein levels effectively and selectively in time- and dose-dependent manners in colorectal carcinoma cell lines HCT116 and HT29. Degrader 1 displayed DC50 = 7.53 μM and Dmax > 90% in HCT116 (cellular IC50 > 100 μM for its parent inhibitor DC541). While degrader 1 had marginal cytotoxicity, it displayed anti-proliferative activity in 2D and 3D culture environment, resulting from cell cycle arrested at G0/G1 phase in HCT116. Label-free global proteomic analysis revealed that degrader 1 induced overexpression of calreticulin (CALR), an immunogenic cell death (ICD) signal protein that is known to elicit antitumor immune response and clinically linked to a high survival rate of patients with colorectal cancer upon its upregulation. Collectively, degrader 1 offers the first selective cellular probe for NTMT1 exploration and a new drug discovery modality for NTMT1-related oncology and diseases.
Collapse
Affiliation(s)
- Qilong Zhou
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA; Laboratory of Ethnopharmacology, Tissue-orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine
| | - Wei Wu
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Kaimin Jia
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, 66506, USA; Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - Ping Li
- Department of Chemistry, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
13
|
Cao Y, Liang W, Fang L, Liu M, Zuo J, Peng Y, Shan J, Sun R, Zhao J, Wang J. PD-L1/PD-L1 signalling promotes colorectal cancer cell migration ability through RAS/MEK/ERK. Clin Exp Pharmacol Physiol 2022; 49:1281-1293. [PMID: 36050267 PMCID: PMC9826327 DOI: 10.1111/1440-1681.13717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/07/2022] [Accepted: 08/24/2022] [Indexed: 01/31/2023]
Abstract
Programmed death ligand 1 (PD-L1) is widely known as an immune checkpoint, and immunotherapy through the inhibition of checkpoint molecules has become an important component in the successful treatment of tumours via programmed death 1 (PD-1)/PD-L1 signalling pathways. However, its biological functions and expression profile in colorectal cancer (CRC) are elusive. We previously found that PD-L1 can bind to PD-L1 and cause cell detachment. However, the detailed molecular mechanisms of how PD-L1 binds to PD-L1 and how it transmits signals to the cell remain unclear. In this study, we disclosed that PD-L1 expression was dramatically upregulated in CRC compared to normal tissues. Ectopic expression of PD-L1 inhibits cell adhesive capacity and promotes cell migration in CRC cell lines, while silencing PD-L1 had the opposite effects and suppressed invasion and proliferation. Mechanistically, PD-L1 was found to promote epithelial-mesenchymal transition (EMT) through the ERK signalling molecule pathway and interacted with the 1-86 aa fragment of KRAS to transduce signals. Collectively, our study demonstrated the role of PD-L1 after binding to PD-L1 in CRC, thereby providing a new theoretical basis for further improving immunotherapy with anti-PD-L1 antibodies.
Collapse
Affiliation(s)
- Yihui Cao
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina
| | - Weiye Liang
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Lian Fang
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ming‐kai Liu
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jia Zuo
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Ying‐long Peng
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jia‐jie Shan
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Rui‐xia Sun
- Bioscience LaboratoryBIOS bioscience and Technology Limited CompanyGuangzhouChina
| | - Jie Zhao
- Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina
| | - Jian Wang
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhouChina,Department of Neurobiology, School of MedicineSouth China University of TechnologyGuangzhouChina,Bioscience LaboratoryBIOS bioscience and Technology Limited CompanyGuangzhouChina
| |
Collapse
|
14
|
Lavia P, Sciamanna I, Spadafora C. An Epigenetic LINE-1-Based Mechanism in Cancer. Int J Mol Sci 2022; 23:14610. [PMID: 36498938 PMCID: PMC9738484 DOI: 10.3390/ijms232314610] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
In the last fifty years, large efforts have been deployed in basic research, clinical oncology, and clinical trials, yielding an enormous amount of information regarding the molecular mechanisms of cancer and the design of effective therapies. The knowledge that has accumulated underpins the complexity, multifactoriality, and heterogeneity of cancer, disclosing novel landscapes in cancer biology with a key role of genome plasticity. Here, we propose that cancer onset and progression are determined by a stress-responsive epigenetic mechanism, resulting from the convergence of upregulation of LINE-1 (long interspersed nuclear element 1), the largest family of human retrotransposons, genome damage, nuclear lamina fragmentation, chromatin remodeling, genome reprogramming, and autophagy activation. The upregulated expression of LINE-1 retrotransposons and their protein products plays a key role in these processes, yielding an increased plasticity of the nuclear architecture with the ensuing reprogramming of global gene expression, including the reactivation of embryonic transcription profiles. Cancer phenotypes would thus emerge as a consequence of the unscheduled reactivation of embryonic gene expression patterns in an inappropriate context, triggering de-differentiation and aberrant proliferation in differentiated cells. Depending on the intensity of the stressing stimuli and the level of LINE-1 response, diverse degrees of malignity would be generated.
Collapse
Affiliation(s)
- Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Ilaria Sciamanna
- Center for Animal Research and Welfare (BENA), ISS Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Corrado Spadafora
- Institute of Translational Pharmacology (IFT), CNR Consiglio Nazionale delle Ricerche, 00133 Rome, Italy
| |
Collapse
|
15
|
Lee C, Baek B, Cho SH, Jang T, Jeon S, Lee S, Lee H, Nam J. Machine learning with in silico analysis markedly improves survival prediction modeling in colon cancer patients. Cancer Med 2022; 12:7603-7615. [PMID: 36345155 PMCID: PMC10067044 DOI: 10.1002/cam4.5420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Predicting the survival of cancer patients provides prognostic information and therapeutic guidance. However, improved prediction models are needed for use in diagnosis and treatment. OBJECTIVE This study aimed to identify genomic prognostic biomarkers related to colon cancer (CC) based on computational data and to develop survival prediction models. METHODS We performed machine-learning (ML) analysis to screen pathogenic survival-related driver genes related to patient prognosis by integrating copy number variation and gene expression data. Moreover, in silico system analysis was performed to clinically assess data from ML analysis, and we identified RABGAP1L, MYH9, and DRD4 as candidate genes. These three genes and tumor stages were used to generate survival prediction models. Moreover, the genes were validated by experimental and clinical analyses, and the theranostic application of the survival prediction models was assessed. RESULTS RABGAP1L, MYH9, and DRD4 were identified as survival-related candidate genes by ML and in silico system analysis. The survival prediction model using the expression of the three genes showed higher predictive performance when applied to predict the prognosis of CC patients. A series of functional analyses revealed that each knockdown of three genes reduced the protumor activity of CC cells. In particular, validation with an independent cohort of CC patients confirmed that the coexpression of MYH9 and DRD4 gene expression reflected poorer clinical outcomes in terms of overall survival and disease-free survival. CONCLUSIONS Our survival prediction approach will contribute to providing information on patients and developing a therapeutic strategy for CC patients.
Collapse
Affiliation(s)
- Choong‐Jae Lee
- School of Life Sciences Gwangju Institute of Science and Technology Gwangju Korea
| | - Bin Baek
- School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology Gwangju Korea
| | - Sang Hee Cho
- Department of Hemato‐Oncology Chonnam National University Medical School Gwangju Korea
| | - Tae‐Young Jang
- School of Life Sciences Gwangju Institute of Science and Technology Gwangju Korea
| | - So‐El Jeon
- School of Life Sciences Gwangju Institute of Science and Technology Gwangju Korea
| | - Sunjae Lee
- School of Life Sciences Gwangju Institute of Science and Technology Gwangju Korea
| | - Hyunju Lee
- School of Electrical Engineering and Computer Science Gwangju Institute of Science and Technology Gwangju Korea
| | - Jeong‐Seok Nam
- School of Life Sciences Gwangju Institute of Science and Technology Gwangju Korea
- Cell Logistics Research Center Gwangju Institute of Science and Technology Gwangju South Korea
| |
Collapse
|
16
|
Identification of the Antigens Recognised by Colorectal Cancer Patients Using Sera from Patients Who Exhibit a Crohn's-like Lymphoid Reaction. Biomolecules 2022; 12:biom12081058. [PMID: 36008952 PMCID: PMC9406176 DOI: 10.3390/biom12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
A Crohn’s-like lymphoid reaction (CLR) is observed in about 15% of colorectal cancer (CRC) patients and is associated with favourable outcomes. To identify the immune targets recognised by CRC CLR patient sera, we immunoscreened a testes cDNA library with sera from three patients. Immunoscreening of the 18 antigens identified by SEREX with sera from normal donors showed that only the heavy chain of IgG3 (IGHG3) and a novel antigen we named UOB-COL-7, were solely recognised by sera from CRC CLR patients. ELISA showed an elevation in IgG3 levels in patients with CRC (p = 0.01). To extend our studies we analysed the expression of our SEREX-identified antigens using the RNA-sequencing dataset (GSE5206). We found that the transcript levels of multiple IGHG probesets were highly significant (p < 0.001) in their association with clinical features of CRC while above median levels of DAPK1 (p = 0.005) and below median levels of GTF2H5 (p = 0.004) and SH3RF2 (p = 0.02) were associated with improved overall survival. Our findings demonstrate the potential of SEREX-identified CRC CLR antigens to act as biomarkers for CRC and provide a rationale for their further characterization and validation.
