1
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
2
|
Xiong H, Cao M, Yu Y, Duan X, Sun L, Tang L, Fan X. Study on the Effects of Low-Intensity Pulsed Ultrasound and Iron Ions for Proliferation and Differentiation of Osteoblasts. ULTRASOUND IN MEDICINE & BIOLOGY 2024:S0301-5629(24)00265-5. [PMID: 39209558 DOI: 10.1016/j.ultrasmedbio.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study involved the proliferation and differentiation of osteoblasts treated with low-intensity pulsed ultrasound (LIPUS) and iron (Fe3+) ions, respectively. The biological effects of LIPUS and Fe3+ ions on the proliferation and differentiation of osteoblasts were also evaluated. METHODS MC3T3-E1 cells were seeded in six-well plates with the medium, which contained different concentrations of Fe3+ (0, 100, 200, 300, 400, 500, 600 and 700 μg L-1, respectively). LIPUS treatment was directed at the bottom of the plate for 20 min at an intensity of 80 mW cm-2 every day. RESULTS Viability results showed that a dose of 400 μg L-1 Fe3+ ions had the best effect at promoting osteogenic proliferation in cell culture. The results of alkaline phosphatase staining and mineralization indicated that the differentiation of osteoblasts was promoted by LIPUS and Fe3+ ions. Fluorescence staining results showed that the number of cell nuclei in the LIPUS, Fe3+ and LIPUS-Fe groups increased by 37.20%, 55.81% and 89.76%, respectively. Migration data indicated that migration and proliferation rates were increased by LIPUS and Fe3+, and the results of protein expression indicated that LIPUS and Fe3+ may increase the expression of Wnt, β-catenin, and Runx2, hence promoting normal bone regeneration and development. CONCLUSION The combination of LIPUS (1.5 MHz, 80 mW cm-2) and Fe3+ accelerates the proliferation and differentiation of osteoblasts significantly compared with single-factor treatment (stimulated by LIPUS and Fe3+ ions, respectively). This study could establish a foundation for LIPUS-responsive biomaterials in the repair and regeneration of bone tissues.
Collapse
Affiliation(s)
- Huanbin Xiong
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Mengshu Cao
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Yanan Yu
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xueyou Duan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Lijun Sun
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Liang Tang
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China
| | - Xiushan Fan
- Institute of Sports Biology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
3
|
Zhang Q, Pan RL, Wang H, Wang JJ, Lu SH, Zhang M. Nanoporous Titanium Implant Surface Accelerates Osteogenesis via the Piezo1/Acetyl-CoA/β-Catenin Pathway. NANO LETTERS 2024; 24:8257-8267. [PMID: 38920296 PMCID: PMC11247543 DOI: 10.1021/acs.nanolett.4c01101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of β-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.
Collapse
Affiliation(s)
- Qian Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Run-Long Pan
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Hui Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Jun-Jun Wang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| | - Song-He Lu
- Scientific
Research Department, Air Force Medical University, Xi’an 710032, China
| | - Min Zhang
- State
Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration
& National Clinical Research Center for Oral Diseases & Shaanxi
International Joint Research Center for Oral Diseases, Department
of General Dentistry and Emergency, School of Stomatology, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
4
|
Ureiro-Cueto G, Rodil SE, Silva-Bermúdez P, Santana-Vázquez M, Hoz-Rodríguez L, Arzate H, Montoya-Ayala G. Amorphous titanium oxide (aTiO 2) thin films biofunctionalized with CAP-p15 induce mineralized-like differentiation of human oral mucosal stem cells (hOMSCs). Biomed Mater 2024; 19:055003. [PMID: 38917837 DOI: 10.1088/1748-605x/ad5bab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Insufficient osseointegration of titanium-based implants is a factor conditioning their long-term success. Therefore, different surface modifications, such as multifunctional oxide coatings, calcium phosphates, and the addition of molecules such as peptides, have been developed to improve the bioactivity of titanium-based biomaterials. In this work, we investigate the behavior of human oral mucosal stem cells (hOMSCs) cultured on amorphous titanium oxide (aTiO2), surfaces designed to simulate titanium (Ti) surfaces, biofunctionalized with a novel sequence derived from cementum attachment protein (CAP-p15), exploring its impact on guiding hOMSCs towards an osteogenic phenotype. We carried out cell attachment and viability assays. Next, hOMSCs differentiation was assessed by red alizarin stain, ALP activity, and western blot analysis by evaluating the expression of RUNX2, BSP, BMP2, and OCN at the protein level. Our results showed that functionalized surfaces with CAP-p15 (1 µg ml-1) displayed a synergistic effect increasing cell proliferation and cell attachment, ALP activity, and expression of osteogenic-related markers. These data demonstrate that CAP-p15 and its interaction with aTiO2surfaces promote osteoblastic differentiation and enhanced mineralization of hOMSCs when compared to pristine samples. Therefore, CAP-p15 shows the potential to be used as a therapeutical molecule capable of inducing mineralized tissue regeneration onto titanium-based implants.
