1
|
Domingues VDSP, Seldin L, Jurelevicius D. Understanding the implicit effects of 16S rRNA gene databases on microbial bioindicator studies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107351. [PMID: 40222149 DOI: 10.1016/j.aquatox.2025.107351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025]
Abstract
Analysis of the presence and the abundance of microorganisms related to diseases can be used to monitor marine environmental health. Our study evaluated the interference of taxonomic databases (SILVA, Greengenes v13.8, Greengenes2, and RDP) to monitor the distribution of bacterial genera potentially related to diseases in marine organisms (BGPRDs) from low- (Dois Rios Beach-DR), medium- (Abraão Beach-AB) and high (Guanabara Bay-GB) impacted marine environments. The frequency, richness, diversity, and composition of BGPRDs present in DR, AB and GB were significantly influenced by the different databases (p < 0.05). Consequently, the analyses revealed that the use of different databases resulted in controversial results regarding the distribution of BGPRDs in the DR, AB and GB. While Greengenes v13.8 and RDP showed that GB had the highest frequency of BGPRDs (p < 0.05), analysis based on Greengenes2 and SILVA revealed a greater frequency of BGPRDs in AB (p < 0.05). Additionally, there was no congruence of BGPRDs detected by each taxonomic database in DR, AB and GB. In highly-impacted GB, Arcobacter was the main BGPRD obtained with the Greengenes2 and RDP databases, whereas Synechococcus and Alteromonas represented the main BGPRD according to the Greengenes v13.8 and SILVA databases, respectively. Our results showed we cannot determine the exact composition and abundance of BGPRDs in low-, medium- and highly-impacted marine environments. These findings emphasize the critical influence of database choice on microbial community characterization and its implications for effective environmental monitoring and management strategies. Interestingly, alpha diversity indices of BGPRDs obtained from DR, AB and GB were consistent among the different databases and showed greater congruence than did the frequency, richness, distribution and abundance of BGPRDs. The use of diversity indices of BGPRDs can be an alternative to overcome the limitations caused by the bias of taxonomic annotations for biomonitoring marine environments.
Collapse
Affiliation(s)
| | - Lucy Seldin
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Jurelevicius
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Rust C, van den Heuvel LL, Bardien S, Carr J, Pretorius E, Seedat S, Hemmings SMJ. Association between the relative abundance of butyrate-producing and mucin-degrading taxa and Parkinson's disease. Neuroscience 2025; 576:149-154. [PMID: 40318838 DOI: 10.1016/j.neuroscience.2025.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterised by motor and non-motor symptoms. Recent evidence suggests a role for gut microbiome composition and diversity in PD aetiology. This study aimed to explore the association between the gut microbiome and PD in a South African population. Gut microbial sequencing data (cases: n = 16; controls: n = 42) was generated using a 16S rRNA gene (V4) primer pair. Alpha- and beta-diversity were calculated using QIIME2, and differential abundance of taxa was evaluated using Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). Beta-diversity was found to differ significantly between cases and controls, with depletion in the relative abundance of Faecalibacterium, Roseburia, Dorea, and Veillonella, and enrichment of the relative abundance of Akkermansia and Victivallis. Our study found a reduction in butyrate-producing bacteria (e.g. Faecalibacterium and Roseburia) and an increase in mucin-degrading bacteria (Akkermansia) in PD cases compared to controls. These alterations might be associated with heightened gut permeability and inflammation. Longitudinal studies should address the question of whether these microbiome differences are a risk factor for, or are consequent to, the development of PD.
Collapse
Affiliation(s)
- C Rust
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| | - L L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - S Bardien
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - J Carr
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - E Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology Biosciences Building, University of Liverpool, Liverpool, United Kingdom
| | - S Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - S M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
3
|
Lyte JM, Seyoum MM, Ayala D, Kers JG, Caputi V, Johnson T, Zhang L, Rehberger J, Zhang G, Dridi S, Hale B, De Oliveira JE, Grum D, Smith AH, Kogut M, Ricke SC, Ballou A, Potter B, Proszkowiec-Weglarz M. Do we need a standardized 16S rRNA gene amplicon sequencing analysis protocol for poultry microbiota research? Poult Sci 2025; 104:105242. [PMID: 40334389 DOI: 10.1016/j.psj.2025.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Bacteria are the major component of poultry gastrointestinal tract (GIT) microbiota and play an important role in host health, nutrition, physiology regulation, intestinal development, and growth. Bacterial community profiling based on the 16S ribosomal RNA (rRNA) gene amplicon sequencing approach has become the most popular method to determine the taxonomic composition and diversity of the poultry microbiota. The 16S rRNA gene profiling involves numerous steps, including sample collection and storage, DNA isolation, 16S rRNA gene primer selection, Polymerase Chain Reaction (PCR), library preparation, sequencing, raw sequencing reads processing, taxonomic classification, α- and β-diversity calculations, and statistical analysis. However, there is currently no standardized protocol for 16S rRNA gene analysis profiling and data deposition for poultry microbiota studies. Variations in DNA storage and isolation, primer design, and library preparation are known to introduce biases, affecting community structure and microbial population analysis leading to over- or under-representation of individual bacteria within communities. Additionally, different sequencing platforms, bioinformatics pipeline, and taxonomic database selection can affect classification and determination of the microbial taxa. Moreover, detailed experimental design and DNA processing and sequencing methods are often inadequately reported in poultry 16S rRNA gene sequencing studies. Consequently, poultry microbiota results are often difficult to reproduce and compare across studies. This manuscript reviews current practices in profiling poultry microbiota using 16S rRNA gene amplicon sequencing and proposes the development of guidelines for protocol for 16S rRNA gene sequencing that spans from sample collection through data deposition to achieve more reliable data comparisons across studies and allow for comparisons and/or interpretations of poultry studies conducted worldwide.
Collapse
Affiliation(s)
- Joshua M Lyte
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Poultry Production and Product Safety Research, Fayetteville 72701, AR, United States
| | - Mitiku M Seyoum
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Diana Ayala
- Purina Animal Nutrition Center, Land O'Lakes, Gray Summit 63039, MO, United States
| | - Jannigje G Kers
- Faculty of Veterinary Medicine, Utrecht University, and Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Valentina Caputi
- United States Department of Agriculture, Agricultural Research Service, Southeast Area, Poultry Production and Product Safety Research, Fayetteville 72701, AR, United States
| | - Timothy Johnson
- University of Minnesota, Saint Paul 55108, MN, United States
| | - Li Zhang
- Mississippi State University, Mississippi State 39762, MS, United States
| | - Joshua Rehberger
- Arm and Hammer Animal Nutrition, Waukesha 53186, WI, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater 74078, OK, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Brett Hale
- AgriGro, Doniphan 6393, MO, United States
| | | | - Daniel Grum
- Purina Animal Nutrition Center, Land O'Lakes, Gray Summit 63039, MO, United States
| | - Alexandra H Smith
- Mississippi State University, Mississippi State 39762, MS, United States
| | - Michael Kogut
- United States Department of Agriculture, Agricultural Research Service, Southern Plains Agricultural Research Center, College Station 77845, TX, United States
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, University of Wisconsin, Madison, 53706, WI, United States
| | - Anne Ballou
- Iluma Alliance, Durham 27703, NC, United States
| | - Bill Potter
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, AR, United States
| | - Monika Proszkowiec-Weglarz
- United States Department of Agriculture, Agricultural Research Service, Northeast Area, Beltsville Agriculture Research Center, Animal Biosciences and Biotechnology Laboratory, Beltsville 20705, MD, United States.
| |
Collapse
|
4
|
Mukherjee SD, Batagello C, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modeling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. eLife 2025; 14:RP104121. [PMID: 40310467 PMCID: PMC12045624 DOI: 10.7554/elife.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, rodent, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, the administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Carlos Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical SchoolSao PauloBrazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
| | - Andrew Nguyen
- M Health Fairview Southdale HospitalEdinaUnited States
| | - Terry Orr
- Department of Biology, New Mexico State UniversityLas CrucesUnited States
| | - Denise Dearing
- School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Manoj Monga
- Department of Urology, University of California San DiegoSan DiegoUnited States
| | - Aaron W Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland ClinicClevelandUnited States
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland ClinicClevelandUnited States
| |
Collapse
|
5
|
Zhang Y, Yang X, Dong C, Zhang M, Guan Q, Chang H, Hang B, Mao JH, Snijders AM, Xia Y. Trace Element Exposure during Pregnancy Has a Persistent Influence on Perinatal Gut Microbiota in Mother-Infant Dyads. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7820-7834. [PMID: 40145873 DOI: 10.1021/acs.est.4c11640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Trace elements have been recognized as the modifiers of the gut microbiota. However, population-based evidence about their effects on maternal gut microbiota dynamics, as well as the intergenerational impacts on neonatal gut microbiota, has been lacking. We examined the longitudinal microbiota data from mother-infant dyads and demonstrated that maternal trace element exposure played a pivotal role in shaping the composition and similarity of the mother-infant gut microbiota. Specifically, serum levels of cobalt (Co), molybdenum (Mo), and rubidium (Rb) were identified to cause further fluctuation in the shift of the maternal gut microbiota. Antibiotic usage shortly before or on the delivery day, as well as maternal zinc (Zn) exposure, affected the gut microbiota similarity within mother-infant dyads. Rb demonstrated an intergenerational effect on meconium Bifidobacterium abundance by altering its abundance in the maternal gut. Notably, this effect was strengthened in the vaginal delivery group without antibiotic usage, while it was attenuated in the c-section delivery group. Our results suggest that maternal trace element exposure has a persistent influence on perinatal gut microbiota, which offers novel insights into promoting mother and infant health.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing 210004, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chao Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingzhi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Campos PM, Miska KB, Jenkins MC, Proszkowiec-Weglarz M. Temporal changes in cecal luminal and mucosal microbiota of broiler chickens with clinical coccidiosis (Eimeria maxima). PLoS One 2025; 20:e0321212. [PMID: 40273096 PMCID: PMC12021173 DOI: 10.1371/journal.pone.0321212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/03/2025] [Indexed: 04/26/2025] Open
Abstract
Coccidiosis is a gastrointestinal disease caused by Eimeria parasites which leads to major economic losses in the poultry industry worldwide. Eimeria infection may alter the gut microbiota, which has been associated with chicken health and performance. This study aimed to determine the effects of Eimeria maxima infection on the luminal and mucosal microbiota of the cecum (CeL and CeM) at multiple time points post-infection (days 3, 5, 7, 10, and 14). Infection decreased Shannon diversity at d 3 (P = 0.03), increased observed features (ASVs) at d 5 (P < 0.01), and increased Shannon diversity at d 10 (P = 0.04) in the CeL microbiota compared to the control. In CeM microbiota, infection increased observed features at d 5 (P = 0.03), but later decreased observed features at d 14 (P = 0.01). Relative abundance of potential butyrate-producing bacteria such as [Ruminococcus] torques group in CeL and Butyricicoccus in CeM were decreased in infected birds, and some metabolic pathways related to butyrate production were predicted to be decreased. These findings show E. maxima may affect cecal microbiota alpha diversity in a time-dependent manner and reduce abundance of bacteria potentially important to gut health.