Collapse
|
17
|
Li Y, Wang H, Wan J, Ma Q, Qi Y, Gu Z. The hnRNPK/A1/R/U Complex Regulates Gene Transcription and Translation and is a Favorable Prognostic Biomarker for Human Colorectal Adenocarcinoma. Front Oncol 2022; 12:845931. [PMID: 35875075 PMCID: PMC9301189 DOI: 10.3389/fonc.2022.845931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/17/2022] [Indexed: 12/24/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are emerging as a crucially important protein family in tumors. However, it is unclear which family members are essential for cancer progression, and their diverse expression patterns and prognostic values are rarely reported. In this work, we found that the expression levels of hnRNPs were all upregulated in colon adenocarcinoma (COAD) and rectal adenocarcinoma (READ) tissues. Immunohistochemical staining revealed that hnRNPA1, hnRNPA2B1, hnRNPC, hnRNPK, hnRNPR, and hnRNPU are overexpressed in colorectal adenocarcinoma. Additionally, the promoter methylation levels of hnRNPs were significantly elevated or decreased, and multiple genetic alterations of hnRNPs were found in colorectal adenocarcinoma patients. Correlation analysis showed that the expression levels of hnRNPs were positively correlated with each other. Furthermore, we demonstrated that high expressions of hnRNPA1, hnRNPK, hnRNPR, and hnRNPU were associated with better overall survival rates for colorectal adenocarcinoma patients. The co-expression network and functional prediction analysis indicated that hnRNPK/A1/R/U was involved in cellular gene transcription and translation. Moreover, hnRNPK/A1/R/U complex was identified and confirmed by mass spectrometry and co-immunoprecipitation. RNA sequencing analysis revealed that the transcription factor hnRNPK regulated transcription and translation of related genes. Finally, through establishment of stable cell lines in vitro, we verified that hnRNPK was a favorable factor in human colorectal adenocarcinoma which promoted immune cell infiltration and inhibited tumor growth. Our findings illustrate that the hnRNPK/A1/R/U complex is a favorable prognostic biomarker for human colorectal adenocarcinoma. Targeting hnRNPK during transcription and translation could be a promising therapeutic strategy for colorectal adenocarcinoma treatment.
Collapse
Affiliation(s)
- Yixin Li
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Department of Clinical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jiajia Wan
- Post-Doctoral Station of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qian Ma
- Post-Doctoral Station of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| | - Zhuoyu Gu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Qian Ma, ; Yu Qi, ; Zhuoyu Gu,
| |
Collapse
|
18
|
van den Driest L, Johnson CH, Rattray NJW, Rattray Z. Development of an Accessible Gene Expression Bioinformatics Pipeline to Study Driver Mutations of Colorectal Cancer. Altern Lab Anim 2022; 50:282-292. [PMID: 35765262 DOI: 10.1177/02611929221107546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is a global cause of cancer-related mortality driven by genetic and environmental factors which influence therapeutic outcomes. The emergence of next-generation sequencing technologies enables the rapid and extensive collection and curation of genetic data for each cancer type into clinical gene expression biobanks. We report the application of bioinformatics tools for investigating the expression patterns and prognostic significance of three genes that are commonly dysregulated in colon cancer: adenomatous polyposis coli (APC); B-Raf proto-oncogene (BRAF); and Kirsten rat sarcoma viral oncogene homologue (KRAS). Through the use of bioinformatics tools, we show the patterns of APC, BRAF and KRAS genetic alterations and their role in patient prognosis. Our results show mutation types, the frequency of mutations, tumour anatomical location and differential expression patterns for APC, BRAF and KRAS for colorectal tumour and matched healthy tissue. The prognostic value of APC, BRAF and KRAS genetic alterations was investigated as a function of their expression levels in CRC. In the era of precision medicine, with significant advancements in biobanking and data curation, there is significant scope to use existing clinical data sets for evaluating the role of mutational drivers in carcinogenesis. This approach offers the potential for studying combinations of less well-known genes and the discovery of novel biomarkers, or for studying the association between various effector proteins and pathways.
Collapse
Affiliation(s)
- Lisa van den Driest
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 3527University of Strathclyde, Glasgow, UK
| | | | - Nicholas J W Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 3527University of Strathclyde, Glasgow, UK
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 3527University of Strathclyde, Glasgow, UK
| |
Collapse
|
19
|
Consensus molecular subtype differences linking colon adenocarcinoma and obesity revealed by a cohort transcriptomic analysis. PLoS One 2022; 17:e0268436. [PMID: 35560039 PMCID: PMC9106217 DOI: 10.1371/journal.pone.0268436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is the third-leading cause of cancer-related deaths in the United States and worldwide. Obesity—a worldwide public health concern—is a known risk factor for cancer including CRC. However, the mechanisms underlying the link between CRC and obesity have yet to be fully elucidated in part because of the molecular heterogeneity of CRC. We hypothesized that obesity modulates CRC in a consensus molecular subtype (CMS)-dependent manner. RNA-seq data and associated tumor and patient characteristics including body weight and height data for 232 patients were obtained from The Cancer Genomic Atlas–Colon Adenocarcinoma (TCGA-COAD) database. Tumor samples were classified into the four CMSs with the CMScaller R package; body mass index (BMI) was calculated and categorized as normal, overweight, and obese. We observed a significant difference in CMS categorization between BMI categories. Differentially expressed genes (DEGs) between obese and overweight samples and normal samples differed across the CMSs, and associated prognostic analyses indicated that the DEGs had differing associations on survival. Using Gene Set Enrichment Analysis, we found differences in Hallmark gene set enrichment between obese and overweight samples and normal samples across the CMSs. We constructed Protein-Protein Interaction networks and observed differences in obesity-regulated hub genes for each CMS. Finally, we analyzed and found differences in predicted drug sensitivity between obese and overweight samples and normal samples across the CMSs. Our findings support that obesity impacts the CRC tumor transcriptome in a CMS-specific manner. The possible associations reported here are preliminary and will require validation using in vitro and animal models to examine the CMS-dependence of the genes and pathways. Once validated the obesity-linked genes and pathways may represent new therapeutic targets to treat colon cancer in a CMS-dependent manner.
Collapse
|
20
|
Comprehensive Landscape of STEAP Family Members Expression in Human Cancers: Unraveling the Potential Usefulness in Clinical Practice Using Integrated Bioinformatics Analysis. DATA 2022. [DOI: 10.3390/data7050064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The human Six-Transmembrane Epithelial Antigen of the Prostate (STEAP) family comprises STEAP1-4. Several studies have pointed out STEAP proteins as putative biomarkers, as well as therapeutic targets in several types of human cancers, particularly in prostate cancer. However, the relationships and significance of the expression pattern of STEAP1-4 in cancer cases are barely known. Herein, the Oncomine database and cBioPortal platform were selected to predict the differential expression levels of STEAP members and clinical prognosis. The most common expression pattern observed was the combination of the over- and underexpression of distinct STEAP genes, but cervical and gastric cancer and lymphoma showed overexpression of all STEAP genes. It was also found that STEAP genes’ expression levels were already deregulated in benign lesions. Regarding the prognostic value, it was found that STEAP1 (prostate), STEAP2 (brain and central nervous system), STEAP3 (kidney, leukemia and testicular) and STEAP4 (bladder, cervical, gastric) overexpression correlate with lower patient survival rate. However, in prostate cancer, overexpression of the STEAP4 gene was correlated with a higher survival rate. Overall, this study first showed that the expression levels of STEAP genes are highly variable in human cancers, which may be related to different patients’ outcomes.
Collapse
|
21
|
Vega PN, Nilsson A, Kumar MP, Niitsu H, Simmons AJ, Ro J, Wang J, Chen Z, Joughin BA, Li W, McKinley ET, Liu Q, Roland JT, Washington MK, Coffey RJ, Lauffenburger DA, Lau KS. Cancer-Associated Fibroblasts and Squamous Epithelial Cells Constitute a Unique Microenvironment in a Mouse Model of Inflammation-Induced Colon Cancer. Front Oncol 2022; 12:878920. [PMID: 35600339 PMCID: PMC9114773 DOI: 10.3389/fonc.2022.878920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The tumor microenvironment plays a key role in the pathogenesis of colorectal tumors and contains various cell types including epithelial, immune, and mesenchymal cells. Characterization of the interactions between these cell types is necessary for revealing the complex nature of tumors. In this study, we used single-cell RNA-seq (scRNA-seq) to compare the tumor microenvironments between a mouse model of sporadic colorectal adenoma (Lrig1CreERT2/+;Apc2lox14/+) and a mouse model of inflammation-driven colorectal cancer induced by azoxymethane and dextran sodium sulfate (AOM/DSS). While both models develop tumors in the distal colon, we found that the two tumor types have distinct microenvironments. AOM/DSS tumors have an increased abundance of two populations of cancer-associated fibroblasts (CAFs) compared with APC tumors, and we revealed their divergent spatial association with tumor cells using multiplex immunofluorescence (MxIF) imaging. We also identified a unique squamous cell population in AOM/DSS tumors, whose origins were distinct from anal squamous epithelial cells. These cells were in higher proportions upon administration of a chemotherapy regimen of 5-Fluorouracil/Irinotecan. We used computational inference algorithms to predict cell-cell communication mediated by ligand-receptor interactions and downstream pathway activation, and identified potential mechanistic connections between CAFs and tumor cells, as well as CAFs and squamous epithelial cells. This study provides important preclinical insight into the microenvironment of two distinct models of colorectal tumors and reveals unique roles for CAFs and squamous epithelial cells in the AOM/DSS model of inflammation-driven cancer.
Collapse
Affiliation(s)
- Paige N. Vega
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Avlant Nilsson
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Manu P. Kumar
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hiroaki Niitsu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alan J. Simmons
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James Ro
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jiawei Wang
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Zhengyi Chen
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Brian A. Joughin
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Wei Li
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eliot T. McKinley
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joseph T. Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert J. Coffey
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Douglas A. Lauffenburger
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ken S. Lau
- Department of Cell and Developmental Biology and Program in Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
22
|
UHMK1 aids colorectal cancer cell proliferation and chemoresistance through augmenting IL-6/STAT3 signaling. Cell Death Dis 2022; 13:424. [PMID: 35501324 PMCID: PMC9061793 DOI: 10.1038/s41419-022-04877-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
UHMK1, a serine/threonine kinase with a U2AF homology motif, is implicated in RNA processing and protein phosphorylation. Increasing evidence has indicated its involvement in tumorigenesis. However, it remains to be elucidated whether UHMK1 plays a role in the development of colorectal cancer (CRC). Here, we demonstrated that UHMK1 was frequently upregulated in CRC samples compared with adjacent normal tissue and high expression of UHMK1 predicted poor outcomes. Knockdown of UHMK1 by siRNAs restrained CRC cell proliferation and increased oxaliplatin sensitivity, whereas overexpression of UHMK1 promoted CRC cell growth and oxaliplatin resistance, suggesting that UHMK1 plays important oncogenic roles in CRC. Mechanistically, we showed that UHMK1 had a significant effect on IL6/STAT3 signaling by interacting with STAT3. The interaction of UHMK1 with STAT3 enhanced STAT3 activity in regulating gene transcription. Furthermore, we found that STAT3 could in turn transcriptionally activate UHMK1 expression in CRC cells. The complementary experiments for cell growth and oxaliplatin resistance indicated the interdependent relationship between UHMK1 and STAT3. Thus, these collective findings uncovered a new UHMK1/STAT3 positive feedback regulatory loop contributing to CRC development and chemoresistance.
