1
|
Ramesh GV, Kaur J, Singla D, Chhuneja P, Saharan A, Gangwar OP, Bala R, Mir RR, Tak PS. Use of Field pathogenomics approach for Puccinia striiformis f. sp. tritici race identification and phylogenomic delineation in North India. World J Microbiol Biotechnol 2025; 41:166. [PMID: 40325275 DOI: 10.1007/s11274-025-04391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Stripe rust of wheat caused by Puccinia striiformis f. sp. tritici (Pst) is among the top 10 most important fungal phytopathogens in the world, threatening the global wheat production. Continuous pathogen evolution and air borne nature of the pathogen, increased the importance of pathogen population structure studies in case of wheat-Puccinia pathosystem. The current study aimed to characterize the Pst pathotype distribution in North India. A total of 61 stripe rust infected samples were collected from sub-mountainous areas of Punjab (50), Himachal Pradesh (HP) (8) and Jammu & Kashmir (J&K) (3) during 2021-24. Virulence profiling results of 58 samples using Indian stripe rust differentials revealed the prevalence of five pathotypes (238S119, 110S119, 46S119, 47S103 and 6S0) in North India. Among which 238S119 was the most predominant (51.72%) one followed by 110S119 (27.59%) and 46S119 (17.24%). No virulence was found against stripe rust resistant Yr5, Yr10, Yr15, Yr24 and YrSP genes indicating these genes are the most effective resistant genes in North India providing complete resistance till date. A total of 23 field infected samples were used for transcriptome analysis (RNA-seq) generating an average of 31.77 million raw reads. The clustered assembly generated mean assembly size of ∼ 45.10 Mb containing 7,587-2,49,571 contigs with 47.99% GC content, N50 value of 749.87 with 7.48-94.90% BUSCO score. Phylogenomic analysis of farmer's field samples revealed the existence of three different Pst lineages in North India i.e., Punjab lineage, Himachal lineage and Kashmir lineage, where Himachal lineage exhibited highest genetic diversity. A total of three (3) SSR and 14 KASP markers developed in previous studies were tested on farmer's field isolates for pathotype identification. Eight KASP markers showed reproducible polymorphism for pathotype specific detection. Correlating the KASP assay with results of virulence profiling revealed that these markers have the ability to detect the virulence change from five established pathotypes under field conditions. The findings of present study provided better understanding in Pst pathotype distribution in North India and pathotype detection using consistent polymorphic markers along with deciphering the behaviour of Pst under field conditions and deducing their evolutionary relationship in North India.
Collapse
Affiliation(s)
- Gutha Venkata Ramesh
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jaspal Kaur
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Anurag Saharan
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - O P Gangwar
- Regional Station, ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh, 171002, India
| | - Ritu Bala
- Department of Plant Breeding & Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Wadura, Jammu & Kashmir, 193201, India
| | - Parminder Singh Tak
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
2
|
Guzmán LF, Tirado B, Cruz-Cárdenas CI, Rojas-Anaya E, Aragón-Magadán MA. De Novo Transcriptome Assembly of Cedar ( Cedrela odorata L.) and Differential Gene Expression Involved in Herbivore Resistance. Curr Issues Mol Biol 2024; 46:8794-8806. [PMID: 39194737 DOI: 10.3390/cimb46080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes involved in herbivore resistance. The assembly and annotation of the transcriptome were obtained using RNAseq from healthy cedar plants and those infested with Chrysobothris yucatanensis. A total of 325.6 million reads were obtained, and 127,031 (97.47%) sequences were successfully assembled. A total of 220 herbivory-related genes were detected, of which 170 genes were annotated using GO terms, and 161 genes with 245 functions were identified-165, 75, and 5 were molecular functions, biological processes, and cellular components, respectively. To protect against herbivorous infestation, trees produce toxins and volatile compounds which are modulated by signaling pathways and gene expression related to molecular functions and biological processes. The limited number of genes identified as cellular components suggests that there are minimal alterations in cellular structure in response to borer attack. The chitin recognition protein, jasmonate ZIM-domain (JAZ) motifs, and response regulator receiver domain were found to be overexpressed, whereas the terpene synthase, cytochrome P450, and protein kinase domain gene families were underexpressed. This is the first report of a cedar transcriptome focusing on genes that are overexpressed in healthy plants and underexpressed in infested plants. This method may be a viable option for identifying genes associated with herbivore resistance.
Collapse
Affiliation(s)
- Luis Felipe Guzmán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Bibiana Tirado
- Centro Universitario de los Altos, University of Guadalajara, Tepatitlán 47600, Jalisco, Mexico
| | - Carlos Iván Cruz-Cárdenas
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Edith Rojas-Anaya
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Marco Aurelio Aragón-Magadán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| |
Collapse
|
3
|
Todd A, Bhide K, Hayford R, Ayyappan V, Subramani M, Chintapenta LK, Thimmapuram J, Ozbay G, Kalavacharla V(K. Development of a Reference Transcriptome and Identification of Differentially Expressed Genes Linked to Salt Stress in Salt Marsh Grass ( Sporobolus alterniflorus) along Delaware Coastal Regions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2008. [PMID: 39065534 PMCID: PMC11280579 DOI: 10.3390/plants13142008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Salt marsh grass (Sporobolus alterniflorus) plays a crucial role in Delaware coastal regions by serving as a physical barrier between land and water along the inland bays and beaches. This vegetation helps to stabilize the shoreline and prevent erosion, protecting the land from the powerful forces of the waves and tides. In addition to providing a physical barrier, salt marsh grass is responsible for filtering nutrients in the water, offering an environment for aquatic species and presenting a focal point of study for high salt tolerance in plants. As seawater concentrations vary along the Delaware coast from low to medium to high salinity, our study seeks to identify the impact of salt tolerance in marsh grass and to identify genes associated with salt tolerance levels. We developed more than 211,000 next-generation-sequencing (Illumina) transcriptomic reads to create a reference transcriptome from low-, medium-, and high-salinity marsh grass leaf samples collected from the Delaware coastline. Contiguous sequences were annotated based on a homology search using BLASTX against rice (Oryza sativa), foxtail millet (Setaria italica), and non-redundant species within the Viridiplantae database. Additionally, we identified differentially expressed genes related to salinity stress as candidates for salt stress qPCR analysis. The data generated from this study may help to elucidate the genetic signatures and physiological responses of plants to salinity stress, thereby offering valuable insight into the use of innovative approaches for gene expression studies in crops that are less salt tolerant.
Collapse
Affiliation(s)
- Antonette Todd
- College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA; (R.H.); (V.A.); (M.S.); (G.O.); (V.K.)
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN 47907, USA; (K.B.); (J.T.)
| | - Rita Hayford
- College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA; (R.H.); (V.A.); (M.S.); (G.O.); (V.K.)
| | - Vasudevan Ayyappan
- College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA; (R.H.); (V.A.); (M.S.); (G.O.); (V.K.)
| | - Mayavan Subramani
- College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA; (R.H.); (V.A.); (M.S.); (G.O.); (V.K.)
| | - Lathadevi Karuna Chintapenta
- Department of Biology, College of Arts and Sciences, University of Wisconsin River Falls, River Falls, WI 54022, USA;
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, IN 47907, USA; (K.B.); (J.T.)
| | - Gulnihal Ozbay
- College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA; (R.H.); (V.A.); (M.S.); (G.O.); (V.K.)
| | - Venu (Kal) Kalavacharla
- College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA; (R.H.); (V.A.); (M.S.); (G.O.); (V.K.)
| |
Collapse
|
4
|
Jackson DJ, Cerveau N, Posnien N. De novo assembly of transcriptomes and differential gene expression analysis using short-read data from emerging model organisms - a brief guide. Front Zool 2024; 21:17. [PMID: 38902827 PMCID: PMC11188175 DOI: 10.1186/s12983-024-00538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Many questions in biology benefit greatly from the use of a variety of model systems. High-throughput sequencing methods have been a triumph in the democratization of diverse model systems. They allow for the economical sequencing of an entire genome or transcriptome of interest, and with technical variations can even provide insight into genome organization and the expression and regulation of genes. The analysis and biological interpretation of such large datasets can present significant challenges that depend on the 'scientific status' of the model system. While high-quality genome and transcriptome references are readily available for well-established model systems, the establishment of such references for an emerging model system often requires extensive resources such as finances, expertise and computation capabilities. The de novo assembly of a transcriptome represents an excellent entry point for genetic and molecular studies in emerging model systems as it can efficiently assess gene content while also serving as a reference for differential gene expression studies. However, the process of de novo transcriptome assembly is non-trivial, and as a rule must be empirically optimized for every dataset. For the researcher working with an emerging model system, and with little to no experience with assembling and quantifying short-read data from the Illumina platform, these processes can be daunting. In this guide we outline the major challenges faced when establishing a reference transcriptome de novo and we provide advice on how to approach such an endeavor. We describe the major experimental and bioinformatic steps, provide some broad recommendations and cautions for the newcomer to de novo transcriptome assembly and differential gene expression analyses. Moreover, we provide an initial selection of tools that can assist in the journey from raw short-read data to assembled transcriptome and lists of differentially expressed genes.
