1
|
Ramasamy R, Raveendran M, Harris RA, Le HD, Mure LS, Benegiamo G, Dkhissi-Benyahya O, Cooper H, Rogers J, Panda S. Genome-wide allele-specific expression in multi-tissue samples from healthy male baboons reveals the transcriptional complexity of mammals. CELL GENOMICS 2025; 5:100823. [PMID: 40187355 DOI: 10.1016/j.xgen.2025.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/13/2024] [Accepted: 03/06/2025] [Indexed: 04/07/2025]
Abstract
Allele-specific expression (ASE) is pivotal in understanding the genetic underpinnings of phenotypic variation within species, differences in disease susceptibility, and responses to environmental factors. We processed 11 different tissue types collected from 12 age-matched healthy olive baboons (Papio anubis) for genome-wide ASE analysis. By sequencing their genomes at a minimum depth of 30×, we identified over 16 million single-nucleotide variants (SNVs). We also generated long-read sequencing data, enabling the phasing of all variants present within the coding regions of 96.5% of assayable protein-coding genes as a single haplotype block. Given the extensive heterozygosity of baboons relative to humans, we could quantify ASE across 72% of the total annotated protein-coding gene set. We identified genes that exhibit ASE and affect specific tissues and genotypes. We discovered ASE SNVs that also exist in human populations with identical alleles and that are designated as pathogenic by both the PrimateAI-3D and AlphaMissense models.
Collapse
Affiliation(s)
- Ramesh Ramasamy
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Muthuswamy Raveendran
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - R Alan Harris
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hiep D Le
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Howard Cooper
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Tao Q, Huang A, Qi J, Yang Z, Guo S, Lu Y, He X, Han X, Jiang S, Xu M, Bai Y, Zhang T, Hu S, Li L, Bai L, Liu H. An mRNA expression atlas for the duck with public RNA-seq datasets. BMC Genomics 2025; 26:268. [PMID: 40102741 PMCID: PMC11916966 DOI: 10.1186/s12864-025-11385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Ducks are globally important poultry species and a major source of farm animal products, including meat, eggs, and feathers. A thorough understanding of the functional genomic and transcriptomic sequences is crucial for improving production efficiency. RESULT This study constructed the largest duck mRNA expression atlas among all waterfowl species to date. The atlas encompasses 1,257 tissue samples across 30 tissue types, representing all major organ systems. Using advanced clustering analysis, we established co-expression network clusters to describe the transcriptional features in the duck mRNA expression atlas and, when feasible, assign these features to unique tissue types or pathways. Additionally, we identified 27 low-variance, highly expressed housekeeping genes suitable for gene expression experiments. Furthermore, in-depth analysis revealed potential sex-biased gene expression patterns within tissues and specific gene expression profiles in meat-type and egg-type ducks, providing valuable resources to understand the genetic basis of sex differences and particular phenotypes. This research elucidates the biological processes affecting duck productivity. CONCLUSION This study presents the most extensive gene expression atlas for any waterfowl species to date. These findings are of significant value for advancing duck biological research and industrial applications.
Collapse
Affiliation(s)
- Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Anqi Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Zhao Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shihao Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - HeHe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
3
|
Heath HD, Peng S, Szmatola T, Ryan S, Bellone RR, Kalbfleisch T, Petersen JL, Finno CJ. A comprehensive allele specific expression resource for the equine transcriptome. BMC Genomics 2025; 26:88. [PMID: 39885415 PMCID: PMC11780778 DOI: 10.1186/s12864-025-11240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Allele-specific expression (ASE) analysis provides a nuanced view of cis-regulatory mechanisms affecting gene expression. RESULTS An equine ASE analysis was performed, using integrated Iso-seq and short-read RNA sequencing data from four healthy Thoroughbreds (2 mares and 2 stallions) across 9 tissues from the Functional Annotation of Animal Genomes (FAANG) project. Allele expression was quantified by haplotypes from long-read data, with 42,900 allele expression events compared. Within these events, 635 (1.48%) demonstrated ASE, with liver tissue containing the highest proportion. Genetic variants within ASE events were located in histone modified regions 64.2% of the time. Validation of allele-specific variants, using a set of 66 equine liver samples from multiple breeds, confirmed that 97% of variants demonstrated ASE. CONCLUSIONS This valuable publicly accessible resource is poised to facilitate investigations into regulatory variation in equine tissues. Our results highlight the tissue-specific nature of allelic imbalance in the equine genome.
Collapse
Affiliation(s)
- Harrison D Heath
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
- Present address: Eclipsebio, San Diego, CA, 92121, USA
| | - Tomasz Szmatola
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
- Centre of Experimental and Innovative Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Stephanie Ryan
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA
- Veterinary Genetics Laboratory, University of California, Davis School of Veterinary Medicine, Davis, CA, 95616, USA
| | - Theodore Kalbfleisch
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, Davis School of Veterinary Medicine, University of California, Room 4206 Vet Med3A One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Mansourizadeh H, Bakhtiarizadeh MR, de Almeida Regitano LC, Bruscadin JJ. Fat-tail allele-specific expression genes may affect fat deposition in tail of sheep. PLoS One 2024; 19:e0316046. [PMID: 39729475 DOI: 10.1371/journal.pone.0316046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Different sheep breeds show distinct phenotypic plasticity in fat deposition in the tails. The genetic background underlying fat deposition in the tail of sheep is complex, multifactorial, and may involve allele-specific expression (ASE) mechanism to modulate allelic expression. ASE is a common phenomenon in mammals and refers to allelic imbalanced expression modified by cis-regulatory genetic variants that can be observed at heterozygous loci. Therefore, regulatory processes behind the fat-tail formation in sheep may be to some extent explained by cis- regulatory variants, through ASE mechanism, which was investigated in the present study. An RNA-Seq-based variant calling was applied to perform genome-wide survey of ASE genes using 45 samples from seven independent studies comparing the transcriptome of fat-tail tissue between fat- and thin-tailed sheep breeds. Using a rigorous computational pipeline, 115 differential ASE genes were identified, which were narrowed down to four genes (LPL, SOD3, TCP1 and LRPAP1) for being detected in at least two studies. Functional analysis revealed that the ASE genes were mainly involved in fat metabolism. Of these, LPL was of greater importance, as 1) observed in five studies, 2) reported as ASE gene in the previous studies and 3) with a known role in fat deposition. Our findings implied that complex physiological traits, like fat-tail formation, can be better explained by considering various genetic mechanisms, which can be more finely mapped through ASE analyses. The insights gained in this study indicate that biallelic expression may not be a common mechanism in sheep fat-tail development. Hence, allelic imbalance of the fat deposition-related genes can be considered a novel layer of information for future research on genetic improvement and increased efficiency in sheep breeding programs.
Collapse
Affiliation(s)
- Hossein Mansourizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | | | | | - Jennifer Jessica Bruscadin
- Embrapa Southeast Livestock, São Carlos, Brazil
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
5
|
He C, Zhu B, Gao W, Wu Q, Zhang C. Study on Allele Specific Expression of Long-Term Residents in High Altitude Areas. Evol Bioinform Online 2024; 20:11769343241257344. [PMID: 38826865 PMCID: PMC11141219 DOI: 10.1177/11769343241257344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/07/2024] [Indexed: 06/04/2024] Open
Abstract
In diploid organisms, half of the chromosomes in each cell come from the father and half from the mother. Through previous studies, it was found that the paternal chromosome and the maternal chromosome can be regulated and expressed independently, leading to the emergence of allele specific expression (ASE). In this study, we analyzed the differential expression of alleles in the high-altitude population and the normal population based on the RNA sequencing data. Through gene cluster analysis and protein interaction network analysis, we found some changes occurred at the gene level, and some negative effects. During the study, we realized that the calmodulin homology domain may have a certain correlation with long-term survival at high altitude. The plateau environment is characterized by hypoxia, low air pressure, strong ultraviolet radiation, and low temperature. Accordingly, the genetic changes in the process of adaptation are mainly reflected in these characteristics. High altitude generation living is also highly related to cancer, immune disease, cardiovascular disease, neurological disease, endocrine disease, and other diseases. Therefore, the medical system in high altitude areas should pay more attention to these diseases.
Collapse
Affiliation(s)
- Chao He
- The General Hospital of Tibet Military Region, Lhasa, China
| | - Bin Zhu
- The General Hospital of Tibet Military Region, Lhasa, China
| | - Wenwen Gao
- The General Hospital of Tibet Military Region, Lhasa, China
| | - Qianjin Wu
- The General Hospital of Tibet Military Region, Lhasa, China
| | | |
Collapse
|
6
|
Xu H, Zhang S, Duan Q, Lou M, Ling Y. Comprehensive analyses of 435 goat transcriptomes provides insight into male reproduction. Int J Biol Macromol 2024; 255:127942. [PMID: 37979751 DOI: 10.1016/j.ijbiomac.2023.127942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
A systematic analysis of genes related to reproduction is crucial for obtaining a comprehensive understanding of the molecular mechanisms that underlie male reproductive traits in mammals. Here, we utilized 435 goat transcriptome datasets to unveil the testicular tissue-specific genes (TSGs), allele-specific expression (ASE) genes and their uncharacterized transcriptional features related to male goat reproduction. Results showed a total of 1790 TSGs were identified in goat testis, which was the most among all tissues. GO enrichment analyses suggested that testicular TSGs were mainly involved in spermatogenesis, multicellular organism development, spermatid development, and flagellated sperm motility. Subsequently, a total of 95 highly conserved TSGs (HCTSGs), 508 middle conserved TSGs (MCTSGs) and 42 no conserved TSGs (NCTSGs) were identified in goat testis. GO enrichment analyses suggested that the HCTSGs and MCTSGs has a more important association with male reproduction than NCTSGs. Additionally, we identified 644 ASE genes, including 88 tissue-specific ASE (TS-ASE) genes (e.g., FSIP2, TDRD9). GO enrichment analyses indicated that both ASE genes and TS-ASE genes were associated with goat male reproduction. Overall, this study revealed an extensive gene set involved in the regulation of male goat reproduction and their dynamic transcription patterns. Data reported here provide valuable insights for a further improvement of the economic benefits of goats as well as future treatments for male infertility.