Collapse
|
23
|
Xu Z, Qu H, Ren Y, Gong Z, Ri HJ, Zhang F, Shao S, Chen X, Chen X. Systematic Analysis of E2F Expression and Its Relation in Colorectal Cancer Prognosis. Int J Gen Med 2022; 15:4849-4870. [PMID: 35585998 PMCID: PMC9109810 DOI: 10.2147/ijgm.s352141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- ZhaoHui Xu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Hui Qu
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - YanYing Ren
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - ZeZhong Gong
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Hyok Ju Ri
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, People’s Republic of China
| | - Fan Zhang
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Shuai Shao
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - XiaoLiang Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Xin Chen
- Department of Hernia and Colorectal Surgery, The Second Hospital of Dalian Medical University, Dalian, People’s Republic of China
- Correspondence: Xin Chen, Tel +86 17709872266, Email
| |
Collapse
|
24
|
Stucky A, Gao L, Li SC, Tu L, Luo J, Huang X, Chen X, Li X, Park TH, Cai J, Kabeer MH, Plant AS, Sun L, Zhang X, Zhong JF. Molecular Characterization of Differentiated-Resistance MSC Subclones by Single-Cell Transcriptomes. Front Cell Dev Biol 2022; 10:699144. [PMID: 35356283 PMCID: PMC8959432 DOI: 10.3389/fcell.2022.699144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: The mechanism of tumorigenicity potentially evolved in mesenchymal stem cells (MSCs) remains elusive, resulting in inconsistent clinical application efficacy. We hypothesized that subclones in MSCs contribute to their tumorgenicity, and we approached MSC-subclones at the single-cell level. Methods: MSCs were cultured in an osteogenic differentiation medium and harvested on days 12, 19, and 25 for cell differentiation analysis using Alizarin Red and followed with the single-cell transcriptome. Results: Single-cell RNA-seq analysis reveals a discrete cluster of MSCs during osteogenesis, including differentiation-resistant MSCs (DR-MSCs), differentiated osteoblasts (DO), and precursor osteoblasts (PO). The DR-MSCs population resembled cancer initiation cells and were subjected to further analysis of the yes associated protein 1 (YAP1) network. Verteporfin was also used for YAP1 inhibition in cancer cell lines to confirm the role of YAP1 in MSC--involved tumorigenicity. Clinical data from various cancer types were analyzed to reveal relationships among YAP1, OCT4, and CDH6 in MSC--involved tumorigenicity. The expression of cadherin 6 (CDH6), octamer-binding transcription factor 4 (OCT4), and YAP1 expression was significantly upregulated in DR-MSCs compared to PO and DO. YAP1 inhibition by Verteporfin accelerated the differentiation of MSCs and suppressed the expression of YAP1, CDH6, and OCT4. A survey of 56 clinical cohorts revealed a high degree of co-expression among CDH6, YAP1, and OCT4 in various solid tumors. YAP1 inhibition also down-regulated HeLa cell viability and gradually inhibited YAP1 nuclear localization while reducing the transcription of CDH6 and OCT4. Conclusions: We used single-cell sequencing to analyze undifferentiated MSCs and to discover a carcinogenic pathway in single-cell MSCs of differentiated resistance subclones.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shengwen Calvin Li
- Neuro-oncology and Stem Cell Research Laboratory, CHOC Children’s Research Institute, Center for Neuroscience Research, Children’s Hospital of Orange County (CHOC), Orange, CA, United States
- Department of Neurology, Irvine School of Medicine, University of California, Irvine, CA, United States
| | - Lingli Tu
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
| | - Jun Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Huang
- Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuelian Chen
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| | - Xiaoqing Li
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
| | - Tiffany H. Park
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jin Cai
- Department of Oral and Maxillofacial Surgery, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Mustafa H. Kabeer
- Pediatric Surgery, CHOC Children’s Hospital, Department of Surgery, Irvine School of Medicine, University of California, Irvine, CA, United States
| | - Ashley S. Plant
- Division of Pediatric Oncology, Children’s Hospital of Orange County, Orange, CA, United States
| | - Lan Sun
- Department of Oncology, Bishan, The People’s Hospital of Bishan District, Bishan, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiang F. Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, CA, United States
| |
Collapse
|
25
|
Wang H, Chen Y, Liu Y, Li Q, Luo J, Wang L, Chen Y, Sang C, Zhang W, Ge X, Yao Z, Miao L, Liu X. The lncRNA ZFAS1 regulates lipogenesis in colorectal cancer by binding polyadenylate-binding protein 2 to stabilize SREBP1 mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:363-374. [PMID: 35036050 PMCID: PMC8728310 DOI: 10.1016/j.omtn.2021.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related mortality globally. Therefore, a better understanding of the early molecular events of this disease is needed. Long noncoding RNAs (lncRNAs) play a critical role in the regulation of tumorigenesis and cancer progression. In this study, we investigated the characteristics of ZFAS1 in CRC. We analyzed three independent microarray datasets of CRC tissues from GEO and found that ZFAS1 expression was remarkably upregulated in all three datasets. Moreover, we validated the overexpression of ZFAS1 in CRC tissues compared with normal tissues and found that ZFAS1 was positively correlated with tumor size and metastasis in CRC. Knockdown of ZFAS1 significantly suppressed the malignant phenotype and lipogenesis of CRC cells. Mechanistically, ZFAS1 binds polyadenylate-binding protein 2 (PABP2) to stabilize SREBP1 mRNA, thereby increasing the expression of SREBP1 and its target genes stearoyl-CoA desaturase (SCD1) and fatty acid synthase (FASN), thus promoting CRC lipid accumulation. These data demonstrated that ZFAS1 could act as an oncogene for CRC and that ZFAS1 reprograms lipid metabolism by binding with PABP2 to stabilize SREBP1 mRNA accumulation, implicating it as a novel and potent target for the treatment of CRC.
Collapse
Affiliation(s)
- Huishan Wang
- Department of Gastroenterology, Shanghai Songjiang District Central Hospital, Shanghai 210000, China
| | - Yuli Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Yanwen Liu
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210000, China
| | - Qiuhui Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jing Luo
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210011, China
| | - Li Wang
- Department of Oncology, The Third Medical School of Nanjing Medical University, Nanjing 210011, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Chen Sang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow of University, Changzhou G 213003, China
| | - Wen Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210000, China
| | - Xianxiu Ge
- Department of Gastroenterology, Shanghai Songjiang District Central Hospital, Shanghai 210000, China
| | - Zhifeng Yao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow of University, Changzhou G 213003, China
| | - Lin Miao
- Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xianghua Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Yang L, Zhang W, Li M, Dam J, Huang K, Wang Y, Qiu Z, Sun T, Chen P, Zhang Z, Zhang W. Evaluation of the Prognostic Relevance of Differential Claudin Gene Expression Highlights Claudin-4 as Being Suppressed by TGFβ1 Inhibitor in Colorectal Cancer. Front Genet 2022; 13:783016. [PMID: 35281827 PMCID: PMC8907593 DOI: 10.3389/fgene.2022.783016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Claudins (CLDNs) are a family of closely related transmembrane proteins that have been linked to oncogenic transformation and metastasis across a range of cancers, suggesting that they may be valuable diagnostic and/or prognostic biomarkers that can be used to evaluate patient outcomes. However, CLDN expression patterns associated with colorectal cancer (CRC) remain to be defined.Methods: The mRNA levels of 21 different CLDN family genes were assessed across 20 tumor types using the Oncomine database. Correlations between these genes and patient clinical outcomes, immune cell infiltration, clinicopathological staging, lymph node metastasis, and mutational status were analyzed using the GEPIA, UALCAN, Human Protein Atlas, Tumor Immune Estimation Resource, STRING, Genenetwork, cBioportal, and DAVID databases in an effort to clarify the potential functional roles of different CLDN protein in CRC. Molecular docking analyses were used to probe potential interactions between CLDN4 and TGFβ1. Levels of CLDN4 and CLDN11 mRNA expression in clinical CRC patient samples and in the HT29 and HCT116 cell lines were assessed via qPCR. CLDN4 expression levels in these 2 cell lines were additionally assessed following TGFβ1 inhibitor treatment.Results: These analyses revealed that COAD and READ tissues exhibited the upregulation of CLDN1, CLDN2, CLDN3, CLDN4, CLDN7, and CLDN12 as well as the downregulation of CLDN5 and CLDN11 relative to control tissues. Higher CLDN11 and CLDN14 expression as well as lower CLDN23 mRNA levels were associated with poorer overall survival (OS) outcomes. Moreover, CLDN2 and CLDN3 or CLDN11 mRNA levels were significantly associated with lymph node metastatic progression in COAD or READ lower in COAD and READ tissues. A positive correlation between the expression of CLDN11 and predicted macrophage, dendritic cell, and CD4+ T cell infiltration was identified in CRC, with CLDN12 expression further being positively correlated with CD4+ T cell infiltration whereas a negative correlation was observed between such infiltration and the expression of CLDN3 and CLDN15. A positive correlation between CLDN1, CLDN16, and neutrophil infiltration was additionally detected, whereas neutrophil levels were negatively correlated with the expression of CLDN3 and CLDN15. Molecular docking suggested that CLDN4 was able to directly bind via hydrogen bond with TGFβ1. Relative to paracancerous tissues, clinical CRC tumor tissue samples exhibited CLDN4 and CLDN11 upregulation and downregulation, respectively. LY364947 was able to suppress the expression of CLDN4 in both the HT29 and HCT116 cell lines.Conclusion: Together, these results suggest that the expression of different CLDN family genes is closely associated with CRC tumor clinicopathological staging and immune cell infiltration. Moreover, CLDN4 expression is closely associated with TGFβ1 in CRC, suggesting that it and other CLDN family members may represent viable targets for antitumor therapeutic intervention.