Collapse
Affiliation(s)
- Guadalupe Ureiro-Cueto
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, UNAM, Mexico
| | - Phaedra Silva-Bermúdez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico
| | - Maricela Santana-Vázquez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Lia Hoz-Rodríguez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| | - Gonzalo Montoya-Ayala
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, Facultad de Odontología, UNAM, Mexico
| |
Collapse
|
5
|
Yun HM, Kim E, Kwon YJ, Park KR. Vanillin Promotes Osteoblast Differentiation, Mineral Apposition, and Antioxidant Effects in Pre-Osteoblasts. Pharmaceutics 2024; 16:485. [PMID: 38675146 PMCID: PMC11054936 DOI: 10.3390/pharmaceutics16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Antioxidant vanillin (4-hydroxy-3-methoxybenzaldehyde) is used as a flavoring in foods, beverages, and pharmaceuticals. Vanillin possesses various biological effects, such as antioxidant, anti-inflammatory, antibacterial, and anticancer properties. This study aimed to investigate the biological activities of vanillin purified from Adenophora triphylla var. japonica Hara on bone-forming processes. Vanillin treatment induced mineralization as a marker for mature osteoblasts, after stimulating alkaline phosphatase (ALP) staining and activity. The bone-forming processes of vanillin are mainly mediated by the upregulation of the bone morphogenetic protein 2 (BMP2), phospho-Smad1/5/8, and runt-related transcription factor 2 (RUNX2) pathway during the differentiation of osteogenic cells. Moreover, vanillin promoted osteoblast-mediated bone-forming phenotypes by inducing migration and F-actin polymerization. Furthermore, we validated that vanillin-mediated bone-forming processes were attenuated by noggin and DKK1. Finally, we demonstrated that vanillin-mediated antioxidant effects prevent the death of osteoblasts during bone-forming processes. Overall, vanillin has bone-forming properties through the BMP2-mediated biological mechanism, indicating it as a bone-protective compound for bone health and bone diseases such as periodontitis and osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eonmi Kim
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Yoon-Ju Kwon
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea; (E.K.); (Y.-J.K.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
6
|
Hu R, Cao Y, Wang Y, Zhao T, Yang K, Fan M, Guan M, Hou Y, Ying J, Ma X, Deng N, Sun X, Zhang Y, Zhang X. TMEM120B strengthens breast cancer cell stemness and accelerates chemotherapy resistance via β1-integrin/FAK-TAZ-mTOR signaling axis by binding to MYH9. Breast Cancer Res 2024; 26:48. [PMID: 38504374 PMCID: PMC10949598 DOI: 10.1186/s13058-024-01802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Breast cancer stem cell (CSC) expansion results in tumor progression and chemoresistance; however, the modulation of CSC pluripotency remains unexplored. Transmembrane protein 120B (TMEM120B) is a newly discovered protein expressed in human tissues, especially in malignant tissues; however, its role in CSC expansion has not been studied. This study aimed to determine the role of TMEM120B in transcriptional coactivator with PDZ-binding motif (TAZ)-mediated CSC expansion and chemotherapy resistance. METHODS Both bioinformatics analysis and immunohistochemistry assays were performed to examine expression patterns of TMEM120B in lung, breast, gastric, colon, and ovarian cancers. Clinicopathological factors and overall survival were also evaluated. Next, colony formation assay, MTT assay, EdU assay, transwell assay, wound healing assay, flow cytometric analysis, sphere formation assay, western blotting analysis, mouse xenograft model analysis, RNA-sequencing assay, immunofluorescence assay, and reverse transcriptase-polymerase chain reaction were performed to investigate the effect of TMEM120B interaction on proliferation, invasion, stemness, chemotherapy sensitivity, and integrin/FAK/TAZ/mTOR activation. Further, liquid chromatography-tandem mass spectrometry analysis, GST pull-down assay, and immunoprecipitation assays were performed to evaluate the interactions between TMEM120B, myosin heavy chain 9 (MYH9), and CUL9. RESULTS TMEM120B expression was elevated in lung, breast, gastric, colon, and ovarian cancers. TMEM120B expression positively correlated with advanced TNM stage, lymph node metastasis, and poor prognosis. Overexpression of TMEM120B promoted breast cancer cell proliferation, invasion, and stemness by activating TAZ-mTOR signaling. TMEM120B directly bound to the coil-coil domain of MYH9, which accelerated the assembly of focal adhesions (FAs) and facilitated the translocation of TAZ. Furthermore, TMEM120B stabilized MYH9 by preventing its degradation by CUL9 in a ubiquitin-dependent manner. Overexpression of TMEM120B enhanced resistance to docetaxel and doxorubicin. Conversely, overexpression of TMEM120B-∆CCD delayed the formation of FAs, suppressed TAZ-mTOR signaling, and abrogated chemotherapy resistance. TMEM120B expression was elevated in breast cancer patients with poor treatment outcomes (Miller/Payne grades 1-2) than in those with better outcomes (Miller/Payne grades 3-5). CONCLUSIONS Our study reveals that TMEM120B bound to and stabilized MYH9 by preventing its degradation. This interaction activated the β1-integrin/FAK-TAZ-mTOR signaling axis, maintaining stemness and accelerating chemotherapy resistance.
Collapse
Affiliation(s)
- Ran Hu
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Tingting Zhao
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kaibo Yang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Mingwei Fan
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Mengyao Guan
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Yuekang Hou
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Jiao Ying
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Xiaowen Ma
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Ning Deng
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China.
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
7
|
Chang Y, Kong K, Tong Z, Qiao H, Jin M, Wu X, Ouyang Z, Zhang J, Zhai Z, Li H. TiO2 nanotube topography enhances osteogenesis through filamentous actin and XB130-protein-mediated mechanotransduction. Acta Biomater 2024; 177:525-537. [PMID: 38360291 DOI: 10.1016/j.actbio.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
TiO2 nanotube topography, as nanomechanical stimulation, can significantly promote osteogenesis and improve the osteointegration on the interface of implants and bone tissue. However, the underlying mechanism has not been fully elucidated. XB130 is a member of the actin filament-associated protein family and is involved in the regulation of cytoskeleton and tyrosine kinase-mediated signalling as an adaptor protein. Whether XB130 is involved in TiO2 nanotubes-induced osteogenic differentiation and how it functions in mechano-biochemical signalling transduction remain to be elucidated. In this study, the role of XB130 on TiO2 nanotube-induced osteogenesis and mechanotransduction was systematically investigated. TiO2 nanotube topography was fabricated via anodic oxidation and characterized. The osteogenic effect was significantly accelerated by the TiO2 nanotube surface in vitro and vivo. XB130 was significantly upregulated during this process. Moreover, XB130 overexpression significantly promoted osteogenic differentiation, whereas its knockdown inhibited it. Filamentous actin depolymerization could change the expression and distribution of XB130, thus affecting osteogenic differentiation. Mechanistically, XB130 could interact with Src and result in the activation of the downstream PI3K/Akt/GSK-3β/β-catenin pathway, which accounts for the regulation of osteogenesis. This study for the first time showed that the enhanced osteogenic effect of TiO2 nanotubes could be partly due to the filamentous actin and XB130 mediated mechano-biochemical signalling transduction, which might provide a reference for guiding the design and modification of prostheses to promote bone regeneration and osseointegration. STATEMENT OF SIGNIFICANCE: TiO2 nanotubes topography can regulate cytoskeletal rearrangement and thus promote osteogenic differentiation of BMSCs. However, how filamentous actin converts mechanical stimulus into biochemical activity remains unclear. XB130 is a member of actin filament-associated protein family and involves in the regulation of tyrosine kinase-mediated signalling. Therefore, we hypothesised that XB130 might bridge the mechano-biochemical signalling transduction during TiO2 nanotubes-induced osteogenic differentiation. For the first time, this study shows that TiO2 nanotubes enhance osteogenesis through filamentous actin and XB130 mediated mechanotransduction, which provides new theoretical basis for guiding the design and modification of prostheses to promote bone regeneration and osseointegration.