Collapse
Affiliation(s)
- Philip M. Campos
- Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States, Beltsville, Maryland, United States of America
| | - Katarzyna B. Miska
- Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States, Beltsville, Maryland, United States of America
| | - Mark C. Jenkins
- Department of Agriculture, Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States, Beltsville, Maryland, United States of America
| | - Monika Proszkowiec-Weglarz
- Department of Agriculture, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States, Beltsville, Maryland, United States of America
| |
Collapse
|
7
|
Yao L, He M, Jiang S, Li X, Shui B. Spatiotemporal Characteristics of Bacterial Communities in Estuarine Mangrove Sediments in Zhejiang Province, China. Microorganisms 2025; 13:859. [PMID: 40284696 PMCID: PMC12029902 DOI: 10.3390/microorganisms13040859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 04/29/2025] Open
Abstract
Mangrove forests are intertidal ecosystems that harbor diverse microbial communities essential for biogeochemical cycles and energy flow. This study investigated the seasonal and spatial patterns of bacterial communities in the artificially introduced mangrove sediments of the Ao River estuary using 16S rRNA gene amplicon high-throughput sequencing. Alpha diversity analyses indicated that the bacterial community diversity in the mangrove sediments of the Ao River estuary was similar to those of natural-formed mangroves, with the Shannon index ranging from 5.16 to 6.54, which was significantly higher in winter compared to other seasons. The dominant bacterial phyla included Proteobacteria (43.65%), Actinobacteria (11.55%), Desulfobacterota (11.16%), and Bacteroidetes (5.52%), while beta diversity analysis revealed substantial differences in bacterial community structure across different seasons and regions. For instance, the relative abundance of Woeseiaceae and Bacteroidota during the summer was significantly higher than that observed in other seasons. And the relative abundance of Bacillaceae in autumn and winter increased by one order of magnitude compared to spring and summer. Woeseiaceae, Desulfobulbaceae, Thermoanaerobaculaceae, and Sva1033 (family of Desulfobacterota) exhibited significantly higher relative abundance in the unvegetated area, whereas Bacillaceae and S085 (family of Chloroflexi) demonstrated greater abundance in the mangrove area. Seasonal variations in bacterial community structure are primarily attributed to changes in environmental factors, including temperature and salinity. Regional differences in bacterial community structure are primarily associated with environmental stressors, such as wave action, fluctuations in salinity, and organic matter content, which are further complicated by seasonal changes. This study is significant for understanding the microbial diversity and seasonal dynamics of estuarine mangrove wetlands, and it contributes to the assessment of mangrove wetland restoration efforts in Zhejiang Province, providing important guidance for the development of strategies to maintain the health of mangrove ecosystems in the future.
Collapse
Affiliation(s)
- Liqin Yao
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (L.Y.); (S.J.)
| | - Maoqiu He
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (L.Y.); (S.J.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361000, China
| | - Shoudian Jiang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (L.Y.); (S.J.)
| | - Xiangfu Li
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510260, China;
| | - Bonian Shui
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; (L.Y.); (S.J.)
| |
Collapse
|
8
|
Olweny G, Ntayi ML, Kyalo E, Kayongo A. Protocol for identifying Mycobacterium tuberculosis infection status through airway microbiome profiling. STAR Protoc 2025; 6:103574. [PMID: 39826114 PMCID: PMC11787526 DOI: 10.1016/j.xpro.2024.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/20/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
This protocol describes the steps to determine an airway microbiome signature for identifying Mycobacterium tuberculosis infection status. We outline procedures for processing microbiome data, calculating diversity measures, and fitting Dirichlet multinomial mixture models. Additionally, we provide steps for analyzing taxonomic relative and differential abundances, as well as identifying potential biomarkers associated with infection status. For complete details on the use and execution of this protocol, please refer to Kayongo et al.1.
Collapse
Affiliation(s)
- Geoffrey Olweny
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala 256, Uganda; Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda.
| | - Moses Levi Ntayi
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala 256, Uganda; Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Edward Kyalo
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala 256, Uganda; Lung Institute, Makerere University College of Health Sciences, Kampala 256, Uganda
| | - Alex Kayongo
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala 256, Uganda.
| |
Collapse
|
9
|
Son SJ, Lee DY, Roh HW, Ly M, Kolobaric A, Aizenstein H, Andreescu C, Jašarević E, Pascoal TA, Ferreira PCL, Bellaver B, Cho YH, Hong S, Nam YJ, Park B, Kim N, Choi JW, Cheong JY, Kim YK, Shin TS, Kang CS, Kwon CO, Yoon SY, Hong CH, Karim HT. Brain age mediates gut microbiome dysbiosis-related cognition in older adults. Alzheimers Res Ther 2025; 17:52. [PMID: 40016766 PMCID: PMC11866832 DOI: 10.1186/s13195-025-01697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/09/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Recent studies have focused on improving our understanding of gut microbiome dysbiosis and its impact on cognitive function. However, the relationship between gut microbiome composition, accelerated brain atrophy, and cognitive function has not yet been fully explored. METHODS We recruited 292 participants from South Korean memory clinics to undergo brain magnetic resonance imaging, clinical assessments, and collected stool samples. We employed a pretrained brain age model- a measure associated with neurodegeneration. Using cluster analysis, we categorized individuals based on their microbiome profiles and examined the correlations with brain age, Mental State Examination (MMSE) scores, and the Clinical Dementia Rating Sum of Box (CDR-SB). RESULTS Two clusters were identified in the microbiota at the phylum level that showed significant differences on a few microbiotas phylum. Greater gut microbiome dysbiosis was associated with worse cognitive function including MMSE and CDR-SB; this effect was partially mediated by greater brain age even when accounting for chronological age, sex, and education. CONCLUSIONS Our findings indicate that brain age mediates the link between gut microbiome dysbiosis and cognitive performance. These insights suggest potential interventions targeting the gut microbiome to alleviate age-related cognitive decline.
Collapse
Affiliation(s)
- Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Dong Yun Lee
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyun Woong Roh
- Department of Psychiatry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Maria Ly
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Howard Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eldin Jašarević
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruna Bellaver
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yong Hyuk Cho
- Department of Psychiatry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Sunhwa Hong
- Department of Psychiatry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - You Jin Nam
- Department of Psychiatry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Office of Biostatistics, Medical Research Collaborating Center, Ajou Research Institute for innovative Medicine, Ajou University Medical Center, Suwon, Republic of Korea
| | - Narae Kim
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Jin Wook Choi
- Department of Radiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
- Human Genome Research and Bio-Resource Centre, Ajou University Medical Centre, Suwon, Republic of Korea
| | - Yoon-Keun Kim
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - Tae-Seop Shin
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - Chil-Sung Kang
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - Cheol-O Kwon
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - Seo-Yoon Yoon
- Institute of MD Healthcare Inc, Seoul, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Mukherjee SD, Batagello CA, Adler A, Agudelo J, Zampini A, Suryavanshi M, Nguyen A, Orr T, Dearing D, Monga M, Miller AW. Complex system modelling reveals oxalate homeostasis is driven by diverse oxalate-degrading bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.28.620613. [PMID: 39553961 PMCID: PMC11565779 DOI: 10.1101/2024.10.28.620613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Decades of research have made clear that host-associated microbiomes touch all facets of health. However, effective therapies that target the microbiome have been elusive given its inherent complexity. Here, we experimentally examined diet-microbe-host interactions through a complex systems framework, centered on dietary oxalate. Using multiple, independent molecular, animal, and in vitro experimental models, we found that microbiome composition influenced multiple oxalate-microbe-host interfaces. Importantly, administration of the oxalate-degrading specialist, Oxalobacter formigenes, was only effective against a poor oxalate-degrading microbiota background and gives critical new insights into why clinical intervention trials with this species exhibit variable outcomes. Data suggest that, while heterogeneity in the microbiome impacts multiple diet-host-microbe interfaces, metabolic redundancy among diverse microorganisms in specific diet-microbe axes is a critical variable that may impact the efficacy of bacteriotherapies, which can help guide patient and probiotic selection criteria in probiotic clinical trials.