Collapse
Affiliation(s)
- Linqi Yang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenqi Zhang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinxi Dam
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kai Huang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yihan Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhicong Qiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tao Sun
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Zhenduo Zhang
- Shijiazhuang People’s Hospital, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Wei Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| |
Collapse
|
27
|
Cook DR, Kang M, Martin TD, Galanko JA, Loeza GH, Trembath DG, Justilien V, Pickering KA, Vincent DF, Jarosch A, Jurmeister P, Waters AM, Hibshman PS, Campbell AD, Ford CA, Keku TO, Yeh JJ, Lee MS, Cox AD, Fields AP, Sandler RS, Sansom OJ, Sers C, Schaefer A, Der CJ. Aberrant Expression and Subcellular Localization of ECT2 Drives Colorectal Cancer Progression and Growth. Cancer Res 2022; 82:90-104. [PMID: 34737214 PMCID: PMC9056178 DOI: 10.1158/0008-5472.can-20-4218] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
ECT2 is an activator of RHO GTPases that is essential for cytokinesis. In addition, ECT2 was identified as an oncoprotein when expressed ectopically in NIH/3T3 fibroblasts. However, oncogenic activation of ECT2 resulted from N-terminal truncation, and such truncated ECT2 proteins have not been found in patients with cancer. In this study, we observed elevated expression of full-length ECT2 protein in preneoplastic colon adenomas, driven by increased ECT2 mRNA abundance and associated with APC tumor-suppressor loss. Elevated ECT2 levels were detected in the cytoplasm and nucleus of colorectal cancer tissue, suggesting cytoplasmic mislocalization as one mechanism of early oncogenic ECT2 activation. Importantly, elevated nuclear ECT2 correlated with poorly differentiated tumors, and a low cytoplasmic:nuclear ratio of ECT2 protein correlated with poor patient survival, suggesting that nuclear and cytoplasmic ECT2 play distinct roles in colorectal cancer. Depletion of ECT2 reduced anchorage-independent cancer cell growth and invasion independent of its function in cytokinesis, and loss of Ect2 extended survival in a Kras G12D Apc-null colon cancer mouse model. Expression of ECT2 variants with impaired nuclear localization or guanine nucleotide exchange catalytic activity failed to restore cancer cell growth or invasion, indicating that active, nuclear ECT2 is required to support tumor progression. Nuclear ECT2 promoted ribosomal DNA transcription and ribosome biogenesis in colorectal cancer. These results support a driver role for both cytoplasmic and nuclear ECT2 overexpression in colorectal cancer and emphasize the critical role of precise subcellular localization in dictating ECT2 function in neoplastic cells. SIGNIFICANCE: ECT2 overexpression and mislocalization support its role as a driver in colon cancer that is independent from its function in normal cell cytokinesis.
Collapse
Affiliation(s)
- Danielle R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Melissa Kang
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Timothy D Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joseph A Galanko
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gabriela H Loeza
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dimitri G Trembath
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | | | - David F Vincent
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Armin Jarosch
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Philipp Jurmeister
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Priya S Hibshman
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Catriona A Ford
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael S Lee
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Robert S Sandler
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, Berlin, Germany
| |
Collapse
|
28
|
Chen X, Gong R, Wang J, Ma B, Lei K, Ren H, Wang J, Zhao C, Wang L, Yu Q. Identification of HnRNP Family as Prognostic Biomarkers in Five Major Types of Gastrointestinal Cancer. Curr Gene Ther 2022; 22:449-461. [PMID: 35794744 PMCID: PMC9906633 DOI: 10.2174/1566523222666220613113647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoproteins (hnRNPs), a large family of RNAbinding proteins, have been implicated in tumor progression in multiple cancer types. However, the expression pattern and prognostic value of hnRNPs in five gastrointestinal (GI) cancers, including gastric, colorectal, esophageal, liver, and pancreatic cancer, remain to be investigated. OBJECTIVE The current research aimed to identify prognostic biomarkers of the hnRNP family in five major types of gastrointestinal cancer. METHODS Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), and Kaplan-Meier Plotter were used to explore the hnRNPs expression levels concerning clinicopathological parameters and prognostic values. The protein level of hnRNPU was validated by immunohistochemistry (IHC) in human tissue specimens. Genetic alterations of hnRNPs were analyzed using cBioportal, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to illustrate the biological functions of co-expressed genes of hnRNPs. RESULTS The vast majority of hnRNPs were highly expressed in five types of GI cancer tissues compared to their adjacent normal tissues, and mRNA levels of hnRNPA2B1, D, Q, R, and U were significantly different in various GI cancer types at different stages. In addition, Kaplan-Meier analysis revealed that the increased hnRNPs expression levels were correlated with better prognosis in gastric and rectal cancer patients (log-rank p < 0.05). In contrast, patients with high levels of hnRNPs exhibited a worse prognosis in esophageal and liver cancer (log-rank p < 0.05). Using immunohistochemistry, we further confirmed that hnRNPU was overexpressed in gastric, rectal, and liver cancers. In addition, hnRNPs genes were altered in patients with GI cancers, and RNA-related processing was correlated with hnRNPs alterations. CONCLUSION We identified differentially expressed genes of hnRNPs in tumor tissues versus adjacent normal tissues, which might contribute to predicting tumor types, early diagnosis, and targeted therapies in five major types of GI cancer.
Collapse
Affiliation(s)
- Xianghan Chen
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ruining Gong
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jia Wang
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Boyi Ma
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Ke Lei
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - He Ren
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jigang Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chenyang Zhao
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lili Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Qian Yu
- Center of Tumor Immunology and Cytotherapy, Medical Research Center of the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
29
|
Vu T, Datta A, Banister C, Jin L, Yuan G, Samuel T, Bae S, Eltoum IE, Manne U, Zhang B, Welner RS, Mitra K, Buckhaults P, Datta PK. Serine-threonine Kinase Receptor-Associated Protein is a Critical Mediator of APC Mutation-Induced Intestinal Tumorigenesis Through a Feed-Forward Mechanism. Gastroenterology 2022; 162:193-208. [PMID: 34520730 PMCID: PMC8678216 DOI: 10.1053/j.gastro.2021.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND & AIMS Inactivation of the Apc gene is a critical early event in the development of sporadic colorectal cancer (CRC). Expression of serine-threonine kinase receptor-associated protein (STRAP) is elevated in CRCs and is associated with poor outcomes. We investigated the role of STRAP in Apc mutation-induced intestinal tumor initiation and progression. METHODS We generated Strap intestinal epithelial knockout mice (StrapΔIEC) by crossing mice containing floxed alleles of Strap (Strapfl/fl) with Villin-Cre mice. Then we generated ApcMin/+;Strapfl/fl;Vill-Cre (ApcMin/+;StrapΔIEC) mice for RNA-sequencing analyses to determine the mechanism of function of STRAP. We used human colon cancer cell lines (DLD1, SW480, and HT29) and human and mouse colon tumor-derived organoids for STRAP knockdown and knockout and overexpression experiments. RESULTS Strap deficiency extended the average survival of ApcMin/+ mice by 80 days and decreased the formation of intestinal adenomas. Expression profiling revealed that the intestinal stem cell signature, the Wnt/β-catenin signaling, and the MEK/ERK pathway are down-regulated in Strap-deficient adenomas and intestinal organoids. Correlation studies suggest that these STRAP-associated oncogenic signatures are conserved across murine and human colon cancer. STRAP associates with MEK1/2, promotes binding between MEK1/2 and ERK1/2, and subsequently induces the phosphorylation of ERK1/2. STRAP activated Wnt/β-catenin signaling through MEK/ERK-induced phosphorylation of LRP6. STRAP was identified as a target of mutated Apc and Wnt/β-catenin signaling as chromatin immunoprecipitation and luciferase assays revealed putative binding sites of the β-catenin/TCF4 complex on the Strap promoter. CONCLUSIONS STRAP is a target of, and is required in, Apc mutation/deletion-induced intestinal tumorigenesis through a novel feed-forward STRAP/MEK-ERK/Wnt-β-catenin/STRAP regulatory axis.
Collapse
Affiliation(s)
- Trung Vu
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Arunima Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Carolyn Banister
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Lin Jin
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Temesgen Samuel
- Department of Pathobiology, Tuskegee University, Tuskegee, Alabama
| | - Sejong Bae
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Isam-Eldin Eltoum
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Upender Manne
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bixiang Zhang
- Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert S Welner
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kasturi Mitra
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Phillip Buckhaults
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina
| | - Pran K Datta
- Division of Hematology and Oncology, Department of Medicine, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama; Birmingham Veterans Affairs Medical Center, Birmingham, Alabama.
| |
Collapse
|
30
|
Dougherty U, Mustafi R, Zhu H, Zhu X, Deb D, Meredith SC, Ayaloglu-Butun F, Fletcher M, Sanchez A, Pekow J, Deng Z, Amini N, Konda VJ, Rao VL, Sakuraba A, Kwesi A, Kupfer SS, Fichera A, Joseph L, Hart J, He F, He TC, West-Szymanski D, Li YC, Bissonnette M. Upregulation of polycistronic microRNA-143 and microRNA-145 in colonocytes suppresses colitis and inflammation-associated colon cancer. Epigenetics 2021; 16:1317-1334. [PMID: 33356812 PMCID: PMC8813074 DOI: 10.1080/15592294.2020.1863117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/08/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022] Open
Abstract
Because ADAM17 promotes colonic tumorigenesis, we investigated potential miRNAs regulating ADAM17; and examined effects of diet and tumorigenesis on these miRNAs. We also examined pre-miRNA processing and tumour suppressor roles of several of these miRNAs in experimental colon cancer. Using TargetScan, miR-145, miR-148a, and miR-152 were predicted to regulate ADAM17. miR-143 was also investigated as miR-143 and miR-145 are co-transcribed and associated with decreased tumour growth. HCT116 colon cancer cells (CCC) were co-transfected with predicted ADAM17-regulating miRNAs and luciferase reporters controlled by ADAM17-3'UTR. Separately, pre-miR-143 processing by colonic cells was measured. miRNAs were quantified by RT-PCR. Tumours were induced with AOM/DSS in WT and transgenic mice (Tg) expressing pre-miR-143/miR-145 under villin promoter. HCT116 transfection with miR-145, -148a or -152, but not scrambled miRNA inhibited ADAM17 expression and luciferase activity. The latter was suppressed by mutations in ADAM17-3'UTR. Lysates from colonocytes, but not CCC, processed pre-miR-143 and mixing experiments suggested CCC lacked a competency factor. Colonic miR-143, miR-145, miR-148a, and miR-152 were downregulated in tumours and more moderately by feeding mice a Western diet. Tg mice were resistant to DSS colitis and had significantly lower cancer incidence and tumour multiplicity. Tg expression blocked up-regulation of putative targets of miR-143 and miR-145, including ADAM17, K-Ras, XPO5, and SET. miR-145, miR-148a, and miR-152 directly suppress colonocyte ADAM17 and are down-regulated in colon cancer. This is the first direct demonstration of tumour suppressor roles for miR-143 and miR-145 in an in vivo model of colonic tumorigenesis.