Collapse
Affiliation(s)
- Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Keyu Kong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Zhicheng Tong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hua Qiao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Minghao Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Xinru Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Zhengxiao Ouyang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, 410011, Changsha, Hunan, China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Zanjing Zhai
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
| |
Collapse
|
8
|
Shirazi S, Huang CC, Kang M, Lu Y, Leung KS, Pitol-Palin L, Gomes-Ferreira PHS, Okamoto R, Ravindran S, Cooper LF. Evaluation of nanoscale versus hybrid micro/nano surface topographies for endosseous implants. Acta Biomater 2024; 173:199-216. [PMID: 37918471 DOI: 10.1016/j.actbio.2023.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
We examined the effect of a nanoscale titanium surface topography (D) versus two hybrid micro/nanoscale topographies (B and OS) on adherent mesenchymal stem cells (MSCs) and bone marrow derived macrophages (BMMs) function in cell culture and in vivo. In the in vitro study, compared to OS and B surfaces, D surface induced earlier and greater cell spreading, and earlier and profound mRNA expression of RUNX2, Osterix and BMP2 in MSCs. D surface induced earlier and higher expression of RUNX2 and BMP2 and lower expression of inflammatory genes in implant adherent cells in vivo. Measurement of osteogenesis at implant surfaces showed greater bone-to-implant contact at D versus OS surfaces after 21 days. We explored the cell population on the D and OS implant surfaces 24 h after placement using single-cell RNA sequencing and identified distinct cell clusters including macrophages, neutrophils and B cells. D surface induced lower expression and earlier reduction of inflammatory genes expression in BMMs in vitro. BMMs on D, B and OS surfaces demonstrated a marked increase of BMP2 expression after 1 and 3 days, and this increase was significantly higher on D surface at day 3. Our data implicates a dynamic process that may be influenced by nanotopography at multiple stages of osseointegration including initial immunomodulation, recruitment of MSCs and later osteoblastic differentiation leading to bone matrix production and mineralization. The results suggest that a nanoscale topography (D) favorably modulates adherent macrophage polarization toward anti-inflammatory and regenerative phenotypes and promotes the osteoinductive phenotype of adherent mesenchymal stem cells. STATEMENT OF SIGNIFICANCE: Our manuscript contains original data developed to define effects of a novel nanotopography on the process of osseointegration at the cell and tissue level. Few studies have compared the effects of a nanoscale surface versus the more typical hybrid micro/nano-scale surfaces used today. We have utilized single-cell RNA sequencing for the first time to identify earliest cell populations on implant surfaces in vivo. We provide data indicating that the nanoscale surface acts upon both osteoprogenitor and immune cell (macrophages) to alter the process of bone formation in a surface-specific manner. This work represents new observations regarding osseointegration and immunomodulation.
Collapse
Affiliation(s)
- Sajjad Shirazi
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA; Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Chun-Chieh Huang
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Miya Kang
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Yu Lu
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Kasey S Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Letícia Pitol-Palin
- Diagnosis and Surgery Department, São Paulo State University (UNESP), School of Dentistry, Araçatuba, 16018-805, Brazil
| | | | - Roberta Okamoto
- Basic Sciences Department, São Paulo State University (UNESP), School of Dentistry, Araçatuba, 16018-805, Brazil
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
9
|
Yun HM, Cho MH, Jeong H, Kim SH, Jeong YH, Park KR. Osteogenic Activities of Trifolirhizin as a Bioactive Compound for the Differentiation of Osteogenic Cells. Int J Mol Sci 2023; 24:17103. [PMID: 38069425 PMCID: PMC10706948 DOI: 10.3390/ijms242317103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plant extracts are widely used as traditional medicines. Sophora flavescens Aiton-derived natural compounds exert various beneficial effects, such as anti-inflammatory, anticancer, antioxidant, and antiregenerative activities, through their bioactive compounds, including flavonoids and alkaloids. In the present study, we investigated the biological effects of an S. flavescens-derived flavonoid, trifolirhizin (trifol), on the stimulation of osteogenic processes during osteoblast differentiation. Trifol (>98% purity) was successfully isolated from the root of S. flavescens and characterized. Trifol did not exhibit cellular toxicity in osteogenic cells, but promoted alkaline phosphatase (ALP) staining and activity, with enhanced expression of the osteoblast differentiation markers, including Alp, ColI, and Bsp. Trifol induced nuclear runt-related transcription factor 2 (RUNX2) expression during the differentiation of osteogenic cells, and concomitantly stimulated the major osteogenic signaling proteins, including GSK3β, β-catenin, and Smad1/5/8. Among the mitogen-activated protein kinases (MAPKs), Trifol activated JNK, but not ERK1/2 and p38. Trifol also increased the osteoblast-mediated bone-forming phenotypes, including transmigration, F-actin polymerization, and mineral apposition, during osteoblast differentiation. Overall, trifol exhibits bioactive activities related to osteogenic processes via differentiation, migration, and mineralization. Collectively, these results suggest that trifol may serve as an effective phytomedicine for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi Hyeon Cho
- Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea; (M.H.C.); (H.J.)
| | - Hoibin Jeong
- Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea; (M.H.C.); (H.J.)
| | - Soo Hyun Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.H.J.)
| | - Yun Hee Jeong
- National Development Institute for Korean Medicine, Gyeongsan 38540, Republic of Korea; (S.H.K.); (Y.H.J.)
| | - Kyung-Ran Park
- Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| |
Collapse
|
10
|
Duru İ, Büyük NI, Köse GT, Marques DW, Bruce KA, Martin JR, Ege D. Incorporating the Antioxidant Fullerenol into Calcium Phosphate Bone Cements Increases Cellular Osteogenesis without Compromising Physical Cement Characteristics. ADVANCED ENGINEERING MATERIALS 2023; 25:2300301. [PMID: 37982016 PMCID: PMC10656051 DOI: 10.1002/adem.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Indexed: 11/21/2023]
Abstract
Herein, fullerenol (Ful), a highly water-soluble derivative of C60 fullerene with demonstrated antioxidant activity, is incorporated into calcium phosphate cements (CPCs) to enhance their osteogenic ability. CPCs with added carboxymethyl cellulose/gelatin (CMC/Gel) are doped with biocompatible Ful particles at concentrations of 0.02, 0.04, and 0.1 wt v%-1 and evaluated for Ful-mediated mechanical performance, antioxidant activity, and in vitro cellular osteogenesis. CMC/gel cements with the highest Ful concentration decrease setting times due to increased hydrogen bonding from Ful's hydroxyl groups. In vitro studies of reactive oxygen species (ROS) scavenging with CMC/gel cements demonstrate potent antioxidant activity with Ful incorporation and cement scavenging capacity is highest for 0.02 and 0.04 wt v%-1 Ful. In vitro cytotoxicity studies reveal that 0.02 and 0.04 wt v%-1 Ful cements also protect cellular viability. Finally, increase of alkaline phosphatase (ALP) activity and expression of runt-related transcription factor 2 (Runx2) in MC3T3-E1 pre-osteoblast cells treated with low-dose Ful cements demonstrate Ful-mediated osteogenic differentiation. These results strongly indicate that the osteogenic abilities of Ful-loaded cements are correlated with their antioxidant activity levels. Overall, this study demonstrates exciting potential of Fullerenol as an antioxidant and proosteogenic additive for improving the performance of calcium phosphate cements in bone reconstruction procedures.