Collapse
Affiliation(s)
- Sromona D. Mukherjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos A. Batagello
- Division of Urology, Hospital das Clínicas, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Ava Adler
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jose Agudelo
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Anna Zampini
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mangesh Suryavanshi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Nguyen
- M Health Fairview Southdale Hospital, Edina, MN, USA
| | - Teri Orr
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Manoj Monga
- Department of Urology, University of California San Diego, San Diego, CA, USA
| | - Aaron W. Miller
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Deng X, Gong X, Zhou D, Hong Z. Perturbations in gut microbiota composition in patients with autoimmune neurological diseases: a systematic review and meta-analysis. Front Immunol 2025; 16:1513599. [PMID: 39981228 PMCID: PMC11839609 DOI: 10.3389/fimmu.2025.1513599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Studies suggest that gut dysbiosis occurs in autoimmune neurological diseases, but a comprehensive synthesis of the evidence is lacking. Our aim was to systematically review and meta-analyze the correlation between the gut microbiota and autoimmune neurological disorders to inform clinical diagnosis and therapeutic intervention. We searched the databases of PubMed, Embase, Web of Science, and the Cochrane Library until 1 March 2024 for research on the correlation between gut microbiota and autoimmune neurological disorders. A total of 62 studies provided data and were included in the analysis (n = 3,126 patients, n = 2,843 healthy individuals). Among the included studies, 42 studies provided data on α-diversity. Regarding α-diversity, except for Chao1, which showed a consistent small decrease (SMD = -0.26, 95% CI = -0.45 to -0.07, p < 0.01), other indices demonstrated no significant changes. While most studies reported significant differences in β-diversity, consistent differences were only observed in neuromyelitis optica spectrum disorders. A decrease in short-chain fatty acid (SCFA)-producing bacteria, including Faecalibacterium and Roseburia, was observed in individuals with autoimmune encephalitis, neuromyelitis optica spectrum disorders, myasthenia gravis, and multiple sclerosis. Conversely, an increase in pathogenic or opportunistic pathogens, including Streptococcus and Escherichia-Shigella, was observed in these patients. Subgroup analyses assessed the confounding effects of geography and immunotherapy use. These findings suggest that disturbances of the gut flora are associated with autoimmune neurological diseases, primarily manifesting as non-specific and shared microbial alterations, including a reduction in SCFA-producing bacteria and an increase in pathogenic or opportunistic pathogens. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023410215.
Collapse
Affiliation(s)
- Xiaolin Deng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Xue Gong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Spatola G, Giusti A, Gasperetti L, Nuvoloni R, Dalmasso A, Chiesa F, Armani A. 16S rRNA metabarcoding applied to the microbiome of insect products (novel food): a comparative analysis of three reference databases. Ital J Food Saf 2025; 14. [PMID: 39992189 PMCID: PMC11904769 DOI: 10.4081/ijfs.2025.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 02/25/2025] Open
Abstract
The 16S rRNA metabarcoding, based on Next-Generation Sequencing (NGS), is used to assess microbial biodiversity in various matrices, including food. The process involves a "dry-lab" phase where NGS data are processed through bioinformatic pipelines, which finally rely on taxonomic unit assignment against reference databases to assign them at order, genus, and species levels. Today, several public genomic reference databases are available for the taxonomic assignment of the 16S rRNA sequences. In this study, 42 insect-based food products were chosen as food models to find out how reference database choice could affect the microbiome results in food matrices. At the same time, this study aims to evaluate the most suitable reference database to assess the microbial composition of these still poorly investigated products. The V3-V4 region was sequenced by Illumina technology, and the R package "DADA2" was used for the bioinformatic analysis. After a bibliographic search, three public databases (SILVA, RDP, NCBI RefSeq) were compared based on amplicon sequence variant (ASV) assignment percentages at different taxonomic levels and diversity indices. SILVA assigned a significantly higher percentage of ASVs to the family and genus levels compared to RefSeq and RDP. However, no significant differences were noted in microbial composition between the databases according to α and β diversity results. A total of 121 genera were identified, with 56.2% detected by all three databases, though some taxa were identified only by one or two. The study highlights the importance of using updated reference databases for accurate microbiome characterization, contributing to the optimization of metabarcoding data analysis in food microbiota studies, including novel foods.
Collapse
Affiliation(s)
| | - Alice Giusti
- Department of Veterinary Sciences, University of Pisa.
| | - Laura Gasperetti
- Experimental Zooprophylactic Institute of Lazio and Tuscany, Pisa.
| | | | | | - Francesco Chiesa
- Department of Veterinary Sciences, University of Turin, Grugliasco (TO).
| | - Andrea Armani
- Department of Veterinary Sciences, University of Pisa.
| |
Collapse
|
13
|
Keerthy D, Spratlen MJ, Wen L, Seeram D, Park H, Calero L, Uhlemann AC, Herbstman JB. An evaluation of in utero polycyclic aromatic hydrocarbon exposure on the neonatal meconium microbiome. ENVIRONMENTAL RESEARCH 2024; 263:120053. [PMID: 39341532 PMCID: PMC11816390 DOI: 10.1016/j.envres.2024.120053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION In utero exposure to environmental polycyclic aromatic hydrocarbon (PAH) is associated with neurodevelopmental impairments[1-8], prematurity[9-12] and low birthweight[9,13-15]. The gut microbiome serves as an intermediary between self and external environment; therefore, exploring the impact of PAH on microbiota may elucidate their role in disease. Here, we evaluated the effect of in utero PAH exposure on meconium microbiome. METHODS We evaluated 49 mother-child dyads within Fair Start Birth Cohort with full term delivery and adequate meconium sampling. Prenatal PAH was measured using personal active samplers worn for 48 h during third trimester. Post-processing, 35 samples with adequate biomass were evaluated for association between tertile of PAH exposure (high (H) vs low/medium (L/M)) and microbiome diversity. RESULTS No significant differences were observed in alpha diversity metrics, Chao1 and Shannon index, between exposure groups for total PAH. However, alpha diversity metrics were negatively associated with log benzo[a]anthracene (BaA) and log chrysene (Chry) with high exposure, but positively associated with log benzo[a]pyrene (BaP) with low/medium exposure. After adjustment for birthweight and sex, alpha diversity metrics were negatively associated with log BaA, BaP, Chry, Indeno (Zhang et al., 2021; Perera et al., 2018)pyrene (IcdP) and total PAH with high exposure. Conversely, with low/medium exposure, alpha diversity metrics positively correlated with log BaP and benzo[b]fluoranthane (BbF). No significant difference in beta diversity was observed across groups using UniFrac, weighted UniFrac, or Bray-Curtis methods. Differential expression analysis showed differentially abundant taxa between exposure groups. CONCLUSION Bacterial taxa were detectable in 35/49 (71%) meconium samples. Altered alpha diversity metrics and differentially abundant taxa between groups suggest in utero PAH exposure may impede early colonization. Sample size is limited, but these findings provide supporting evidence for wider scale research. Research on long-term impact of prenatal PAH exposure on childhood health outcomes is ongoing. Differential effects of specific PAHs need further evaluation.
Collapse
Affiliation(s)
- Divya Keerthy
- Neonatal and Perinatal Medicine, Columbia University, New York, NY, United States; Neonatal and Perinatal Medicine, NewYork Presbyterian Queens, Flushing, NY, United States.
| | - Miranda J Spratlen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lingsheng Wen
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Dwayne Seeram
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Heekuk Park
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Lehyla Calero
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University, New York, NY, United States
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
14
|
Yang J. Insight into the potential of algorithms using AI technology as in vitro diagnostics utilizing microbial extracellular vesicles. Mol Cell Probes 2024; 78:101992. [PMID: 39580006 DOI: 10.1016/j.mcp.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Recently, the microbiome has been gaining significant attention in the healthcare sector as a next-generation factor. However, there remains a substantial gap in our understanding of the fundamental mechanisms of microbes, particularly regarding the effector microbial products exchanged between the microbiota and the host. Consequently, research on microbial extracellular vesicles (MEVs) has increased. MEVs, which are nano-sized, can circulate throughout the body and penetrate the bloodstream, carrying diverse information. Consequently, they are increasingly being utilized in medical applications. Additionally, AI technologies are being utilized in medicine. The combination of MEVs and AI technology is being explored for the development of algorithm-based in vitro diagnostics (IVD). Therefore, this study aims to review the integration of MEVs and AI technology as diagnostic tools for personalized medicine. This paper reviewed the MEV-based algorithms developed by a variety of human samples and AI technology. Additionally, most of MEV-based diagnostic models showed higher clinical performance. Several important factors are crucial for accurate diagnosis. First, optimizing sample types according to specific diseases is essential. Second, AI technology with higher diagnostic power yields more accurate results. Finally, incorporating additional markers can enhance diagnostic power. However, applying this tool in situ faces several limitations, including method standardization, sample size, and analysis techniques. In the future, we anticipate that research on MEVs will advance our understanding of their role in disease and establish the foundation for precision medicine strategies.
Collapse
Affiliation(s)
- Jinho Yang
- Department of Occupational Health and Safety, Semyung University, Jecheon, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
15
|
Oh VKS, Li RW. Wise Roles and Future Visionary Endeavors of Current Emperor: Advancing Dynamic Methods for Longitudinal Microbiome Meta-Omics Data in Personalized and Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400458. [PMID: 39535493 DOI: 10.1002/advs.202400458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Understanding the etiological complexity of diseases requires identifying biomarkers longitudinally associated with specific phenotypes. Advanced sequencing tools generate dynamic microbiome data, providing insights into microbial community functions and their impact on health. This review aims to explore the current roles and future visionary endeavors of dynamic methods for integrating longitudinal microbiome multi-omics data in personalized and precision medicine. This work seeks to synthesize existing research, propose best practices, and highlight innovative techniques. The development and application of advanced dynamic methods, including the unified analytical frameworks and deep learning tools in artificial intelligence, are critically examined. Aggregating data on microbes, metabolites, genes, and other entities offers profound insights into the interactions among microorganisms, host physiology, and external stimuli. Despite progress, the absence of gold standards for validating analytical protocols and data resources of various longitudinal multi-omics studies remains a significant challenge. The interdependence of workflow steps critically affects overall outcomes. This work provides a comprehensive roadmap for best practices, addressing current challenges with advanced dynamic methods. The review underscores the biological effects of clinical, experimental, and analytical protocol settings on outcomes. Establishing consensus on dynamic microbiome inter-studies and advancing reliable analytical protocols are pivotal for the future of personalized and precision medicine.