Collapse
Affiliation(s)
- Han Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Sihuan Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qin Duan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Mengyu Lou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, Anhui, China; Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
7
|
Atashi H, Chen Y, Wilmot H, Bastin C, Vanderick S, Hubin X, Gengler N. Single-step genome-wide association analyses for selected infrared-predicted cheese-making traits in Walloon Holstein cows. J Dairy Sci 2023; 106:7816-7831. [PMID: 37567464 DOI: 10.3168/jds.2022-23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/01/2023] [Indexed: 08/13/2023]
Abstract
This study aimed to perform genome-wide association study to identify genomic regions associated with milk production and cheese-making properties (CMP) in Walloon Holstein cows. The studied traits were milk yield, fat percentage, protein percentage, casein percentage (CNP), calcium content, somatic cell score (SCS), coagulation time, curd firmness after 30 min from rennet addition, and titratable acidity. The used data have been collected from 2014 to 2020 on 78,073 first-parity (485,218 test-day records), 48,766 second-parity (284,942 test-day records), and 21,948 third-parity (105,112 test-day records) Holstein cows distributed in 671 herds in the Walloon Region of Belgium. Data of 565,533 single nucleotide polymorphisms (SNP), located on 29 Bos taurus autosomes (BTA) of 6,617 animals (1,712 males), were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic BLUP approach. The proportion of the total additive genetic variance explained by windows of 50 consecutive SNPs (with an average size of ∼216 KB) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for positional candidate genes. Heritability estimates for the studied traits ranged from 0.10 (SCS) to 0.53 (CNP), 0.10 (SCS) to 0.50 (CNP), and 0.12 (SCS) to 0.49 (CNP) in the first, second, and third parity, respectively. Genome-wide association analyses identified 6 genomic regions (BTA1, BTA14 [4 regions], and BTA20) associated with the considered traits. Genes including the SLC37A1 (BTA1), SHARPIN, MROH1, DGAT1, FAM83H, TIGD5, MROH6, NAPRT, ADGRB1, GML, LYPD2, JRK (BTA14), and TRIO (BTA20) were identified as positional candidate genes for the studied CMP. The findings of this study help to unravel the genomic background of a cow's ability for cheese production and can be used for the future implementation and use of genomic evaluation to improve the cheese-making traits in Walloon Holstein cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (FRS-FNRS), 1000 Brussels, Belgium
| | - C Bastin
- National Fund for Scientific Research (FRS-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
8
|
Prowse-Wilkins CP, Wang J, Garner JB, Goddard ME, Chamberlain AJ. Allele specific binding of histone modifications and a transcription factor does not predict allele specific expression in correlated ChIP-seq peak-exon pairs. Sci Rep 2023; 13:15596. [PMID: 37730913 PMCID: PMC10511416 DOI: 10.1038/s41598-023-42637-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
Allele specific expression (ASE) is widespread in many species including cows. Therefore, regulatory regions which control gene expression should show cis-regulatory variation which mirrors this differential expression within the animal. ChIP-seq peaks for histone modifications and transcription factors measure activity at functional regions and the height of some peaks have been shown to correlate across tissues with the expression of particular genes, suggesting these peaks are putative regulatory regions. In this study we identified ASE in the bovine genome in multiple tissues and investigated whether ChIP-seq peaks for four histone modifications and the transcription factor CTCF show allele specific binding (ASB) differences in the same tissues. We then investigate whether peak height and gene expression, which correlates across tissues, also correlates within the animal by investigating whether the direction of ASB in putative regulatory regions, mirrors that of the ASE in the genes they are putatively regulating. We found that ASE and ASB were widespread in the bovine genome but vary in extent between tissues. However, even when the height of a peak was positively correlated across tissues with expression of an exon, ASE of the exon and ASB of the peak were in the same direction only half the time. A likely explanation for this finding is that the correlations between peak height and exon expression do not indicate that the height of the peak causes the extent of exon expression, at least in some cases.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia.
| | - Jianghui Wang
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3821, Australia
| | - Michael E Goddard
- Faculty of Veterinary & Agricultural Science, The University of Melbourne, Parkville, VIC, 3010, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia
| |
Collapse
|
9
|
Triant DA, Walsh AT, Hartley GA, Petry B, Stegemiller MR, Nelson BM, McKendrick MM, Fuller EP, Cockett NE, Koltes JE, McKay SD, Green JA, Murdoch BM, Hagen DE, Elsik CG. AgAnimalGenomes: browsers for viewing and manually annotating farm animal genomes. Mamm Genome 2023; 34:418-436. [PMID: 37460664 PMCID: PMC10382368 DOI: 10.1007/s00335-023-10008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Current genome sequencing technologies have made it possible to generate highly contiguous genome assemblies for non-model animal species. Despite advances in genome assembly methods, there is still room for improvement in the delineation of specific gene features in the genomes. Here we present genome visualization and annotation tools to support seven livestock species (bovine, chicken, goat, horse, pig, sheep, and water buffalo), available in a new resource called AgAnimalGenomes. In addition to supporting the manual refinement of gene models, these browsers provide visualization tracks for hundreds of RNAseq experiments, as well as data generated by the Functional Annotation of Animal Genomes (FAANG) Consortium. For species with predicted gene sets from both Ensembl and RefSeq, the browsers provide special tracks showing the thousands of protein-coding genes that disagree across the two gene sources, serving as a valuable resource to alert researchers to gene model issues that may affect data interpretation. We describe the data and search methods available in the new genome browsers and how to use the provided tools to edit and create new gene models.
Collapse
Affiliation(s)
- Deborah A Triant
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Amy T Walsh
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Bruna Petry
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Morgan R Stegemiller
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Benjamin M Nelson
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Makenna M McKendrick
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Emily P Fuller
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Noelle E Cockett
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Stephanie D McKay
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Jonathan A Green
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Brenda M Murdoch
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Darren E Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, 65211, USA.
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
10
|
Bruscadin JJ, Cardoso TF, da Silva Diniz WJ, de Souza MM, Afonso J, Vieira D, Malheiros J, Andrade BGN, Petrini J, Ferraz JBS, Zerlotini A, Mourão GB, Coutinho LL, de Almeida Regitano LC. Differential Allele-Specific Expression Revealed Functional Variants and Candidate Genes Related to Meat Quality Traits in B. indicus Muscle. Genes (Basel) 2022; 13:genes13122336. [PMID: 36553605 PMCID: PMC9777870 DOI: 10.3390/genes13122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Traditional transcriptomics approaches have been used to identify candidate genes affecting economically important livestock traits. Regulatory variants affecting these traits, however, remain under covered. Genomic regions showing allele-specific expression (ASE) are under the effect of cis-regulatory variants, being useful for improving the accuracy of genomic selection models. Taking advantage of the better of these two methods, we investigated single nucleotide polymorphisms (SNPs) in regions showing differential ASE (DASE SNPs) between contrasting groups for beef quality traits. For these analyses, we used RNA sequencing data, imputed genotypes and genomic estimated breeding values of muscle-related traits from 190 Nelore (Bos indicus) steers. We selected 40 contrasting unrelated samples for the analysis (N = 20 animals per contrasting group) and used a beta-binomial model to identify ASE SNPs in only one group (i.e., DASE SNPs). We found 1479 DASE SNPs (FDR ≤ 0.05) associated with 55 beef-quality traits. Most DASE genes were involved with tenderness and muscle homeostasis, presenting a co-expression module enriched for the protein ubiquitination process. The results overlapped with epigenetics and phenotype-associated data, suggesting that DASE SNPs are potentially linked to cis-regulatory variants affecting simultaneously the transcription and phenotype through chromatin state modulation.
Collapse
Affiliation(s)
- Jennifer Jessica Bruscadin
- Center of Biological Sciences and Health, Federal University of São Carlos, São Carlos 13560-000, SP, Brazil
- Embrapa Pecuária Sudeste, São Carlos 13560-000, SP, Brazil
| | | | | | | | - Juliana Afonso
- Embrapa Pecuária Sudeste, São Carlos 13560-000, SP, Brazil
| | - Dielson Vieira
- Embrapa Pecuária Sudeste, São Carlos 13560-000, SP, Brazil
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jessica Malheiros
- Federal University of Latin American Integration-UNILA, Foz do Iguaçu 85851-000, PR, Brazil
| | | | - Juliana Petrini
- Center for Functional Genomics, Department of Animal Science, 13400-000, University of São Paulo (ESALQ—USP), Piracicaba 13400-000, SP, Brazil
| | - José Bento Sterman Ferraz
- Department of Veterinary Medicine, University of São Paulo (FMVZ—USP), Pirassununga 13630-000, SP, Brazil
| | | | - Gerson Barreto Mourão
- Center for Functional Genomics, Department of Animal Science, 13400-000, University of São Paulo (ESALQ—USP), Piracicaba 13400-000, SP, Brazil
| | - Luiz Lehmann Coutinho
- Center for Functional Genomics, Department of Animal Science, 13400-000, University of São Paulo (ESALQ—USP), Piracicaba 13400-000, SP, Brazil
| | | |
Collapse
|
11
|
Prowse-Wilkins CP, Lopdell TJ, Xiang R, Vander Jagt CJ, Littlejohn MD, Chamberlain AJ, Goddard ME. Genetic variation in histone modifications and gene expression identifies regulatory variants in the mammary gland of cattle. BMC Genomics 2022; 23:815. [PMID: 36482302 PMCID: PMC9733386 DOI: 10.1186/s12864-022-09002-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Causal variants for complex traits, such as eQTL are often found in non-coding regions of the genome, where they are hypothesised to influence phenotypes by regulating gene expression. Many regulatory regions are marked by histone modifications, which can be assayed by chromatin immunoprecipitation followed by sequencing (ChIP-seq). Sequence reads from ChIP-seq form peaks at putative regulatory regions, which may reflect the amount of regulatory activity at this region. Therefore, eQTL which are also associated with differences in histone modifications are excellent candidate causal variants. RESULTS We assayed the histone modifications H3K4Me3, H3K4Me1 and H3K27ac and mRNA in the mammary gland of up to 400 animals. We identified QTL for peak height (histone QTL), exon expression (eeQTL), allele specific expression (aseQTL) and allele specific binding (asbQTL). By intersecting these results, we identify variants which may influence gene expression by altering regulatory regions of the genome, and may be causal variants for other traits. Lastly, we find that these variants are found in putative transcription factor binding sites, identifying a mechanism for the effect of many eQTL. CONCLUSIONS We find that allele specific and traditional QTL analysis often identify the same genetic variants and provide evidence that many eQTL are regulatory variants which alter activity at regulatory regions of the bovine genome. Our work provides methodological and biological updates on how regulatory mechanisms interplay at multi-omics levels.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia.
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Thomas J Lopdell
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240, New Zealand
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia
| | - Mathew D Littlejohn
- Research and Development, Livestock Improvement Corporation, Private Bag 3016, Hamilton, 3240, New Zealand
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria, 3082, Australia
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
12
|
Bruscadin JJ, Cardoso TF, da Silva Diniz WJ, Afonso J, de Souza MM, Petrini J, Nascimento Andrade BG, da Silva VH, Ferraz JBS, Zerlotini A, Mourão GB, Coutinho LL, de Almeida Regitano LC. Allele-specific expression reveals functional SNPs affecting muscle-related genes in bovine. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194886. [DOI: 10.1016/j.bbagrm.2022.194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
|
13
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
14
|
Chen SY, Li C, Luo Z, Li X, Jia X, Lai SJ. Favoring Expression of Yak Alleles in Interspecies F1 Hybrids of Cattle and Yak Under High-Altitude Environments. Front Vet Sci 2022; 9:892663. [PMID: 35847643 PMCID: PMC9280030 DOI: 10.3389/fvets.2022.892663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Both cis- and trans-regulation could cause differential expression between the parental alleles in diploid species that might have broad biological implications. Due to the relatively distant genetic divergence between cattle and yak, as well as their differential adaptation to high-altitude environments, we investigated genome-wide allelic differential expression (ADE) in their F1 hybrids using Nanopore long-read RNA-seq technology. From adult F1 hybrids raised in high-altitude, ten lung and liver tissues were individually sequenced for producing 31.6 M full-length transcript sequences. Mapping against autosomal homologous regions between cattle and yak, we detected 17,744 and 14,542 protein-encoding genes expressed in lung and liver tissues, respectively. According to the parental assignments of transcript sequences, a total of 3,381 genes were detected to show ADE in at least one sample. There were 186 genes showing ubiquitous ADE in all the studied animals, and among them 135 and 37 genes had consistent higher expression of yak and cattle alleles, respectively. Functional analyses revealed that the genes with favoring expression of yak alleles have been involved in the biological progresses related with hypoxia adaptation and immune response. In contrast, the genes with favoring expression of cattle alleles have been enriched into different biological progresses, such as secretion of endocrine hormones and lipid metabolism. Our results would support unequal contribution of parental genes to environmental adaptation in the F1 hybrids of cattle and yak.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Shi-Yi Chen
| | - Cao Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhihao Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Longri Breeding Farm of Sichuan Province, Hongyuan, China
| | - Xiaowei Li
- Longri Breeding Farm of Sichuan Province, Hongyuan, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Zhang T, Wang T, Niu Q, Xu L, Chen Y, Gao X, Gao H, Zhang L, Liu GE, Li J, Xu L. Transcriptional atlas analysis from multiple tissues reveals the expression specificity patterns in beef cattle. BMC Biol 2022; 20:79. [PMID: 35351103 PMCID: PMC8966188 DOI: 10.1186/s12915-022-01269-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/03/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A comprehensive analysis of gene expression profiling across tissues can provide necessary information for an in-depth understanding of their biological functions. We performed a large-scale gene expression analysis and generated a high-resolution atlas of the transcriptome in beef cattle. RESULTS Our transcriptome atlas was generated from 135 bovine tissues in adult beef cattle, covering 51 tissue types of major organ systems (e.g., muscular system, digestive system, immune system, reproductive system). Approximately 94.76% of sequencing reads were successfully mapped to the reference genome assembly ARS-UCD1.2. We detected a total of 60,488 transcripts, and 32% of them were not reported before. We identified 2654 housekeeping genes (HKGs) and 477 tissue-specific genes (TSGs) across tissues. Using weighted gene co-expression network analysis, we obtained 24 modules with 237 hub genes (HUBGs). Functional enrichment analysis showed that HKGs mainly maintain the basic biological activities of cells, while TSGs were involved in tissue differentiation and specific physiological processes. HKGs in bovine tissues were more conserved in terms of expression pattern as compared to TSGs and HUBGs among multiple species. Finally, we obtained a subset of tissue-specific differentially expressed genes (DEGs) between beef and dairy cattle and several functional pathways, which may be involved in production and health traits. CONCLUSIONS We generated a large-scale gene expression atlas across the major tissues in beef cattle, providing valuable information for enhancing genome assembly and annotation. HKGs, TSGs, and HUBGs further contribute to better understanding the biology and evolution of multiple tissues in cattle. DEGs between beef and dairy cattle also fill in the knowledge gaps about differential transcriptome regulation of bovine tissues underlying economically important traits.