Collapse
Affiliation(s)
- İlayda Duru
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| | - Nisa Irem Büyük
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Gamze Torun Köse
- Department of Genetics and Bioengineering Faculty of Engineering Yeditepe University Ataşehir, İstanbul 34755, Turkey
| | - Dylan Widder Marques
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Karina Ann Bruce
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - John Robert Martin
- Department of Biomedical Engineering College of Engineering and Applied Science University of Cincinnati Cincinnati 45236, OH, USA
| | - Duygu Ege
- Institute of Biomedical Engineering Boğaziçi University Rasathane Street, Üsküdar, İstanbul 34684, Turkey
| |
Collapse
|
11
|
Titanium dioxide nanotubes increase purinergic receptor P2Y6 expression and activate its downstream PKCα-ERK1/2 pathway in bone marrow mesenchymal stem cells under osteogenic induction. Acta Biomater 2023; 157:670-682. [PMID: 36442823 DOI: 10.1016/j.actbio.2022.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. TiO2 nanotubes were prepared on the surface of titanium specimens using the anodizing method and characterized their features. Quantitative reverse transcriptase polymerase chain reaction and western blotting were used to detect the expression of P2Y6, markers of osteogenic differentiation, and PKCα-ERK1/2. A rat femoral defect model was established to evaluate the osseointegration effect of TiO2 nanotubes combined with P2Y6 agonists. The results showed that the average inner diameter of the TiO2 nanotubes increased with an increase in voltage (voltage range of 30-90V), and the expression of P2Y6 in BMSCs could be upregulated by TiO2 nanotubes in osteogenic culture. Inhibition of P2Y6 expression partially inhibited the osteogenic effect of TiO2 nanotubes and downregulated the activity of the PKCα-ERK1/2 pathway. When using in vitro and in vivo experiments, the osteogenic effect of TiO2 nanotubes when combined with P2Y6 agonists was more pronounced. TiO2 nanotubes promoted the P2Y6 expression of BMSCs during osteogenic differentiation and promoted osteogenesis by activating the PKCα-ERK1/2 pathway. The combined application of TiO2 nanotubes and P2Y6 agonists may be an effective new strategy to improve the osseointegration of titanium implants. STATEMENT OF SIGNIFICANCE: Titanium dioxide (TiO2) nanotubes can improve the osseointegration of pure titanium implants, but this exact mechanism has not been fully elucidated. The purinergic receptor P2Y6 is expressed in bone marrow mesenchymal stem cells (BMSCs) and participates in the regulation of bone metabolism. However, it is unclear as to whether P2Y6 is involved in the osteogenic differentiation of BMSCs induced by TiO2 nanotubes. For the first time, this study revealed the relationship between TiO2 nanotubes and purine receptor P2Y6, and further explored its mode of action, which may provide clues as to the regulatory role of TiO2 nanotubes on osteogenic differentiation of BMSCs. These findings will help to develop novel methods for guiding material design and biosafety evaluation of nano implants.
Collapse
|
12
|
EVL Promotes Osteo-/Odontogenic Differentiation of Dental Pulp Stem Cells via Activating JNK Signaling Pathway. Stem Cells Int 2023; 2023:7585111. [PMID: 36684389 PMCID: PMC9851786 DOI: 10.1155/2023/7585111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Human dental pulp stem cells (hDPSCs) were recognized as a suitable and promising source of stem cells in dental pulp regeneration. However, the mechanism by which hDPSCs differentiation into osteo-/odontogenic lineage remains unclear. Ena/VASP-like protein (EVL) has been found to be involved in diverse biological processes. In this study, we explored the role and underlying mechanism of EVL in osteo-/odontogenic differentiation of hDPSCs. Methods Expression of EVL was detected in hDPSCs by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot (WB) analyses during osteo-/odontogenic differentiation. The function of EVL in osteo-/odontogenic differentiation and involvement of MAPK signaling pathways were evaluated by alkaline phosphatase (ALP) staining and activity, alizarin red staining (ARS), and qRT-PCR and western blot analyses. Results The expression of EVL was upregulated during osteo-/odontogenic differentiation of hDPSCs. Overexpression of EVL significantly increased osteo-/odontogenic capacity of hDPSCs, which was reflected in increased alkaline phosphatase (ALP) staining, ALP activity, mineralized nodule formation, and the expressions of genes related to osteo-/odontogenic differentiation, while downregulation of EVL inhibited it. In addition, EVL activated the JNK pathway and phosphorylation of p38 MAPK during differentiation procedure of hDPSCs. The EVL-enhanced differentiation of DPSCs was suppressed by blocking the JNK pathway, rather than the p38 MAPK pathway. Conclusion EVL promotes the osteo-/odontogenic differentiation of hDPSCs by activating the JNK pathway, providing a future target for osteo-/odontogenic differentiation and dental pulp regeneration.
Collapse
|
13
|
Yun HM, Lee JY, Kim B, Park KR. Suffruticosol B Is an Osteogenic Inducer through Osteoblast Differentiation, Autophagy, Adhesion, and Migration. Int J Mol Sci 2022; 23:ijms232113559. [PMID: 36362346 PMCID: PMC9658763 DOI: 10.3390/ijms232113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Suffruticosol B (Suf-B) is a stilbene found in Paeonia suffruticosa ANDR., which has been traditionally used in medicine. Stilbenes and their derivatives possess various pharmacological effects, such as anticancer, anti-inflammatory, and anti-osteoporotic activities. This study aimed to explore the bone-forming activities and mechanisms of Suf-B in pre-osteoblasts. Herein, >99.9% pure Suf-B was isolated from P. suffruticosa methanolic extracts. High concentrations of Suf-B were cytotoxic, whereas low concentrations did not affect cytotoxicity in pre-osteoblasts. Under zero levels of cytotoxicity, Suf-B exhibited bone-forming abilities by enhancing alkaline phosphatase enzyme activities, bone matrix calcification, and expression levels with non-collagenous proteins. Suf-B induces intracellular signal transduction, leading to nuclear RUNX2 expression. Suf-B-stimulated differentiation showed increases in autophagy proteins and autophagosomes, as well as enhancement of osteoblast adhesion and transmigration on the ECM. These results indicate that Suf-B has osteogenic qualities related to differentiation, autophagy, adhesion, and migration. This also suggests that Suf-B could have a therapeutic effect as a phytomedicine in skeletal disorders.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Joon Yeop Lee
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Bomi Kim
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Korea
- Correspondence: ; Tel.: +82-62-712-4412; Fax: +82-62-372-4102
| |
Collapse
|
14
|
In Vitro and In Vivo Studies of Hydrogenated Titanium Dioxide Nanotubes with Superhydrophilic Surfaces during Early Osseointegration. Cells 2022; 11:cells11213417. [DOI: 10.3390/cells11213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titanium-based implants are often utilized in oral implantology and craniofacial reconstructions. However, the biological inertness of machined titanium commonly results in unsatisfactory osseointegration. To improve the osseointegration properties, we modified the titanium implants with nanotubular/superhydrophilic surfaces through anodic oxidation and thermal hydrogenation and evaluated the effects of the machined surfaces (M), nanotubular surfaces (Nano), and hydrogenated nanotubes (H-Nano) on osteogenesis and osseointegration in vitro and in vivo. After incubation of mouse bone marrow mesenchymal stem cells on the samples, we observed improved cell adhesion, alkaline phosphatase activity, osteogenesis-related gene expression, and extracellular matrix mineralization in the H-Nano group compared to the other groups. Subsequent in vivo studies indicated that H-Nano implants promoted rapid new bone regeneration and osseointegration at 4 weeks, which may be attributed to the active osteoblasts adhering to the nanotubular/superhydrophilic surfaces. Additionally, the Nano group displayed enhanced osteogenesis in vitro and in vivo at later stages, especially at 8 weeks. Therefore, we report that hydrogenated superhydrophilic nanotubes can significantly accelerate osteogenesis and osseointegration at an early stage, revealing the considerable potential of this implant modification for clinical applications.