Collapse
Affiliation(s)
- Vera-Khlara S Oh
- Big Biomedical Data Integration and Statistical Analysis (DIANA) Research Center, Department of Data Science, College of Natural Sciences, Jeju National University, Jeju City, Jeju Do, 63243, South Korea
| | - Robert W Li
- United States Department of Agriculture, Agricultural Research Service, Animal Genomics and Improvement Laboratory, Beltsville, MD, 20705, USA
| |
Collapse
|
16
|
González A, Fullaondo A, Navarro D, Rodríguez J, Tirnauca C, Odriozola A. New Insights into Mucosa-Associated Microbiota in Paired Tumor and Non-Tumor Adjacent Mucosal Tissues in Colorectal Cancer Patients. Cancers (Basel) 2024; 16:4008. [PMID: 39682194 DOI: 10.3390/cancers16234008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVE Colorectal cancer (CRC) is one of the most common cancers worldwide. Increasing scientific evidence supports the idea that gut microbiota dysbiosis accompanies colorectal tumorigenesis, and these changes could be causative. Implementing gut microbiota analysis in clinical practice is limited by sample type, sequencing platform and taxonomic classification. This article aims to address these limitations, providing new insights into the microbiota associated with CRC pathogenesis and implementing its analyses in personalized medicine. METHODS To that aim, we evaluate differences in the bacterial composition of 130 paired tumor and non-tumor adjacent tissues from a cohort of CRC patients from the Biobank of the University of Navarra, Spain. The V3-V4 region of the 16S rRNA gene was amplified, sequenced using the MinION platform, and taxonomically classified using the NCBI database. RESULTS To our knowledge, this is the first study to report an increased relative abundance of Streptococcus periodonticum and a decreased relative abundance of Corynebacterium associated with CRC. Genera such as Fusobacterium, Leptotrichia and Streptococcus showed higher relative abundances in tumor than in non-tumor tissues, as previously described in the literature. Specifically, we identified higher levels of Fusobacterium animalis, Fusobacterium nucleatum, Fusobacterium polymorphum and S. periodonticum in tumor tissues. In contrast, genera such as Bacteroides and Corynebacterium showed lower relative abundances in tumor tissues. There were also differences at the taxonomic level between tumor locations. CONCLUSIONS These results, consistent with previous studies, further support the hypothesis that Leptotrichia and Fusobacterium contribute to CRC progression, with F. nucleatum and F. animalis proposed as key CRC pathogenic taxa. Overall, these results contribute to a better understanding of the CRC-associated microbiota, addressing critical barriers to its implementation in personalized medicine.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| | | | - Javier Rodríguez
- Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Cristina Tirnauca
- Department of Mathematics, Statistics and Computer Science, University of Cantabria, 39005 Santander, Spain
| | - Adrian Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Bilbao, Spain
| |
Collapse
|
17
|
Han H, Choi YH, Kim SY, Park JH, Chung J, Na HS. Optimizing microbiome reference databases with PacBio full-length 16S rRNA sequencing for enhanced taxonomic classification and biomarker discovery. Front Microbiol 2024; 15:1485073. [PMID: 39654676 PMCID: PMC11625778 DOI: 10.3389/fmicb.2024.1485073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Background The study of the human microbiome is crucial for understanding disease mechanisms, identifying biomarkers, and guiding preventive measures. Advances in sequencing platforms, particularly 16S rRNA sequencing, have revolutionized microbiome research. Despite the benefits, large microbiome reference databases (DBs) pose challenges, including computational demands and potential inaccuracies. This study aimed to determine if full-length 16S rRNA sequencing data produced by PacBio could be used to optimize reference DBs and be applied to Illumina V3-V4 targeted sequencing data for microbial study. Methods Oral and gut microbiome data (PRJNA1049979) were retrieved from NCBI. DADA2 was applied to full-length 16S rRNA PacBio data to obtain amplicon sequencing variants (ASVs). The RDP reference DB was used to assign the ASVs, which were then used as a reference DB to train the classifier. QIIME2 was used for V3-V4 targeted Illumina data analysis. BLAST was used to analyze alignment statistics. Linear discriminant analysis Effect Size (LEfSe) was employed for discriminant analysis. Results ASVs produced by PacBio showed coverage of the oral microbiome similar to the Human Oral Microbiome Database. A phylogenetic tree was trimmed at various thresholds to obtain an optimized reference DB. This established method was then applied to gut microbiome data, and the optimized gut microbiome reference DB provided improved taxa classification and biomarker discovery efficiency. Conclusion Full-length 16S rRNA sequencing data produced by PacBio can be used to construct a microbiome reference DB. Utilizing an optimized reference DB can increase the accuracy of microbiome classification and enhance biomarker discovery.
Collapse
Affiliation(s)
- Hyejung Han
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Yoon Hee Choi
- Department of Internal Medicine, Dongnam Institute of Radiological and Medical Sciences, Busan, Republic of Korea
| | - Si Yeong Kim
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jung Hwa Park
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
18
|
Taufer CR, da Silva J, Rampelotto PH. In Silico Analysis of Probiotic Bacteria Changes Across COVID-19 Severity Stages. Microorganisms 2024; 12:2353. [PMID: 39597740 PMCID: PMC11596909 DOI: 10.3390/microorganisms12112353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The gut microbiota plays a crucial role in modulating the immune response during COVID-19, with several studies reporting significant alterations in specific bacterial genera, including Akkermansia, Bacteroides, Bifidobacterium, Faecalibacterium, Lactobacillus, Oscillospira, and Ruminococcus. These genera are symbionts of the gut microbiota and contribute to host health. However, comparing results across studies is challenging due to differences in analysis methods and reference databases. We screened 16S rRNA raw datasets available in public databases on COVID-19, focusing on the V3-V4 region of the bacterial genome. In total, seven studies were included. All samples underwent the same bioinformatics pipeline, evaluating the differential abundance of these seven bacterial genera at each level of severity. The reanalysis identified significant changes in differential abundance. Bifidobacterium emerged as a potential biomarker of disease severity and a therapeutic target. Bacteroides presented a complex pattern, possibly related to disease-associated inflammation or opportunistic pathogen growth. Lactobacillus showed significant changes in abundance across the COVID-19 stages. On the other hand, Akkermansia and Faecalibacterium did not show significant differences, while Oscillospira and Ruminococcus produced statistically significant results but with limited relevance to COVID-19 severity. Our findings reveal new insights into the differential abundance of key bacterial genera in COVID-19, particularly Bifidobacterium and Bacteroides.
Collapse
Affiliation(s)
- Clarissa Reginato Taufer
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.R.T.); (J.d.S.)
| | - Juliana da Silva
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil; (C.R.T.); (J.d.S.)
- Graduate Program in Health and Human Development, Universidade La Salle, Canoas 92010-000, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
19
|
Bašić-Čičak D, Hasić Telalović J, Pašić L. Utilizing Artificial Intelligence for Microbiome Decision-Making: Autism Spectrum Disorder in Children from Bosnia and Herzegovina. Diagnostics (Basel) 2024; 14:2536. [PMID: 39594202 PMCID: PMC11592508 DOI: 10.3390/diagnostics14222536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The study of microbiome composition shows positive indications for application in the diagnosis and treatment of many conditions and diseases. One such condition is autism spectrum disorder (ASD). We aimed to analyze gut microbiome samples from children in Bosnia and Herzegovina to identify microbial differences between neurotypical children and those with ASD. Additionally, we developed machine learning classifiers to differentiate between the two groups using microbial abundance and predicted functional pathways. METHODS A total of 60 gut microbiome samples (16S rRNA sequences) were analyzed, with 44 from children with ASD and 16 from neurotypical children. Four machine learning algorithms (Random Forest, Support Vector Classification, Gradient Boosting, and Extremely Randomized Tree Classifier) were applied to create eight classification models based on bacterial abundance at the genus level and KEGG pathways. Model accuracy was evaluated, and an external dataset was introduced to test model generalizability. RESULTS The highest classification accuracy (80%) was achieved with Random Forest and Extremely Randomized Tree Classifier using genus-level taxa. The Random Forest model also performed well (78%) with KEGG pathways. When tested on an independent dataset, the model maintained high accuracy (79%), confirming its generalizability. CONCLUSIONS This study identified significant microbial differences between neurotypical children and children with ASD. Machine learning classifiers, particularly Random Forest and Extremely Randomized Tree Classifier, achieved strong accuracy. Validation with external data demonstrated that the models could generalize across different datasets, highlighting their potential use.
Collapse
Affiliation(s)
- Džana Bašić-Čičak
- Computer Science Department, University Sarajevo School of Science and Technology, Hrasnička cesta 3a, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Jasminka Hasić Telalović
- Computer Science Department, University Sarajevo School of Science and Technology, Hrasnička cesta 3a, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Lejla Pašić
- Sarajevo Medical School, University Sarajevo School of Science and Technology, Hrasnička cesta 3a, 71000 Sarajevo, Bosnia and Herzegovina;
| |
Collapse
|
20
|
Cabezas MP, Fonseca NA, Muñoz-Mérida A. MIMt: a curated 16S rRNA reference database with less redundancy and higher accuracy at species-level identification. ENVIRONMENTAL MICROBIOME 2024; 19:88. [PMID: 39522045 PMCID: PMC11550520 DOI: 10.1186/s40793-024-00634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
MOTIVATION Accurate determination and quantification of the taxonomic composition of microbial communities, especially at the species level, is one of the major issues in metagenomics. This is primarily due to the limitations of commonly used 16S rRNA reference databases, which either contain a lot of redundancy or a high percentage of sequences with missing taxonomic information. This may lead to erroneous identifications and, thus, to inaccurate conclusions regarding the ecological role and importance of those microorganisms in the ecosystem. RESULTS The current study presents MIMt, a new 16S rRNA database for archaea and bacteria's identification, encompassing 47 001 sequences, all precisely identified at species level. In addition, a MIMt2.0 version was created with only curated sequences from RefSeq Targeted loci with 32 086 sequences. MIMt aims to be updated twice a year to include all newly sequenced species. We evaluated MIMt against Greengenes, RDP, GTDB and SILVA in terms of sequence distribution and taxonomic assignments accuracy. Our results showed that MIMt contains less redundancy, and despite being 20 to 500 times smaller than existing databases, outperforms them in completeness and taxonomic accuracy, enabling more precise assignments at lower taxonomic ranks and thus, significantly improving species-level identification.