Collapse
Affiliation(s)
| | - Reba Mustafi
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Hongyan Zhu
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Dilip Deb
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | | | | | - Arantxa Sanchez
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Joel Pekow
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Zifeng Deng
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Nader Amini
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Vani J Konda
- Department of Medicine, Baylor University, Dallas, TX, USA
| | - Vijaya L. Rao
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | - Akushika Kwesi
- Department of Medicine, University of Chicago, Chicago IL, USA
| | - Sonia S Kupfer
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | | - Loren Joseph
- Departments of Pathology, Beth Israel, Harvard Medical School, Boston, MA, USA
| | - John Hart
- Departments of Pathology, University of Chicago, Chicago IL, USA
| | - Fang He
- Departments of Orthopedics, The University of Chicago, Chicago, IL, USA
| | - Tong-Chuan He
- Departments of Orthopedics, The University of Chicago, Chicago, IL, USA
| | | | - Yan Chun Li
- Department of Medicine, University of Chicago, Chicago IL, USA
| | | |
Collapse
|
31
|
Gao W, Huang Z, Duan J, Nice EC, Lin J, Huang C. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol Oncol 2021; 15:3527-3544. [PMID: 34390123 PMCID: PMC8637554 DOI: 10.1002/1878-0261.13079] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/10/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
Cancer cells reprogram their copper metabolism to adapt to adverse microenvironments, such as oxidative stress. The copper chelator elesclomol has been reported to have considerable anticancer efficacy, but the underlying mechanisms remain largely unknown. In this study, we found that elesclomol-mediated copper overload inhibits colorectal cancer (CRC) both in vitro and in vivo. Elesclomol alone promotes the degradation of the copper transporter copper-transporting ATPase 1 (ATP7A), which retards the proliferation of CRC cells. This property distinguishes it from several other copper chelators. Combinational treatment of elesclomol and copper leads to copper retention within mitochondria due to ATP7A loss, leading to reactive oxygen species accumulation, which in turn promotes the degradation of SLC7A11, thus further enhancing oxidative stress and consequent ferroptosis in CRC cells. This effect accounts for the robust antitumour activity of elesclomol against CRC, which can be reversed by the administration of antioxidants and ferroptosis inhibitors, as well as the overexpression of ATP7A. In summary, our findings indicate that elesclomol-induced copper chelation inhibits CRC by targeting ATP7A and regulating ferroptosis.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jie Lin
- Department of Medical OncologyThe Second Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China School of Basic Medical Sciences and Forensic MedicineSichuan UniversityCollaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
32
|
Mantilla Rojas C, McGill MP, Salvador AC, Bautz D, Threadgill DW. Epithelial-specific ERBB3 deletion results in a genetic background-dependent increase in intestinal and colon polyps that is mediated by EGFR. PLoS Genet 2021; 17:e1009931. [PMID: 34843459 PMCID: PMC8659709 DOI: 10.1371/journal.pgen.1009931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/09/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
ERBB3 has gained attention as a potential therapeutic target to treat colorectal and other types of cancers. To confirm a previous study showing intestinal polyps are dependent upon ERBB3, we generated an intestinal epithelia-specific ERBB3 deletion in C57BL/6-ApcMin/+ mice. Contrary to the previous report showing a significant reduction in intestinal polyps with ablation of ERBB3 on a B6;129 mixed genetic background, we observed a significant increase in polyp number with ablation of ERBB3 on C57BL/6J compared to control littermates. We confirmed the genetic background dependency of ERBB3 by also analyzing polyp development on B6129 hybrid and B6;129 advanced intercross mixed genetic backgrounds, which showed that ERBB3 deficiency only reduced polyp number on the mixed background as previously reported. Increased polyp number with ablation of ERBB3 was also observed in C57BL/6J mice treated with azoxymethane showing the effect is model independent. Polyps forming in absence of ERBB3 were generally smaller than those forming in control mice, albeit the effect was greatest in genetic backgrounds with reduced polyp numbers. The mechanism for differential polyp number in the absence of ERBB3 was through altered proliferation. Backgrounds with increased polyp number with loss of ERBB3 showed an increase in cell proliferation even in non-tumor epithelia, while backgrounds showing reduced polyp number with loss of ERBB3 showed reduced cellular proliferation. Increase polyp number caused by loss of ERBB3 was mediated by increased epidermal growth factor receptor (EGFR) expression, which was confirmed by deletion of Egfr. Taken together, this study raises substantial implications on the use of ERBB3 inhibitors against colorectal cancer. The prediction is that some patients may have increased progression with ERBB3 inhibitor therapy, which is consistent with observations reported for ERBB3 inhibitor clinical trials.
Collapse
Affiliation(s)
- Carolina Mantilla Rojas
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Michael P McGill
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Anna C Salvador
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| | - David Bautz
- Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - David W Threadgill
- Interdisciplinary Program in Genetics, Texas A&M University, College Station, Texas, United States of America.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, United States of America.,Department of Nutrition, Texas A&M University, College Station, Texas, United States of America.,Department of Biochemistry & Biophysics and Department of Nutrition, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
33
|
Liu XS, Liu JM, Chen YJ, Li FY, Wu RM, Tan F, Zeng DB, Li W, Zhou H, Gao Y, Pei ZJ. Comprehensive Analysis of Hexokinase 2 Immune Infiltrates and m6A Related Genes in Human Esophageal Carcinoma. Front Cell Dev Biol 2021; 9:715883. [PMID: 34708035 PMCID: PMC8544599 DOI: 10.3389/fcell.2021.715883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Hexokinase 2 not only plays a role in physiological function of human normal tissues and organs, but also plays a vital role in the process of glycolysis of tumor cells. However, there are few comprehensive studies on HK2 in esophageal carcinoma (ESCA) needs further study. Methods: Oncomine, Tumor Immune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were used to analyze the expression differences of HK2 in Pan-cancer and ESCA cohort, and to analyze the correlation between HK2 expression level and clinicopathological features of TCGA ESCA samples. GO/KEGG, GGI, and PPI analysis of HK2 was performed using R software, LinkedOmics, GeneMANIA and STRING online tools. The correlation between HK2 and ESCA immune infiltration was analyzed TIMER and TCGA ESCA cohort. The correlation between HK2 expression level and m6A modification of ESCA was analyzed by utilizing TCGA ESCA cohort. Results: HK2 is highly expressed in a variety of tumors, and its high expression level in ESCA is closely related to the weight, cancer stages, tumor histology and tumor grade of ESCA. The analysis results of GO/KEGG showed that HK2 was closely related to cell adhesion molecule binding, cell-cell junction, ameboidal-type cell migration, insulin signaling pathway, hif-1 signaling pathway, and insulin resistance. GGI showed that HK2 associated genes were mainly involved in the glycolytic pathway. PPI showed that HK2 was closely related to HK1, GPI, and HK3, all of which played an important role in tumor proliferation. The analysis results of TIMER and TCGA ESCA cohort indicated that the HK2 expression level was related to the infiltration of various immune cells. TCGA ESCA cohort analyze indicated that the HK2 expression level was correlated with m6A modification genes. Conclusion: HK2 is associated with tumor immune infiltration and m6A modification of ESCA, and can be used as a potential biological target for diagnosis and therapy of ESCA.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jia-Min Liu
- Shiyan Emergency Medical Center, Shiyan, China.,School of Public Health, Hubei University of Medicine, Shiyan, China
| | - Yi-Jia Chen
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fu-Yan Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Rui-Min Wu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fan Tan
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dao-Bing Zeng
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Wei Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hong Zhou
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
34
|
Ma Y, Wang S, Bao J, Wang C. Systematic study on expression and prognosis of E2Fs in human colorectal cancer. Int J Clin Oncol 2021; 27:362-372. [PMID: 34661779 DOI: 10.1007/s10147-021-02051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND E2Fs are important components of transcription factors and play key roles in occurrence or advancement of various cancers, but the expression and exact roles of each E2F in colorectal cancer (CRC) are rarely known. METHODS To address this issue, we investigated the roles and prognostic values of E2Fs expressions in CRC patients by searching ONCOMINE, cBioPortal, GEPIA, Matascape and UALCAN. RESULTS E2F1, 3-8 were upregulated at the mRNA level and E2F2 was less expressed in CRC tissues than in normal tissues. The eight E2Fs were correlated with tumor stages of CRC. Survival analysis using GEPIA revealed that high expressions of E2F3, 4 were related with short overall survival in all CRC patients. The mutation rate of E2Fs (60%) was high and genetic alteration in E2Fs was linked with longer overall survival in CRC patients. Functional analysis implied that E2Fs and their 50 nearby genes were concentrated in tumor-related pathways. CONCLUSIONS E2Fs may be candidate biomarkers for CRC diagnosis and E2F3, 4 are potential prognosis biomarkers of CRC. Nevertheless, our findings must be validated in the future to popularize the clinical application of E2Fs in CRC.