Collapse
|
15
|
Zhang Y, Fan Z, Xing Y, Jia S, Mo Z, Gong H. Effect of microtopography on osseointegration of implantable biomaterials and its modification strategies. Front Bioeng Biotechnol 2022; 10:981062. [PMID: 36225600 PMCID: PMC9548570 DOI: 10.3389/fbioe.2022.981062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Orthopedic implants are widely used for the treatment of bone defects caused by injury, infection, tumor and congenital diseases. However, poor osseointegration and implant failures still occur frequently due to the lack of direct contact between the implant and the bone. In order to improve the biointegration of implants with the host bone, surface modification is of particular interest and requirement in the development of implant materials. Implant surfaces that mimic the inherent surface roughness and hydrophilicity of native bone have been shown to provide osteogenic cells with topographic cues to promote tissue regeneration and new bone formation. A growing number of studies have shown that cell attachment, proliferation and differentiation are sensitive to these implant surface microtopography. This review is to provide a summary of the latest science of surface modified bone implants, focusing on how surface microtopography modulates osteoblast differentiation in vitro and osseointegration in vivo, signaling pathways in the process and types of surface modifications. The aim is to systematically provide comprehensive reference information for better fabrication of orthopedic implants.
Collapse
Affiliation(s)
- Yingying Zhang
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
| | - Zhenmin Fan
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Yanghui Xing
- Department of Biomedical Engineering, Shantou University, Shantou, China
| | - Shaowei Jia
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhongjun Mo
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age Disability and Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| | - He Gong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Zhongjun Mo, ; He Gong,
| |
Collapse
|
16
|
Liu Z, Fu J, Yuan H, Ma B, Cao Z, Chen Y, Xing C, Niu X, Li N, Wang H, An H. Polyisocyanide hydrogels with tunable nonlinear elasticity mediate liver carcinoma cell functional response. Acta Biomater 2022; 148:152-162. [PMID: 35718101 DOI: 10.1016/j.actbio.2022.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Hepatocellular carcinoma development is closely related to the changes in tissue mechanics induced by excess collagen deposition and crosslinking, which leads to liver fibrosis and malignant progression. The role of matrix stiffness has been widely assessed using various linearly elastic materials. However, the liver, like many soft tissues, also exhibits nonlinear elasticity by strain-stiffening, allowing cells to mechanically interact with their micromilieus which has attracted much attention in cellular processes recently. Here, we use a biomimetic hydrogel grafting of GRGDS peptide with tunable nonlinear mechanical properties, polyisocyanides (PIC), to investigate the influence of strain-stiffening on HepG2 liver cancer cell behavior by tuning PIC polymer length. Compared to short PIC polymer with lower critical stress, PIC hydrogels composed of long polymer with higher critical stress promote the motility and invasiveness of HepG2 cells, and induce more actin stress fibers and higher expression level of mechanotransducer YAP and its nuclear translocation. Strikingly, the expression of calcium-activated potassium channel KCa3.1, an important biomarker in hepatocellular carcinoma, is also affected by the mechanical property of PIC hydrogels. It was also shown that downregulating the KCa3.1 channel can be achieved by inhibiting the formation of actin fibers. Our findings imply that the strain-stiffening property of PIC hydrogels affects the expression of KCa3.1 potassium channel via mediating cytoskeletal stress fiber formation, and ultimately influences the liver carcinoma cell functional response. STATEMENT OF SIGNIFICANCE: The effect of nonlinear elasticity by strain-stiffening, is assessed in HepG2 liver cancer cell behavior by using a biomimetic hydrogel with tunable mechanical properties, polyisocyanides (PIC). PIC gels with higher critical stress promote the motility and invasiveness of HepG2 cells and induce upregulated expression levels of KCa3.1 potassium channel and YAP, but which can be suppressed by inhibiting the formation of actin fibers. Our findings imply that the strain-stiffening property of PIC gels influences the expression of KCa3.1 potassium channel via mediating cytoskeletal stress fiber formation and, ultimately affects the liver carcinoma cell functional response.
Collapse
Affiliation(s)
- Zixin Liu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Jingxuan Fu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China; College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China; School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Hongbo Yuan
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China; Molecular Imaging and Photonics, Chemistry Department, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | - Biao Ma
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhanshuo Cao
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Yafei Chen
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Xuezhi Niu
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Ning Li
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China
| | - Hui Wang
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China; College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin 300071, PR China.
| | - Hailong An
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
17
|
Wu B, Tang Y, Wang K, Zhou X, Xiang L. Nanostructured Titanium Implant Surface Facilitating Osseointegration from Protein Adsorption to Osteogenesis: The Example of TiO 2 NTAs. Int J Nanomedicine 2022; 17:1865-1879. [PMID: 35518451 PMCID: PMC9064067 DOI: 10.2147/ijn.s362720] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Titanium implants have been widely applied in dentistry and orthopedics due to their biocompatibility and resistance to mechanical fatigue. TiO2 nanotube arrays (TiO2 NTAs) on titanium implant surfaces have exhibited excellent biocompatibility, bioactivity, and adjustability, which can significantly promote osseointegration and participate in its entire path. In this review, to give a comprehensive understanding of the osseointegration process, four stages have been divided according to pivotal biological processes, including protein adsorption, inflammatory cell adhesion/inflammatory response, additional relevant cell adhesion and angiogenesis/osteogenesis. The impact of TiO2 NTAs on osseointegration is clarified in detail from the four stages. The nanotubular layer can manipulate the quantity, the species and the conformation of adsorbed protein. For inflammatory cells adhesion and inflammatory response, TiO2 NTAs improve macrophage adhesion on the surface and induce M2-polarization. TiO2 NTAs also facilitate the repairment-related cells adhesion and filopodia formation for additional relevant cells adhesion. In the angiogenesis and osteogenesis stage, TiO2 NTAs show the ability to induce osteogenic differentiation and the potential for blood vessel formation. In the end, we propose the multi-dimensional regulation of TiO2 NTAs on titanium implants to achieve highly efficient manipulation of osseointegration, which may provide views on the rational design and development of titanium implants.