Collapse
Affiliation(s)
- M Pilar Cabezas
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno A Fonseca
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Antonio Muñoz-Mérida
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
| |
Collapse
|
21
|
Toomer OT, Redhead AK, Vu TC, Santos F, Malheiros R, Proszkowiec-Weglarz M. The effect of peanut skins as a natural antimicrobial feed additive on ileal and cecal microbiota in broiler chickens inoculated with Salmonella enterica Enteritidis. Poult Sci 2024; 103:104159. [PMID: 39153270 PMCID: PMC11471096 DOI: 10.1016/j.psj.2024.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024] Open
Abstract
The consumption of poultry products contaminated with Salmonella species is one of the most common causes of Salmonella infections. In vivo studies demonstrated the potential application of peanut skins (PS) as an antimicrobial poultry feed additive to help mitigate the proliferation of Salmonella in poultry environments. Tons of PS, a waste by-product of the peanut industry, are generated and disposed in U.S. landfills annually. Peanut skins and extracts have been shown to possess antimicrobial and antioxidant properties. Hence, we aimed to determine the effect of PS as a feed additive on the gut microbiota of broilers fed a control or PS supplemented (4% inclusion) diet and inoculated with or without Salmonella enterica Enteritidis (SE). At hatch 160 male broilers were randomly assigned to 4 treatments: 1) CON-control diet without SE, 2) PS-PS diet without SE, 3) CONSE-control diet with SE, 4) PSSE-PS diet with SE. On d 3, birds from CONSE and PSSE treatments were inoculated with 4.2 × 109 CFU/mL SE. At termination (4 wk), 10 birds/treatment were euthanized and ileal and cecal contents were collected for 16S rRNA analysis using standard methodologies. Sequencing data were analyzed using QIIME2. No effect of PS or SE was observed on ileal alpha and beta diversity, while evenness, richness, number of amplicon sequence variants (ASV) and Shannon, as well as beta diversity were significantly (P < 0.05) affected in ceca. Similarly, more differentially abundant taxa between treatment groups were identified in ceca than in ileum. However, more microbiota functional changes, based on the PICRUST2 prediction, were observed in ileum. Overall, relatively minor changes in microbiota were observed during SE infection and PS treatment, suggesting that PS addition may not attenuate the SE proliferation, as shown previously, through modulation of microbiota in gastrointestinal tract. However, while further studies are warranted, these results suggest that PS may potentially serve as a functional feed additive for poultry for improvement of animal health.
Collapse
Affiliation(s)
- Ondulla T Toomer
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA.
| | - Adam K Redhead
- Math and Science Department, Andrew College, Cuthbert, GA 39840, USA
| | - Thien C Vu
- Food Science & Market Quality and Handling Research Unit, ARS, USDA, Raleigh, NC 27695, USA
| | - Fernanda Santos
- Food, Bioprocessing and Nutrition Sciences Dept., NC State University, Raleigh, NC 27695, USA
| | - Ramon Malheiros
- Prestage Department of Poultry Science, NC State University, Raleigh, NC 27695, USA
| | | |
Collapse
|
22
|
Miska KB, Campos PM, Cloft SE, Jenkins MC, Proszkowiec-Weglarz M. Temporal Changes in Jejunal and Ileal Microbiota of Broiler Chickens with Clinical Coccidiosis ( Eimeria maxima). Animals (Basel) 2024; 14:2976. [PMID: 39457906 PMCID: PMC11503835 DOI: 10.3390/ani14202976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Coccidiosis in broiler chickens continues to be a major disease of the gastrointestinal tract, causing economic losses to the poultry industry worldwide. The goal of this study was to generate a symptomatic Eimeria maxima (1000 oocysts) infection to determine its effect on the luminal and mucosal microbiota populations (L and M) in the jejunum and ileum (J and IL). Samples were taken from day 0 to 14 post-infection, and sequencing of 16S rRNA was performed using Illumina technology. Infected birds had significantly (p < 0.0001) lower body weight gain (BWG), higher feed conversion ratio (FCR) (p = 0.0015), increased crypt depth, and decreased villus height (p < 0.05). The significant differences in alpha and beta diversity were observed primarily at height of infection (D7). Analysis of taxonomy indicated that J-L and M were dominated by Lactobacillus, and in IL-M, changeover from Candidatus Arthromitus to Lactobacillus as the major taxon was observed, which occurred quicky in infected animals. LEfSe analysis found that in the J-M of infected chickens, Lactobacillus was significantly more abundant in infected (IF) chickens. These findings show that E. maxima infection affects the microbiota of the small intestine in a time-dependent manner, with different effects on the luminal and mucosal populations.
Collapse
Affiliation(s)
- Katarzyna B. Miska
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| | - Philip M. Campos
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| | - Sara E. Cloft
- Animal Sciences Department, Purdue University, West Lafayette, IN 47907, USA;
| | - Mark C. Jenkins
- Animal Parasitic Diseases Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA;
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory (ABBL), Beltsville Agricultural Research Center (BARC), United States Department of Agriculture—Agricultural Research Service (USDA—ARS), Beltsville, MD 20705, USA; (P.M.C.); (M.P.-W.)
| |
Collapse
|
23
|
Gerges P, Bangarusamy DK, Bitar T, Alameddine A, Nemer G, Hleihel W. Turicibacter and Catenibacterium as potential biomarkers in autism spectrum disorders. Sci Rep 2024; 14:23184. [PMID: 39369020 PMCID: PMC11455930 DOI: 10.1038/s41598-024-73700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by social, behavioral, and cognitive impairments. Several comorbidities, including gastrointestinal (GI) dysregulations, are frequently reported in ASD children. Although studies in animals have shown the crucial role of the microbiota in key aspects of neurodevelopment, there is currently no consensus on how the alteration of microbial composition affects the pathogenesis of ASD. Moreover, disruption of the gut-brain axis (GBA) has been reported in ASD although with limited studies conducted on the Mediterranean population. In our study, we aimed to investigate gut microbiota composition in Lebanese ASD subjects, their unaffected siblings, and a control group from various regions in Lebanon using the 16 S-rRNA sequencing (NGS). Our study revealed a lower abundance of Turicibacter and a significant enrichment on Proteobacteria in the ASD and siblings' groups compared to the controls, indicating that gut microbiota is probably affected by dietary habits, living conditions together with host genetic factors. The study also showed evidence of changes in the gut microbiome of ASD children compared to their siblings and the unrelated control. Bacteroidetes revealed a lower abundance in the ASD group compared to controls and siblings, conversely, Catenibacterium and Tenericutes revealed an increased abundance in the ASD group. Notably, our study identifies alterations in the abundance of Turicibacter and Catenibacterium in ASD children suggesting a possible link between these bacterial taxa and ASD and contributing to the growing body of evidence linking the microbiome to ASD.
Collapse
Affiliation(s)
- Perla Gerges
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon
| | | | - Tania Bitar
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon.
| | - Abbas Alameddine
- North Autism Center (NAC), Zgharta, 1304, Lebanon
- Department of Psychiatry, Hôtel-Dieu de France Hospital, A. Naccache Avenue - Achrafieh, PO Box 166830, Beirut, Lebanon
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Walid Hleihel
- Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), P.O. Box 446, Jounieh, Lebanon
| |
Collapse
|
24
|
González A, Fullaondo A, Odriozola A. Host genetics and microbiota data analysis in colorectal cancer research. ADVANCES IN GENETICS 2024; 112:31-81. [PMID: 39396840 DOI: 10.1016/bs.adgen.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease with a complex aetiology influenced by a myriad of genetic and environmental factors. Despite advances in CRC research, it is a major burden of disease, with the second highest incidence and third leading cause of cancer deaths worldwide. To individualise diagnosis, prognosis, and treatment of CRC, developing new strategies combining precision medicine and bioinformatic procedures is promising. Precision medicine is based on omics technologies and aims to individualise the management of CRC based on patient host genetic characteristics and microbiota. Bioinformatics is central to the application of personalised medicine because it enables the analysis of large datasets generated by these technologies. At the level of host genetics, bioinformatics allows the identification of mutations, genes, molecular pathways, biomarkers and drugs relevant to colorectal carcinogenesis. At the microbiota level, bioinformatics is fundamental to analysing microbial communities' composition and functionality and developing biomarkers and personalised microbiota-based therapies. This paper explores the host and microbiota genetic data analysis in CRC research.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
25
|
Islam W, Zeng F, Almoallim HS, Ansari MJ. Unveiling soil animal community dynamics beneath dominant shrub species in natural desert environment: Implications for ecosystem management and conservation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121697. [PMID: 38976951 DOI: 10.1016/j.jenvman.2024.121697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The Taklimakan Desert, known for extreme aridity and unique ecological challenges, maintains a delicate life balance beneath its harsh surface. This study investigates intricate dynamics of soil animal communities within this desert ecosystem, with a particular focus on vertical profile variations beneath four dominant shrub species (AS-Alhagi sparsifolia, KC-Karelinia caspia, TR- Tamarix ramosissima, CC- Calligonum caput-medusae). Utilizing comprehensive soil sampling and metagenomics techniques, we reveal the diversity and distribution patterns of soil animal communities from the soil surface down to deeper layers (0-100 cm). Our research outcomes have unveiled that Nematoda and Arthropoda emerge as the most predominant classes of soil animals across all studied shrubs. Specifically, Nematoda exhibited notably high abundance in the KC area, while Arthropoda thrived predominantly in the TR region. We also observed a linear decrease in Nematoda populations as soil depth increased, consistent among all shrub species. Moreover, the highest Shannon diversity within soil animal communities was recorded in the KC area, underscoring a trend of declining alpha diversity in the AS region and an increase in other shrub areas as soil depth increased. Notably, the zones dominated by CC and TR displayed the highest levels of beta diversity. Our correlation analysis of soil animals and environmental factors has pinpointed soil water content, available phosphorus, and available potassium as the most influential drivers of variations in the top-classified soil animal communities. This study provides insights into soil animals in deserts, supporting future research to preserve these fragile deserts and enhance our understanding of life below the surface in challenging ecosystems.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, Riyadh, 11545, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| |
Collapse
|
26
|
de Medeiros Garcia Torres M, Lanza DCF. A Standard Pipeline for Analyzing the Endometrial Microbiome. Reprod Sci 2024; 31:2163-2173. [PMID: 38720154 DOI: 10.1007/s43032-024-01557-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/11/2024] [Indexed: 07/31/2024]
Abstract
The endometrial microbiome is a rapidly advancing field of research, particularly in obstetrics and gynecology, as it has been found to be linked with obstetric complications and potential impacts on fertility. The diversity of microorganisms presents in the endometrium, along with their metabolites, can influence reproductive outcomes by modulating the local immune environment of the uterus. However, a major challenge in advancing our understanding of the endometrial microbiota lies in the heterogeneity of available studies, which vary in terms of patient selection, control groups, collection methods and analysis methodologies. In this study, we propose a detailed pipeline for endometrial microbiome analysis, based on the most comprehensive prospective of 64 studies that have investigated the endometrial microbiome up to the present. Additionally, our review suggests that a dominance of Lactobacilli in the endometrium may be associated with improved reproductive prognosis, including higher implantation rates and lower miscarriage rates. By establishing a standardized pipeline, we aim to facilitate future research, enabling better comparison and correlation of bacterial communities with the health status of patients, including fertility-related issues.