Collapse
Affiliation(s)
- Tianliu Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Tianzhen Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qunhao Niu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705 USA
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
16
|
Ross EM, Sanjana H, Nguyen LT, Cheng Y, Moore SS, Hayes BJ. Extensive Variation in Gene Expression is Revealed in 13 Fertility-Related Genes Using RNA-Seq, ISO-Seq, and CAGE-Seq From Brahman Cattle. Front Genet 2022; 13:784663. [PMID: 35401673 PMCID: PMC8990236 DOI: 10.3389/fgene.2022.784663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fertility is a key driver of economic profitability in cattle production. A number of studies have identified genes associated with fertility using genome wide association studies and differential gene expression analysis; however, the genes themselves are poorly characterized in cattle. Here, we selected 13 genes from the literature which have previously been shown to have strong evidence for an association with fertility in Brahman cattle (Bos taurus indicus) or closely related breeds. We examine the expression variation of the 13 genes that are associated with cattle fertility using RNA-seq, CAGE-seq, and ISO-seq data from 11 different tissue samples from an adult Brahman cow and a Brahman fetus. Tissues examined include blood, liver, lung, kidney, muscle, spleen, ovary, and uterus from the cow and liver and lung from the fetus. The analysis revealed several novel isoforms, including seven from SERPINA7. The use of three expression characterization methodologies (5′ cap selected ISO-seq, CAGE-seq, and RNA-seq) allowed the identification of isoforms that varied in their length of 5′ and 3′ untranslated regions, variation otherwise undetectable (collapsed as degraded RNA) in generic isoform identification pipelines. The combinations of different sequencing technologies allowed us to overcome the limitations of relatively low sequence depth in the ISO-seq data. The lower sequence depth of the ISO-seq data was also reflected in the lack of observed expression of some genes that were observed in the CAGE-seq and RNA-seq data from the same tissue. We identified allele specific expression that was tissue-specific in AR, IGF1, SOX9, STAT3, and TAF9B. Finally, we characterized an exon of TAF9B as partially nested within the neighboring gene phosphoglycerate kinase 1. As this study only examined two animals, even more transcriptional variation may be present in a genetically diverse population. This analysis reveals the large amount of transcriptional variation within mammalian fertility genes and illuminates the fact that the transcriptional landscape cannot be fully characterized using a single technology alone.
Collapse
Affiliation(s)
- Elizabeth M. Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Elizabeth M. Ross,
| | - Hari Sanjana
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Loan T. Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - YuanYuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stephen S. Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Ben J. Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
17
|
Schwartz JC, Maccari G, Heimeier D, Hammond JA. Highly-contiguous bovine genomes underpin accurate functional analyses and updated nomenclature of MHC class I. HLA 2021; 99:167-182. [PMID: 34802191 DOI: 10.1111/tan.14494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) class I region of cattle is both highly polymorphic and, unlike many species, highly variable in gene content between haplotypes. Cattle MHC class I alleles were historically grouped by sequence similarity in the more conserved 3' end of the coding sequence to form phylogenetic allele groups. This has formed the basis of current cattle MHC class I nomenclature. We presently describe and compare five fully assembled MHC class I haplotypes using the latest cattle and yak genome assemblies. Of the five previously described "pseudogenes" in the cattle MHC class I region, Pseudogene 3 is putatively functional in all haplotypes and Pseudogene 6 and Pseudogene 7 are putatively functional in some haplotypes. This was reinforced by evidence of transcription. Based on full gene sequences as well as 3' coding sequence, we identified distinct subgroups of BoLA-3 and BoLA-6 that represent distinct genetic loci. We further examined allele-specific expression using transcriptomic data revealing that certain alleles are consistently weakly expressed compared to others. These observations will help to inform further studies into how MHC class I region variability influences T cell and natural killer cell functions in cattle.
Collapse
Affiliation(s)
| | - Giuseppe Maccari
- The Pirbright Institute, Pirbright, UK.,Anthony Nolan Research Institute, London, UK
| | | | | |
Collapse
|
18
|
Jehl F, Degalez F, Bernard M, Lecerf F, Lagoutte L, Désert C, Coulée M, Bouchez O, Leroux S, Abasht B, Tixier-Boichard M, Bed'hom B, Burlot T, Gourichon D, Bardou P, Acloque H, Foissac S, Djebali S, Giuffra E, Zerjal T, Pitel F, Klopp C, Lagarrigue S. RNA-Seq Data for Reliable SNP Detection and Genotype Calling: Interest for Coding Variant Characterization and Cis-Regulation Analysis by Allele-Specific Expression in Livestock Species. Front Genet 2021; 12:655707. [PMID: 34262593 PMCID: PMC8273700 DOI: 10.3389/fgene.2021.655707] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
In addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study cis-regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest. However, gene expression can be highly variable, and filters for SNP detection using the popular GATK toolkit are not yet standardized, making SNP detection and genotype calling by RNA-seq a challenging endeavor. We compared SNP calling results using GATK suggested filters, on two chicken populations for which both RNA-seq and DNA-seq data were available for the same samples of the same tissue. We showed, in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%) and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data from one tissue can be used to (i) detect SNPs with a strong predicted impact on proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression, with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze population genetic using such SNPs located in expressed regions. This work shows that RNA-seq data can be used with good confidence to detect SNPs and associated GT within various populations and used them for different analyses as GTEx studies.
Collapse
Affiliation(s)
- Frédéric Jehl
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Maria Bernard
- INRAE, SIGENAE, Genotoul Bioinfo MIAT, Castanet-Tolosan, France.,INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | | | | | - Colette Désert
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Manon Coulée
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Sophie Leroux
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | | | - Bertrand Bed'hom
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | | | | | - Philippe Bardou
- INRAE, SIGENAE, Genotoul Bioinfo MIAT, Castanet-Tolosan, France
| | - Hervé Acloque
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Sylvain Foissac
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Sarah Djebali
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Elisabetta Giuffra
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Tatiana Zerjal
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Frédérique Pitel
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | | | | |
Collapse
|
19
|
Prowse-Wilkins CP, Wang J, Xiang R, Garner JB, Goddard ME, Chamberlain AJ. Putative Causal Variants Are Enriched in Annotated Functional Regions From Six Bovine Tissues. Front Genet 2021; 12:664379. [PMID: 34249087 PMCID: PMC8260860 DOI: 10.3389/fgene.2021.664379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic variants which affect complex traits (causal variants) are thought to be found in functional regions of the genome. Identifying causal variants would be useful for predicting complex trait phenotypes in dairy cows, however, functional regions are poorly annotated in the bovine genome. Functional regions can be identified on a genome-wide scale by assaying for post-translational modifications to histone proteins (histone modifications) and proteins interacting with the genome (e.g., transcription factors) using a method called Chromatin immunoprecipitation followed by sequencing (ChIP-seq). In this study ChIP-seq was performed to find functional regions in the bovine genome by assaying for four histone modifications (H3K4Me1, H3K4Me3, H3K27ac, and H3K27Me3) and one transcription factor (CTCF) in 6 tissues (heart, kidney, liver, lung, mammary and spleen) from 2 to 3 lactating dairy cows. Eighty-six ChIP-seq samples were generated in this study, identifying millions of functional regions in the bovine genome. Combinations of histone modifications and CTCF were found using ChromHMM and annotated by comparing with active and inactive genes across the genome. Functional marks differed between tissues highlighting areas which might be particularly important to tissue-specific regulation. Supporting the cis-regulatory role of functional regions, the read counts in some ChIP peaks correlated with nearby gene expression. The functional regions identified in this study were enriched for putative causal variants as seen in other species. Interestingly, regions which correlated with gene expression were particularly enriched for potential causal variants. This supports the hypothesis that complex traits are regulated by variants that alter gene expression. This study provides one of the largest ChIP-seq annotation resources in cattle including, for the first time, in the mammary gland of lactating cows. By linking regulatory regions to expression QTL and trait QTL we demonstrate a new strategy for identifying causal variants in cattle.
Collapse
Affiliation(s)
- Claire P Prowse-Wilkins
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Jianghui Wang
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, Australia
| | - Michael E Goddard
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, Australia
| |
Collapse
|
20
|
Genomic Imprinting at the Porcine PLAGL1 Locus and the Orthologous Locus in the Human. Genes (Basel) 2021; 12:genes12040541. [PMID: 33918057 PMCID: PMC8069715 DOI: 10.3390/genes12040541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Implementation of genomic imprinting in mammals often results in cis-acting silencing of a gene cluster and monoallelic expression, which are important for mammalian growth and function. Compared with widely documented imprinting status in humans and mice, current understanding of genomic imprinting in pigs is relatively limited. The objectives of this study were to identify DNA methylation status and allelic expression of alternative spliced isoforms at the porcine PLAGL1 locus and assess the conservation of the locus compared to the orthologous human locus. DNA methylome and transcriptome were constructed using porcine parthenogenetic or biparental control embryos. Using methylome, differentially methylated regions between those embryos were identified. Alternative splicing was identified by differential splicing analysis, and monoallelic expression was examined using single nucleotide polymorphism sites. Moreover, topological boundary regions were identified by analyzing CTCF binding sites and compared with the boundary of human orthologous locus. As a result, it was revealed that the monoallelic expression of the PLAGL1 gene in porcine embryos via genomic imprinting was maintained in the adult stage. The porcine PLAGL1 locus was largely conserved in regard to maternal hypermethylation, tissue distribution of mRNA expression, monoallelic expression, and biallelic CTCF-binding, with exceptions on transcript isoforms produced by alternative splicing instead of alternative promoter usage. These findings laid the groundwork for comparative studies on the imprinted PLAGL1 gene and related regulatory mechanisms across species.