Collapse
Affiliation(s)
- Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
18
|
Kong K, Chang Y, Hu Y, Qiao H, Zhao C, Rong K, Zhang P, Zhang J, Zhai Z, Li H. TiO2 Nanotubes Promote Osteogenic Differentiation Through Regulation of Yap and Piezo1. Front Bioeng Biotechnol 2022; 10:872088. [PMID: 35464728 PMCID: PMC9023332 DOI: 10.3389/fbioe.2022.872088] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
Surface modification of titanium has been a hot topic to promote bone integration between implants and bone tissue. Titanium dioxide nanotubes fabricated on the surface of titanium by anodic oxidation have been a mature scheme that has shown to promote osteogenesis in vitro. However, mechanisms behind such a phenomenon remain elusive. In this study, we verified the enhanced osteogenesis of BMSCs on nanotopographic titanium in vitro and proved its effect in vivo by constructing a bone defect model in rats. In addition, the role of the mechanosensitive molecule Yap is studied in this research by the application of the Yap inhibitor verteporfin and knockdown/overexpression of Yap in MC3T3-E1 cells. Piezo1 is a mechanosensitive ion channel discovered in recent years and found to be elemental in bone metabolism. In our study, we preliminarily figured out the regulatory relationship between Yap and Piezo1 and proved Piezo1 as a downstream effector of Yap and nanotube-stimulated osteogenesis. In conclusion, this research proved that nanotopography promoted osteogenesis by increasing nuclear localization of Yap and activating the expression of Piezo1 downstream.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huiwu Li
- *Correspondence: Zanjing Zhai, ; Huiwu Li,
| |
Collapse
|
19
|
Cui T, Wu S, Wei Y, Qin H, Ren J, Qu X. A Topologically Engineered Gold Island for Programmed In Vivo Stem Cell Manipulation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tingting Cui
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Si Wu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yue Wei
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Hongshuang Qin
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun, Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
20
|
Barlian A, Vanya K. Nanotopography in directing osteogenic differentiation of mesenchymal stem cells: potency and future perspective. Future Sci OA 2022; 8:FSO765. [PMID: 34900339 PMCID: PMC8656311 DOI: 10.2144/fsoa-2021-0097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/11/2022] Open
Abstract
Severe bone injuries can result in disabilities and thus affect a person's quality of life. Mesenchymal stem cells (MSCs) can be an alternative for bone healing by growing them on nanopatterned substrates that provide mechanical signals for differentiation. This review aims to highlight the role of nanopatterns in directing or inducing MSC osteogenic differentiation, especially in bone tissue engineering. Nanopatterns can upregulate the expression of osteogenic markers, which indicates a faster differentiation process. Combined with growth factors, nanopatterns can further upregulate osteogenic markers, but with fewer growth factors needed, thereby reducing the risks and costs involved. Nanopatterns can be applied in scaffolds for tissue engineering for their lasting effects, even in vivo, thus having great potential for future bone treatment.
Collapse
Affiliation(s)
- Anggraini Barlian
- School of Life Science & Technology, Institute of Technology Bandung, Bandung, West Java, 40132, Indonesia
- Research Center for Nanosciences & Nanotechnology, Institute of Technology Bandung, Bandung, West Java, 40132, Indonesia
| | - Katherine Vanya
- School of Life Science & Technology, Institute of Technology Bandung, Bandung, West Java, 40132, Indonesia
| |
Collapse
|
21
|
Qu X, Cui T, Wu S, Wei Y, Qin H, Ren J. A Topologically Engineered Gold Island for Programmed In Vivo Stem Cell Manipulation. Angew Chem Int Ed Engl 2021; 61:e202113103. [PMID: 34939267 DOI: 10.1002/anie.202113103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/06/2022]
Abstract
E ven a well-designed system can only control stem cell adhesion, release, and differentiation, while other cell manipulations such as in situ labeling and retention in target tissues, are difficult to achieve in the same system. Herein, native ligand cluster-mimicking islands, composed of topologically engineered ligand, anchoring point AuNP, nuclease mimetics Ce IV complexes and magnetic core Fe 3 O 4 , are designed to facilitate comprehensive cell manipulations in a programmable manner. Three islands with different amounts of AuNPs are constructed, which means tunable interligand spacing within a cluster. These nanostructures are chemically coupled to a substrate using DNA tethers. Under tissue-penetrative magnetic field, this integrated system promotes stem cell adhesion, proliferation, mechanosensing, differentiation, detachment, in situ effective magnetic labeling and retention both in vitro and in vivo , offering fascinating opportunities for biomimetic matrix in regenerative medicine.
Collapse
Affiliation(s)
- Xiaogang Qu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Laboratory of Chemical Biology, Division of Biological Inorganic Chemistry, 5625 Renmin Street, 130022, Changchun, CHINA
| | - Tingting Cui
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Si Wu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Yue Wei
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Hongshuang Qin
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, CHINA
| | - Jinsong Ren
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Laboratory of Rare Earth Resource Utilization, Remnin Street #5625, 130022, Changchun, CHINA
| |
Collapse
|
22
|
Liu Y, Cheng W, Zhao Y, Gao L, Chang Y, Tong Z, Li H, Jing J. Cyclic Mechanical Strain Regulates Osteoblastic Differentiation of Mesenchymal Stem Cells on TiO 2 Nanotubes Through GCN5 and Wnt/β-Catenin. Front Bioeng Biotechnol 2021; 9:735949. [PMID: 34869255 PMCID: PMC8634263 DOI: 10.3389/fbioe.2021.735949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/30/2021] [Indexed: 02/03/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) play a critical role in bone formation and are extremely sensitive to external mechanical stimuli. Mechanical signals can regulate the biological behavior of cells on the surface of titanium-related prostheses and inducing osteogenic differentiation of BMSCs, which provides the integration of host bone and prosthesis benefits. But the mechanism is still unclear. In this study, BMSCs planted on the surface of TiO2 nanotubes were subjected to cyclic mechanical stress, and the related mechanisms were explored. The results of alkaline phosphatase staining, real-time PCR, and Western blot showed that cyclic mechanical stress can regulate the expression level of osteogenic differentiation markers in BMSCs on the surface of TiO2 nanotubes through Wnt/β-catenin. As an important member of the histone acetyltransferase family, GCN5 exerted regulatory effects on receiving mechanical signals. The results of the ChIP assay indicated that GCN5 could activate the Wnt promoter region. Hence, we concluded that the osteogenic differentiation ability of BMSCs on the surface of TiO2 nanotubes was enhanced under the stimulation of cyclic mechanical stress, and GCN5 mediated this process through Wnt/β-catenin.