Collapse
Affiliation(s)
- Daniel J Jackson
- University of Göttingen, Department of Geobiology, Goldschmidtstr.3, Göttingen, 37077, Germany.
| | - Nicolas Cerveau
- University of Göttingen, Department of Geobiology, Goldschmidtstr.3, Göttingen, 37077, Germany
| | - Nico Posnien
- University of Göttingen, Department of Developmental Biology, GZMB, Justus-Von-Liebig-Weg 11, Göttingen, 37077, Germany.
| |
Collapse
|
5
|
Tasoulis T, Wang CR, Sumner J, Dunstan N, Pukala TL, Isbister GK. The Eastern Bandy Bandy Vermicella annulata, expresses high abundance of SVMP, CRiSP and Kunitz protein families in its venom proteome. J Proteomics 2024; 295:105086. [PMID: 38266913 DOI: 10.1016/j.jprot.2024.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The Australian elapid snake radiation (Hydrophiinae) has evolved in the absence of competition from other advanced snakes. This has resulted in ecological specialisation in Australian elapids and the potential for venom proteomes divergent to other elapids. We characterised the venom of the Australian elapid Vermicella annulata (eastern bandy bandy). The venom was analysed using a two-dimensional fractionation process consisting of reverse-phase high-performance liquid chromatography then sodium dodecyl sulphate polyacrylamide gel electrophoresis, followed by bottom-up proteomics. Resulting peptides were matched to a species-specific transcriptome and 87% of the venom was characterised. We identified 11 toxins in the venom from six families: snake venom metalloproteinases (SVMP; 24.2%; two toxins) that are class P-III SVMPs containing a disintegrin-like domain, three-finger toxins (3FTx; 21.6%; five toxins), kunitz peptides (KUN; 19.5%; one toxin), cysteine-rich secretory proteins (CRiSP; 18%; one toxin), and phospholipase A2 (PLA2; 4%; two toxins). The venom had low toxin diversity with five protein families having one or two toxins, except for 3FTx with five different toxins. V. annulata expresses an unusual venom proteome, with high abundances of CRiSP, KUN and SVMP, which are not normally highly expressed in elapid venoms. This unusual venom composition could be an adaptation to its specialised diet. BIOLOGICAL SIGNIFICANCE: Although the Australian elapid radiation represents the most extensive speciation event of elapids on any continent, with 100 terrestrial species, the venom composition of these snakes has rarely been investigated, with only five species currently characterised. Here we provide the venom proteome of a sixth species, Vermicella annulata. The venom of this species could be particularly informative from an evolutionary perspective, as it is an extreme dietary specialist, only preying on blind snakes (Typhlopidae). We show that V. annulata expresses a highly unusual venom for an elapid, due to the high abundance of the protein families SVMP, CRiSP, and KUN, which together make up 61% of the venom. When averaged across all species, a typical elapid venom is 82% PLA2 and 3FTx. This is the second recorded instance of an Australian elapid having evolved highly divergent venom expression.
Collapse
Affiliation(s)
- Theo Tasoulis
- Clinical Toxicology Research Group, University of Newcastle N.S.W. 2308, Australia
| | - C Ruth Wang
- Department of Chemistry, University of Adelaide S.A., Australia
| | - Joanna Sumner
- Museums Victoria, Carlton Gardens, VIC 3053, Australia
| | | | - Tara L Pukala
- Department of Chemistry, University of Adelaide S.A., Australia
| | - Geoffrey K Isbister
- Clinical Toxicology Research Group, University of Newcastle N.S.W. 2308, Australia.
| |
Collapse
|
6
|
Aurelio AMM, Fabián CAF, Carlos Iván CC, Felipe GL. Optimized method for differential gene expression analysis in non-model species: Case of Cedrela odorata L. MethodsX 2023; 11:102449. [PMID: 37920871 PMCID: PMC10618499 DOI: 10.1016/j.mex.2023.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023] Open
Abstract
The following protocol introduces a targeted methodological approach of differential gene expression analysis, which is particularly beneficial in the context of non-model species. While we acknowledge that biological complexity often involves the interplay of multiple genes in any given biological response our method provides a strategy to streamline this complexity, enabling researchers to focus on a more manageable subset of genes of interest. In this context, red cedar transcriptome (Cedrela odorata L.) and known or hypothetical genes related to the response to herbivory were used as reference. The protocol key points are:•Implementation of a transcriptome thinning process to eliminate redundant and non-coding sequences, optimizing the analysis and reducing processing time.•Use of a custom gene database to identify and retain coding sequences with high precision.•Focus on specific genes of interest, allowing a more targeted analysis for specific experimental conditions. This approach holds particular value for pilot studies, research with limited resources, or when rapid identification and validation of candidate genes are needed in species without a reference genome.
Collapse
Affiliation(s)
- Aragón-Magadán Marco Aurelio
- Agricultural and Livestock Researches, National Genetic Resources Center, National Institute of Forestry, Jalisco, Mexico
| | | | - Cruz-Cárdenas Carlos Iván
- Agricultural and Livestock Researches, National Genetic Resources Center, National Institute of Forestry, Jalisco, Mexico
| | - Guzmán Luis Felipe
- Agricultural and Livestock Researches, National Genetic Resources Center, National Institute of Forestry, Jalisco, Mexico
| |
Collapse
|
7
|
Lin Z, Qin Y, Chen H, Shi D, Zhong M, An T, Chen L, Wang Y, Lin F, Li G, Ji ZL. TransIntegrator: capture nearly full protein-coding transcript variants via integrating Illumina and PacBio transcriptomes. Brief Bioinform 2023; 24:bbad334. [PMID: 37779246 DOI: 10.1093/bib/bbad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Genes have the ability to produce transcript variants that perform specific cellular functions. However, accurately detecting all transcript variants remains a long-standing challenge, especially when working with poorly annotated genomes or without a known genome. To address this issue, we have developed a new computational method, TransIntegrator, which enables transcriptome-wide detection of novel transcript variants. For this, we determined 10 Illumina sequencing transcriptomes and a PacBio full-length transcriptome for consecutive embryo development stages of amphioxus, a species of great evolutionary importance. Based on the transcriptomes, we employed TransIntegrator to create a comprehensive transcript variant library, namely iTranscriptome. The resulting iTrancriptome contained 91 915 distinct transcript variants, with an average of 2.4 variants per gene. This substantially improved current amphioxus genome annotation by expanding the number of genes from 21 954 to 38 777. Further analysis manifested that the gene expansion was largely ascribed to integration of multiple Illumina datasets instead of involving the PacBio data. Moreover, we demonstrated an example application of TransIntegrator, via generating iTrancriptome, in aiding accurate transcriptome assembly, which significantly outperformed other hybrid methods such as IDP-denovo and Trinity. For user convenience, we have deposited the source codes of TransIntegrator on GitHub as well as a conda package in Anaconda. In summary, this study proposes an affordable but efficient method for reliable transcriptomic research in most species.
Collapse
Affiliation(s)
- Zhe Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
| | - Yangmei Qin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hao Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Dan Shi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Mindong Zhong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Te An
- School of Informatics, Xiamen University, 361005, Xiamen, China
| | - Linshan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Yiquan Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Fan Lin
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
- School of Informatics, Xiamen University, 361005, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Zhi-Liang Ji
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, 361102, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, 361102, Xiamen, China
| |
Collapse
|
8
|
Ahmadi H, Sheikh-Assadi M, Fatahi R, Zamani Z, Shokrpour M. Optimizing an efficient ensemble approach for high-quality de novo transcriptome assembly of Thymus daenensis. Sci Rep 2023; 13:12415. [PMID: 37524806 PMCID: PMC10390528 DOI: 10.1038/s41598-023-39620-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023] Open
Abstract
Non-erroneous and well-optimized transcriptome assembly is a crucial prerequisite for authentic downstream analyses. Each de novo assembler has its own algorithm-dependent pros and cons to handle the assembly issues and should be specifically tested for each dataset. Here, we examined efficiency of seven state-of-art assemblers on ~ 30 Gb data obtained from mRNA-sequencing of Thymus daenensis. In an ensemble workflow, combining the outputs of different assemblers associated with an additional redundancy-reducing step could generate an optimized outcome in terms of completeness, annotatability, and ORF richness. Based on the normalized scores of 16 benchmarking metrics, EvidentialGene, BinPacker, Trinity, rnaSPAdes, CAP3, IDBA-trans, and Velvet-Oases performed better, respectively. EvidentialGene, as the best assembler, totally produced 316,786 transcripts, of which 235,730 (74%) were predicted to have a unique protein hit (on uniref100), and also half of its transcripts contained an ORF. The total number of unique BLAST hits for EvidentialGene was approximately three times greater than that of the worst assembler (Velvet-Oases). EvidentialGene could even capture 17% and 7% more average BLAST hits than BinPacker and Trinity. Although BinPacker and CAP3 produced longer transcripts, the EvidentialGene showed a higher collinearity between transcript size and ORF length. Compared with the other programs, EvidentialGene yielded a higher number of optimal transcript sets, further full-length transcripts, and lower possible misassemblies. Our finding corroborates that in non-model species, relying on a single assembler may not give an entirely satisfactory result. Therefore, this study proposes an ensemble approach of accompanying EvidentialGene pipelines to acquire a superior assembly for T. daenensis.
Collapse
Affiliation(s)
- Hosein Ahmadi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Morteza Sheikh-Assadi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Reza Fatahi
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran.
| | - Zabihollah Zamani
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| | - Majid Shokrpour
- Department of Horticulture Science, Faculty of Agriculture and Natural Sciences, University of Tehran, Karaj, Iran
| |
Collapse
|
9
|
Darnet E, Teixeira B, Schaller H, Rogez H, Darnet S. Elucidating the Mesocarp Drupe Transcriptome of Açai ( Euterpe oleracea Mart.): An Amazonian Tree Palm Producer of Bioactive Compounds. Int J Mol Sci 2023; 24:ijms24119315. [PMID: 37298279 DOI: 10.3390/ijms24119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Euterpe oleracea palm, endemic to the Amazon region, is well known for açai, a fruit violet beverage with nutritional and medicinal properties. During E. oleracea fruit ripening, anthocyanin accumulation is not related to sugar production, contrarily to grape and blueberry. Ripened fruits have a high content of anthocyanins, isoprenoids, fibers, and proteins, and are poor in sugars. E. oleracea is proposed as a new genetic model for metabolism partitioning in the fruit. Approximately 255 million single-end-oriented reads were generated on an Ion Proton NGS platform combining fruit cDNA libraries at four ripening stages. The de novo transcriptome assembly was tested using six assemblers and 46 different combinations of parameters, a pre-processing and a post-processing step. The multiple k-mer approach with TransABySS as an assembler and Evidential Gene as a post-processer have shown the best results, with an N50 of 959 bp, a read coverage mean of 70x, a BUSCO complete sequence recovery of 36% and an RBMT of 61%. The fruit transcriptome dataset included 22,486 transcripts representing 18 Mbp, of which a proportion of 87% had significant homology with other plant sequences. Approximately 904 new EST-SSRs were described, and were common and transferable to Phoenix dactylifera and Elaeis guineensis, two other palm trees. The global GO classification of transcripts showed similar categories to that in P. dactylifera and E. guineensis fruit transcriptomes. For an accurate annotation and functional description of metabolism genes, a bioinformatic pipeline was developed to precisely identify orthologs, such as one-to-one orthologs between species, and to infer multigenic family evolution. The phylogenetic inference confirmed an occurrence of duplication events in the Arecaceae lineage and the presence of orphan genes in E. oleracea. Anthocyanin and tocopherol pathways were annotated entirely. Interestingly, the anthocyanin pathway showed a high number of paralogs, similar to in grape, whereas the tocopherol pathway exhibited a low and conserved gene number and the prediction of several splicing forms. The release of this exhaustively annotated molecular dataset of E. oleracea constitutes a valuable tool for further studies in metabolism partitioning and opens new great perspectives to study fruit physiology with açai as a model.