Collapse
|
21
|
Sequence-based GWAS and post-GWAS analyses reveal a key role of SLC37A1, ANKH, and regulatory regions on bovine milk mineral content. Sci Rep 2021; 11:7537. [PMID: 33824377 PMCID: PMC8024349 DOI: 10.1038/s41598-021-87078-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
The mineral composition of bovine milk plays an important role in determining its nutritional and cheese-making value. Concentrations of the main minerals predicted from mid-infrared spectra produced during milk recording, combined with cow genotypes, provide a unique opportunity to decipher the genetic determinism of these traits. The present study included 1 million test-day predictions of Ca, Mg, P, K, Na, and citrate content from 126,876 Montbéliarde cows, of which 19,586 had genotype data available. All investigated traits were highly heritable (0.50-0.58), with the exception of Na (0.32). A sequence-based genome-wide association study (GWAS) detected 50 QTL (18 affecting two to five traits) and positional candidate genes and variants, mostly located in non-coding sequences. In silico post-GWAS analyses highlighted 877 variants that could be regulatory SNPs altering transcription factor (TF) binding sites or located in non-coding RNA (mainly lncRNA). Furthermore, we found 47 positional candidate genes and 45 TFs highly expressed in mammary gland compared to 90 other bovine tissues. Among the mammary-specific genes, SLC37A1 and ANKH, encoding proteins involved in ion transport were located in the most significant QTL. This study therefore highlights a comprehensive set of functional candidate genes and variants that affect milk mineral content.
Collapse
|
22
|
Identification of Genomic Regions Associated with Concentrations of Milk Fat, Protein, Urea and Efficiency of Crude Protein Utilization in Grazing Dairy Cows. Genes (Basel) 2021; 12:genes12030456. [PMID: 33806889 PMCID: PMC8004844 DOI: 10.3390/genes12030456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 01/01/2023] Open
Abstract
The objective of this study was to identify genomic regions associated with milk fat percentage (FP), crude protein percentage (CPP), urea concentration (MU) and efficiency of crude protein utilization (ECPU: ratio between crude protein yield in milk and dietary crude protein intake) using grazing, mixed-breed, dairy cows in New Zealand. Phenotypes from 634 Holstein Friesian, Jersey or crossbred cows were obtained from two herds at Massey University. A subset of 490 of these cows was genotyped using Bovine Illumina 50K SNP-chips. Two genome-wise association approaches were used, a single-locus model fitted to data from 490 cows and a single-step Bayes C model fitted to data from all 634 cows. The single-locus analysis was performed with the Efficient Mixed-Model Association eXpedited model as implemented in the SVS package. Single nucleotide polymorphisms (SNPs) with genome-wide association p-values ≤ 1.11 × 10−6 were considered as putative quantitative trait loci (QTL). The Bayes C analysis was performed with the JWAS package and 1-Mb genomic windows containing SNPs that explained > 0.37% of the genetic variance were considered as putative QTL. Candidate genes within 100 kb from the identified SNPs in single-locus GWAS or the 1-Mb windows were identified using gene ontology, as implemented in the Ensembl Genome Browser. The genes detected in association with FP (MGST1, DGAT1, CEBPD, SLC52A2, GPAT4, and ACOX3) and CPP (DGAT1, CSN1S1, GOSR2, HERC6, and IGF1R) were identified as candidates. Gene ontology revealed six novel candidate genes (GMDS, E2F7, SIAH1, SLC24A4, LGMN, and ASS1) significantly associated with MU whose functions were in protein catabolism, urea cycle, ion transportation and N excretion. One novel candidate gene was identified in association with ECPU (MAP3K1) that is involved in post-transcriptional modification of proteins. The findings should be validated using a larger population of New Zealand grazing dairy cows.
Collapse
|
23
|
Tomlinson MJ, Polson SW, Qiu J, Lake JA, Lee W, Abasht B. Investigation of allele specific expression in various tissues of broiler chickens using the detection tool VADT. Sci Rep 2021; 11:3968. [PMID: 33597613 PMCID: PMC7889858 DOI: 10.1038/s41598-021-83459-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 02/01/2021] [Indexed: 12/30/2022] Open
Abstract
Differential abundance of allelic transcripts in a diploid organism, commonly referred to as allele specific expression (ASE), is a biologically significant phenomenon and can be examined using single nucleotide polymorphisms (SNPs) from RNA-seq. Quantifying ASE aids in our ability to identify and understand cis-regulatory mechanisms that influence gene expression, and thereby assist in identifying causal mutations. This study examines ASE in breast muscle, abdominal fat, and liver of commercial broiler chickens using variants called from a large sub-set of the samples (n = 68). ASE analysis was performed using a custom software called VCF ASE Detection Tool (VADT), which detects ASE of biallelic SNPs using a binomial test. On average ~ 174,000 SNPs in each tissue passed our filtering criteria and were considered informative, of which ~ 24,000 (~ 14%) showed ASE. Of all ASE SNPs, only 3.7% exhibited ASE in all three tissues, with ~ 83% showing ASE specific to a single tissue. When ASE genes (genes containing ASE SNPs) were compared between tissues, the overlap among all three tissues increased to 20.1%. Our results indicate that ASE genes show tissue-specific enrichment patterns, but all three tissues showed enrichment for pathways involved in translation.
Collapse
Affiliation(s)
- M Joseph Tomlinson
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | - Shawn W Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, USA.,Department of Biological Sciences, University of Delaware, Newark, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | - Jing Qiu
- Department of Applied Economics and Statistics, University of Delaware, Newark, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | - Juniper A Lake
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA.,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA
| | - William Lee
- Maple Leaf Farms, Inc., Leesburg, IN, 46538, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA. .,Center for Bioinformatics and Computational Biology, University of Delaware, Newark, USA.
| |
Collapse
|
24
|
Dorji J, Vander Jagt CJ, Garner JB, Marett LC, Mason BA, Reich CM, Xiang R, Clark EL, Cocks BG, Chamberlain AJ, MacLeod IM, Daetwyler HD. Expression of mitochondrial protein genes encoded by nuclear and mitochondrial genomes correlate with energy metabolism in dairy cattle. BMC Genomics 2020; 21:720. [PMID: 33076826 PMCID: PMC7574280 DOI: 10.1186/s12864-020-07018-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mutations in the mitochondrial genome have been implicated in mitochondrial disease, often characterized by impaired cellular energy metabolism. Cellular energy metabolism in mitochondria involves mitochondrial proteins (MP) from both the nuclear (NuMP) and mitochondrial (MtMP) genomes. The expression of MP genes in tissues may be tissue specific to meet varying specific energy demands across the tissues. Currently, the characteristics of MP gene expression in tissues of dairy cattle are not well understood. In this study, we profile the expression of MP genes in 29 adult and six foetal tissues in dairy cattle using RNA sequencing and gene expression analyses: particularly differential gene expression and co-expression network analyses. Results MP genes were differentially expressed (DE; over-expressed or under-expressed) across tissues in cattle. All 29 tissues showed DE NuMP genes in varying proportions of over-expression and under-expression. On the other hand, DE of MtMP genes was observed in < 50% of tissues and notably MtMP genes within a tissue was either all over-expressed or all under-expressed. A high proportion of NuMP (up to 60%) and MtMP (up to 100%) genes were over-expressed in tissues with expected high metabolic demand; heart, skeletal muscles and tongue, and under-expressed (up to 45% of NuMP, 77% of MtMP genes) in tissues with expected low metabolic rates; leukocytes, thymus, and lymph nodes. These tissues also invariably had the expression of all MtMP genes in the direction of dominant NuMP genes expression. The NuMP and MtMP genes were highly co-expressed across tissues and co-expression of genes in a cluster were non-random and functionally enriched for energy generation pathway. The differential gene expression and co-expression patterns were validated in independent cow and sheep datasets. Conclusions The results of this study support the concept that there are biological interaction of MP genes from the mitochondrial and nuclear genomes given their over-expression in tissues with high energy demand and co-expression in tissues. This highlights the importance of considering MP genes from both genomes in future studies related to mitochondrial functions and traits related to energy metabolism.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Josie B Garner
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3822, Australia
| | - Leah C Marett
- Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, VIC, 3822, Australia
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Ruidong Xiang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Emily L Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
25
|
Cai W, Shi L, Cao M, Shen D, Li J, Zhang S, Song J. Pan-RNA editing analysis of the bovine genome. RNA Biol 2020; 18:368-381. [PMID: 32794424 DOI: 10.1080/15476286.2020.1807724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
RNA editing is an essential process for modifying nucleotides at specific RNA sites during post-transcription in many species. However, its genomic landscape and characters have not been systematically explored in the bovine genome. In the present study, we characterized global RNA editing profiles from 50 samples of cattle and revealed a range of RNA editing profiles in different tissues. Most editing sites were significantly enriched in specific BovB-derived SINEs, especially the dispersed Bov-tAs, which likely forms dsRNA structures similar to the primate-specific Alu elements. Interestingly, ADARB1 (ADAR2) was observed to be predominant in determining global editing in the bovine genome. Common RNA editing sites among similar tissues were associated with tissue-specific biological functions. Taken together, the wide distribution of RNA editing sites and their tissue-specific characters implied the bovine RNA editome should be further explored.
Collapse
Affiliation(s)
- Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal and Avian Science, University of Maryland, College Park, USA.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lijun Shi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingyue Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dan Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, USA
| |
Collapse
|
26
|
Costilla R, Kemper KE, Byrne EM, Porto-Neto LR, Carvalheiro R, Purfield DC, Doyle JL, Berry DP, Moore SS, Wray NR, Hayes BJ. Genetic control of temperament traits across species: association of autism spectrum disorder risk genes with cattle temperament. Genet Sel Evol 2020; 52:51. [PMID: 32842956 PMCID: PMC7448488 DOI: 10.1186/s12711-020-00569-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/07/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Temperament traits are of high importance across species. In humans, temperament or personality traits correlate with psychological traits and psychiatric disorders. In cattle, they impact animal welfare, product quality and human safety, and are therefore of direct commercial importance. We hypothesized that genetic factors that contribute to variation in temperament among individuals within a species will be shared between humans and cattle. Using imputed whole-genome sequence data from 9223 beef cattle from three cohorts, a series of genome-wide association studies was undertaken on cattle flight time, a temperament phenotype measured as the time taken for an animal to cover a short-fixed distance after release from an enclosure. We also investigated the association of cattle temperament with polymorphisms in bovine orthologs of risk genes for neuroticism, schizophrenia, autism spectrum disorders (ASD), and developmental delay disorders in humans. RESULTS Variants with the strongest associations were located in the bovine orthologous region that is involved in several behavioural and cognitive disorders in humans. These variants were also partially validated in independent cattle cohorts. Genes in these regions (BARHL2, NDN, SNRPN, MAGEL2, ABCA12, KIFAP3, TOPAZ1, FZD3, UBE3A, and GABRA5) were enriched for the GO term neuron migration and were differentially expressed in brain and pituitary tissues in humans. Moreover, variants within 100 kb of ASD susceptibility genes were associated with cattle temperament and explained 6.5% of the total additive genetic variance in the largest cattle cohort. The ASD genes with the most significant associations were GABRB3 and CUL3. Using the same 100 kb window, a weak association was found with polymorphisms in schizophrenia risk genes and no association with polymorphisms in neuroticism and developmental delay disorders risk genes. CONCLUSIONS Our analysis showed that genes identified in a meta-analysis of cattle temperament contribute to neuron development functions and are differentially expressed in human brain tissues. Furthermore, some ASD susceptibility genes are associated with cattle temperament. These findings provide evidence that genetic control of temperament might be shared between humans and cattle and highlight the potential for future analyses to leverage results between species.