Collapse
|
27
|
Ge D, Cai W, Guo Z, Wang B, Liu M, Shan C, Wang Y. Comparative analysis of bacterial community structure and physicochemical quality in high-temperature Daqu of different colors in Qingzhou production area. Heliyon 2024; 10:e31718. [PMID: 38828313 PMCID: PMC11140805 DOI: 10.1016/j.heliyon.2024.e31718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
To compare the effects of differences in Daqu making technology and production regions on the bacterial composition and physicochemical properties of high-temperature Daqu (HTD), this study analyzed the bacterial community structure of three colors of HTD in the Qingzhou production area and measured their physicochemical quality. At the same time, a comparative analysis was conducted on the bacterial composition of Qingzhou and Xiangyang regions. The results revealed that the HTD in the Qingzhou area exhibited a diverse bacterial community dominated by Lentibacillus, Scopulibacillus, and Staphylococcus. The black HTD displayed the lowest bacterial richness (P < 0.05) and a relatively unique microbial structure. Significant variations were observed in the physicochemical qualities of the three colors of HTD. Notably, white HTD demonstrated higher moisture and ash content, saccharification and liquor-producing power. Yellow HTD exhibited higher amino nitrogen and protein content, and black HTD displayed higher water activity, acidity, and starch content. The variation in Bacillus, Limosilactobacillus, and Weissella distributions across different colors of HTD primarily contributed to these findings. From the HTD samples in the Qingzhou area, Bacillus (61.90 %) and lactic acid bacteria (17.46 %) being the predominant cultivable communities. Cluster analysis identified significant differences in bacterial communities among HTD samples from various production areas. It can enhance the understanding of HTD quality in the Qingzhou area and offer insights for optimizing HTD and Maotai-flavor Baijiu quality.
Collapse
Affiliation(s)
- Dongying Ge
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Wenchao Cai
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhuang Guo
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Bangkun Wang
- Shandong Qingzhou Yunmen Wine Industry (Group) Co., Ltd, Qingzhou, Shandong, China
| | - Minwan Liu
- Shandong Qingzhou Yunmen Wine Industry (Group) Co., Ltd, Qingzhou, Shandong, China
| | - Chunhui Shan
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yurong Wang
- Hubei Provincial Engineering and Technology Research Center for Food Ingredients, Hubei University of Arts and Science, Xiangyang, Hubei, China
- Xiangyang Lactic Acid Bacteria Biotechnology and Engineering Key Laboratory, Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
28
|
Procopio N, Bonicelli A. From flesh to bones: Multi-omics approaches in forensic science. Proteomics 2024; 24:e2200335. [PMID: 38683823 DOI: 10.1002/pmic.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored. In this review, we have presented a comprehensive overview of state-of-the-art analytical platforms employed in omics research, with specific emphasis on their application in the forensic field for the identification of the cadaver and the cause of death. Moreover, we have conducted a critical analysis of the computational integration of omics approaches, and highlighted the latest advancements in employing multi-omics techniques for forensic investigations.
Collapse
Affiliation(s)
- Noemi Procopio
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Andrea Bonicelli
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| |
Collapse
|
29
|
Campos PM, Miska KB, Jenkins MC, Yan X, Proszkowiec-Weglarz M. Effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum and ileum in broiler chickens. Sci Rep 2024; 14:10702. [PMID: 38729976 PMCID: PMC11087572 DOI: 10.1038/s41598-024-61299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Coccidiosis, an intestinal disease caused by Eimeria parasites, is responsible for major losses in the poultry industry by impacting chicken health. The gut microbiota is associated with health factors, such as nutrient exchange and immune system modulation, requiring understanding on the effects of Eimeria infection on the gut microbiota. This study aimed to determine the effects of Eimeria acervulina infection on the luminal and mucosal microbiota of the cecum (CeL and CeM) and ileum (IlL and IlM) at multiple time points (days 3, 5, 7, 10, and 14) post-infection. E. acervulina infection decreased evenness in CeL microbiota at day 10, increased richness in CeM microbiota at day 3 before decreasing richness at day 14, and decreased richness in IlL microbiota from day 3 to 10. CeL, CeM, and IlL microbiota differed between infected and control birds based on beta diversity at varying time points. Infection reduced relative abundance of bacterial taxa and some predicted metabolic pathways known for short-chain fatty acid production in CeL, CeM, and IlL microbiota, but further understanding of metabolic function is required. Despite E. acervulina primarily targeting the duodenum, our findings demonstrate the infection can impact bacterial diversity and abundance in the cecal and ileal microbiota.
Collapse
Affiliation(s)
- Philip M Campos
- Oak Ridge Institute for Science and Education (ORISE), USDA-ARS Research Participation Program, Oak Ridge, TN, USA
- USDA-ARS, NEA Bioinformatics, Beltsville, MD, USA
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, B-307, Rm. 335, BARC-East, Beltsville, MD, 20705, USA
| | - Katarzyna B Miska
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, B-307, Rm. 335, BARC-East, Beltsville, MD, 20705, USA
| | - Mark C Jenkins
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - Xianghe Yan
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA
| | - Monika Proszkowiec-Weglarz
- USDA-ARS, NEA, Beltsville Agricultural Research Center, Animal Biosciences and Biotechnology Laboratory, 10300 Baltimore Avenue, B-307, Rm. 335, BARC-East, Beltsville, MD, 20705, USA.
| |
Collapse
|
30
|
Ma X, Li Z, Cai L, Xiao M, He F, Liu Z, Chen D, Wang Y, Shen L, Gu Y. Analysis of fungal diversity in the gut feces of wild takin ( Budorcas taxicolor). Front Microbiol 2024; 15:1364486. [PMID: 38699479 PMCID: PMC11063333 DOI: 10.3389/fmicb.2024.1364486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction The composition of the intestinal microbiome correlates significantly with an animal's health status. Hence, this indicator is highly important and sensitive for protecting endangered animals. However, data regarding the fungal diversity of the wild Budorcas taxicolor (takin) gut remain scarce. Therefore, this study analyzes the fungal diversity, community structure, and pathogen composition in the feces of wild B. taxicolor. Methods To ensure comprehensive data analyses, we collected 82 fecal samples from five geographical sites. Amplicon sequencing of the internal transcribed spacer (ITS) rRNA was used to assess fecal core microbiota and potential pathogens to determine whether the microflora composition is related to geographical location or diet. We further validated the ITS rRNA sequencing results via amplicon metagenomic sequencing and culturing of fecal fungi. Results and discussion The fungal diversity in the feces of wild Budorcas taxicolor primarily comprised three phyla (99.69%): Ascomycota (82.19%), Fungi_unclassified (10.37%), and Basidiomycota (7.13%). At the genus level, the predominant fungi included Thelebolus (30.93%), Functional_unclassified (15.35%), and Ascomycota_unclassified (10.37%). Within these genera, certain strains exhibit pathogenic properties, such as Thelebolus, Cryptococcus, Trichosporon, Candida, Zopfiella, and Podospora. Collectively, this study offers valuable information for evaluating the health status of B. taxicolor and formulating protective strategies.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiguo Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijun Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Mei Xiao
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Fang He
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Sichuan Provincial Center for Animal Disease Prevention and Control, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Limin Shen
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Wang Y, Sutton NB, Zheng Y, Dong H, Rijnaarts H. Effect of wheat crops on the persistence and attenuation of antibiotic resistance genes in soil after swine wastewater application. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133759. [PMID: 38377902 DOI: 10.1016/j.jhazmat.2024.133759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Swine wastewater (SW) application introduces antibiotic resistance genes (ARGs) into farmland soils. However, ARG attenuation in SW-fertigated soils, especially those influenced by staple crops and soil type, remains unclear. This study investigated twelve soil ARGs and one mobile genetic element (MGE) in sandy loam, loam, and silt loam soils before and after SW application in wheat-planted and unplanted soils. The results revealed an immediate increase in the abundance of ARGs in soil by two orders of magnitude above background levels following SW application. After SW application, the soil total ARG abundance was attenuated, reaching background levels at 54 days; However, more individual ARGs were detected above the detection limit than pre-application. Among the 13 genes, acc(6')-lb, tetM, and tetO tended to persist in the soil during wheat harvest. ARG half-lives were up to four times longer in wheat-planted soils than in bare soils. Wheat planting decreased the persistence of acc(6')-lb, ermB, ermF, and intI2 but increased the persistence of others such as sul1 and sul2. Soil type had no significant impact on ARG and MGE fates. Our findings emphasize the need for strategic SW application and the consideration of crop cultivation effects to mitigate ARG accumulation in farmland soils.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, the Netherlands
| | - Nora B Sutton
- Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, the Netherlands
| | - YunHao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Huub Rijnaarts
- Department of Environmental Technology, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
32
|
Liu MK, Tian XH, Liu CY, Liu Y, Tang YM. Microbiologic surveys for Baijiu fermentation are affected by experimental design. Int J Food Microbiol 2024; 413:110588. [PMID: 38266376 DOI: 10.1016/j.ijfoodmicro.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The traditional Chinese alcoholic beverage Baijiu is produced by spontaneous fermentation of grains under anaerobic conditions. While numerous studies have used metagenomic technology to investigate the microbiome of Baijiu brewing, the microbial succession mechanism of Baijiu brewing has not been fully clarified, and metagenomic strategies for microecology surveys have not been comprehensively evaluated. Using the fermentation process of strong-flavor Baijiu as a model, we compared the data for bacterial communities based on short read 16S rRNA variable regions, V3-V4, and full-length 16S regions, V1-V9, to whole metagenomic shotgun sequencing (WMS) to measure the effect of technology selection on phylogenetic and functional profiles. The results showed differences in bacterial compositions and their relation to volatiles and physicochemical variables between sequencing methods. Furthermore, the percentage of V3-V4 sequences assigned to species level was higher than the percentage of V1-V9 sequences according to SILVA taxonomy, but lower according to NCBI taxonomy (P < 0.05). In both SILVA and NCBI taxonomies, the relative abundances of bacterial communities at both the genus and family levels were more positively correlated with WMS data in the V3-V4 dataset than in the V1-V9 dataset. The WMS identified changes in abundances of multiple metabolic pathways during fermentation (P < 0.05), including "starch and sucrose metabolism," "galactose metabolism," and "fatty acid biosynthesis." Although functional predictions derived from 16S data show similar patterns to WMS, most metabolic pathway changes are uncorrelated (P > 0.05). This study provided new technical and biological insights into Baijiu production that may assist in selection of methodologies for studies of fermentation systems.