Collapse
Affiliation(s)
- Elaine Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
| | - Bruno Teixeira
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Hubert Schaller
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
| | - Sylvain Darnet
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA) & Institute of Biological Sciences, Federal University of Pará (UFPA), Belém 66075-750, PA, Brazil
- International Associated Laboratory PALMHEAT, Frech Scientific Research National Center (CNRS)/UFPA, 75016 Paris, France
- Plant Isoprenoid Biology, Institute of Molecular Biology of Plants of the Scientific Research National Center, Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
10
|
Krinos AI, Cohen NR, Follows MJ, Alexander H. Reverse engineering environmental metatranscriptomes clarifies best practices for eukaryotic assembly. BMC Bioinformatics 2023; 24:74. [PMID: 36869298 PMCID: PMC9983209 DOI: 10.1186/s12859-022-05121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Diverse communities of microbial eukaryotes in the global ocean provide a variety of essential ecosystem services, from primary production and carbon flow through trophic transfer to cooperation via symbioses. Increasingly, these communities are being understood through the lens of omics tools, which enable high-throughput processing of diverse communities. Metatranscriptomics offers an understanding of near real-time gene expression in microbial eukaryotic communities, providing a window into community metabolic activity. RESULTS Here we present a workflow for eukaryotic metatranscriptome assembly, and validate the ability of the pipeline to recapitulate real and manufactured eukaryotic community-level expression data. We also include an open-source tool for simulating environmental metatranscriptomes for testing and validation purposes. We reanalyze previously published metatranscriptomic datasets using our metatranscriptome analysis approach. CONCLUSION We determined that a multi-assembler approach improves eukaryotic metatranscriptome assembly based on recapitulated taxonomic and functional annotations from an in-silico mock community. The systematic validation of metatranscriptome assembly and annotation methods provided here is a necessary step to assess the fidelity of our community composition measurements and functional content assignments from eukaryotic metatranscriptomes.
Collapse
Affiliation(s)
- Arianna I Krinos
- MIT-WHOI Joint Program in Oceanography and Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA.
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
11
|
Hansen CC, Sørensen M, Bellucci M, Brandt W, Olsen CE, Goodger JQD, Woodrow IE, Lindberg Møller B, Neilson EHJ. Recruitment of distinct UDP-glycosyltransferase families demonstrates dynamic evolution of chemical defense within Eucalyptus L'Hér. THE NEW PHYTOLOGIST 2023; 237:999-1013. [PMID: 36305250 PMCID: PMC10107851 DOI: 10.1111/nph.18581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The economic and ecologically important genus Eucalyptus is rich in structurally diverse specialized metabolites. While some specialized metabolite classes are highly prevalent across the genus, the cyanogenic glucoside prunasin is only produced by c. 3% of species. To investigate the evolutionary mechanisms behind prunasin biosynthesis in Eucalyptus, we compared de novo assembled transcriptomes, together with online resources between cyanogenic and acyanogenic species. Identified genes were characterized in vivo and in vitro. Pathway characterization of cyanogenic Eucalyptus camphora and Eucalyptus yarraensis showed for the first time that the final glucosylation step from mandelonitrile to prunasin is catalyzed by a novel UDP-glucosyltransferase UGT87. This step is typically catalyzed by a member of the UGT85 family, including in Eucalyptus cladocalyx. The upstream conversion of phenylalanine to mandelonitrile is catalyzed by three cytochrome P450 (CYP) enzymes from the CYP79, CYP706, and CYP71 families, as previously shown. Analysis of acyanogenic Eucalyptus species revealed the loss of different ortholog prunasin biosynthetic genes. The recruitment of UGTs from different families for prunasin biosynthesis in Eucalyptus demonstrates important pathway heterogeneities and unprecedented dynamic pathway evolution of chemical defense within a single genus. Overall, this study provides relevant insights into the tremendous adaptability of these long-lived trees.
Collapse
Affiliation(s)
- Cecilie Cetti Hansen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Mette Sørensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Matteo Bellucci
- Novo Nordisk Foundation Center for Protein Research, Protein Production and Characterization PlatformUniversity of Copenhagen2200CopenhagenDenmark
| | - Wolfgang Brandt
- Department of Bioorganic ChemistryLeibniz‐Institute of Plant BiochemistryHalle06120Germany
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | | | - Ian E. Woodrow
- School of Ecosystem and Forest SciencesThe University of MelbourneParkvilleVic.3052Australia
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| | - Elizabeth H. J. Neilson
- Plant Biochemistry Laboratory, Department of Plant and Environmental ScienceUniversity of Copenhagen1871Frederiksberg CDenmark
| |
Collapse
|
12
|
Comparative Transcriptome Analysis of Pueraria lobata Provides Candidate Genes Involved in Puerarin Biosynthesis and Its Regulation. Biomolecules 2023; 13:biom13010170. [PMID: 36671554 PMCID: PMC9855344 DOI: 10.3390/biom13010170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Pueraria lobata is a traditional Chinese herb in which an isoflavone C-glucoside, namely puerarin, has received the utmost interest due to its medicinal properties. To date, the biogenesis of puerarin, especially its C-glucosyl reaction in the pathway, remains poorly understood. Moreover, the transcription factors (TFs) that regulate puerarin biosynthesis in P. lobata have not been reported. Here, we performed phytochemical studies on the different developmental stages of the root, stem, and leaf tissues of two P. lobata cultivars, which suggested that both the roots and stems of P. lobata were the sites of puerarin biosynthesis. RNA-sequencing was conducted with the root and stem tissues of the two cultivars under different stages, and the clean reads were mapped to the recently published genome of P. lobata var. thomsonii, yielding the transcriptome dataset. A detailed analysis of the gene expression data, gene coexpression network, and phylogeny proposed several C-GTs that likely participate in puerarin biosynthesis. The first genome-wide analysis of the whole MYB superfamily in P. lobata presented here identified a total of 123 nonredundant PlMYB genes that were significantly expressed in the analyzed tissues. The phylogenetic analysis of PlMYBs with other plant MYB proteins revealed strong PlMYB candidates that may regulate the biosynthesis of isoflavones, such as puerarin.
Collapse
|
13
|
Alkaloid production and response to natural adverse conditions in Peganum harmala: in silico transcriptome analyses. BIOTECHNOLOGIA 2022; 103:355-384. [PMID: 36685700 PMCID: PMC9837557 DOI: 10.5114/bta.2022.120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 07/25/2022] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
Peganum harmala is a valuable wild plant that grows and survives under adverse conditions and produces pharmaceutical alkaloid metabolites. Using different assemblers to develop a transcriptome improves the quality of assembled transcriptome. In this study, a concrete and accurate method for detecting stress-responsive transcripts by comparing stress-related gene ontology (GO) terms and public domains was designed. An integrated transcriptome for P. harmala including 42 656 coding sequences was created by merging de novo assembled transcriptomes. Around 35 000 transcripts were annotated with more than 90% resemblance to three closely related species of Citrus, which confirmed the robustness of the assembled transcriptome; 4853 stress-responsive transcripts were identified. CYP82 involved in alkaloid biosynthesis showed a higher number of transcripts in P. harmala than in other plants, indicating its diverse alkaloid biosynthesis attributes. Transcription factors (TFs) and regulatory elements with 3887 transcripts comprised 9% of the transcriptome. Among the TFs of the integrated transcriptome, cystein2/histidine2 (C2H2) and WD40 repeat families were the most abundant. The Kyoto Encyclopedia of Genes and Genomes (KEGG) MAPK (mitogen-activated protein kinase) signaling map and the plant hormone signal transduction map showed the highest assigned genes to these pathways, suggesting their potential stress resistance. The P. harmala whole-transcriptome survey provides important resources and paves the way for functional and comparative genomic studies on this plant to discover stress-tolerance-related markers and response mechanisms in stress physiology, phytochemistry, ecology, biodiversity, and evolution. P. harmala can be a potential model for studying adverse environmental cues and metabolite biosynthesis and a major source for the production of various alkaloids.
Collapse
|
14
|
Paredes GF, Viehboeck T, Markert S, Mausz MA, Sato Y, Liebeke M, König L, Bulgheresi S. Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces. Sci Rep 2022; 12:9725. [PMID: 35697683 PMCID: PMC9192688 DOI: 10.1038/s41598-022-13235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored. One such animal is the marine nematode Laxus oneistus. It thrives, invariably coated by its sulfur-oxidizing symbiont Candidatus Thiosymbion oneisti, in anoxic sulfidic or hypoxic sand. Here, transcriptomics and proteomics showed that, whether in anoxia or not, L. oneistus mostly expressed genes involved in ubiquitination, energy generation, oxidative stress response, immune response, development, and translation. Importantly, ubiquitination genes were also highly expressed when the nematode was subjected to anoxic sulfidic conditions, together with genes involved in autophagy, detoxification and ribosome biogenesis. We hypothesize that these degradation pathways were induced to recycle damaged cellular components (mitochondria) and misfolded proteins into nutrients. Remarkably, when L. oneistus was subjected to anoxic sulfidic conditions, lectin and mucin genes were also upregulated, potentially to promote the attachment of its thiotrophic symbiont. Furthermore, the nematode appeared to survive oxygen deprivation by using an alternative electron carrier (rhodoquinone) and acceptor (fumarate), to rewire the electron transfer chain. On the other hand, under hypoxia, genes involved in costly processes (e.g., amino acid biosynthesis, development, feeding, mating) were upregulated, together with the worm's Toll-like innate immunity pathway and several immune effectors (e.g., bactericidal/permeability-increasing proteins, fungicides). In conclusion, we hypothesize that, in anoxic sulfidic sand, L. oneistus upregulates degradation processes, rewires the oxidative phosphorylation and reinforces its coat of bacterial sulfur-oxidizers. In upper sand layers, instead, it appears to produce broad-range antimicrobials and to exploit oxygen for biosynthesis and development.