Collapse
Affiliation(s)
- Roy Costilla
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Kathryn E. Kemper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Enda M. Byrne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Brisbane, Australia
| | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, Sao Paulo State University, Sao Paolo, Brazil
| | | | - Jennifer L. Doyle
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Donagh P. Berry
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Stephen S. Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Ben J. Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
de Souza MM, Zerlotini A, Rocha MIP, Bruscadin JJ, Diniz WJDS, Cardoso TF, Cesar ASM, Afonso J, Andrade BGN, Mudadu MDA, Mokry FB, Tizioto PC, de Oliveira PSN, Niciura SCM, Coutinho LL, Regitano LCDA. Allele-specific expression is widespread in Bos indicus muscle and affects meat quality candidate genes. Sci Rep 2020; 10:10204. [PMID: 32576896 PMCID: PMC7311436 DOI: 10.1038/s41598-020-67089-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/20/2020] [Indexed: 11/09/2022] Open
Abstract
Differences between the expression of the two alleles of a gene are known as allele-specific expression (ASE), a common event in the transcriptome of mammals. Despite ASE being a source of phenotypic variation, its occurrence and effects on genetic prediction of economically relevant traits are still unexplored in bovines. Furthermore, as ASE events are likely driven by cis-regulatory mutations, scanning them throughout the bovine genome represents a significant step to elucidate the mechanisms underlying gene expression regulation. To address this question in a Bos indicus population, we built the ASE profile of the skeletal muscle tissue of 190 Nelore steers, using RNA sequencing data and SNPs genotypes from the Illumina BovineHD BeadChip (770 K bp). After quality control, 820 SNPs showed at least one sample with ASE. These SNPs were widespread among all autosomal chromosomes, being 32.01% found in 3'UTR and 31.41% in coding regions. We observed a considerable variation of ASE profile among individuals, which highlighted the need for biological replicates in ASE studies. Functional analysis revealed that ASE genes play critical biological functions in the development and maintenance of muscle tissue. Additionally, some of these genes were previously reported as associated with beef production and quality traits in livestock, thus indicating a possible source of bias on genomic predictions for these traits.
Collapse
Affiliation(s)
- Marcela Maria de Souza
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Adhemar Zerlotini
- Bioinformatic Multi-user Laboratory, Embrapa Informática Agropecuária, Campinas, SP, Brazil
| | - Marina Ibelli Pereira Rocha
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Jennifer Jessica Bruscadin
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Wellison Jarles da Silva Diniz
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Juliana Afonso
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Fabiana Barichello Mokry
- Animal Biotechnology, Embrapa Pecuária Sudeste, São Carlos, SP, Brazil.,Post-graduate Program of Evolutionary Genetics and Molecular Biology, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Wang Q, Jia Y, Wang Y, Jiang Z, Zhou X, Zhang Z, Nie C, Li J, Yang N, Qu L. Evolution of cis- and trans-regulatory divergence in the chicken genome between two contrasting breeds analyzed using three tissue types at one-day-old. BMC Genomics 2019; 20:933. [PMID: 31805870 PMCID: PMC6896592 DOI: 10.1186/s12864-019-6342-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Gene expression variation is a key underlying factor influencing phenotypic variation, and can occur via cis- or trans-regulation. To understand the role of cis- and trans-regulatory variation on population divergence in chicken, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibit major differences in body size and reproductive traits, and used them to determine the degree of cis versus trans variation in the brain, liver, and muscle tissue of male and female 1-day-old specimens. Results We provided an overview of how transcriptomes are regulated in hybrid progenies of two contrasting breeds based on allele specific expression analysis. Compared with cis-regulatory divergence, trans-acting genes were more extensive in the chicken genome. In addition, considerable compensatory cis- and trans-regulatory changes exist in the chicken genome. Most importantly, stronger purifying selection was observed on genes regulated by trans-variations than in genes regulated by the cis elements. Conclusions We present a pipeline to explore allele-specific expression in hybrid progenies of inbred lines without a specific reference genome. Our research is the first study to describe the regulatory divergence between two contrasting breeds. The results suggest that artificial selection associated with domestication in chicken could have acted more on trans-regulatory divergence than on cis-regulatory divergence.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Department of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Jiang
- Department of Animal Sciences, Center for Reproductive Biology, Veterinary and Biomedical Research Building, Washington State University, Pullman, USA
| | - Xiang Zhou
- College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zebin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changsheng Nie
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
29
|
Hayes BJ, Daetwyler HD. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annu Rev Anim Biosci 2019; 7:89-102. [PMID: 30508490 DOI: 10.1146/annurev-animal-020518-115024] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 1000 Bull Genomes Project is a collection of whole-genome sequences from 2,703 individuals capturing a significant proportion of the world's cattle diversity. So far, 84 million single-nucleotide polymorphisms (SNPs) and 2.5 million small insertion deletions have been identified in the collection, a very high level of genetic diversity. The project has greatly accelerated the identification of deleterious mutations for a range of genetic diseases, as well as for embryonic lethals. The rate of identification of causal mutations for complex traits has been slower, reflecting the typically small effect size of these mutations and the fact that many are likely in as-yet-unannotated regulatory regions. Both the deleterious mutations that have been identified and the mutations associated with complex trait variation have been included in low-cost SNP array designs, and these arrays are being genotyped in tens of thousands of dairy and beef cattle, enabling management of deleterious mutations in these populations as well as genomic selection.
Collapse
Affiliation(s)
- Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4067, Australia; .,Agriculture Victoria Research, AgriBio, Bundoora, Victoria 3083, Australia
| | - Hans D Daetwyler
- Agriculture Victoria Research, AgriBio, Bundoora, Victoria 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
30
|
Farries G, Bryan K, McGivney CL, McGettigan PA, Gough KF, Browne JA, MacHugh DE, Katz LM, Hill EW. Expression Quantitative Trait Loci in Equine Skeletal Muscle Reveals Heritable Variation in Metabolism and the Training Responsive Transcriptome. Front Genet 2019; 10:1215. [PMID: 31850069 PMCID: PMC6902038 DOI: 10.3389/fgene.2019.01215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/04/2019] [Indexed: 01/10/2023] Open
Abstract
While over ten thousand genetic loci have been associated with phenotypic traits and inherited diseases in genome-wide association studies, in most cases only a relatively small proportion of the trait heritability is explained and biological mechanisms underpinning these traits have not been clearly identified. Expression quantitative trait loci (eQTL) are subsets of genomic loci shown experimentally to influence gene expression. Since gene expression is one of the primary determinants of phenotype, the identification of eQTL may reveal biologically relevant loci and provide functional links between genomic variants, gene expression and ultimately phenotype. Skeletal muscle (gluteus medius) gene expression was quantified by RNA-seq for 111 Thoroughbreds (47 male, 64 female) in race training at a single training establishment sampled at two time-points: at rest (n = 92) and four hours after high-intensity exercise (n = 77); n = 60 were sampled at both time points. Genotypes were generated from the Illumina Equine SNP70 BeadChip. Applying a False Discovery Rate (FDR) corrected P-value threshold (PFDR < 0.05), association tests identified 3,583 cis-eQTL associated with expression of 1,456 genes at rest; 4,992 cis-eQTL associated with the expression of 1,922 genes post-exercise; 1,703 trans-eQTL associated with 563 genes at rest; and 1,219 trans-eQTL associated with 425 genes post-exercise. The gene with the highest cis-eQTL association at both time-points was the endosome-associated-trafficking regulator 1 gene (ENTR1; Rest: PFDR = 3.81 × 10-27, Post-exercise: PFDR = 1.66 × 10-24), which has a potential role in the transcriptional regulation of the solute carrier family 2 member 1 glucose transporter protein (SLC2A1). Functional analysis of genes with significant eQTL revealed significant enrichment for cofactor metabolic processes. These results suggest heritable variation in genomic elements such as regulatory sequences (e.g. gene promoters, enhancers, silencers), microRNA and transcription factor genes, which are associated with metabolic function and may have roles in determining end-point muscle and athletic performance phenotypes in Thoroughbred horses. The incorporation of the eQTL identified with genome and transcriptome-wide association may reveal useful biological links between genetic variants and their impact on traits of interest, such as elite racing performance and adaptation to training.
Collapse
Affiliation(s)
- Gabriella Farries
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Kenneth Bryan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Paul A McGettigan
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Katie F Gough
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John A Browne
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lisa Michelle Katz
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Emmeline W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,Research and Development, Plusvital Ltd., Dublin, Ireland
| |
Collapse
|
31
|
Banos G, Clark EL, Bush SJ, Dutta P, Bramis G, Arsenos G, Hume DA, Psifidi A. Genetic and genomic analyses underpin the feasibility of concomitant genetic improvement of milk yield and mastitis resistance in dairy sheep. PLoS One 2019; 14:e0214346. [PMID: 31765378 PMCID: PMC6876840 DOI: 10.1371/journal.pone.0214346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022] Open
Abstract
Milk yield is the most important dairy sheep trait and constitutes the key genetic improvement goal via selective breeding. Mastitis is one of the most prevalent diseases, significantly impacting on animal welfare, milk yield and quality, while incurring substantial costs. Our objectives were to determine the feasibility of a concomitant genetic improvement programme for enhanced milk production and resistance to mastitis. Individual records for milk yield, and four mastitis-related traits (milk somatic cell count, California Mastitis Test score, total viable bacterial count in milk and clinical mastitis presence) were collected monthly throughout lactation for 609 ewes of the Chios breed. All ewes were genotyped with a mastitis specific custom-made 960 single nucleotide polymorphism (SNP) array. We performed targeted genomic association studies, (co)variance component estimation and pathway enrichment analysis, and characterised gene expression levels and the extent of allelic expression imbalance. Presence of heritable variation for milk yield was confirmed. There was no significant genetic correlation between milk yield and mastitis traits. Environmental factors appeared to favour both milk production and udder health. There were no overlapping of SNPs associated with mastitis resistance and milk yield in Chios sheep. Furthermore, four distinct Quantitative Trait Loci (QTLs) affecting milk yield were detected on chromosomes 2, 12, 16 and 19, in locations other than those previously identified to affect mastitis resistance. Five genes (DNAJA1, GHR, LYPLA1, NUP35 and OXCT1) located within the QTL regions were highly expressed in both the mammary gland and milk transcriptome, suggesting involvement in milk synthesis and production. Furthermore, the expression of two of these genes (NUP35 and OXCT1) was enriched in immune tissues implying a potentially pleiotropic effect or likely role in milk production during udder infection, which needs to be further elucidated in future studies. In conclusion, the absence of genetic antagonism between milk yield and mastitis resistance suggests that simultaneous genetic improvement of both traits be achievable.
Collapse
Affiliation(s)
- Georgios Banos
- Scotland’s Rural College, Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Emily L. Clark
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, England, United Kingdom
| | - Prasun Dutta
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
| | - Georgios Bramis
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Arsenos
- School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - David A. Hume
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, Australia
| | - Androniki Psifidi
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom
- Royal Veterinary College, University of London, Hatfield, England, United Kingdom
- * E-mail: ,
| |
Collapse
|
32
|
Salavati M, Bush SJ, Palma-Vera S, McCulloch MEB, Hume DA, Clark EL. Elimination of Reference Mapping Bias Reveals Robust Immune Related Allele-Specific Expression in Crossbred Sheep. Front Genet 2019; 10:863. [PMID: 31608110 PMCID: PMC6761296 DOI: 10.3389/fgene.2019.00863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Pervasive allelic variation at both gene and single nucleotide level (SNV) between individuals is commonly associated with complex traits in humans and animals. Allele-specific expression (ASE) analysis, using RNA-Seq, can provide a detailed annotation of allelic imbalance and infer the existence of cis-acting transcriptional regulation. However, variant detection in RNA-Seq data is compromised by biased mapping of reads to the reference DNA sequence. In this manuscript, we describe an unbiased standardized computational pipeline for allele-specific expression analysis using RNA-Seq data, which we have adapted and developed using tools available under open license. The analysis pipeline we present is designed to minimize reference bias while providing accurate profiling of allele-specific expression across tissues and cell types. Using this methodology, we were able to profile pervasive allelic imbalance across tissues and cell types, at both the gene and SNV level, in Texel×Scottish Blackface sheep, using the sheep gene expression atlas data set. ASE profiles were pervasive in each sheep and across all tissue types investigated. However, ASE profiles shared across tissues were limited, and instead, they tended to be highly tissue-specific. These tissue-specific ASE profiles may underlie the expression of economically important traits and could be utilized as weighted SNVs, for example, to improve the accuracy of genomic selection in breeding programs for sheep. An additional benefit of the pipeline is that it does not require parental genotypes and can therefore be applied to other RNA-Seq data sets for livestock, including those available on the Functional Annotation of Animal Genomes (FAANG) data portal. This study is the first global characterization of moderate to extreme ASE in tissues and cell types from sheep. We have applied a robust methodology for ASE profiling to provide both a novel analysis of the multi-dimensional sheep gene expression atlas data set and a foundation for identifying the regulatory and expressed elements of the genome that are driving complex traits in livestock.