Collapse
Affiliation(s)
- Yating Ma
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China.,Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, 100853, China
| | - Shijian Wang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jinfeng Bao
- Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, 100853, China
| | - Chengbin Wang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, China. .,Department of Clinical Laboratory, The First Medical Centre, The PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
35
|
Peng KY, Jiang SS, Lee YW, Tsai FY, Chang CC, Chen LT, Yen BL. Stromal Galectin-1 Promotes Colorectal Cancer Cancer-Initiating Cell Features and Disease Dissemination Through SOX9 and β-Catenin: Development of Niche-Based Biomarkers. Front Oncol 2021; 11:716055. [PMID: 34568045 PMCID: PMC8462299 DOI: 10.3389/fonc.2021.716055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Over 90% of colorectal cancer (CRC) patients have mutations in the Wnt/β-catenin pathway, making the development of biomarkers difficult based on this critical oncogenic pathway. Recent studies demonstrate that CRC tumor niche-stromal cells can activate β-catenin in cancer-initiating cells (CICs), leading to disease progression. We therefore sought to elucidate the molecular interactions between stromal and CRC cells for the development of prognostically relevant biomarkers. Assessment of CIC induction and β-catenin activation in CRC cells with two human fibroblast cell-conditioned medium (CM) was performed with subsequent mass spectrometry (MS) analysis to identify the potential paracrine factors. In vitro assessment with the identified factor and in vivo validation using two mouse models of disease dissemination and metastasis was performed. Prediction of additional molecular players with Ingenuity pathway analysis was performed, with subsequent in vitro and translational validation using human CRC tissue microarray and multiple transcriptome databases for analysis. We found that fibroblast-CM significantly enhanced multiple CIC properties including sphere formation, β-catenin activation, and drug resistance in CRC cells. MS identified galectin-1 (Gal-1) to be the secreted factor and Gal-1 alone was sufficient to induce multiple CIC properties in vitro and disease progression in both mouse models. IPA predicted SOX9 to be involved in the Gal-1/β-catenin interactions, which was validated in vitro, with Gal-1 and/or SOX9—particularly Gal-1high/SOX9high samples—significantly correlating with multiple aspects of clinical disease progression. Stromal-secreted Gal-1 promotes CIC-features and disease dissemination in CRC through SOX9 and β-catenin, with Gal-1 and SOX9 having a strong clinical prognostic value.
Collapse
Affiliation(s)
- Kai-Yen Peng
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | | | - Yu-Wei Lee
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, NHRI, Zhunan, Taiwan
| | - Chia-Chi Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, NHRI, Zhunan, Taiwan.,Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Hematology/Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| |
Collapse
|
36
|
Liang YC, Su Q, Liu YJ, Xiao H, Yin HZ. Centromere Protein A (CENPA) Regulates Metabolic Reprogramming in the Colon Cancer Cells by Transcriptionally Activating Karyopherin Subunit Alpha 2 (KPNA2). THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2117-2132. [PMID: 34508688 DOI: 10.1016/j.ajpath.2021.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
The karyopherin α2 subunit gene (KPNA2) has been reported as an oncogene and is involved in metabolic reprogramming in cancer. This study aimed to explore the function of KPNα2 in the growth and glycolysis in colon cancer (CC) cells. Genes from the Oncomine database that were differentially expressed in multiple CC types were screened. Bioinformatics analysis suggested that KPNA2 was highly expressed in CC: High expression of KPNA2 was detected in the CC cell lines. Down-regulation of KPNA2 reduced viability and DNA-replication ability, and it increased apoptosis of HCT116 and LoVo cells. It also reduced glucose consumption, extracellular acidification rate, and the ATP production in cells. Centromere protein A (CENPA) was confirmed as an upstream transcription activator of KPNA2. There was significant H3K27ac modification in the promoter region of KPNA2. CENPA mainly recruited histone acetyltransferase general control of amino acid synthesis (GCN)-5 to the promoter region of KPNA2 to induce transcription activation. Overexpression of either CENPA or GCN-5 blocked the role of short hairpin KPNα2 and restored growth and glycolysis in CC cells. To conclude, the findings from this study suggest that CENPA recruits GCN-5 to the promoter region of KPNA2 to induce KPNα2 activation, which strengthens growth and glycolysis in, and augments the development of, CC.
Collapse
Affiliation(s)
- Yi-Chao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Su
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Jie Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Xiao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong-Zhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
37
|
Hu DG, Marri S, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. The Expression Profiles and Deregulation of UDP-Glycosyltransferase ( UGT) Genes in Human Cancers and Their Association with Clinical Outcomes. Cancers (Basel) 2021; 13:4491. [PMID: 34503303 PMCID: PMC8430925 DOI: 10.3390/cancers13174491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
The human UDP-glycosyltransferase (UGTs) superfamily has 22 functional enzymes that play a critical role in the metabolism of small lipophilic compounds, including carcinogens, drugs, steroids, lipids, fatty acids, and bile acids. The expression profiles of UGT genes in human cancers and their impact on cancer patient survival remains to be systematically investigated. In the present study, a comprehensive analysis of the RNAseq and clinical datasets of 9514 patients from 33 different TCGA (the Genome Cancer Atlas) cancers demonstrated cancer-specific UGT expression profiles with high interindividual variability among and within individual cancers. Notably, cancers derived from drug metabolizing tissues (liver, kidney, gut, pancreas) expressed the largest number of UGT genes (COAD, KIRC, KIRP, LIHC, PAAD); six UGT genes (1A6, 1A9, 1A10, 2A3, 2B7, UGT8) showed high expression in five or more different cancers. Kaplan-Meier plots and logrank tests revealed that six UGT genes were significantly associated with increased overall survival (OS) rates [UGT1A1 (LUSC), UGT1A6 (ACC), UGT1A7 (ACC), UGT2A3 (KIRC), UGT2B15 (BLCA, SKCM)] or decreased OS rates [UGT2B15 (LGG), UGT8 (UVM)] in specific cancers. Finally, differential expression analysis of 611 patients from 12 TCGA cancers identified 16 UGT genes (1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10, 2A1, 2A3, 2B4, 2B7, 2B11, 2B15, 3A1, 3A2, UGT8) that were up/downregulated in at least one cancer relative to normal tissues. In conclusion, our data show widespread expression of UGT genes in cancers, highlighting the capacity for intratumoural drug metabolism through the UGT conjugation pathway. The data also suggests the potentials for specific UGT genes to serve as prognostic biomarkers or therapeutic targets in cancers.
Collapse
Affiliation(s)
- Dong Gui Hu
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Shashikanth Marri
- Dicipline of Molecular Medicine and Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Peter I. Mackenzie
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Julie-Ann Hulin
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Ross A. McKinnon
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Robyn Meech
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| |
Collapse
|
38
|
Chen S, Gong Y, Shen Y, Liu Y, Fu Y, Dai Y, Rehman AU, Tang L, Liu H. INHBA is a novel mediator regulating cellular senescence and immune evasion in colorectal cancer. J Cancer 2021; 12:5938-5949. [PMID: 34476008 PMCID: PMC8408109 DOI: 10.7150/jca.61556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/28/2021] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most mortal cancers in the world. Multiple factors and bio-processes are associated with in tumorigenesis and metastasis of CRC, including cellular senescence and immune evasion. This study aims to identify prognostic and immune-meditating effects of INHBA in CRC. Microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database to screen the differentially expressed genes (DEGs) in senescent cells and CRC tissues from the Cancer Genome Atlas (TCGA). Key factor was settled from the alternative DEGs set. Enrichment analyses and functional networks prediction were determined from online databases. Correlation analyses were performed to reveal the association among key factor, immune infiltration, T cell biomarkers and immune checkpoints. Moreover, expressions of key factors and immune checkpoints of tissue and blood samples from CRC patients as well as human CRC cell lines were measured. Results showed that Inhibin beta A (INHBA) was sorted out as a senescence-related factor and a prognostic predictor in CRC. What's more, INHBA was found highly co-expressed with T-cell biomarkers and immune checkpoints. In conclusion, INHBA was considered as a senescence-related regulator and a prognostic predictor in CRC, which also mediating immune evasion.
Collapse
Affiliation(s)
- Shuai Chen
- Center of Gastrointestinal disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yu Gong
- Center of Gastrointestinal disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yu Shen
- Cell Biology, Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Yu Liu
- Institute of Radiology, Charité - Universitätsmedizin, D-13353 Berlin, Germany
| | - Yue Fu
- Center of Gastrointestinal disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yi Dai
- Center of Gastrointestinal disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Adeel Ur Rehman
- Center of Gastrointestinal disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Liming Tang
- Center of Gastrointestinal disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Hanyang Liu
- Center of Gastrointestinal disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China.,Department of Hepatology & Gastroenterology (CVK), Charité Universitätsmedizin Berlin, D-13353 Berlin, Germany
| |
Collapse
|
39
|
Wang S, Gu L, Huang L, Fang J, Liu Z, Xu Q. The upregulation of PYCR2 is associated with aggressive colon cancer progression and a poor prognosis. Biochem Biophys Res Commun 2021; 572:20-26. [PMID: 34332325 DOI: 10.1016/j.bbrc.2021.07.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/05/2023]
Abstract
PYCR2 has previously been shown to be related to a range of malignancies including hepatocellular carcinoma and melanoma, but its mechanistic functions and prognostic relevance in colon cancer patients remain to be defined. Herein, we used the Oncomine, Human Protein Atlas, The Cancer Genome Atlas (TCGA), and UALCAN databases to explore the expression of this gene in different human cancer, after which the relationship between PYCR2 expression and patient clinicopathologic characteristics was evaluated. We utilized an in vitro approach to evaluate the association between PYCR2 expression and colon cancer cell proliferation, migration, invasion, and tumor microsphere formation. The cell apoptosis was analyzed by flow cytometry. Gene set enrichment analysis (GSEA) approaches were additionally used to probe signaling pathways related to PYCR2. These analyses confirmed that PYCR2 was upregulated in several cancer types including colon cancer, with such upregulation correlating with a poor patient prognosis and with malignant clinicopathological characteristics. PYCR2 expression was identified as an independent predictor of colon cancer patients' survival, and in vitro analyses suggested that knocking down this gene was sufficient to disrupt the proliferative, migratory, invasive, and microsphere formation activities of colon cancer cells. Moreover, shPYCR2 transfection induced colon cancer cell apoptosis. GSEA suggested that high PYCR2 expression correlates with the differential enrichment of the Wnt β-catenin signaling, MYC targets, RNA polymerase, and Notch signaling pathways. Overall, these data indicate that PYCR2 is an important mediator of tumor progression and metastasis, and suggest that it may be a valuable prognostic indicator for colon cancer patient evaluation.