Collapse
Affiliation(s)
- Gabriela F Paredes
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephanie Markert
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Yui Sato
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lena König
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
von Reumont BM, Anderluh G, Antunes A, Ayvazyan N, Beis D, Caliskan F, Crnković A, Damm M, Dutertre S, Ellgaard L, Gajski G, German H, Halassy B, Hempel BF, Hucho T, Igci N, Ikonomopoulou MP, Karbat I, Klapa MI, Koludarov I, Kool J, Lüddecke T, Ben Mansour R, Vittoria Modica M, Moran Y, Nalbantsoy A, Ibáñez MEP, Panagiotopoulos A, Reuveny E, Céspedes JS, Sombke A, Surm JM, Undheim EAB, Verdes A, Zancolli G. Modern venomics-Current insights, novel methods, and future perspectives in biological and applied animal venom research. Gigascience 2022; 11:giac048. [PMID: 35640874 PMCID: PMC9155608 DOI: 10.1093/gigascience/giac048] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.
Collapse
Affiliation(s)
- Bjoern M von Reumont
- Goethe University Frankfurt, Institute for Cell Biology and Neuroscience, Department for Applied Bioinformatics, 60438 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Orbeli ave. 22, 0028 Yerevan, Armenia
| | - Dimitris Beis
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Figen Caliskan
- Department of Biology, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Ana Crnković
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Maik Damm
- Technische Universität Berlin, Department of Chemistry, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, Ksaverska cesta 2, 10000 Zagreb, Croatia
| | - Hannah German
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Trg Republike Hrvatske 14, 10000 Zagreb, Croatia
| | - Benjamin-Florian Hempel
- BIH Center for Regenerative Therapies BCRT, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tim Hucho
- Translational Pain Research, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Nasit Igci
- Nevsehir Haci Bektas Veli University, Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, 50300 Nevsehir, Turkey
| | - Maria P Ikonomopoulou
- Madrid Institute for Advanced Studies in Food, Madrid,E28049, Spain
- The University of Queensland, St Lucia, QLD 4072, Australia
| | - Izhar Karbat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
| | - Ivan Koludarov
- Justus Liebig University Giessen, Institute for Insectbiotechnology, Heinrich Buff Ring 26-32, 35396 Giessen, Germany
| | - Jeroen Kool
- Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Frankfurt, Senckenberganlage 25, 60235 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, 35392 Gießen, Germany
| | - Riadh Ben Mansour
- Department of Life Sciences, Faculty of Sciences, Gafsa University, Campus Universitaire Siidi Ahmed Zarrouk, 2112 Gafsa, Tunisia
| | - Maria Vittoria Modica
- Dept. of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Via Po 25c, I-00198 Roma, Italy
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - María Eugenia Pachón Ibáñez
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexios Panagiotopoulos
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research & Technology Hellas (FORTH/ICE-HT), Patras GR-26504, Greece
- Animal Biology Division, Department of Biology, University of Patras, Patras, GR-26500, Greece
| | - Eitan Reuveny
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Javier Sánchez Céspedes
- Unit of Infectious Diseases, Microbiology, and Preventive Medicine, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, 41013 Sevilla, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Andy Sombke
- Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Eivind A B Undheim
- University of Oslo, Centre for Ecological and Evolutionary Synthesis, Postboks 1066 Blindern 0316 Oslo, Norway
| | - Aida Verdes
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Tasoulis T, Wang CR, Sumner J, Dunstan N, Pukala TL, Isbister GK. The Unusual Metalloprotease-Rich Venom Proteome of the Australian Elapid Snake Hoplocephalus stephensii. Toxins (Basel) 2022; 14:toxins14050314. [PMID: 35622563 PMCID: PMC9147224 DOI: 10.3390/toxins14050314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
The Australasian region is home to the most diverse elapid snake radiation on the planet (Hydrophiinae). Many of these snakes have evolved into unique ecomorphs compared to elapids on other continents; however, their venom compositions are poorly known. The Australian elapid Hoplocephalus stephensii (Stephen’s banded snake) is an arboreal snake with a unique morphology. Human envenoming results in venom-induced consumption coagulopathy, without neurotoxicity. Using transcriptomics and a multi-step fractionation method involving reverse-phase high-performance liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis and bottom-up proteomics, we characterized the venom proteome of H. stephensii. 92% of the total protein component of the venom by weight was characterized, and included all dominant protein families and 4 secondary protein families. Eighteen toxins made up 76% of the venom, four previously characterized and 14 new toxins. The four dominant protein families made up 77% of the venom, including snake venom metalloprotease (SVMP; 36.7%; three identified toxins), phospholipase A2 (PLA2; 24.0%; five identified toxins), three-finger toxin (3FTx; 10.2%; two toxins) and snake venom serine protease (SVSP; 5.9%; one toxin; Hopsarin). Secondary protein families included L-amino acid oxidase (LAAO; 10.8%; one toxin), natriuretic peptide (NP; 0.8%; two toxins), cysteine-rich secretory protein (CRiSP; 1.7%; two toxins), c-type lectin (CTL; 1.1%; one toxin), and one minor protein family, nerve growth factor (NGF; 0.8%; one toxin). The venom composition of H. stephensii differs to other elapids, with a large proportion of SVMP and LAAO, and a relatively small amount of 3FTx. H. stephensii venom appeared to have less toxin diversity than other elapids, with only 18 toxins making up three-quarters of the venom.
Collapse
Affiliation(s)
- Theo Tasoulis
- Clinical Toxicology Research Group Newcastle, University of Newcastle, Newcastle, NSW 2308, Australia;
- Correspondence:
| | - C. Ruth Wang
- Department of Chemistry, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (C.R.W.); (T.L.P.)
| | - Joanna Sumner
- Genetic Resources, Museums Victoria, Carlton Gardens, Melbourne, VIC 5053, Australia;
| | | | - Tara L. Pukala
- Department of Chemistry, Faculty of Sciences, University of Adelaide, Adelaide, SA 5005, Australia; (C.R.W.); (T.L.P.)
| | - Geoffrey K. Isbister
- Clinical Toxicology Research Group Newcastle, University of Newcastle, Newcastle, NSW 2308, Australia;
| |
Collapse
|
17
|
Hu RS, Zhang FK, Ma QN, Ehsan M, Zhao Q, Zhu XQ. Transcriptomic landscape of hepatic lymph nodes, peripheral blood lymphocytes and spleen of swamp buffaloes infected with the tropical liver fluke Fasciola gigantica. PLoS Negl Trop Dis 2022; 16:e0010286. [PMID: 35320269 PMCID: PMC8942208 DOI: 10.1371/journal.pntd.0010286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
The tropical liver fluke Fasciola gigantica is a parasitic helminth that has been frequently reported to infect mammals, typically involving water buffaloes. In this study, we characterized the tissue transcriptional landscape of buffaloes following infection by F. gigantica. RNAs were isolated from hepatic lymph nodes (hLNs), peripheral blood lymphocytes (pBLs), and spleen at 3-, 42- and 70-days post-infection (dpi), and all samples were subjected to RNA sequencing analyses. At 3 dpi, 2603, 460, and 162 differentially expressed transcripts (DETs) were detected in hLNs, pBLs, and spleen, respectively. At 42 dpi, 322, 937, and 196 DETs were detected in hLNs, pBLs, and spleen, respectively. At 70 dpi, 376, 334, and 165 DETs were detected in hLNs, pBLs, and spleen, respectively. Functional enrichment analysis identified upregulated immune-related pathways in the infected tissues involved in innate and adaptive immune responses, especially in hLNs at 42 and 70 dpi, and pBLs at 3 and 42 dpi. The upregulated transcripts in spleen were not enriched in any immune-related pathway. Co-expression network analysis further identified transcriptional changes associated with immune response to F. gigantica infection. Receiver operating characteristic (ROC) curve analysis showed that 107 genes in hLNs, 32 genes in pBLs, and 36 genes in spleen correlated with F. gigantica load. These findings provide new insight into molecular mechanisms and signaling pathways associated with F. gigantica infection in buffaloes. Fasciola gigantica is a socioeconomically important tropical liver fluke of mammals, causing fascioliasis–a neglected tropical disease. In the present study, RNA sequencing and bioinformatic approach were employed to explore the global transcriptional changes of hepatic lymph nodes (hLNs), peripheral blood lymphocytes (pBLs), and spleen of water buffaloes during F. gigantica infection at 3-, 42-, and 70-days post-infection (dpi). The results revealed significant transcriptional upregulation of genes associated with innate and adaptive immune responses in infected hLNs (42 and 70 dpi) and pBLs (3 and 42 dpi). However, downregulation of transcripts involved in immune response was detected in pBLs at 70 dpi. The downregulated transcripts were enriched in metabolic pathways, such as drug metabolism-cytochrome P450 in infected hLNs at 3 dpi. These findings provide new insight into the pathogenesis of F. gigantica in its natural mammalian host.
Collapse
Affiliation(s)
- Rui-Si Hu
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, People’s Republic of China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Qiao-Ni Ma
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
| | - Muhammad Ehsan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, People’s Republic of China
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab Province, Pakistan
| | - Quan Zhao
- College of Life Science, Changchun Sci-Tech University, Shuangyang, Jilin Province, People’s Republic of China
- * E-mail: (QZ); (X-QZ)
| | - Xing-Quan Zhu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province, People’s Republic of China
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan Province, People’s Republic of China
- * E-mail: (QZ); (X-QZ)
| |
Collapse
|
18
|
Shmakov NА. Improving the quality of barley transcriptome de novo assembling by using a hybrid approach for lines with varying spike and stem coloration. Vavilovskii Zhurnal Genet Selektsii 2021; 25:30-38. [PMID: 34901701 PMCID: PMC8627909 DOI: 10.18699/vj21.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
De novo transcriptome assembly is an important stage of RNA-seq data computational analysis. It allows the researchers to obtain the sequences of transcripts presented in the biological sample of interest. The availability of accurate and complete transcriptome sequence of the organism of interest is, in turn, an indispensable condition for further analysis of RNA-seq data. Through years of transcriptomic research, the bioinformatics community has developed a number of assembler programs for transcriptome reconstruction from short reads of RNA-seq libraries. Different assemblers makes it possible to conduct a de novo transcriptome reconstruction and a genome-guided reconstruction. The majority of the assemblers working with RNA-seq data are based on the De Bruijn graph method of sequence reconstruction. However, specif ics of their procedures can vary drastically, as do their results. A number of authors recommend a hybrid approach to transcriptome reconstruction based on combining the results of several assemblers in order to achieve a better transcriptome assembly. The advantage of this approach has been demonstrated in a number of studies, with RNA-seq experiments conducted on the Illumina platform. In this paper, we propose a hybrid approach for creating a transcriptome assembly of the barley Hordeum vulgare isogenic line Bowman and two nearly isogenic lines contrasting in spike pigmentation, based on the results of sequencing on the IonTorrent platform. This approach implements several de novo assemblers: Trinity, Trans-ABySS and rnaSPAdes. Several assembly metrics were examined: the percentage of reference transcripts observed in the assemblies, the percentage of RNA-seq reads involved, and BUSCO scores. It was shown that, based on the summation of these metrics, transcriptome meta-assembly surpasses individual transcriptome assemblies it consists of.