Collapse
Affiliation(s)
- Mao-Ke Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China.
| | - Xin-Hui Tian
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Cheng-Yuan Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Yao Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Yu-Ming Tang
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| |
Collapse
|
33
|
Bielen A, Babić I, Vuk Surjan M, Kazazić S, Šimatović A, Lajtner J, Udiković-Kolić N, Mesić Z, Hudina S. Comparison of MALDI-TOF mass spectrometry and 16S rDNA sequencing for identification of environmental bacteria: a case study of cave mussel-associated culturable microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21752-21764. [PMID: 38393570 DOI: 10.1007/s11356-024-32537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is routinely used as a rapid and cost-effective method for pathogen identification in clinical settings. In comparison, its performance in other microbiological fields, such as environmental microbiology, is still being tested, although isolates of environmental microbes are essential for in-depth in vivo studies of their biology, including biotechnological applications. We investigated the applicability of MALDI-TOF MS for the identification of bacterial isolates from a highly oligotrophic environment - Dinaric Karst caves, which likely harbor specific microorganisms. We cultured bacteria from the shell surface of the endemic mussel Congeria jalzici, one of the three known cave mussels in the world that lives in the Dinaric karst underground. The bacterial isolates were obtained by swabbing the shell surface of mussels living in microhabitats with different amounts of water: 10 air-exposed mussels, 10 submerged mussels, and 10 mussels in the hygropetric zone. A collection of 87 pure culture isolates was obtained, mostly belonging to the phylum Bacillota (72%), followed by Pseudomonadota (16%), Actinomycetota (11%), and Bacteroidota (1%). We compared the results of MALDI-TOF MS identification (Bruker databases DB-5989 and version 11, v11) with the results of 16S rDNA-based phylogenetic analysis, a standard procedure for bacterial identification. Identification to the genus level based on 16S rDNA was possible for all isolates and clearly outperformed the results from MALDI-TOF MS, although the updated MALDI-TOF MS database v11 gave better results than the DB-5989 version (85% versus 62%). However, identification to the species-level by 16S rDNA sequencing was achieved for only 17% of isolates, compared with 14% and 40% for the MALDI-TOF MS databases DB-5989 and v11 database, respectively. In conclusion, our results suggest that continued enrichment of MALDI-TOF MS libraries will result with this method soon becoming a rapid, accurate, and efficient tool for assessing the diversity of culturable bacteria from different environmental niches.
Collapse
Affiliation(s)
- Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Ivana Babić
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Marija Vuk Surjan
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Ana Šimatović
- Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Jasna Lajtner
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | | | - Zrinka Mesić
- Oikon Ltd., Trg Senjskih Uskoka 1-2, 10020, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
34
|
Islam W, Zeng F, Ahmed Dar A, Sohail Yousaf M. Dynamics of soil biota and nutrients at varied depths in a Tamarix ramosissima-dominated natural desert ecosystem: Implications for nutrient cycling and desertification management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120217. [PMID: 38340666 DOI: 10.1016/j.jenvman.2024.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The underground community of soil organisms, known as soil biota, plays a critical role in terrestrial ecosystems. Different ecosystems exhibit varied responses of soil organisms to soil physical and chemical properties (SPCPs). However, our understanding of how soil biota react to different soil depths in naturally established population of salinity tolerant Tamarix ramosissima in desert ecosystems, remains limited. To address this, we employed High-Throughput Illumina HiSeq Sequencing to examine the population dynamics of soil bacteria, fungi, archaea, protists, and metazoa at six different soil depths (0-100 cm) in the naturally occurring T. ramosissima dominant zone within the Taklimakan desert of China. Our observations reveal that the alpha diversity of bacteria, fungi, metazoa, and protists displayed a linear decrease with the increase of soil depth, whereas archaea exhibited an inverse pattern. The beta diversity of soil biota, particularly metazoa, bacteria, and protists, demonstrated noteworthy associations with soil depths through Non-Metric Dimensional Scaling analysis. Among the most abundant classes of soil organisms, we observed Actinobacteria, Sordariomycetes, Halobacteria, Spirotrichea, and Nematoda for bacteria, fungi, archaea, protists, and metazoa, respectively. Additionally, we identified associations between the vertical distribution of dominant biotic communities and SPCPs. Bacterial changes were mainly influenced by total potassium, available phosphorus (AP), and soil water content (SWC), while fungi were impacted by nitrate (NO3-) and available potassium (AK). Archaea showed correlations with total carbon (TC) and AK thus suggesting their role in methanogenesis and methane oxidation, protists with AP and SWC, and metazoa with AP and pH. These correlations underscore potential connections to nutrient cycling and the production and consumption of greenhouse gases (GhGs). This insight establishes a solid foundation for devising strategies to mitigate nutrient cycling and GHG emissions in desert soils, thereby playing a pivotal role in the advancement of comprehensive approaches to sustainable desert ecosystem management.
Collapse
Affiliation(s)
- Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, 848300, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. W. Montreal, Quebec H3G1M8, Canada
| | | |
Collapse
|
35
|
Sweeney CJ, Kaushik R, Bottoms M. Considerations for the inclusion of metabarcoding data in the plant protection product risk assessment of the soil microbiome. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:337-358. [PMID: 37452668 DOI: 10.1002/ieam.4812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
There is increasing interest in further developing the plant protection product (PPP) environmental risk assessment, particularly within the European Union, to include the assessment of soil microbial community composition, as measured by metabarcoding approaches. However, to date, there has been little discussion as to how this could be implemented in a standardized, reliable, and robust manner suitable for regulatory decision-making. Introduction of metabarcoding-based assessments of the soil microbiome into the PPP risk assessment would represent a significant increase in the degree of complexity of the data that needs to be processed and analyzed in comparison to the existing risk assessment on in-soil organisms. The bioinformatics procedures to process DNA sequences into community compositional data sets currently lack standardization, while little information exists on how these data should be used to generate regulatory endpoints and the ways in which these endpoints should be interpreted. Through a thorough and critical review, we explore these challenges. We conclude that currently, we do not have a sufficient degree of standardization or understanding of the required bioinformatics and data analysis procedures to consider their use in an environmental risk assessment context. However, we highlight critical knowledge gaps and the further research required to understand whether metabarcoding-based assessments of the soil microbiome can be utilized in a statistically and ecologically relevant manner within a PPP risk assessment. Only once these challenges are addressed can we consider if and how we should use metabarcoding as a tool for regulatory decision-making to assess and monitor ecotoxicological effects on soil microorganisms within an environmental risk assessment of PPPs. Integr Environ Assess Manag 2024;20:337-358. © 2023 SETAC.
Collapse
Affiliation(s)
- Christopher J Sweeney
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| | - Rishabh Kaushik
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| | - Melanie Bottoms
- Syngenta, Jealott's Hill International Research Centre Bracknell, Bracknell, Berkshire, UK
| |
Collapse
|
36
|
Qing W, Shi Y, Chen R, Zou Y, Qi C, Zhang Y, Zhou Z, Li S, Hou Y, Zhou H, Chen M. Species-level resolution for the vaginal microbiota with short amplicons. mSystems 2024; 9:e0103923. [PMID: 38275296 PMCID: PMC10878104 DOI: 10.1128/msystems.01039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Specific bacterial species have been found to play important roles in human vagina. Achieving high species-level resolution is vital for analyzing vaginal microbiota data. However, contradictory conclusions were yielded from different methodological studies. More comprehensive evaluation is needed for determining an optimal pipeline for vaginal microbiota. Based on the sequences of vaginal bacterial species downloaded from NCBI, we conducted simulated amplification with various primer sets targeting different 16S regions as well as taxonomic classification on the amplicons applying different combinations of algorithms (BLAST+, VSEARCH, and Sklearn) and reference databases (Greengenes2, SILVA, and RDP). Vaginal swabs were collected from participants with different vaginal microecology to construct 16S full-length sequenced mock communities. Both computational and experimental amplifications were performed on the mock samples. Classification accuracy of each pipeline was determined. Microbial profiles were compared between the full-length and partial 16S sequencing samples. The optimal pipeline was further validated in a multicenter cohort against the PCR results of common STI pathogens. Pipeline V1-V3_Sklearn_Combined had the highest accuracy for classifying the amplicons generated from both the NCBI downloaded data (84.20% ± 2.39%) and the full-length sequencing data (95.65% ± 3.04%). Vaginal samples amplified and sequenced targeting the V1-V3 region but merely employing the forward reads (223 bp) and classified using the optimal pipeline, resembled the mock communities the most. The pipeline demonstrated high F1-scores for detecting STI pathogens within the validation cohort. We have determined an optimal pipeline to achieve high species-level resolution for vaginal microbiota with short amplicons, which will facilitate future studies.IMPORTANCEFor vaginal microbiota studies, diverse 16S rRNA gene regions were applied for amplification and sequencing, which affect the comparability between different studies as well as the species-level resolution of taxonomic classification. We conducted comprehensive evaluation on the methods which influence the accuracy for the taxonomic classification and established an optimal pipeline to achieve high species-level resolution for vaginal microbiota with short amplicons, which will facilitate future studies.