Collapse
Affiliation(s)
- Sitong Wang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Linaer Gu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Juemin Fang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Tongji University Cancer Center, Shanghai, China.
| |
Collapse
|
40
|
Wang H, Zhu Y, Chen H, Yang N, Wang X, Li B, Ying P, He H, Cai Y, Zhang M, Niu S, Li Y, Lu Z, Peng X, Zou D, Zhong R, Chang J, Dai M, Tian J, Miao X. Colorectal cancer risk variant rs7017386 modulates two oncogenic lncRNAs expression via ATF1-mediated long-range chromatin loop. Cancer Lett 2021; 518:140-151. [PMID: 34274452 DOI: 10.1016/j.canlet.2021.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
The activating transcription factor 1 (ATF1) has been identified as a vital pathogenic factor in the progression of colorectal cancer (CRC), whiles, the precise regulatory mechanisms remain elusive. Here, we comprehensively characterized the ATF1 cistrome by RNA-seq and ChIP-seq assays in CRC cell lines. As the results, we identified 358 genes differentially regulated and 15,029 ATF1 binding sites and demonstrated that ATF1 was widely involved in major signaling pathways in CRC, such as Wnt, TNF, Jak-STAT. Subsequently, by the expression quantitative trait loci (eQTL) analyses, we found that rs7017386 was associated with the expression of CCAT1 and PVT1 in the Wnt pathway. By a two-stage population study with 6,131 CRC cases and 10,022 healthy controls, we identified the variant was associated with CRC risk. Mechanistically, we found rs7017386 allele-specifically enhanced the binding affinity of ATF1 and promoted the expressions of PVT1 and CCAT1, via forming a long-range chromatin loop. Moreover, those two lncRNAs could synergistically facilitate c-Myc expression to activate the Wnt pathway in CRC progression. Our findings not only demonstrated the transcriptomic profiling of ATF1 in CRC, but also provided important clues for the etiology of CRC.
Collapse
Affiliation(s)
- Haoxue Wang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongda Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng He
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Dai
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
41
|
Huang C, Wang M, Wang J, Wu D, Gao Y, Huang K, Yao X. Suppression MGP inhibits tumor proliferation and reverses oxaliplatin resistance in colorectal cancer. Biochem Pharmacol 2021; 189:114390. [PMID: 33359068 DOI: 10.1016/j.bcp.2020.114390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
Matrix Gla protein (MGP), an extracellular matrix protein, has been widely reported to participate in the tumorigenic process and is abnormally expressed in several tumors. However, the role of MGP in colorectal cancer (CRC) remains unknown. Chemotherapy resistance represents a significant limitation in the treatment of CRC. Here, a comprehensive bioinformatics analysis revealed that MGP, which is overexpressed in CRC, might act as one of the critical genes conferring resistance to oxaliplatin (OXA). Furthermore, we found that MGP overexpression in tumor tissue might be correlated with cancer stage and patient prognosis, consistent with the bioinformatics analysis. The upregulation of MGP may act as an independent risk factor for CRC. The knockdown of MGP or inhibition of MGP expression significantly increased the sensitivity of the CRC cell lines to OXA. Suppression of MGP may reverse OXA resistance by upregulating copper transporter 1 (CTR1) and downregulating ATP7A and ATP7B. When used in combination with OXA, the inhibition of MGP reduced cancer cell proliferation, invasion, and migration and increased cell apoptosis in vitro. Suppression of MGP or OXA treatment alone significantly inhibited tumor growth in the CRC mouse model. Additionally, we found that OXA might promote the antitumor immune response in vivo. In summary, our study is the first to provide evidence that MGP expression confers OXA chemotherapy resistance in CRC and provides novel strategies to overcome chemotherapy resistance in CRC.
Collapse
Affiliation(s)
- Chengzhi Huang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Minjia Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China
| | - Junjiang Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Deqing Wu
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Yuan Gao
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China
| | - Kaihong Huang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Xueqing Yao
- Department of Gastrointestinal Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
42
|
Cai Z, Wei Y, Chen S, Gong Y, Fu Y, Dai X, Zhou Y, Yang H, Tang L, Liu H. Screening and identification of key biomarkers in alimentary tract cancers: A bioinformatic analysis. Cancer Biomark 2021; 29:221-233. [PMID: 32623389 DOI: 10.3233/cbm-201580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alimentary tract cancers (ATCs) are the most malignant cancers in the world. Numerous studies have revealed the tumorigenesis, diagnosis and treatment of ATCs, but many mechanisms remain to be explored. METHODS To identify the key genes of ATCs, microarray datasets of oesophageal cancer, gastric cancer and colorectal cancer were obtained from the Gene Expression Omnibus (GEO) database. In total, 207 differentially expressed genes (DEGs) were screened. KEGG and GO function enrichment analyses were conducted, and a protein-protein interaction (PPI) network was generated and gene modules analysis was performed using STRING and Cytoscape. RESULTS Five hub genes were screened, and the associated biological processes indicated that these genes were mainly enriched in cellular processes, protein binding and metabolic processes. Clinical survival analysis showed that COL10A1 and KIF14 may be significantly associated with the tumorigenesis or pathology grade of ATCs. In addition, relative human ATC cell lines along with blood samples and tumour tissues of ATC patients were obtained. The data proved that high expression of COL10A1 and KIF14 was associated with tumorigenesis and could be detected in blood. CONCLUSION In conclusion, the identification of hub genes in the present study helped us to elucidate the molecular mechanisms of tumorigenesis and identify potential diagnostic indicators and targeted treatment for ATCs.
Collapse
Affiliation(s)
- Zeling Cai
- Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yi Wei
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shuai Chen
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.,Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Gong
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yue Fu
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xianghua Dai
- Genter of General Surgery, The Affiliated Haimen People's Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yan Zhou
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Haojun Yang
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Liming Tang
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hanyang Liu
- Center of Gastrointestinal Disease, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
43
|
Zhuang Q, Shen A, Liu L, Wu M, Shen Z, Liu H, Cheng Y, Lin X, Wu X, Lin W, Li J, Han Y, Chen X, Chen Q, Peng J. Prognostic and immunological roles of Fc fragment of IgG binding protein in colorectal cancer. Oncol Lett 2021; 22:526. [PMID: 34055091 PMCID: PMC8138899 DOI: 10.3892/ol.2021.12787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Valuable diagnostic and prognostic biomarkers are urgently needed for colorectal cancer (CRC), which is one of the leading causes of mortality worldwide. Previous studies have reported altered expression of a mucin-like protein Fc fragment of IgG binding protein (FCGBP) in various types of cancer, but its potential diagnostic, prognostic and immunological roles in CRC remain to be determined. Therefore, the aim of current study was to investigate the potential roles of FCGBP in CRC. The present study investigated FCGBP mutations and changes in its expression levels using a combination of microarray and public dataset analyses, as well as immunohistochemistry. The results demonstrated a 10.5% mutation frequency in the FCGBP coding sequence in CRC tissues, and identified decreased FCGBP mRNA or protein expression levels in colorectal adenoma and CRC (compared with those in normal colorectal tissues from healthy control subjects), including pathologically advanced CRC (stage III+IV vs. I+II). Survival analysis using the GEPIA and Kaplan-Meier Plotter databases revealed that low FCGBP expression levels were associated with short overall, disease-free, relapse-free and event-free survival times in patients with CRC. Notably, analysis using the online Tumor IMmune Estimation Resource database revealed a positive correlation between FCGBP expression levels and the extent of infiltrating immune cells, such as B cells and dendritic cells. Consistently, the expression levels of most markers (51/57) for various types of immune cells were significantly correlated with FCGBP expression levels in CRC tissues. These findings suggested that FCGBP may serve as a diagnostic and prognostic biomarker, and that FCGBP may be associated with immune infiltration in CRC.
Collapse
Affiliation(s)
- Qunchuan Zhuang
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Huixin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoying Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jiapeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yuying Han
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaoping Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qi Chen
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China.,Fujian Key Laboratory of Innate Immune Biology, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
44
|
Wang J, Jiang YH, Yang PY, Liu F. Increased Collagen Type V α2 (COL5A2) in Colorectal Cancer is Associated with Poor Prognosis and Tumor Progression. Onco Targets Ther 2021; 14:2991-3002. [PMID: 33981148 PMCID: PMC8107053 DOI: 10.2147/ott.s288422] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Colorectal cancer (CRC) is the third most common cancer in males and the second in females worldwide with very poor prognosis. Extracellular matrix proteins like collagens play important roles in cancer progression. Collagen type V α2 (COL5A2) is increased in several cancers but its role in cancer remains unclear. Methods COL5A2 expression was evaluated by interrogation of public Oncomine gene microarray datasets and immunohistochemistry (IHC) analyses of two tissue microarrays containing 180 paired CRC cases. Survival analysis was performed using Kaplan–Meier survival curve and Cox proportional hazards regression methods. COL5A2 was ectopically expressed in CRC cells, and the cell proliferation was measured using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) method. Results COL5A2 gene was significantly upregulated in the most types of CRC comparing with the normal counterparts. The mRNA expression of COL5A2 was associated with cancer stages, gender, recurrence, microsatellite instability and KRAS status of CRC. COL5A2 protein increased in the cancer epithelial cells comparing with the normal counterpart and associated with age and T stage of CRC, whereas stromal expression of COL5A2 has no significant change between cancerous and normal tissues. COL5A2 gene and protein (epithelial expression) are independent risk factors and predict poor prognosis of CRC. Ectopic expression of COL5A2 drives colon cancer cell growth and upregulates WNT/β-catenin and PI3K/mTOR signaling via binding DDR1. Conclusion COL5A2 is a potential prognostic marker of CRC.