Collapse
Affiliation(s)
- Yanchang Liu
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wendan Cheng
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yao Zhao
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| | - Liang Gao
- Sino Euro Orthopaedics Network, Berlin, Germany
| | - Yongyun Chang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhicheng Tong
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiwu Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112513. [PMID: 34857292 DOI: 10.1016/j.msec.2021.112513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022]
Abstract
Although titanium and its alloys are widely used in bone surgeries, the implantation failures caused by sterile inflammation still occur. The excessive reactive oxygen species (ROS) in the peri-implant region are considered to cause inflammation and impede the osseointegration of titanium implants. In this study, a coating of resveratrol-loaded titania nanotube (TNT-Res) for eliminating ROS was fabricated on titanium surface through electrochemical anodization and following surface adsorption of resveratrol. The resveratrol concentration of released from TNT-Res coating was controlled by modulating the loading amount. The ROS production in macrophage cell lineage RAW 264.7 and bone mesenchymal stem cells (BMSCs) were significantly decreased when cultured on TNT-Res coatings. The pro-inflammatory factors, including tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), and NO produced by RAW 264.7 cells were reduced when cells were cultured on TNT-Res coatings. These results proved that the TNT-Res coating can effectively eliminate ROS and inhibit inflammation. Moreover, the osteogenic indicators, including alkaline phosphatase (ALP) production, extracellular calcium deposition, and osteogenesis-related gene expression, including collagen І (Col-І), osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2), were significantly promoted for TNT-Res groups, which demonstrated that the TNT-Res coating can enhance the osteogenic differentiation of BMSCs. Additionally, the phosphorylation of nuclear factor κ-B (NF-κB) were down-regulated both in RAW 264.7 cells and BMSCs, which indicated that the TNT-Res coating could inhibit inflammation and promote osteogenesis by inhibiting the activation of NF-κB signaling pathway. The TNT-Res coating could be an effective implant surface for improving osseointegration ability of titanium implants.
Collapse
|
24
|
Lin W, Chen Z, Mo X, Zhao S, Wen Z, Cheung WH, Fu D, Chen B. Phactr1 negatively regulates bone mass by inhibiting osteogenesis and promoting adipogenesis of BMSCs via RhoA/ROCK2. J Mol Histol 2021; 53:119-131. [PMID: 34709489 DOI: 10.1007/s10735-021-10031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/13/2021] [Indexed: 12/01/2022]
Abstract
The imbalance between osteogenic and adipogenic differentiation of Bone marrow-derived mesenchymal stem cells (BMSCs) is involved in the occurrence and development of osteoporosis (OP). Previous studies have indicated the potential of phosphatase and actin regulator 1 (Phactr1) in regulating osteogenic and adipogenic differentiation of BMSCs. The present study aims to investigate the function and mechanism of Phactr1 in regulating osteogenic and adipogenic differentiation of BMSCs. Herein, the expression of Phactr1 in bone and adipose tissue of OP rats was determined by immunohistochemical. BMSCs were subjected to osteogenic and adipogenic differentiation, and transfected with Phactr1 overexpression lentivirus, small interference RNA (siRNA) and KD025 (selective ROCK2 inhibitor). The relationship between Phactr1 and ROCK2 was detected by Co-IP experiment. The expression of Phactr1, Runx2, C/EBPα, RhoA and ROCK2 was detected by Western blot. Calcium nodule and lipid droplets were determined by alizarin red and Oil red O staining. Interestingly, Phactr1 increased in both bone and adipose tissue of OP rats. During osteogenic differentiation, Phactr1 decreased and active RhoA, ROCK2 increased, while overexpression Phactr1 inhibits the increase of Runx2. Phactr1 increased and active RhoA decreased, ROCK2 did not changed during adipogenic differentiation. While, Knockdown Phactr1 inhibits the increase of C/EBPα. Phactr1 and ROCK2 were combined in osteogenic differentiation, but not in adipogenic differentiation. By using KD025, the decrease of Phactr1 and increase of Runx2 were inhibited respectively in osteogenic differentiation. Meanwhile, when ROCK2 was inhibited, Phactr1, C/EBPα were significantly increased in adipogenic differentiation. These findings indicated that Phactr1 negatively regulates bone mass by inhibiting osteogenesis and promoting adipogenesis of BMSCs by activating RhoA/ROCK2.
Collapse
Affiliation(s)
- Wei Lin
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zhipeng Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyi Mo
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Shengli Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Zhenxing Wen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Wing Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dan Fu
- Department of Orthopedic, Kiang Wu Hospital, Macau, 999078, China
| | - Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.
| |
Collapse
|
25
|
He F, Cao J, Qi J, Liu Z, Liu G, Deng W. Regulation of Stem Cell Differentiation by Inorganic Nanomaterials: Recent Advances in Regenerative Medicine. Front Bioeng Biotechnol 2021; 9:721581. [PMID: 34660552 PMCID: PMC8514676 DOI: 10.3389/fbioe.2021.721581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/15/2021] [Indexed: 02/04/2023] Open
Abstract
Transplanting stem cells with the abilities of self-renewal and differentiation is one of the most effective ways to treat many diseases. In order to optimize the therapeutic effect of stem cell transplantation, it is necessary to intervene in stem cell differentiation. Inorganic nanomaterials (NMs), due to their unique physical and chemical properties, can affect the adhesion, migration, proliferation and differentiation of stem cells. In addition, inorganic NMs have huge specific surface area and modifiability that can be used as vectors to transport plasmids, proteins or small molecules to further interfere with the fate of stem cells. In this mini review, we summarized the recent advances of common inorganic NMs in regulating stem cells differentiation, and the effects of the stiffness, size and shape of inorganic NMs on stem cell behavior were discussed. In addition, we further analyzed the existing obstacles and corresponding perspectives of the application of inorganic NMs in the field of stem cells.
Collapse
Affiliation(s)
- Fumei He
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jinxiu Cao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Junyang Qi
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Zeqi Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Gan Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
26
|
Anodic TiO 2 Nanotubes: Tailoring Osteoinduction via Drug Delivery. NANOMATERIALS 2021; 11:nano11092359. [PMID: 34578675 PMCID: PMC8466263 DOI: 10.3390/nano11092359] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
TiO2 nanostructures and more specifically nanotubes have gained significant attention in biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled by the morphological parameters (diameter and length), which provides better adsorption/linkage of bioactive molecules. We further discuss the key interactions with bone-related cells including osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for enhancing bone formation combining with the nanoscale environmental cues from nanotopography will be further discussed. The present review also overviews the current state of drug delivery applications using TiO2 nanotubes for increased osseointegration and discusses the advantages, drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.