Collapse
Affiliation(s)
- N А Shmakov
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Kurchatov Genomics Center, Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
19
|
Voshall A, Behera S, Li X, Yu XH, Kapil K, Deogun JS, Shanklin J, Cahoon EB, Moriyama EN. A consensus-based ensemble approach to improve transcriptome assembly. BMC Bioinformatics 2021; 22:513. [PMID: 34674629 PMCID: PMC8532302 DOI: 10.1186/s12859-021-04434-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/10/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Systems-level analyses, such as differential gene expression analysis, co-expression analysis, and metabolic pathway reconstruction, depend on the accuracy of the transcriptome. Multiple tools exist to perform transcriptome assembly from RNAseq data. However, assembling high quality transcriptomes is still not a trivial problem. This is especially the case for non-model organisms where adequate reference genomes are often not available. Different methods produce different transcriptome models and there is no easy way to determine which are more accurate. Furthermore, having alternative-splicing events exacerbates such difficult assembly problems. While benchmarking transcriptome assemblies is critical, this is also not trivial due to the general lack of true reference transcriptomes. RESULTS In this study, we first provide a pipeline to generate a set of the simulated benchmark transcriptome and corresponding RNAseq data. Using the simulated benchmarking datasets, we compared the performance of various transcriptome assembly approaches including both de novo and genome-guided methods. The results showed that the assembly performance deteriorates significantly when alternative transcripts (isoforms) exist or for genome-guided methods when the reference is not available from the same genome. To improve the transcriptome assembly performance, leveraging the overlapping predictions between different assemblies, we present a new consensus-based ensemble transcriptome assembly approach, ConSemble. CONCLUSIONS Without using a reference genome, ConSemble using four de novo assemblers achieved an accuracy up to twice as high as any de novo assemblers we compared. When a reference genome is available, ConSemble using four genome-guided assemblies removed many incorrectly assembled contigs with minimal impact on correctly assembled contigs, achieving higher precision and accuracy than individual genome-guided methods. Furthermore, ConSemble using de novo assemblers matched or exceeded the best performing genome-guided assemblers even when the transcriptomes included isoforms. We thus demonstrated that the ConSemble consensus strategy both for de novo and genome-guided assemblers can improve transcriptome assembly. The RNAseq simulation pipeline, the benchmark transcriptome datasets, and the script to perform the ConSemble assembly are all freely available from: http://bioinfolab.unl.edu/emlab/consemble/ .
Collapse
Affiliation(s)
- Adam Voshall
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Pediatrics, Division of Genetics and Genomics, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Sairam Behera
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiangjun Li
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xiao-Hong Yu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kushagra Kapil
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jitender S Deogun
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Edgar B Cahoon
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Etsuko N Moriyama
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. .,Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
20
|
Prasad MP, Detchou DKE, Wang F, Ledwidge LL, Kingston SE, Wilson Horch H. Transcriptional expression changes during compensatory plasticity in the terminal ganglion of the adult cricket Gryllus bimaculatus. BMC Genomics 2021; 22:742. [PMID: 34649498 PMCID: PMC8518198 DOI: 10.1186/s12864-021-08018-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Damage to the adult central nervous system often leads to long-term disruptions in function due to the limited capacity for neurological recovery. The central nervous system of the Mediterranean field cricket, Gryllus bimaculatus, shows an unusual capacity for compensatory plasticity, most obviously in the auditory system and the cercal escape system. In both systems, unilateral sensory disruption leads the central circuitry to compensate by forming and/or strengthening connections with the contralateral sensory organ. While this compensatory plasticity in the auditory system relies on robust dendritic sprouting and novel synapse formation, the compensatory plasticity in the cercal escape circuitry shows little obvious dendritic sprouting and instead may rely on shifts in excitatory and inhibitory synaptic strength. RESULTS In order to better understand what types of molecular pathways might underlie this compensatory shift in the cercal system, we used a multiple k-mer approach to assemble a terminal ganglion transcriptome that included ganglia collected one, three, and 7 days after unilateral cercal ablation in adult, male animals. We performed differential expression analysis using EdgeR and DESeq2 and examined Gene Ontologies to identify candidates potentially involved in this plasticity. Enriched GO terms included those related to the ubiquitin-proteosome protein degradation system, chromatin-mediated transcriptional pathways, and the GTPase-related signaling system. CONCLUSION Further exploration of these GO terms will provide a clearer picture of the processes involved in compensatory recovery of the cercal escape system in the cricket and can be compared and contrasted with the distinct pathways that have been identified upon deafferentation of the auditory system in this same animal.
Collapse
Affiliation(s)
- Meera P Prasad
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Donald K E Detchou
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Felicia Wang
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Lisa L Ledwidge
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
| | - Sarah E Kingston
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA
- Present address: School of Marine Sciences and Darling Marine Center, University of Maine, 193 Clarks Cove Rd, Walpole, ME, 04573, USA
- University of California Santa Cruz, Ecology and Evolutionary Biology Department and UC Natural Reserves, 1156 High St, Santa Cruz, CA, 95064, USA
| | - Hadley Wilson Horch
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME, 04011, USA.
| |
Collapse
|
21
|
Comprehensive Characterization of Multitissue Expression Landscape, Co-Expression Networks and Positive Selection in Pikeperch. Cells 2021; 10:cells10092289. [PMID: 34571938 PMCID: PMC8471114 DOI: 10.3390/cells10092289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/19/2022] Open
Abstract
Promising efforts are ongoing to extend genomics resources for pikeperch (Sander lucioperca), a species of high interest for the sustainable European aquaculture sector. Although previous work, including reference genome assembly, transcriptome sequence, and single-nucleotide polymorphism genotyping, added a great wealth of genomic tools, a comprehensive characterization of gene expression across major tissues in pikeperch still remains an unmet research need. Here, we used deep RNA-Sequencing of ten vital tissues collected in eight animals to build a high-confident and annotated trancriptome atlas, to detect the tissue-specificity of gene expression and co-expression network modules, and to investigate genome-wide selective signatures in the Percidae fish family. Pathway enrichment and protein–protein interaction network analyses were performed to characterize the unique biological functions of tissue-specific genes and co-expression modules. We detected strong functional correlations and similarities of tissues with respect to their expression patterns—but also significant differences in the complexity and composition of their transcriptomes. Moreover, functional analyses revealed that tissue-specific genes essentially play key roles in the specific physiological functions of the respective tissues. Identified network modules were also functionally coherent with tissues’ main physiological functions. Although tissue specificity was not associated with positive selection, several genes under selection were found to be involved in hypoxia, immunity, and gene regulation processes, that are crucial for fish adaption and welfare. Overall, these new resources and insights will not only enhance the understanding of mechanisms of organ biology in pikeperch, but also complement the amount of genomic resources for this commercial species.
Collapse
|
22
|
Zhou Y, Underhill SJR. Differential transcription pathways associated with rootstock-induced dwarfing in breadfruit (Artocarpus altilis) scions. BMC PLANT BIOLOGY 2021; 21:261. [PMID: 34090350 PMCID: PMC8178858 DOI: 10.1186/s12870-021-03013-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/26/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Breadfruit (Artocarpus altilis) is a traditional staple tree crop throughout the tropics. Through interspecific grafting, a dwarf phenotype with over 50% reduction in plant height was identified when marang (Artocarpus odoratissimus) rootstocks were used. However, the molecular mechanism underlying the rootstock-induced breadfruit dwarfing is poorly understood. RESULTS An RNA-sequencing study of breadfruit scions at 22 months after grafting identified 5409 differentially expressed genes (DEGs) of which 2069 were upregulated and 3339 were downregulated in scion stems on marang rootstocks compared to those on self-graft. The DEGs were predominantly enriched for biological processes involved in carbon metabolism, cell wall organization, plant hormone signal transduction and redox homeostasis. The down-regulation of genes encoding vacuolar acid invertases and alkaline/neutral invertases, was consistent with the decreased activity of both enzymes, accompanying with a higher sucrose but lower glucose and fructose levels in the tissues. Key genes of biosynthetic pathways for amino acids, lipids and cell wall were down regulated, reflecting reduction of sucrose utilisation for stem growth on dwarfing rootstocks. Genes encoding sugar transporters, amino acid transporters, choline transporters, along with large number of potassium channels and aquaporin family members were down-regulated in scion stems on marang rootstocks. Lower activity of plasma membrane H+-ATPase, together with the predominance of genes encoding expansins, wall-associated receptor kinases and key enzymes for biosynthesis and re-modelling of cellulose, xyloglucans and pectins in down-regulated DGEs suggested impairment of cell expansion. Signalling pathways of auxin and gibberellin, along with strigolacton and brassinosteroid biosynthetic genes dominated the down-regulated DEGs. Phenylpropanoid pathway was enriched, with key lignin biosynthetic genes down-regulated, and flavonoid biosynthetic genes upregulated in scions on marang rootstocks. Signalling pathways of salicylic acid, jasmonic acid, ethylene and MAPK cascade were significantly enriched in the upregulated DEGs. CONCLUSIONS Rootstock-induced disruption in pathways regulating nutrient transport, sucrose utilisation, cell wall biosynthesis and networks of hormone transduction are proposed to impair cell expansion and stem elongation, leading to dwarf phenotype in breadfruit scions. The information provides opportunity to develop screening strategy for rootstock breeding and selection for breadfruit dwarfing.