Collapse
Affiliation(s)
- Mazdak Salavati
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Stephen J. Bush
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Sergio Palma-Vera
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Reproductive Biology, Dummerstorf, Germany
| | - Mary E. B. McCulloch
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Emily L. Clark
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| |
Collapse
|
33
|
Young R, Lefevre L, Bush SJ, Joshi A, Singh SH, Jadhav SK, Dhanikachalam V, Lisowski ZM, Iamartino D, Summers KM, Williams JL, Archibald AL, Gokhale S, Kumar S, Hume DA. A Gene Expression Atlas of the Domestic Water Buffalo ( Bubalus bubalis). Front Genet 2019; 10:668. [PMID: 31428126 PMCID: PMC6689995 DOI: 10.3389/fgene.2019.00668] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
The domestic water buffalo (Bubalus bubalis) makes a major contribution to the global agricultural economy in the form of milk, meat, hides, and draught power. The global water buffalo population is predominantly found in Asia, and per head of population more people depend upon the buffalo than on any other livestock species. Despite its agricultural importance, there are comparatively fewer genomic and transcriptomic resources available for buffalo than for other livestock species. We have generated a large-scale gene expression atlas covering multiple tissue and cell types from all major organ systems collected from three breeds of riverine water buffalo (Mediterranean, Pandharpuri and Bhadawari) and used the network analysis tool Graphia Professional to identify clusters of genes with similar expression profiles. Alongside similar data, we and others have generated for ruminants as part of the Functional Annotation of Animal Genomes Consortium; this comprehensive transcriptome supports functional annotation and comparative analysis of the water buffalo genome.
Collapse
Affiliation(s)
- Rachel Young
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen J. Bush
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Akshay Joshi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Velu Dhanikachalam
- Central Research Station, BAIF Development Research Foundation, Pune, India
| | - Zofia M. Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Kim M. Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - John L. Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Alan L. Archibald
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Suresh Gokhale
- Central Research Station, BAIF Development Research Foundation, Pune, India
| | - Satish Kumar
- Centre for Cellular and Molecular Biology, Hyderabad, India
- School of Life Science, Central University of Haryana, Mahendergargh, India
| | - David A. Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
34
|
Esmonde-White C, Yaqubi M, Bilodeau PA, Cui QL, Pernin F, Larochelle C, Ghadiri M, Xu YKT, Kennedy TE, Hall J, Healy LM, Antel JP. Distinct Function-Related Molecular Profile of Adult Human A2B5-Positive Pre-Oligodendrocytes Versus Mature Oligodendrocytes. J Neuropathol Exp Neurol 2019; 78:468-479. [DOI: 10.1093/jnen/nlz026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | | | - Qiao Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | - Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | | | - Mahtab Ghadiri
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Yu Kang T Xu
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | - Timothy E Kennedy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | - Jeffery Hall
- Department of Neurosurgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Luke M Healy
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University
| |
Collapse
|
35
|
Guillocheau GM, El Hou A, Meersseman C, Esquerré D, Rebours E, Letaief R, Simao M, Hypolite N, Bourneuf E, Bruneau N, Vaiman A, Vander Jagt CJ, Chamberlain AJ, Rocha D. Survey of allele specific expression in bovine muscle. Sci Rep 2019; 9:4297. [PMID: 30862965 PMCID: PMC6414783 DOI: 10.1038/s41598-019-40781-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/22/2019] [Indexed: 02/04/2023] Open
Abstract
Allelic imbalance is a common phenomenon in mammals that plays an important role in gene regulation. An Allele Specific Expression (ASE) approach can be used to detect variants with a cis-regulatory effect on gene expression. In cattle, this type of study has only been done once in Holstein. In our study we performed a genome-wide analysis of ASE in 19 Limousine muscle samples. We identified 5,658 ASE SNPs (Single Nucleotide Polymorphisms showing allele specific expression) in 13% of genes with detectable expression in the Longissimus thoraci muscle. Interestingly we found allelic imbalance in AOX1, PALLD and CAST genes. We also found 2,107 ASE SNPs located within genomic regions associated with meat or carcass traits. In order to identify causative cis-regulatory variants explaining ASE we searched for SNPs altering binding sites of transcription factors or microRNAs. We identified one SNP in the 3’UTR region of PRNP that could be a causal regulatory variant modifying binding sites of several miRNAs. We showed that ASE is frequent within our muscle samples. Our data could be used to elucidate the molecular mechanisms underlying gene expression imbalance.
Collapse
Affiliation(s)
| | - Abdelmajid El Hou
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Cédric Meersseman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,GMA, INRA, Université de Limoges, 87060, Limoges, France
| | - Diane Esquerré
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, 31326, Castanet Tolosan, France
| | - Emmanuelle Rebours
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Rabia Letaief
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Morgane Simao
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Nicolas Hypolite
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Emmanuelle Bourneuf
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,CEA, DRF/iRCM/SREIT/LREG, Jouy-en-Josas, France
| | - Nicolas Bruneau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | | | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBiociences Centre, Bundoora, Victoria, Australia
| | - Dominique Rocha
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
36
|
Matos I, Machado MP, Schartl M, Coelho MM. Allele-specific expression variation at different ploidy levels in Squalius alburnoides. Sci Rep 2019; 9:3688. [PMID: 30842567 PMCID: PMC6403402 DOI: 10.1038/s41598-019-40210-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/07/2019] [Indexed: 11/09/2022] Open
Abstract
Allopolyploid plants are long known to be subject to a homoeolog expression bias of varying degree. The same phenomenon was only much later suspected to occur also in animals based on studies of single selected genes in an allopolyploid vertebrate, the Iberian fish Squalius alburnoides. Consequently, this species became a good model for understanding the evolution of gene expression regulation in polyploid vertebrates. Here, we analyzed for the first time genome-wide allele-specific expression data from diploid and triploid hybrids of S. alburnoides and compared homoeolog expression profiles of adult livers and of juveniles. Co-expression of alleles from both parental genomic types was observed for the majority of genes, but with marked homoeolog expression bias, suggesting homoeolog specific reshaping of expression level patterns in hybrids. Complete silencing of one allele was also observed irrespective of ploidy level, but not transcriptome wide as previously speculated. Instead, it was found only in a restricted number of genes, particularly ones with functions related to mitochondria and ribosomes. This leads us to hypothesize that allelic silencing may be a way to overcome intergenomic gene expression interaction conflicts, and that homoeolog expression bias may be an important mechanism in the achievement of sustainable genomic interactions, mandatory to the success of allopolyploid systems, as in S. alburnoides.
Collapse
Affiliation(s)
- Isa Matos
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal.,University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany
| | - Miguel P Machado
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal.,University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany.,Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manfred Schartl
- University of Würzburg, Biozentrum, Physiological Chemistry, Am Hubland, Würzburg, Germany. .,Comprehensive Cancer Center, University Clinic Würzburg, Josef Schneider Straße 6, 97074, Würzburg, Germany. .,Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, USA.
| | - Maria Manuela Coelho
- Faculdade de Ciências, cE3c- Centro de Ecologia, Evolução e Alterações Ambientais, Departamento de Biologia Animal, Universidade de Lisboa Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
37
|
Liu Z, Wang T, Pryce JE, MacLeod IM, Hayes BJ, Chamberlain AJ, Jagt CV, Reich CM, Mason BA, Rochfort S, Cocks BG. Fine-mapping sequence mutations with a major effect on oligosaccharide content in bovine milk. Sci Rep 2019; 9:2137. [PMID: 30765736 PMCID: PMC6376028 DOI: 10.1038/s41598-019-38488-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/20/2018] [Indexed: 11/18/2022] Open
Abstract
Human milk contains abundant oligosaccharides (OS) which are believed to have strong health benefits for neonates. OS are a minor component of bovine milk and little is known about how the production of OS is regulated in the bovine mammary gland. We have measured the abundance of 12 major OS in milk of 360 cows, which had high density SNP marker genotypes. Most of the OS were found to be highly heritable (h2 between 50 and 84%). A genome-wide association study allowed us to fine-map several QTL and identify candidate genes with major effects on five OS. Among them, a putative causal mutation close to the ABO gene on Chromosome 11 accounted for approximately 80% of genetic variance for two OS, N-acetylgalactosaminyllactose and lacto-N-neotetraose. This mutation lies very close to a variant associated with the expression levels of ABO. A third QTL mapped close to ST3GAL6 on Chromosome 1 explaining 33% of genetic variation of an abundant OS, 3′-sialyllactose. The presence of major gene effects suggests that targeted marker-assisted selection would lead to a significant increase in the level of these OS in milk. This is the first attempt to map candidate genes and causal mutations for bovine milk OS.
Collapse
Affiliation(s)
- Zhiqian Liu
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Tingting Wang
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Jennie E Pryce
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Ben J Hayes
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, Queensland, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Christy Vander Jagt
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Coralie M Reich
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Brett A Mason
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia
| | - Simone Rochfort
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia. .,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Benjamin G Cocks
- Agriculture Victoria Research, AgriBio, 5 Ring Road, Bundoora, Victoria, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
38
|
Analysis of allele-specific expression of seven candidate genes involved in lipid metabolism in pig skeletal muscle and fat tissues reveals allelic imbalance of ACACA, LEP, SCD, and TNF. J Appl Genet 2019; 60:97-101. [PMID: 30684136 PMCID: PMC6373405 DOI: 10.1007/s13353-019-00485-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
Abstract
Analysis of allele-specific expression may help to elucidate the genetic architecture of complex traits including fat deposition in pigs. Here, we used pyrosequencing to investigate the allele proportions of candidate genes (ACACA, ADIPOR1, FASN, LEP, ME1, SCD, and TNF) involved in regulation of lipid metabolism in two fat deposits (subcutaneous and visceral fat) and longissimus dorsi muscle of pigs representing Polish Large White, Polish Landrace, Duroc, and Pietrain breeds. We detected differential allelic expression of ACACA, LEP, SCD, and TNF in all tissues analyzed. To search for putative cis-regulatory elements involved in allele-specific expression, we quantified the methylation level within CpG islands located in 5′-flanking regions of ACACA and SCD. Comparison between samples showing markedly disproportionate allelic expression and control groups with similar levels of both alleles did not reveal significant differences. We also assessed the association of rs321308225 (c.*195C>A) an SNP located in the 3′UTR of ACACA with its allelic expression in Polish Landrace pigs, but it was not significant. We conclude that allelic imbalance occurs frequently in regard to genes involved in regulation of lipid deposition in pigs, and further studies are necessary to identify cis-regulatory elements affecting ACACA, LEP, SCD, and TNF expression in porcine fat tissues and skeletal muscle.