Collapse
Affiliation(s)
- Jie Wang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Medical Systems Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ying-Hua Jiang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Medical Systems Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Peng-Yuan Yang
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Medical Systems Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China
| | - Feng Liu
- Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Medical Systems Biology of School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Cao H, Quan S, Zhang L, Chen Y, Jiao G. BMPR2 expression level is correlated with low immune infiltration and predicts metastasis and poor survival in osteosarcoma. Oncol Lett 2021; 21:391. [PMID: 33777214 PMCID: PMC7988701 DOI: 10.3892/ol.2021.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in adolescents and young adults, and identifying biomarkers for prognosis and therapy is necessary. Bone morphogenetic protein receptor 2 (BMPR2) is involved in various cellular functions, including cell adhesion, proliferation and invasion, inflammation, apoptosis and metastatic spread. However, the correlation between BMPR2 expression levels and prognosis and tumor-infiltrating immune cells in osteosarcoma is not well understood. In the present study, the expression level of BMPR2 was investigated using the Oncomine and R2 databases. The association between the expression level of BMPR2 and the clinical prognosis of patients with cancer was analyzed using the R2 database. The relationship between the expression level of BMPR2 and immune cell infiltration in the stroma of osteosarcoma was assessed using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT. The correlations between BMPR2 expression level and infiltrated immune cell gene marker sets in osteosarcoma were validated in the TIMER and R2 databases. Analysis of a cohort of patients with osteosarcoma revealed that BMPR2 expression was significantly higher in osteosarcoma compared with in normal tissue and was correlated with poor prognosis. M0 macrophages, M2 macrophages, resting mast, γ δ T and CD8+ T cells were the top five immune cells with the highest degrees of infiltration in osteosarcoma. In addition, BMPR2 expression level showed a significant negative correlation with the gene markers of CD8+ T cells, monocytes and M2 macrophages. Low levels of infiltrating CD8+ T cells, monocytes or M2 macrophages in osteosarcoma was significantly associated with poor survival. These data suggested that CD8+ T cells, monocytes and M2 macrophages play significant roles in the establishment of the immune microenvironment of osteosarcoma. High BMPR2 expression was associated with poor prognosis and low infiltration of CD8+ T cells, monocytes and M2 macrophages in osteosarcoma. Hence, BMPR2 can be considered a biomarker of the immune infiltration, metastasis and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Hongxin Cao
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuang Quan
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
46
|
Jang JH, Kim DH, Surh YJ. Dynamic roles of inflammasomes in inflammatory tumor microenvironment. NPJ Precis Oncol 2021; 5:18. [PMID: 33686176 PMCID: PMC7940484 DOI: 10.1038/s41698-021-00154-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The inflammatory tumor microenvironment has been known to be closely connected to all stages of cancer development, including initiation, promotion, and progression. Systemic inflammation in the tumor microenvironment is increasingly being recognized as an important prognostic marker in cancer patients. Inflammasomes are master regulators in the first line of host defense for the initiation of innate immune responses. Inflammasomes sense pathogen-associated molecular patterns and damage-associated molecular patterns, following recruitment of immune cells into infection sites. Therefore, dysregulated expression/activation of inflammasomes is implicated in pathogenesis of diverse inflammatory disorders. Recent studies have demonstrated that inflammasomes play a vital role in regulating the development and progression of cancer. This review focuses on fate-determining roles of the inflammasomes and the principal downstream effector cytokine, IL-1β, in the tumor microenvironment.
Collapse
Affiliation(s)
- Jeong-Hoon Jang
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Do-Hee Kim
- grid.411203.50000 0001 0691 2332Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do South Korea
| | - Young-Joon Surh
- grid.31501.360000 0004 0470 5905Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea ,grid.31501.360000 0004 0470 5905Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
47
|
Jiang L, Zhang J, Xu Q, Wang B, Yao Y, Sun L, Wang X, Zhou D, Gao L, Song S, Zhu X. YAP promotes the proliferation and migration of colorectal cancer cells through the Glut3/AMPK signaling pathway. Oncol Lett 2021; 21:312. [PMID: 33692844 PMCID: PMC7933749 DOI: 10.3892/ol.2021.12573] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Yes-associated protein (YAP), as a major downstream effector in the Hippo signaling pathway, is considered as an oncogene in cancer. The present study aimed to investigate the potential role of YAP in the development and progression of colorectal cancer (CRC). The mRNA and protein expression levels of YAP in human CRC tissue samples and adjacent normal tissue were analyzed using public databases, as well as clinical samples. The potential roles of YAP and the underlying mechanism regulating the proliferation and migration of CRC cells were examined using genetic manipulation in vitro. The correlation between the expression of the YAP gene and epithelial-to-mesenchymal transition (EMT) markers was investigated in order to determine the mechanism underlying the observed effects of YAP. YAP mRNA expression levels were significantly upregulated in CRC tissue compared with in normal tissue, as determined using datasets obtained from Oncomine. Similarly, in clinical samples, the protein expression levels of YAP were significantly upregulated in CRC tissue samples compared with in normal tissue samples. YAP knockdown inhibited the proliferation and migration of CRC cells in vitro, whereas its overexpression resulted in the opposite effect. The expression levels of the YAP gene were positively correlated with those of EMT markers (such as vimentin and N-cadherin) and EMT-inducing transcription factors (such as Snail1, Slug and zinc finger E-box binding homeobox 1 and 2) in CRC samples from Gene Expression Profiling Interactive Analysis. Furthermore, YAP silencing increased the protein expression of E-cadherin and decreased that of vimentin in CRC cells. By contrast, the overexpression of YAP had the opposite effect. YAP promoted the glucose transporter 3 (Glut3)/AMP-activated protein kinase (AMPK) signaling pathway in CRC cells. In conclusion, YAP promoted the proliferation and migration of CRC cells, as well as the expression of EMT markers, possibly by regulating the Glut3/AMPK signaling pathway.
Collapse
Affiliation(s)
- Linhua Jiang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiawen Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qixuan Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Bin Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liang Sun
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xuchao Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Diyuan Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shiduo Song
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
48
|
Ji Z, Mi A, Li M, Li Q, Qin C. Aberrant KIF23 expression is associated with adverse clinical outcome and promotes cellular malignant behavior through the Wnt/β-catenin signaling pathway in Colorectal Cancer. J Cancer 2021; 12:2030-2040. [PMID: 33754001 PMCID: PMC7974518 DOI: 10.7150/jca.51565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose: The aim of the present study was to reveal the clinicopathological significance and prognostic role of kinesin family member 23 (KIF23) in colorectal cancer (CRC) and characterize its biological function and the underlying mechanisms. Methods: Bioinformatics analysis, immunohistochemistry, Western blot and qRT-PCR were utilized to investigate the expression of KIF23 in CRC tissues. The CCK-8 assay, wound healing assay and Matrigel assay were used to detect cell proliferation, migration and invasion in vitro. Western blot, immunofluorescence staining and cell function experiment were performed to explore the underlying mechanism. Results: The overexpression of KIF23 was associated with T stage, N stage, M stage and TNM stage, and CRC patients with high KIF23 expression had a worse prognosis. KIF23 knockdown inhibits CRC cells proliferation, migration and invasion in vitro. The mechanism study determined that KIF23 activates the Wnt/β-catenin signaling pathway by promoting the nuclear translocation of β-catenin to regulate the malignant behavior of CRC cells. Conclusion: These results suggest that KIF23 may act as a putative oncogene and a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Zhiyu Ji
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Aoning Mi
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Mengmeng Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Quanying Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
49
|
ARNT deficiency represses pyruvate dehydrogenase kinase 1 to trigger ROS production and melanoma metastasis. Oncogenesis 2021; 10:11. [PMID: 33446631 PMCID: PMC7809415 DOI: 10.1038/s41389-020-00299-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
The metabolic changes in melanoma cells that are required for tumor metastasis have not been fully elucidated. In this study, we show that the increase in glucose uptake and mitochondrial oxidative phosphorylation confers metastatic ability as a result of aryl hydrocarbon receptor nuclear translocator (ARNT) deficiency. In clinical tissue specimens, increased ARNT, pyruvate dehydrogenase kinase 1 (PDK1), and NAD(P)H quinine oxidoreductase-1 (NQO1) was observed in benign nevi, whereas lower expression was observed in melanoma. The depletion of ARNT dramatically repressed PDK1 and NQO1 expression, which resulted in an increase of ROS levels. The elimination of ROS using N-acetylcysteine (NAC) and inhibition of oxidative phosphorylation using carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and rotenone inhibited the ARNT and PDK1 deficiency-induced cell migration and invasion. In addition, ARNT deficiency in tumor cells manipulated the glycolytic pathway through enhancement of the glucose uptake rate, which reduced glucose dependence. Intriguingly, CCCP and NAC dramatically inhibited ARNT and PDK1 deficiency-induced tumor cell extravasation in mouse models. Our work demonstrates that downregulation of ARNT and PDK1 expression serves as a prognosticator, which confers metastatic potential as the metastasizing cells depend on metabolic changes.
Collapse
|
50
|
Stucky A, Gao L, Sun L, Li SC, Chen X, Park TH, Cai J, Kabeer MH, Zhang X, Sinha UK, Zhong JF. Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach. BLOOD AND GENOMICS 2021; 5:29-39. [PMID: 34368804 PMCID: PMC8346230 DOI: 10.46701/bg.2021012021106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing number of reports indicate that mesenchymal stem cells (MSCs) play an essential role in promoting tumorigenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms underlying this process remain unclear. Using the MSC model system, this study analyzes the molecular pathway by which differentiation resistant MSCs promote HNSCC. MSCs were cultured in osteogenic differentiation media and harvested on days 12 and 19. Cells were stained for cell differentiation analysis using Alizarin Red. The osteogenesis-resistant MSCs (OR-MSCs) and MSC-differentiation-derived osteoblasts (D-OSTBs) were identified and subjected to the single-cell transcriptome analysis. Gene-specific analyses of these two sub-populations were performed for the patterns of differential expression. A total of 1 780 differentially expressed genes were determined to distinguish OR-MSCs significantly from D-OSTB. Notably, AJUBA, β-catenin, and CDH4 expression levels were upregulated considerably within the OR-MSCs compared to D-OSTBs. To confirm their clinical relevance, a survey of a clinical cohort revealed a high correlation among the expression levels of AJUBA, β-catenin and CDH4. The results shed new light that OR-MSCs participate in the development of HNSCC via a pathway mediated by AJUBA, β-catenin, CDH4, and CTNNB1, thereby implying that MSC-based therapy is a promising therapeutic approach in the management of HNSCC.
Collapse
Affiliation(s)
- Andres Stucky
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li Gao
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lan Sun
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shengwen Calvin Li
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children's Research Institute, Children's Hospital of Orange County (CHOC), Orange, CA 92868, USA
- Department of Neurology, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xuelian Chen
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tiffany H. Park
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jin Cai
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Orange County, Orange, CA 92868, USA
- Department of Surgery, University of California - Irvine School of Medicine, Orange, CA 92868, USA
| | - Xi Zhang
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Uttam K. Sinha
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jiang F. Zhong
- Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|