Collapse
Affiliation(s)
- Yuchan Zhou
- Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Steven J R Underhill
- Australian Centre for Pacific Islands Research, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
23
|
Constructing a de novo transcriptome and a reference proteome for the bivalve Scrobicularia plana: Comparative analysis of different assembly strategies and proteomic analysis. Genomics 2021; 113:1543-1553. [PMID: 33774165 DOI: 10.1016/j.ygeno.2021.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/20/2022]
Abstract
Scrobicularia plana is a coastal and estuarine bivalve widely used in ecotoxicological studies. However, the underlying molecular mechanisms for S. plana pollutant responses are hardly known due to the lack of molecular databases. Thus, in this study we present a holistic approach to assess a robust reference transcriptome and proteome of this clam. A mixture of control and metal-exposed individuals was used for mRNA isolation. Four sets of high quality filtered preprocessed reads were generated (two quality scores and two sequenced lengths) and assembled with Mira, Ray and Trinity algorithms. The sixty-four generated assemblies were refined, filtered and evaluated for their proteomic quality. Eight assemblies presented top Detonate scores but one was selected due to its compactness and biological representation, which was generated: (i) from the highest quality dataset (Q20L100), (ii) using Trinity algorithm with all k-mers (AtKa), (iii) removing redundancy by CD-HIT (RR80), and (iv) filtering out poor contigs (F), that was subsequently named Q20L100AtKaRR80F. S. plana proteomic analysis revealed 10,017 peptide groups that corresponded to 2066 proteins with a wide coverage of molecular functions and biological processes, confirming the strength of the database generated.
Collapse
|
24
|
Mansouri M, Mohammadi F. Transcriptome analysis to identify key genes involved in terpenoid and rosmarinic acid biosynthesis in lemon balm (Melissa officinalis). Gene 2021; 773:145417. [PMID: 33444679 DOI: 10.1016/j.gene.2021.145417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Melissa officinalis (lemon balm) is a well-known pharmaceutical plant in traditional medicine around the world because of the high-value secondary metabolites. Nowadays, advances in computational biology and bioinformatics have opened new avenues to plant-based natural product drug discovery. Despite the pharmacological importance, there is low information about the genes encoding the important biosynthetic pathways related to the secondary metabolite in M. officinalis. In this study, the main genes related to the rosmarinic acid (RA) and terpenoid biosynthesis pathways were detected using transcriptome analysis. Furthermore, we isolated and characterized a novel M. officinalis Hydroxyphenylpyruvate reductase (HPPR) gene involved in RA biosynthesis pathway. An effective pipeline was used to generate 37,055 unigenes by evaluating 42,837,601 Illumina paired-end reads. Functional annotation of the unigenes revealed that 27,363 (73.84%) and 35,822 (96.67%) unigenes had significant similarity to identified proteins in the SwissProt and NR databases, respectively. Also, 10,062 (36.83%) out of 37,055 unigenes were assigned to 399 KEGG pathways. Since terpenes and RA are two prominent metabolites in this plant, the attention of this study has been on the pathways related to them. A total of 149 unigenes were found that are related to the terpenoids biosynthesis, including 75 unigenes involved in the methyl-erythritol phosphate and mevalonate pathway, terpenoid backbone biosynthesis genes, and 74 unigenes related to the terpene synthase. We also identified 144 and 30 unigenes that were associated with the biosynthesis of phenylpropanoid and the rosmarinic acid pathway. Consequently, this investigation can be a comprehensive and accurate transcriptome basis for further investigation in the metabolic engineering and detection of new genes and pathways in M. officinalis.
Collapse
Affiliation(s)
- Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fatemeh Mohammadi
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| |
Collapse
|
25
|
Behera S, Voshall A, Moriyama EN. Plant Transcriptome Assembly: Review and Benchmarking. Bioinformatics 2021. [DOI: 10.36255/exonpublications.bioinformatics.2021.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Quick and efficient approach to develop genomic resources in orphan species: Application in Lavandula angustifolia. PLoS One 2020; 15:e0243853. [PMID: 33306734 PMCID: PMC7732122 DOI: 10.1371/journal.pone.0243853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/27/2020] [Indexed: 12/24/2022] Open
Abstract
Next-Generation Sequencing (NGS) technologies, by reducing the cost and increasing the throughput of sequencing, have opened doors to generate genomic data in a range of previously poorly studied species. In this study, we propose a method for the rapid development of a large-scale molecular resources for orphan species. We studied as an example the true lavender (Lavandula angustifolia Mill.), a perennial sub-shrub plant native from the Mediterranean region and whose essential oil have numerous applications in cosmetics, pharmaceuticals, and alternative medicines. The heterozygous clone “Maillette” was used as a reference for DNA and RNA sequencing. We first built a reference Unigene, compound of coding sequences, thanks to de novo RNA-seq assembly. Then, we reconstructed the complete genes sequences (with introns and exons) using an Unigene-guided DNA-seq assembly approach. This aimed to maximize the possibilities of finding polymorphism between genetically close individuals despite the lack of a reference genome. Finally, we used these resources for SNP mining within a collection of 16 commercial lavender clones and tested the SNP within the scope of a genetic distance analysis. We obtained a cleaned reference of 8, 030 functionally in silico annotated genes. We found 359K polymorphic sites and observed a high SNP frequency (mean of 1 SNP per 90 bp) and a high level of heterozygosity (more than 60% of heterozygous SNP per genotype). On overall, we found similar genetic distances between pairs of clones, which is probably related to the out-crossing nature of the species and the restricted area of cultivation. The proposed method is transferable to other orphan species, requires little bioinformatics resources and can be realized within a year. This is also the first reported large-scale SNP development on Lavandula angustifolia. All the genomics resources developed herein are publicly available and provide a rich pool of molecular resources to explore and exploit lavender genetic diversity in breeding programs.
Collapse
|
27
|
Yu T, Mu Z, Fang Z, Liu X, Gao X, Liu J. TransBorrow: genome-guided transcriptome assembly by borrowing assemblies from different assemblers. Genome Res 2020; 30:1181-1190. [PMID: 32817072 PMCID: PMC7462071 DOI: 10.1101/gr.257766.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
RNA-seq technology is widely used in various transcriptomic studies and provides great opportunities to reveal the complex structures of transcriptomes. To effectively analyze RNA-seq data, we introduce a novel transcriptome assembler, TransBorrow, which borrows the assemblies from different assemblers to search for reliable subsequences by building a colored graph from those borrowed assemblies. Then, by seeding reliable subsequences, a newly designed path extension strategy accurately searches for a transcript-representing path cover over each splicing graph. TransBorrow was tested on both simulated and real data sets and showed great superiority over all the compared leading assemblers.
Collapse
Affiliation(s)
- Ting Yu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Zengchao Mu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Zhaoyuan Fang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoping Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| |
Collapse
|
28
|
Transcriptome analysis of heat stressed seedlings with or without pre-heat treatment in Cryptomeria japonica. Mol Genet Genomics 2020; 295:1163-1172. [PMID: 32472284 DOI: 10.1007/s00438-020-01689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
With global warming as a major environment concern over the coming years, heat tolerance is an important trait for forest tree survival during the predicted future warmer weather conditions. Cryptomeria japonica is a coniferous species widely distributed throughout Japan, and thus, can adapt to a wide range of air temperatures. To elucidate genes involved in heat response in Cryptomeria japonica, transcriptome analysis was conducted for seedlings under heat shock conditions. To test whether heat acclimation affects levels of gene expression, half of the seedlings were pretreated with moderately high temperatures prior to heat shock. De novo assembly of the transcriptome generated 107,924 unigenes and the analysis of differentially expressed genes was conducted using these unigenes. A total of 5217 differentially expressed genes were identified. Most genes upregulated by heat shock, regardless of pre-heat treatment, were conserved to heat response genes of angiosperm species, such as heat shock factors (Hsf) and heat shock proteins (Hsp). Pre-heating of seedlings affected expression levels of several Hsfs and their induction was lower in pre-heated seedlings than in seedlings without pre-heat treatment. This suggests a conserved role of Hsfs in heat response and heat acclimation in seed plants. On the other hand, many unknown genes were upregulated in only seedlings without pre-heat treatment after heat exposure. Notably, expression of gypsy/Ty3 type retrotransposons was dramatically induced. These findings provide valuable information to develop a better understanding of the molecular mechanisms of heat response and acclimation in C. japonica.
Collapse
|
29
|
Tolstyko E, Lezzhov A, Solovyev A. Identification of miRNA precursors in the phloem of Cucurbita maxima. PeerJ 2019; 7:e8269. [PMID: 31844599 PMCID: PMC6911342 DOI: 10.7717/peerj.8269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/22/2019] [Indexed: 01/14/2023] Open
Abstract
Plant development and responses to environmental cues largely depend on mobile signals including microRNAs (miRNAs) required for post-transcriptional silencing of specific genes. Short-range cell-to-cell transport of miRNA in developing tissues and organs is involved in transferring positional information essential for determining cell fate. Among other RNA species, miRNAs are found in the phloem sap. Long-distance transport of miRNA via the phloem takes a part in regulation of physiological responses to changing environmental conditions. As shown for regulation of inorganic phosphorus and sulfate homeostasis, mature miRNAs rather than miRNAs precursors are transported in the phloem as signaling molecules. Here, a bioinformatics analysis of transcriptomic data for Cucurbita maxima phloem exudate RNAs was carried out to elucidate whether miRNA precursors could also be present in the phloem. We demonstrated that the phloem transcriptome contained a subset of C. maxima pri-miRNAs that differed from a subset of pri-miRNA sequences abundant in a leaf transcriptome. Differential accumulation of pri-miRNA was confirmed by PCR analysis of C. maxima phloem exudate and leaf RNA samples. Therefore, the presented data indicate that a number of C. maxima pri-miRNAs are selectively recruited to the phloem translocation pathway. This conclusion was validated by inter-species grafting experiments, in which C. maxima pri-miR319a was found to be transported across the graft union via the phloem, confirming the presence of pri-miR319a in sieve elements and showing that phloem miRNA precursors could play a role in long-distance signaling in plants.
Collapse
Affiliation(s)
- Eugeny Tolstyko
- Department of Virology, Moscow State University, Moscow, Russia
| | - Alexander Lezzhov
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Andrey Solovyev
- Department of Virology, Moscow State University, Moscow, Russia.,Belozersky Institute, Moscow State University, Moscow, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
30
|
Speciation in Howea Palms Occurred in Sympatry, Was Preceded by Ancestral Admixture, and Was Associated with Edaphic and Phenological Adaptation. Mol Biol Evol 2019; 36:2682-2697. [DOI: 10.1093/molbev/msz166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Howea palms are viewed as one of the most clear-cut cases of speciation in sympatry. The sister species Howea belmoreana and H. forsteriana are endemic to the oceanic Lord Howe Island, Australia, where they have overlapping distributions and are reproductively isolated mainly by flowering time differences. However, the potential role of introgression from Australian mainland relatives had not previously been investigated, a process that has recently put other examples of sympatric speciation into question. Furthermore, the drivers of flowering time-based reproductive isolation remain unclear. We sequenced an RNA-seq data set that comprehensively sampled Howea and their closest mainland relatives (Linospadix, Laccospadix), and collected detailed soil chemistry data on Lord Howe Island to evaluate whether secondary gene flow had taken place and to examine the role of soil preference in speciation. D-statistics analyses strongly support a scenario whereby ancestral Howea hybridized frequently with its mainland relatives, but this only occurred prior to speciation. Expression analysis, population genetic and phylogenetic tests of selection, identified several flowering time genes with evidence of adaptive divergence between the Howea species. We found expression plasticity in flowering time genes in response to soil chemistry as well as adaptive expression and sequence divergence in genes pleiotropically linked to soil adaptation and flowering time. Ancestral hybridization may have provided the genetic diversity that promoted their subsequent adaptive divergence and speciation, a process that may be common for rapid ecological speciation.