Collapse
|
27
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
28
|
Huang X, Qu R, Peng Y, Yang Y, Fan T, Sun B, Khan AU, Wu S, Wei K, Xu C, Dai J, Ouyang J, Zhong S. Mechanical Sensing Element PDLIM5 Promotes Osteogenesis of Human Fibroblasts by Affecting the Activity of Microfilaments. Biomolecules 2021; 11:biom11050759. [PMID: 34069539 PMCID: PMC8161207 DOI: 10.3390/biom11050759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human skin fibroblasts (HSFs) approximate the multidirectional differentiation potential of mesenchymal stem cells, so they are often used in differentiation, cell cultures, and injury repair. They are an important seed source in the field of bone tissue engineering. However, there are a few studies describing the mechanism of osteogenic differentiation of HSFs. Here, osteogenic induction medium was used to induce fibroblasts to differentiate into osteoblasts, and the role of the mechanical sensitive element PDLIM5 in microfilament-mediated osteogenic differentiation of human fibroblasts was evaluated. The depolymerization of microfilaments inhibited the expression of osteogenesis-related proteins and alkaline phosphatase activity of HSFs, while the polymerization of microfilaments enhanced the osteogenic differentiation of HSFs. The evaluation of potential protein molecules affecting changes in microfilaments showed that during the osteogenic differentiation of HSFs, the expression of PDLIM5 increased with increasing induction time, and decreased under the state of microfilament depolymerization. Lentivirus-mediated PDLIM5 knockdown by shRNA weakened the osteogenic differentiation ability of HSFs and inhibited the expression and morphological changes of microfilament protein. The inhibitory effect of knocking down PDLIM5 on HSF osteogenic differentiation was reversed by a microfilament stabilizer. Taken together, these data suggest that PDLIM5 can mediate the osteogenic differentiation of fibroblasts by affecting the formation and polymerization of microfilaments.
Collapse
Affiliation(s)
- Xiaolan Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Yan Peng
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Tingyu Fan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Bing Sun
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Shutong Wu
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
| | - Kuanhai Wei
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Chujiang Xu
- Department of Orthopedics, TCM-Integrated Hospital, Southern Medical University, Guangzhou 510000, China;
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| | - Shizhen Zhong
- Guangdong Provincial Key Laboratory of Medical Biomechanics & Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; (X.H.); (R.Q.); (Y.P.); (Y.Y.); (T.F.); (B.S.); (A.U.K.); (S.W.)
- Correspondence: (J.D.); (J.O.); (S.Z.); Tel.: +86-(20)-6164-8842 (J.D.); +86-(20)-6164-8199 (J.O.); +86-(20)-6164-8200 (S.Z.)
| |
Collapse
|
29
|
Lu F, Zhu L, Jia X, Wang J, Mu P. Downregulated in renal carcinoma 1 (DRR1) mediates the differentiation of neural stem cells through transcriptional regulation. Neurosci Lett 2021; 756:135943. [PMID: 33965500 DOI: 10.1016/j.neulet.2021.135943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
Downregulated in renal carcinoma 1 (DRR1), also called family with sequence similarity 107, member A (FAM107A), is highly expressed in the nervous system. DRR1 has been found to be involved in neuronal survival, spine formation, and synaptic function. Recently, several studies have reported that DRR1 is expressed in neural stem cells (NSCs) and neural progenitor cells during the early stages of brain development. However, the mechanisms underlying the role and function of DRR1 in NSCs are poorly understood. To clarify the role of DRR1 in NSCs, we transfected DRR1 shRNA into primary NSCs and found that downregulation of DRR1 suppressed the differentiation of NSCs. To investigate the underlying mechanism in this case, chromatin immunoprecipitation sequencing (ChIP-seq) analysis was performed to identify the genes downstream of DRR1. Several genes, such as AHNAK, VAMP8, NOD1, and ACVR2B were identified to be downstream of DRR1 in NSCs.
Collapse
Affiliation(s)
- Fangjin Lu
- Department of Pharmacology, Shenyang Medical College, Shenyang, Liaoning, PR China
| | - Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, Liaoning, PR China
| | - Xiaoyu Jia
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, Liaoning, PR China
| | - Jiao Wang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, Liaoning, PR China
| | - Ping Mu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, Liaoning, PR China.
| |
Collapse
|
30
|
Kim YJ, Lee J, Im GB, Song J, Song J, Chung J, Yu T, Bhang SH. Dual Ion Releasing Nanoparticles for Modulating Osteogenic Cellular Microenvironment of Human Mesenchymal Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2021; 14:412. [PMID: 33467673 PMCID: PMC7830414 DOI: 10.3390/ma14020412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
In this study we developed a dual therapeutic metal ion-releasing nanoparticle for advanced osteogenic differentiation of stem cells. In order to enhance the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and induce angiogenesis, zinc (Zn) and iron (Fe) were synthesized together into a nanoparticle with a pH-sensitive degradation property. Zn and Fe were loaded within the nanoparticles to promote early osteogenic gene expression and to induce angiogenic paracrine factor secretion for hMSCs. In vitro studies revealed that treating an optimized concentration of our zinc-based iron oxide nanoparticles to hMSCs delivered Zn and Fe ion in a controlled release manner and supported osteogenic gene expression (RUNX2 and alkaline phosphatase) with improved vascular endothelial growth factor secretion. Simultaneous intracellular release of Zn and Fe ions through the endocytosis of the nanoparticles further modulated the mild reactive oxygen species generation level in hMSCs without cytotoxicity and thus improved the osteogenic capacity of the stem cells. Current results suggest that our dual ion releasing nanoparticles might provide a promising platform for future biomedical applications.
Collapse
Affiliation(s)
- Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (G.-B.I.); (J.S.)
| | - Jaeyoung Lee
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea; (J.L.); (J.S.)
| | - Gwang-Bum Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (G.-B.I.); (J.S.)
| | - Jihun Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (G.-B.I.); (J.S.)
| | - Jiwoo Song
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea; (J.L.); (J.S.)
- BK21 FOUR Integrated Engineering Program, Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea
| | - Jiyong Chung
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea; (J.L.); (J.S.)
- BK21 FOUR Integrated Engineering Program, Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea
| | - Taekyung Yu
- Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea; (J.L.); (J.S.)
- BK21 FOUR Integrated Engineering Program, Department of Chemical Engineering, Kyung Hee University, Youngin 17104, Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.-J.K.); (G.-B.I.); (J.S.)
| |
Collapse
|