Collapse
|
39
|
Stachowiak M, Szczerbal I, Flisikowski K. Investigation of allele-specific expression of genes involved in adipogenesis and lipid metabolism suggests complex regulatory mechanisms of PPARGC1A expression in porcine fat tissues. BMC Genet 2018; 19:107. [PMID: 30497374 PMCID: PMC6267897 DOI: 10.1186/s12863-018-0696-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background The expression of genes involved in regulating adipogenesis and lipid metabolism may affect economically important fatness traits in pigs. Allele-specific expression (ASE) reflects imbalance between allelic transcript levels and can be used to identify underlying cis-regulatory elements. ASE has not yet been intensively studied in pigs. The aim of this investigation was to analyze the differential allelic expression of four genes, PPARA, PPARG, SREBF1, and PPARGC1A, which are involved in the regulation of fat deposition in porcine subcutaneous and visceral fat and longissimus dorsi muscle. Results Quantification of allelic proportions by pyrosequencing revealed that both alleles of PPARG and SREBF1 are expressed at similar levels. PPARGC1A showed the greatest ASE imbalance in fat deposits in Polish Large White (PLW), Polish Landrace and Pietrain pigs; and PPARA in PLW pigs. Significant deviations of mean PPARGC1A allelic transcript ratio between cDNA and genomic DNA were detected in all tissues, with the most pronounced difference (p < 0.001) in visceral fat of PLW pigs. To search for potential cis-regulatory elements affecting ASE in the PPARGC1A gene we analyzed the effects of four SNPs (rs337351686, rs340650517, rs336405906 and rs345224049) in the promoter region, but none were associated with ASE in the breeds studied. DNA methylation analysis revealed significant CpG methylation differences between samples showing balanced (allelic transcript ratio ≈1) and imbalanced allelic expression for CpG site at the genomic position in chromosome 8 (SSC8): 18527678 in visceral fat (p = 0.017) and two CpG sites (SSC8:18525215, p = 0.030; SSC8:18525237, p = 0.031) in subcutaneous fat. Conclusions Our analysis of differential allelic expression suggests that PPARGC1A is subjected to cis-regulation in porcine fat tissues. Further studies are necessary to identify other regulatory elements localized outside the PPARGC1A proximal promoter region. Electronic supplementary material The online version of this article (10.1186/s12863-018-0696-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, Liesel-Beckmannstr. 1, 85354, Freising, Germany
| |
Collapse
|
40
|
Giuffra E, Tuggle CK. Functional Annotation of Animal Genomes (FAANG): Current Achievements and Roadmap. Annu Rev Anim Biosci 2018; 7:65-88. [PMID: 30427726 DOI: 10.1146/annurev-animal-020518-114913] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional annotation of genomes is a prerequisite for contemporary basic and applied genomic research, yet farmed animal genomics is deficient in such annotation. To address this, the FAANG (Functional Annotation of Animal Genomes) Consortium is producing genome-wide data sets on RNA expression, DNA methylation, and chromatin modification, as well as chromatin accessibility and interactions. In addition to informing our understanding of genome function, including comparative approaches to elucidate constrained sequence or epigenetic elements, these annotation maps will improve the precision and sensitivity of genomic selection for animal improvement. A scientific community-driven effort has already created a coordinated data collection and analysis enterprise crucial for the success of this global effort. Although it is early in this continuing process, functional data have already been produced and application to genetic improvement reported. The functional annotation delivered by the FAANG initiative will add value and utility to the greatly improved genome sequences being established for domesticated animal species.
Collapse
Affiliation(s)
- Elisabetta Giuffra
- Génétique Animale et Biologie Intégrative (GABI), Institut National de la Recherche Agronomique (INRA), AgroParisTech, Université Paris Saclay, 78350 Jouy-en-Josas, France;
| | | | | |
Collapse
|
41
|
Khansefid M, Pryce JE, Bolormaa S, Chen Y, Millen CA, Chamberlain AJ, Vander Jagt CJ, Goddard ME. Comparing allele specific expression and local expression quantitative trait loci and the influence of gene expression on complex trait variation in cattle. BMC Genomics 2018; 19:793. [PMID: 30390624 PMCID: PMC6215656 DOI: 10.1186/s12864-018-5181-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mutations changing the expression level of a gene, or expression quantitative trait loci (eQTL), can be identified by testing the association between genetic variants and gene expression in multiple individuals (eQTL mapping), or by comparing the expression of the alleles in a heterozygous individual (allele specific expression or ASE analysis). The aims of the study were to find and compare ASE and local eQTL in 4 bovine RNA-sequencing (RNA-Seq) datasets, validate them in an independent ASE study and investigate if they are associated with complex trait variation. RESULTS We present a novel method for distinguishing between ASE driven by polymorphisms in cis and parent of origin effects. We found that single nucleotide polymorphisms (SNPs) driving ASE are also often local eQTL and therefore presumably cis eQTL. These SNPs often, but not always, affect gene expression in multiple tissues and, when they do, the allele increasing expression is usually the same. However, there were systematic differences between ASE and local eQTL and between tissues and breeds. We also found that SNPs significantly associated with gene expression (p < 0.001) were likely to influence some complex traits (p < 0.001), which means that some mutations influence variation in complex traits by changing the expression level of genes. CONCLUSION We conclude that ASE detects phenomenon that overlap with local eQTL, but there are also systematic differences between the SNPs discovered by the two methods. Some mutations influencing complex traits are actually eQTL and can be discovered using RNA-Seq including eQTL in the genes CAST, CAPN1, LCORL and LEPROTL1.
Collapse
Affiliation(s)
- Majid Khansefid
- Department of Agriculture and Food Systems, The University of Melbourne, Parkville, VIC, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.
| | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,La Trobe University, Bundoora, Australia
| | - Sunduimijid Bolormaa
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Yizhou Chen
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Catriona A Millen
- Agricultural Business Research Institute, The University of New England, Armidale, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | | | - Michael E Goddard
- Department of Agriculture and Food Systems, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|
42
|
Logan S, Jiang C, Yan Y, Inagaki Y, Arzua T, Bai X. Propofol Alters Long Non-Coding RNA Profiles in the Neonatal Mouse Hippocampus: Implication of Novel Mechanisms in Anesthetic-Induced Developmental Neurotoxicity. Cell Physiol Biochem 2018; 49:2496-2510. [PMID: 30261491 DOI: 10.1159/000493875] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Propofol induces acute neurotoxicity (e.g., neuroapoptosis) followed by impairment of long-term memory and learning in animals. However, underlying mechanisms remain largely unknown. Long non-coding RNAs (lncRNAs) are found to participate in various pathological processes. We hypothesized that lncRNA profile and the associated signaling pathways were altered, and these changes might be related to the neurotoxicity observed in the neonatal mouse hippocampus following propofol exposure. METHODS In this laboratory experiment, 7-day-old mice were exposed to a subanesthetic dose of propofol for 3 hours, with 4 animals per group. Hippocampal tissues were harvested 3 hours after propofol administration. Neuroapoptosis was analyzed based on caspase 3 activity using a colorimetric assay. A microarray was performed to investigate the profiles of 35,923 lncRNAs and 24,881 messenger RNAs (mRNAs). Representative differentially expressed lncRNAs and mRNAs were validated using reverse transcription quantitative polymerase chain reaction. All mRNAs dysregulated by propofol and the 50 top-ranked, significantly dysregulated lncRNAs were subject to bioinformatics analysis for exploring the potential mechanisms and signaling network of propofol-induced neurotoxicity. RESULTS Propofol induced neuroapoptosis in the hippocampus, with differential expression of 159 lncRNAs and 100 mRNAs (fold change ± 2.0, P< 0.05). Bioinformatics analysis demonstrated that these lncRNAs and their associated mRNAs might participate in neurodegenerative pathways (e.g., calcium handling, apoptosis, autophagy, and synaptogenesis). CONCLUSION This novel report emphasizes that propofol alters profiles of lncRNAs, mRNAs, and their cooperative signaling network, which provides novel insights into molecular mechanisms of anesthetic-induced developmental neurodegeneration and preventive targets against the neurotoxicity.
Collapse
Affiliation(s)
- Sarah Logan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Congshan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xian, China
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Yasuyoshi Inagaki
- Department of Emergency Medicine, Nayoro City General Hospital, Nayoro, Japan
| | - Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
43
|
Xiang R, Hayes BJ, Vander Jagt CJ, MacLeod IM, Khansefid M, Bowman PJ, Yuan Z, Prowse-Wilkins CP, Reich CM, Mason BA, Garner JB, Marett LC, Chen Y, Bolormaa S, Daetwyler HD, Chamberlain AJ, Goddard ME. Genome variants associated with RNA splicing variations in bovine are extensively shared between tissues. BMC Genomics 2018; 19:521. [PMID: 29973141 PMCID: PMC6032541 DOI: 10.1186/s12864-018-4902-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/27/2018] [Indexed: 12/12/2022] Open
Abstract
Background Mammalian phenotypes are shaped by numerous genome variants, many of which may regulate gene transcription or RNA splicing. To identify variants with regulatory functions in cattle, an important economic and model species, we used sequence variants to map a type of expression quantitative trait loci (expression QTLs) that are associated with variations in the RNA splicing, i.e., sQTLs. To further the understanding of regulatory variants, sQTLs were compare with other two types of expression QTLs, 1) variants associated with variations in gene expression, i.e., geQTLs and 2) variants associated with variations in exon expression, i.e., eeQTLs, in different tissues. Results Using whole genome and RNA sequence data from four tissues of over 200 cattle, sQTLs identified using exon inclusion ratios were verified by matching their effects on adjacent intron excision ratios. sQTLs contained the highest percentage of variants that are within the intronic region of genes and contained the lowest percentage of variants that are within intergenic regions, compared to eeQTLs and geQTLs. Many geQTLs and sQTLs are also detected as eeQTLs. Many expression QTLs, including sQTLs, were significant in all four tissues and had a similar effect in each tissue. To verify such expression QTL sharing between tissues, variants surrounding (±1 Mb) the exon or gene were used to build local genomic relationship matrices (LGRM) and estimated genetic correlations between tissues. For many exons, the splicing and expression level was determined by the same cis additive genetic variance in different tissues. Thus, an effective but simple-to-implement meta-analysis combining information from three tissues is introduced to increase power to detect and validate sQTLs. sQTLs and eeQTLs together were more enriched for variants associated with cattle complex traits, compared to geQTLs. Several putative causal mutations were identified, including an sQTL at Chr6:87392580 within the 5th exon of kappa casein (CSN3) associated with milk production traits. Conclusions Using novel analytical approaches, we report the first identification of numerous bovine sQTLs which are extensively shared between multiple tissue types. The significant overlaps between bovine sQTLs and complex traits QTL highlight the contribution of regulatory mutations to phenotypic variations. Electronic supplementary material The online version of this article (10.1186/s12864-018-4902-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruidong Xiang
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Ben J Hayes
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St. Lucia, QLD, 4067, Australia
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Majid Khansefid
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Phil J Bowman
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Zehu Yuan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | | | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Josie B Garner
- Agriculture Victoria, Dairy Production Science, Ellinbank, VIC, 3821, Australia
| | - Leah C Marett
- Agriculture Victoria, Dairy Production Science, Ellinbank, VIC, 3821, Australia
| | - Yizhou Chen
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Camden, NSW, 2570, Australia
| | - Sunduimijid Bolormaa
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Hans D Daetwyler
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Michael E Goddard
- Faculty of Veterinary & Agricultural Science, University of Melbourne, Parkville, VIC, 3010, Australia.,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
44
|
Maroilley T, Berri M, Lemonnier G, Esquerré D, Chevaleyre C, Mélo S, Meurens F, Coville JL, Leplat JJ, Rau A, Bed'hom B, Vincent-Naulleau S, Mercat MJ, Billon Y, Lepage P, Rogel-Gaillard C, Estellé J. Immunome differences between porcine ileal and jejunal Peyer's patches revealed by global transcriptome sequencing of gut-associated lymphoid tissues. Sci Rep 2018; 8:9077. [PMID: 29899562 PMCID: PMC5998120 DOI: 10.1038/s41598-018-27019-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/18/2018] [Indexed: 01/09/2023] Open
Abstract
The epithelium of the intestinal mucosa and the gut-associated lymphoid tissues (GALT) constitute an essential physical and immunological barrier against pathogens. In order to study the specificities of the GALT transcriptome in pigs, we compared the transcriptome profiles of jejunal and ileal Peyer’s patches (PPs), mesenteric lymph nodes (MLNs) and peripheral blood (PB) of four male piglets by RNA-Seq. We identified 1,103 differentially expressed (DE) genes between ileal PPs (IPPs) and jejunal PPs (JPPs), and six times more DE genes between PPs and MLNs. The master regulator genes FOXP3, GATA3, STAT4, TBX21 and RORC were less expressed in IPPs compared to JPPs, whereas the transcription factor BCL6 was found more expressed in IPPs. In comparison between IPPs and JPPs, our analyses revealed predominant differential expression related to the differentiation of T cells into Th1, Th2, Th17 and iTreg in JPPs. Our results were consistent with previous reports regarding a higher T/B cells ratio in JPPs compared to IPPs. We found antisense transcription for respectively 24%, 22% and 14% of the transcripts detected in MLNs, PPs and PB, and significant positive correlations between PB and GALT transcriptomes. Allele-specific expression analyses revealed both shared and tissue-specific cis-genetic control of gene expression.