Collapse
|
31
|
Ciezarek AG, Osborne OG, Shipley ON, Brooks EJ, Tracey SR, McAllister JD, Gardner LD, Sternberg MJE, Block B, Savolainen V. Phylotranscriptomic Insights into the Diversification of Endothermic Thunnus Tunas. Mol Biol Evol 2019; 36:84-96. [PMID: 30364966 PMCID: PMC6340463 DOI: 10.1093/molbev/msy198] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Birds, mammals, and certain fishes, including tunas, opahs and lamnid sharks, are endothermic, conserving internally generated, metabolic heat to maintain body or tissue temperatures above that of the environment. Bluefin tunas are commercially important fishes worldwide, and some populations are threatened. They are renowned for their endothermy, maintaining elevated temperatures of the oxidative locomotor muscle, viscera, brain and eyes, and occupying cold, productive high-latitude waters. Less cold-tolerant tunas, such as yellowfin tuna, by contrast, remain in warm-temperate to tropical waters year-round, reproducing more rapidly than most temperate bluefin tuna populations, providing resiliency in the face of large-scale industrial fisheries. Despite the importance of these traits to not only fisheries but also habitat utilization and responses to climate change, little is known of the genetic processes underlying the diversification of tunas. In collecting and analyzing sequence data across 29,556 genes, we found that parallel selection on standing genetic variation is associated with the evolution of endothermy in bluefin tunas. This includes two shared substitutions in genes encoding glycerol-3 phosphate dehydrogenase, an enzyme that contributes to thermogenesis in bumblebees and mammals, as well as four genes involved in the Krebs cycle, oxidative phosphorylation, β-oxidation, and superoxide removal. Using phylogenetic techniques, we further illustrate that the eight Thunnus species are genetically distinct, but found evidence of mitochondrial genome introgression across two species. Phylogeny-based metrics highlight conservation needs for some of these species.
Collapse
Affiliation(s)
- Adam G Ciezarek
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
| | - Owen G Osborne
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
| | - Oliver N Shipley
- Shark Research and Conservation Program, The Cape Eleuthera Institute, Rock Sound, Eleuthera, The Bahamas
- School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY
| | - Edward J Brooks
- Shark Research and Conservation Program, The Cape Eleuthera Institute, Rock Sound, Eleuthera, The Bahamas
| | - Sean R Tracey
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Jaime D McAllister
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Luke D Gardner
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA
| | - Michael J E Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, Kensington, London, United Kingdom
| | - Barbara Block
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA
| | - Vincent Savolainen
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, United Kingdom
- Corresponding author: E-mail:
| |
Collapse
|
32
|
Shah A, Hoffman JI, Schielzeth H. Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size. BMC Genomics 2019; 20:370. [PMID: 31088494 PMCID: PMC6518663 DOI: 10.1186/s12864-019-5756-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 04/30/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The club-legged grasshopper Gomphocerus sibiricus is a Gomphocerinae grasshopper with a promising future as model species for studying the maintenance of colour-polymorphism, the genetics of sexual ornamentation and genome size evolution. However, limited molecular resources are available for this species. Here, we present a de novo transcriptome assembly as reference resource for gene expression studies. We used high-throughput Illumina sequencing to generate 5,070,036 paired-end reads after quality filtering. We then combined the best-assembled contigs from three different de novo transcriptome assemblers (Trinity, SOAPdenovo-trans and Oases/Velvet) into a single assembly. RESULTS This resulted in 82,251 contigs with a N50 of 1357 and a TransRate assembly score of 0.325, which compares favourably with other orthopteran transcriptome assemblies. Around 87% of the transcripts could be annotated using InterProScan 5, BLASTx and the dammit! annotation pipeline. We identified a number of genes involved in pigmentation and green pigment metabolism pathways. Furthermore, we identified 76,221 putative single nucleotide polymorphisms residing in 8400 contigs. We also assembled the mitochondrial genome and investigated levels of sequence divergence with other species from the genus Gomphocerus. Finally, we detected and assembled Wolbachia sequences, which revealed close sequence similarity to the strain pel wPip. CONCLUSIONS Our study has generated a significant resource for uncovering genotype-phenotype associations in a species with an extraordinarily large genome, while also providing mitochondrial and Wolbachia sequences that will be useful for comparative studies.
Collapse
Affiliation(s)
- Abhijeet Shah
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Joseph I. Hoffman
- Department of Animal Behaviour, Bielefeld University, Morgenbreede 45, 33615 Bielefeld, Germany
| | - Holger Schielzeth
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany
| |
Collapse
|
33
|
Fromm B, Tosar JP, Aguilera F, Friedländer MR, Bachmann L, Hejnol A. Evolutionary Implications of the microRNA- and piRNA Complement of Lepidodermella squamata (Gastrotricha). Noncoding RNA 2019; 5:E19. [PMID: 30813358 PMCID: PMC6468455 DOI: 10.3390/ncrna5010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
Gastrotrichs-'hairy bellies'-are microscopic free-living animals inhabiting marine and freshwater habitats. Based on morphological and early molecular analyses, gastrotrichs were placed close to nematodes, but recent phylogenomic analyses have suggested their close relationship to flatworms (Platyhelminthes) within Spiralia. Small non-coding RNA data on e.g., microRNAs (miRNAs) and PIWI-interacting RNAs (piRNA) may help to resolve this long-standing question. MiRNAs are short post-transcriptional gene regulators that together with piRNAs play key roles in development. In a 'multi-omics' approach we here used small-RNA sequencing, available transcriptome and genomic data to unravel the miRNA- and piRNA complements along with the RNAi (RNA interference) protein machinery of Lepidodermella squamata (Gastrotricha, Chaetonotida). We identified 52 miRNA genes representing 35 highly conserved miRNA families specific to Eumetazoa, Bilateria, Protostomia, and Spiralia, respectively, with overall high similarities to platyhelminth miRNA complements. In addition, we found four large piRNA clusters that also resemble flatworm piRNAs but not those earlier described for nematodes. Congruently, transcriptomic annotation revealed that the Lepidodermella protein machinery is highly similar to flatworms, too. Taken together, miRNA, piRNA, and protein data support a close relationship of gastrotrichs and flatworms.
Collapse
Affiliation(s)
- Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| | - Juan Pablo Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay.
- Nuclear Research Center, Faculty of Science, Universidad de la República, Montevideo 11400, Uruguay.
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160_C, Concepción 3349001, Chile.
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway.
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden.
| | - Lutz Bachmann
- Research group Frontiers in Evolutionary Zoology, Natural History Museum, University of Oslo, 0318 Oslo, Norway.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
34
|
Global Transcriptional Insights of Pollen-Pistil Interactions Commencing Self-Incompatibility and Fertilization in Tea [ Camellia sinensis (L.) O. Kuntze]. Int J Mol Sci 2019; 20:ijms20030539. [PMID: 30696008 PMCID: PMC6387076 DOI: 10.3390/ijms20030539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/02/2023] Open
Abstract
This study explicates molecular insights commencing Self-Incompatibility (SI) and CC (cross-compatibility/fertilization) in self (SP) and cross (CP) pollinated pistils of tea. The fluorescence microscopy analysis revealed ceased/deviated pollen tubes in SP, while successful fertilization occurred in CP at 48 HAP. Global transcriptome sequencing of SP and CP pistils generated 109.7 million reads with overall 77.9% mapping rate to draft tea genome. Furthermore, concatenated de novo assembly resulted into 48,163 transcripts. Functional annotations and enrichment analysis (KEGG & GO) resulted into 3793 differentially expressed genes (DEGs). Among these, de novo and reference-based expression analysis identified 195 DEGs involved in pollen-pistil interaction. Interestingly, the presence of 182 genes [PT germination & elongation (67), S-locus (11), fertilization (43), disease resistance protein (30) and abscission (31)] in a major hub of the protein-protein interactome network suggests a complex signaling cascade commencing SI/CC. Furthermore, tissue-specific qRT-PCR analysis affirmed the localized expression of 42 DE putative key candidates in stigma-style and ovary, and suggested that LSI initiated in style and was sustained up to ovary with the active involvement of csRNS, SRKs & SKIPs during SP. Nonetheless, COBL10, RALF, FERONIA-rlk, LLG and MAPKs were possibly facilitating fertilization. The current study comprehensively unravels molecular insights of phase-specific pollen-pistil interaction during SI and fertilization, which can be utilized to enhance breeding efficiency and genetic improvement in tea.
Collapse
|
35
|
Highly Continuous Genome Assembly of Eurasian Perch ( Perca fluviatilis) Using Linked-Read Sequencing. G3-GENES GENOMES GENETICS 2018; 8:3737-3743. [PMID: 30355765 PMCID: PMC6288837 DOI: 10.1534/g3.118.200768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Eurasian perch (Perca fluviatilis) is the most common fish of the Percidae family and is widely distributed across Eurasia. Perch is a popular target for professional and recreational fisheries, and a promising freshwater aquaculture species in Europe. However, despite its high ecological, economical and societal importance, the available genomic resources for P. fluviatilis are rather limited. In this work, we report de novo assembly and annotation of the whole genome sequence of perch. The linked-read based technology with 10X Genomics Chromium chemistry and Supernova assembler produced a draft perch genome ∼1.0 Gbp assembly (scaffold N50 = 6.3 Mb; the longest individual scaffold of 29.3 Mb; BUSCO completeness of 88.0%), which included 281.6 Mb of putative repeated sequences. The perch genome assembly presented here, generated from small amount of starting material (0.75 ng) and a single linked-read library, is highly continuous and considerably more complete than the currently available draft of P. fluviatilis genome. A total of 23,397 protein-coding genes were predicted, 23,171 (99%) of which were annotated functionally from either sequence homology or protein signature searches. Linked-read technology enables fast, accurate and cost-effective de novo assembly of large non-model eukaryote genomes. The highly continuous assembly of the Eurasian perch genome presented in this study will be an invaluable resource for a range of genetic, ecological, physiological, ecotoxicological, functional and comparative genomic studies in perch and other fish species of the Percidae family.
Collapse
|
36
|
Affenzeller S, Cerveau N, Jackson DJ. Identification and validation of reference genes for qPCR in the terrestrial gastropod Cepaea nemoralis. PLoS One 2018; 13:e0201396. [PMID: 30157182 PMCID: PMC6114279 DOI: 10.1371/journal.pone.0201396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying and understanding mechanisms that generate phenotypic diversity is a fundamental goal of evolutionary biology. With a diversity of pigmented shell morphotypes governed by Mendelian patterns of inheritance, the common grove snail Cepaea nemoralis (Linnaeus, 1758) has been a model for evolutionary biologists and population geneticists for decades. However, the genetic mechanisms by which C. nemoralis generates this pigmented shell diversity remain unknown. An important first step in investigating this pigmentation pattern is to establish a set of validated reference genes for differential gene expression assays. Here we have evaluated eleven candidate genes for reverse transcription quantitative polymerase chain reaction (qPCR) in C. nemoralis. Five of these were housekeeping genes traditionally employed as qPCR reference genes in other species, while six alternative genes were selected de novo from C. nemoralis transcriptome data based on the stability of their expression levels. We tested all eleven candidates for expression stability in four sub-adult tissues of C. nemoralis: pigmented mantle, unpigmented mantle, head and foot. We find that two commonly employed housekeeping genes (alpha tubulin, glyceraldehyde 3-phosphate dehydrogenase) are unsuitable for use as qPCR reference genes in C. nemoralis. The traditional housekeeping gene UBIquitin on the other hand performed very well. Additionally, an RNA-directed DNA polymerase (RNAP), a Potassium Channel Protein (KCHP) and a Prenylated Rab acceptor protein 1 (PRAP), identified de novo from transcriptomic data, were the most stably expressed genes in different tissue combinations. We also tested expression stability over two seasons and found that, although other genes are more stable within a single season, beta actin (BACT) and elongation factor 1 alpha (EF1α) were the most reliable reference genes across seasons.
Collapse
Affiliation(s)
- Susanne Affenzeller
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| | - Nicolas Cerveau
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| | - Daniel John Jackson
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
37
|
Mann K, Cerveau N, Gummich M, Fritz M, Mann M, Jackson DJ. In-depth proteomic analyses of Haliotis laevigata (greenlip abalone) nacre and prismatic organic shell matrix. Proteome Sci 2018; 16:11. [PMID: 29983641 PMCID: PMC6003135 DOI: 10.1186/s12953-018-0139-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023] Open
Abstract
Background The shells of various Haliotis species have served as models of invertebrate biomineralization and physical shell properties for more than 20 years. A focus of this research has been the nacreous inner layer of the shell with its conspicuous arrangement of aragonite platelets, resembling in cross-section a brick-and-mortar wall. In comparison, the outer, less stable, calcitic prismatic layer has received much less attention. One of the first molluscan shell proteins to be characterized at the molecular level was Lustrin A, a component of the nacreous organic matrix of Haliotis rufescens. This was soon followed by the C-type lectin perlucin and the growth factor-binding perlustrin, both isolated from H. laevigata nacre, and the crystal growth-modulating AP7 and AP24, isolated from H. rufescens nacre. Mass spectrometry-based proteomics was subsequently applied to to Haliotis biomineralization research with the analysis of the H. asinina shell matrix and yielded 14 different shell-associated proteins. That study was the most comprehensive for a Haliotis species to date. Methods The shell proteomes of nacre and prismatic layer of the marine gastropod Haliotis laevigata were analyzed combining mass spectrometry-based proteomics and next generation sequencing. Results We identified 297 proteins from the nacreous shell layer and 350 proteins from the prismatic shell layer from the green lip abalone H. laevigata. Considering the overlap between the two sets we identified a total of 448 proteins. Fifty-one nacre proteins and 43 prismatic layer proteins were defined as major proteins based on their abundance at more than 0.2% of the total. The remaining proteins occurred at low abundance and may not play any significant role in shell fabrication. The overlap of major proteins between the two shell layers was 17, amounting to a total of 77 major proteins. Conclusions The H. laevigata shell proteome shares moderate sequence similarity at the protein level with other gastropod, bivalve and more distantly related invertebrate biomineralising proteomes. Features conserved in H. laevigata and other molluscan shell proteomes include short repetitive sequences of low complexity predicted to lack intrinsic three-dimensional structure, and domains such as tyrosinase, chitin-binding, and carbonic anhydrase. This catalogue of H. laevigata shell proteins represents the most comprehensive for a haliotid and should support future efforts to elucidate the molecular mechanisms of shell assembly. Electronic supplementary material The online version of this article (10.1186/s12953-018-0139-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Nicolas Cerveau
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| | - Meike Gummich
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Monika Fritz
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Matthias Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Daniel J Jackson
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| |
Collapse
|
38
|
Herlitze I, Marie B, Marin F, Jackson DJ. Molecular modularity and asymmetry of the molluscan mantle revealed by a gene expression atlas. Gigascience 2018; 7:4997018. [PMID: 29788257 PMCID: PMC6007483 DOI: 10.1093/gigascience/giy056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/09/2018] [Indexed: 12/31/2022] Open
Abstract
Background Conchiferan molluscs construct a biocalcified shell that likely supported much of their evolutionary success. However, beyond broad proteomic and transcriptomic surveys of molluscan shells and the shell-forming mantle tissue, little is known of the spatial and ontogenetic regulation of shell fabrication. In addition, most efforts have been focused on species that deposit nacre, which is at odds with the majority of conchiferan species that fabricate shells using a crossed-lamellar microstructure, sensu lato. Results By combining proteomic and transcriptomic sequencing with in situ hybridization we have identified a suite of gene products associated with the production of the crossed-lamellar shell in Lymnaea stagnalis. With this spatial expression data we are able to generate novel hypotheses of how the adult mantle tissue coordinates the deposition of the calcified shell. These hypotheses include functional roles for unusual and otherwise difficult-to-study proteins such as those containing repetitive low-complexity domains. The spatial expression readouts of shell-forming genes also reveal cryptic patterns of asymmetry and modularity in the shell-forming cells of larvae and adult mantle tissue. Conclusions This molecular modularity of the shell-forming mantle tissue hints at intimate associations between structure, function, and evolvability and may provide an elegant explanation for the evolutionary success of the second largest phylum among the Metazoa.
Collapse
Affiliation(s)
- Ines Herlitze
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| | - Benjamin Marie
- UMR 7245 MNHN/CNRS Molécules de Communication et Adaptation des Micro-organismes, Département Aviv, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, 75005 Paris, France
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Université de Bourgogne - Franche-Comté, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
| |
Collapse
|
39
|
Piombo E, Sela N, Wisniewski M, Hoffmann M, Gullino ML, Allard MW, Levin E, Spadaro D, Droby S. Genome Sequence, Assembly and Characterization of Two Metschnikowia fructicola Strains Used as Biocontrol Agents of Postharvest Diseases. Front Microbiol 2018; 9:593. [PMID: 29666611 PMCID: PMC5891927 DOI: 10.3389/fmicb.2018.00593] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/15/2018] [Indexed: 01/08/2023] Open
Abstract
The yeast Metschnikowia fructicola was reported as an efficient biological control agent of postharvest diseases of fruits and vegetables, and it is the bases of the commercial formulated product "Shemer." Several mechanisms of action by which M. fructicola inhibits postharvest pathogens were suggested including iron-binding compounds, induction of defense signaling genes, production of fungal cell wall degrading enzymes and relatively high amounts of superoxide anions. We assembled the whole genome sequence of two strains of M. fructicola using PacBio and Illumina shotgun sequencing technologies. Using the PacBio, a high-quality draft genome consisting of 93 contigs, with an estimated genome size of approximately 26 Mb, was obtained. Comparative analysis of M. fructicola proteins with the other three available closely related genomes revealed a shared core of homologous proteins coded by 5,776 genes. Comparing the genomes of the two M. fructicola strains using a SNP calling approach resulted in the identification of 564,302 homologous SNPs with 2,004 predicted high impact mutations. The size of the genome is exceptionally high when compared with those of available closely related organisms, and the high rate of homology among M. fructicola genes points toward a recent whole-genome duplication event as the cause of this large genome. Based on the assembled genome, sequences were annotated with a gene description and gene ontology (GO term) and clustered in functional groups. Analysis of CAZymes family genes revealed 1,145 putative genes, and transcriptomic analysis of CAZyme expression levels in M. fructicola during its interaction with either grapefruit peel tissue or Penicillium digitatum revealed a high level of CAZyme gene expression when the yeast was placed in wounded fruit tissue.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Turin, Italy
- Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Turin, Italy
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Michael Wisniewski
- United States Department of Agriculture – Agricultural Research Service, Kernersville, WV, United States
| | - Maria Hoffmann
- Division of Microbiology, United States Food and Drug Administration, College Park, MD, United States
| | - Maria L. Gullino
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Turin, Italy
- Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Turin, Italy
| | - Marc W. Allard
- Division of Microbiology, United States Food and Drug Administration, College Park, MD, United States
| | - Elena Levin
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Davide Spadaro
- Department of Agricultural, Forestry and Food Sciences, University of Torino, Turin, Italy
- Centre of Competence for the Innovation in the Agro-environmental Sector, University of Torino, Turin, Italy
| | - Samir Droby
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
40
|
Jackson DJ, Reim L, Randow C, Cerveau N, Degnan BM, Fleck C. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity. Mol Biol Evol 2018; 34:2959-2969. [PMID: 28961798 PMCID: PMC5850307 DOI: 10.1093/molbev/msx232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent “GS” domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes.
Collapse
Affiliation(s)
- Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany.,School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Laurin Reim
- Department of Earth- and Environmental Sciences, Ludwig-Maximilian University of Munich, München, Germany
| | - Clemens Randow
- Department of Materials Engineering, Institute of Technology Berlin, Berlin, Germany
| | - Nicolas Cerveau
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Claudia Fleck
- Department of Materials Engineering, Institute of Technology Berlin, Berlin, Germany
| |
Collapse
|