Collapse
Affiliation(s)
- T Maroilley
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - M Berri
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | - G Lemonnier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - D Esquerré
- GenPhySE, INRA, INPT, ENVT, Université de Toulouse, 31326, Castenet-Tolosan, France
| | - C Chevaleyre
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | - S Mélo
- ISP, INRA, Université de Tours, 37380, Nouzilly, France
| | - F Meurens
- ISP, INRA, Université de Tours, 37380, Nouzilly, France.,BIOEPAR, INRA, Oniris, La Chantrerie, 44307, Nantes, France
| | - J L Coville
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - J J Leplat
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,LREG, IRCM, DRF, CEA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - A Rau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - B Bed'hom
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - S Vincent-Naulleau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,LREG, IRCM, DRF, CEA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - M J Mercat
- BIOPORC and IFIP-Institut du porc, La Motte au Vicomte, BP 35104, 35651, Le Rheu, France
| | - Y Billon
- GENESI, INRA, 17700, Surgères, France
| | - P Lepage
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - C Rogel-Gaillard
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - J Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
45
|
Wang M, Hancock TP, Chamberlain AJ, Vander Jagt CJ, Pryce JE, Cocks BG, Goddard ME, Hayes BJ. Putative bovine topological association domains and CTCF binding motifs can reduce the search space for causative regulatory variants of complex traits. BMC Genomics 2018; 19:395. [PMID: 29793448 PMCID: PMC5968476 DOI: 10.1186/s12864-018-4800-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Topological association domains (TADs) are chromosomal domains characterised by frequent internal DNA-DNA interactions. The transcription factor CTCF binds to conserved DNA sequence patterns called CTCF binding motifs to either prohibit or facilitate chromosomal interactions. TADs and CTCF binding motifs control gene expression, but they are not yet well defined in the bovine genome. In this paper, we sought to improve the annotation of bovine TADs and CTCF binding motifs, and assess whether the new annotation can reduce the search space for cis-regulatory variants. RESULTS We used genomic synteny to map TADs and CTCF binding motifs from humans, mice, dogs and macaques to the bovine genome. We found that our mapped TADs exhibited the same hallmark properties of those sourced from experimental data, such as housekeeping genes, transfer RNA genes, CTCF binding motifs, short interspersed elements, H3K4me3 and H3K27ac. We showed that runs of genes with the same pattern of allele-specific expression (ASE) (either favouring paternal or maternal allele) were often located in the same TAD or between the same conserved CTCF binding motifs. Analyses of variance showed that when averaged across all bovine tissues tested, TADs explained 14% of ASE variation (standard deviation, SD: 0.056), while CTCF explained 27% (SD: 0.078). Furthermore, we showed that the quantitative trait loci (QTLs) associated with gene expression variation (eQTLs) or ASE variation (aseQTLs), which were identified from mRNA transcripts from 141 lactating cows' white blood and milk cells, were highly enriched at putative bovine CTCF binding motifs. The linearly-furthermost, and most-significant aseQTL and eQTL for each genic target were located within the same TAD as the gene more often than expected (Chi-Squared test P-value < 0.001). CONCLUSIONS Our results suggest that genomic synteny can be used to functionally annotate conserved transcriptional components, and provides a tool to reduce the search space for causative regulatory variants in the bovine genome.
Collapse
Affiliation(s)
- Min Wang
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Melbourne, VIC Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC Australia
| | | | | | | | - Jennie E. Pryce
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Melbourne, VIC Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC Australia
- DataGene Ltd, Bundoora, VIC 3083 Australia
| | - Benjamin G. Cocks
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Melbourne, VIC Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC Australia
| | - Mike E. Goddard
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Melbourne, VIC Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC Australia
| | - Benjamin J. Hayes
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Melbourne, VIC Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD Australia
| |
Collapse
|
46
|
Khansefid M, Millen CA, Chen Y, Pryce JE, Chamberlain AJ, Vander Jagt CJ, Gondro C, Goddard ME. Gene expression analysis of blood, liver, and muscle in cattle divergently selected for high and low residual feed intake. J Anim Sci 2018; 95:4764-4775. [PMID: 29293712 DOI: 10.2527/jas2016.1320] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Improving feed efficiency in cattle is important because it increases profitability by reducing costs, and it also shrinks the environmental footprint of cattle production by decreasing manure and greenhouse gas emissions. Residual feed intake (RFI) is 1 measurement of feed efficiency and is the difference between actual and predicted feed intake. Residual feed intake is a complex trait with moderate heritability, but the genes and biological processes associated with its variation still need to be found. We explored the variation in expression of genes using RNA sequencing to find genes whose expression was associated with RFI and then investigated the pathways that are enriched for these genes. In this study, we used samples from growing Angus bulls (muscle and liver tissues) and lactating Holstein cows (liver tissue and white blood cells) divergently selected for low and high RFI. Within each breed-tissue combination, the correlation between the expression of genes and RFI phenotypes, as well as GEBV, was calculated to determine the genes whose expression was correlated with RFI. There were 16,039 genes expressed in more than 25% of samples in 1 or more tissues. The expression of 6,143 genes was significantly associated with RFI phenotypes, and expression of 2,343 genes was significantly associated with GEBV for RFI ( < 0.05) in at least 1 tissue. The genes whose expression was correlated with RFI phenotype (or GEBV) within each breed-tissue combination were enriched for 158 (78) biological processes (Fisher Exact Statistics for gene-enrichment analysis, EASE score < 0.1) and associated with 13 (13) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways ( < 0.05 and fold enrichment > 2). These biological processes were related to regulation of transcription, translation, energy generation, cell cycling, apoptosis, and proteolysis. However, the direction of the correlation between RFI and gene expression in some cases reversed between tissues. For instance, low levels of proteolysis in muscle were associated with high efficiency in growing bulls, but high levels of proteolysis in white blood cells were associated with efficiency of milk production in lactating cows.
Collapse
|
47
|
Variant calling from RNA-seq data of the brain transcriptome of pigs and its application for allele-specific expression and imprinting analysis. Gene 2018; 641:367-375. [DOI: 10.1016/j.gene.2017.10.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
48
|
Goddard ME, Kemper KE, MacLeod IM, Chamberlain AJ, Hayes BJ. Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture. Proc Biol Sci 2017; 283:rspb.2016.0569. [PMID: 27440663 DOI: 10.1098/rspb.2016.0569] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/23/2016] [Indexed: 01/01/2023] Open
Abstract
Complex or quantitative traits are important in medicine, agriculture and evolution, yet, until recently, few of the polymorphisms that cause variation in these traits were known. Genome-wide association studies (GWAS), based on the ability to assay thousands of single nucleotide polymorphisms (SNPs), have revolutionized our understanding of the genetics of complex traits. We advocate the analysis of GWAS data by a statistical method that fits all SNP effects simultaneously, assuming that these effects are drawn from a prior distribution. We illustrate how this method can be used to predict future phenotypes, to map and identify the causal mutations, and to study the genetic architecture of complex traits. The genetic architecture of complex traits is even more complex than previously thought: in almost every trait studied there are thousands of polymorphisms that explain genetic variation. Methods of predicting future phenotypes, collectively known as genomic selection or genomic prediction, have been widely adopted in livestock and crop breeding, leading to increased rates of genetic improvement.
Collapse
Affiliation(s)
- M E Goddard
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia
| | - K E Kemper
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - I M MacLeod
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia Dairy Futures Cooperative Research Centre, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia
| | - A J Chamberlain
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia
| | - B J Hayes
- Department of Economic Development, Jobs, Transport and Resources, AgriBio, La Trobe University, Bundoora, Victoria 3083, Australia School of Applied System Biology, La Trobe University, Agribiosciences Building, Bundoora, Australia
| |
Collapse
|
49
|
Wang M, Uebbing S, Ellegren H. Bayesian Inference of Allele-Specific Gene Expression Indicates Abundant Cis-Regulatory Variation in Natural Flycatcher Populations. Genome Biol Evol 2017; 9:1266-1279. [PMID: 28453623 PMCID: PMC5434935 DOI: 10.1093/gbe/evx080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2017] [Indexed: 12/13/2022] Open
Abstract
Polymorphism in cis-regulatory sequences can lead to different levels of expression for the two alleles of a gene, providing a starting point for the evolution of gene expression. Little is known about the genome-wide abundance of genetic variation in gene regulation in natural populations but analysis of allele-specific expression (ASE) provides a means for investigating such variation. We performed RNA-seq of multiple tissues from population samples of two closely related flycatcher species and developed a Bayesian algorithm that maximizes data usage by borrowing information from the whole data set and combines several SNPs per transcript to detect ASE. Of 2,576 transcripts analyzed in collared flycatcher, ASE was detected in 185 (7.2%) and a similar frequency was seen in the pied flycatcher. Transcripts with statistically significant ASE commonly showed the major allele in >90% of the reads, reflecting that power was highest when expression was heavily biased toward one of the alleles. This would suggest that the observed frequencies of ASE likely are underestimates. The proportion of ASE transcripts varied among tissues, being lowest in testis and highest in muscle. Individuals often showed ASE of particular transcripts in more than one tissue (73.4%), consistent with a genetic basis for regulation of gene expression. The results suggest that genetic variation in regulatory sequences commonly affects gene expression in natural populations and that it provides a seedbed for phenotypic evolution via divergence in gene expression.
Collapse
Affiliation(s)
- Mi Wang
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| |
Collapse
|
50
|
Zhu F, Schlupp I, Tiedemann R. Allele-specific expression at the androgen receptor alpha gene in a hybrid unisexual fish, the Amazon molly (Poecilia formosa). PLoS One 2017; 12:e0186411. [PMID: 29023530 PMCID: PMC5638567 DOI: 10.1371/journal.pone.0186411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/29/2017] [Indexed: 12/25/2022] Open
Abstract
The all-female Amazon molly (Poecilia formosa) is the result of a hybridization of the Atlantic molly (P. mexicana) and the sailfin molly (P. latipinna) approximately 120,000 years ago. As a gynogenetic species, P. formosa needs to copulate with heterospecific males including males from one of its bisexual ancestral species. However, the sperm only triggers embryogenesis of the diploid eggs. The genetic information of the sperm donor typically will not contribute to the next generation of P. formosa. Hence, P. formosa possesses generally one allele from each of its ancestral species at any genetic locus. This raises the question whether both ancestral alleles are equally expressed in P. formosa. Allele-specific expression (ASE) has been previously assessed in various organisms, e.g., human and fish, and ASE was found to be important in the context of phenotypic variability and disease. In this study, we utilized Real-Time PCR techniques to estimate ASE of the androgen receptor alpha (arα) gene in several distinct tissues of Amazon mollies. We found an allelic bias favoring the maternal ancestor (P. mexicana) allele in ovarian tissue. This allelic bias was not observed in the gill or the brain tissue. Sequencing of the promoter regions of both alleles revealed an association between an Indel in a known CpG island and differential expression. Future studies may reveal whether our observed cis-regulatory divergence is caused by an ovary-specific trans-regulatory element, preferentially activating the allele of the maternal ancestor.
Collapse
Affiliation(s)
- Fangjun Zhu
- University of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ingo Schlupp
- Department of Biology, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Ralph Tiedemann
- University of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|