Collapse
Affiliation(s)
- Wei Qing
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiya Shi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongdan Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yin'ai Zou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cancan Qi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingxuan Zhang
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zuyi Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shanshan Li
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Hou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Laboratory, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Muxuan Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
37
|
Li Y, Tao S, Liang Y. Time-Course Responses of Apple Leaf Endophytes to the Infection of Gymnosporangium yamadae. J Fungi (Basel) 2024; 10:128. [PMID: 38392801 PMCID: PMC10890309 DOI: 10.3390/jof10020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Apple rust, caused by Gymnosporangium yamadae, poses a significant challenge to apple production. Prior studies have underscored the pivotal role played by endophytic microbial communities, intimately linked with the host, in influencing plant diseases and their pathogenic outcomes. The objective of this study is to scrutinize alternations in endophytic microbial communities within apple leaves at different stages of apple rust using high-throughput sequencing technology. The findings revealed a discernible pattern characterized by an initial increase and subsequent decrease in the alpha diversity of microbial communities in diseased leaves. A microbial co-occurrence network analysis revealed that the complexity of the bacterial community in diseased leaves diminished initially and then rebounded during the progression of the disease. Additionally, employing the PICRUSt2 platform, this study provided preliminary insights into the functions of microbial communities at specific disease timepoints. During the spermogonial stage, endophytic bacteria particularly exhibited heightened activity in genetic information processing, metabolism, and environmental information processing pathways. Endophytic fungi also significantly enriched a large number of metabolic pathways during the spermogonial stage and aecial stage, exhibiting abnormally active life activities. These findings establish a foundation for comprehending the role of host endophytes in the interaction between pathogens and hosts. Furthermore, they offer valuable insights for the development and exploitation of plant endophytic resources, thereby contributing to enhanced strategies for managing apple rust.
Collapse
Affiliation(s)
- Yunfan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan 518000, China
| | - Yingmei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
38
|
Wu J, Singleton SS, Bhuiyan U, Krammer L, Mazumder R. Multi-omics approaches to studying gastrointestinal microbiome in the context of precision medicine and machine learning. Front Mol Biosci 2024; 10:1337373. [PMID: 38313584 PMCID: PMC10834744 DOI: 10.3389/fmolb.2023.1337373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
The human gastrointestinal (gut) microbiome plays a critical role in maintaining host health and has been increasingly recognized as an important factor in precision medicine. High-throughput sequencing technologies have revolutionized -omics data generation, facilitating the characterization of the human gut microbiome with exceptional resolution. The analysis of various -omics data, including metatranscriptomics, metagenomics, glycomics, and metabolomics, holds potential for personalized therapies by revealing information about functional genes, microbial composition, glycans, and metabolites. This multi-omics approach has not only provided insights into the role of the gut microbiome in various diseases but has also facilitated the identification of microbial biomarkers for diagnosis, prognosis, and treatment. Machine learning algorithms have emerged as powerful tools for extracting meaningful insights from complex datasets, and more recently have been applied to metagenomics data via efficiently identifying microbial signatures, predicting disease states, and determining potential therapeutic targets. Despite these rapid advancements, several challenges remain, such as key knowledge gaps, algorithm selection, and bioinformatics software parametrization. In this mini-review, our primary focus is metagenomics, while recognizing that other -omics can enhance our understanding of the functional diversity of organisms and how they interact with the host. We aim to explore the current intersection of multi-omics, precision medicine, and machine learning in advancing our understanding of the gut microbiome. A multidisciplinary approach holds promise for improving patient outcomes in the era of precision medicine, as we unravel the intricate interactions between the microbiome and human health.
Collapse
Affiliation(s)
- Jingyue Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Stephanie S. Singleton
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Urnisha Bhuiyan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Lori Krammer
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Raja Mazumder
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
- The McCormick Genomic and Proteomic Center, The George Washington University, Washington, DC, United States
| |
Collapse
|
39
|
Wu X, Zhang T, Zhang T, Park S. The impact of gut microbiome enterotypes on ulcerative colitis: identifying key bacterial species and revealing species co-occurrence networks using machine learning. Gut Microbes 2024; 16:2292254. [PMID: 38117560 PMCID: PMC10761161 DOI: 10.1080/19490976.2023.2292254] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory intestinal disease affecting the colon and rectum, with its pathogenesis attributed to genetic background, environmental factors, and gut microbes. This study aimed to investigate the role of enterotypes in UC by conducting a hierarchical analysis, determining differential bacteria using machine learning, and performing Species Co-occurrence Network (SCN) analysis. Fecal bacterial data were collected from UC patients, and a 16S rRNA metagenomic analysis was performed using the QIIME2 bioinformatics pipeline. Enterotype clustering was conducted at the family level, and deep neural network (DNN) classification models were trained for UC and healthy controls (HC) in each enterotype. Results from eleven 16S rRNA gut microbiome datasets revealed three enterotypes: Bacteroidaceae (ET-B), Lachnospiraceae (ET-L), and Clostridiaceae (ET-C). Ruminococcus (R. gnavus) abundance was significantly higher in UC subjects with ET-B and ET-C than in those with ET-L. R. gnavus also showed a positive correlation with Clostridia in UC SCN for ET-B and ET-C subjects, with a higher correlation in ET-C subjects. Conversely, Odoribacter (O.) splanchnicus and Bacteroides (B.) uniformis exhibited a positive correlation with tryptophan metabolism and AMP-activated protein kinase (AMPK) signaling pathways, while R. gnavus showed a negative correlation. In vitro co-culture experiments with Clostridium (C.) difficile demonstrated that fecal microbiota from ET-B subjects had a higher abundance of C. difficile than ET-L subjects. In conclusion, the ET-B enterotype predisposes individuals to UC, with R. gnavus as a potential risk factor and O. splanchnicus and B. uniformis as protective bacteria, and those with UC may have ultimately become ET-C.
Collapse
Affiliation(s)
- Xuangao Wu
- Department of Bioconvergence, Hoseo University, Asan, Korea
| | - Ting Zhang
- Department of Bioconvergence, Hoseo University, Asan, Korea
| | - TianShun Zhang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, Korea
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan, Korea
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan, Korea
| |
Collapse
|
40
|
Pombubpa N, Lakmuang C, Tiwong P, Kanchanabanca C. Streptomyces Diversity Maps Reveal Distinct High-Specificity Biogeographical and Environmental Patterns Compared to the Overall Bacterial Diversity. Life (Basel) 2023; 14:11. [PMID: 38276260 PMCID: PMC10821021 DOI: 10.3390/life14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Despite their enormous impact on the environment and humans, the distribution and variety of the biggest natural secondary metabolite producers, the genus Streptomyces, have not been adequately investigated. We developed representative maps from public EMP 16S rRNA amplicon sequences microbiomics data. Streptomyces ASVs were extracted from the EMP overall bacterial community, demonstrating Streptomyces diversity and identifying crucial diversity patterns. Our findings revealed that while the EMP primarily distinguished bacterial communities as host-associated or free-living (EMPO level 1), the Streptomyces community showed no significant difference but exhibited distinctions between categories in EMPO level 2 (animal, plant, non-saline, and saline). Multiple linear regression analysis demonstrated that pH, temperature, and salinity significantly predicted Streptomyces richness, with richness decreasing as these factors increased. However, latitude and longitude do not predict Streptomyces richness. Our Streptomyces maps revealed that additional samplings in Africa and Southeast Asia are needed. Additionally, our findings indicated that a greater number of samples did not always result in greater Streptomyces richness; future surveys may not necessitate extensive sampling from a single location. Broader sampling, rather than local/regional sampling, may be more critical in answering microbial biogeograph questions. Lastly, using 16S rRNA gene sequencing data has some limitations, which should be interpreted cautiously.
Collapse
Affiliation(s)
- Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayaporn Lakmuang
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| | - Pornnapat Tiwong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| | - Chompoonik Kanchanabanca
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| |
Collapse
|
41
|
Roume H, Mondot S, Saliou A, Le Fresne-Languille S, Doré J. Multicenter evaluation of gut microbiome profiling by next-generation sequencing reveals major biases in partial-length metabarcoding approach. Sci Rep 2023; 13:22593. [PMID: 38114587 PMCID: PMC10730622 DOI: 10.1038/s41598-023-46062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/27/2023] [Indexed: 12/21/2023] Open
Abstract
Next-generation sequencing workflows, using either metabarcoding or metagenomic approaches, have massively contributed to expanding knowledge of the human gut microbiota, but methodological bias compromises reproducibility across studies. Where these biases have been quantified within several comparative analyses on their own, none have measured inter-laboratory reproducibility using similar DNA material. Here, we designed a multicenter study involving seven participating laboratories dedicated to partial- (P1 to P5), full-length (P6) metabarcoding, or metagenomic profiling (MGP) using DNA from a mock microbial community or extracted from 10 fecal samples collected at two time points from five donors. Fecal material was collected, and the DNA was extracted according to the IHMS protocols. The mock and isolated DNA were then provided to the participating laboratories for sequencing. Following sequencing analysis according to the laboratories' routine pipelines, relative taxonomic-count tables defined at the genus level were provided and analyzed. Large variations in alpha-diversity between laboratories, uncorrelated with sequencing depth, were detected among the profiles. Half of the genera identified by P1 were unique to this partner and two-thirds of the genera identified by MGP were not detected by P3. Analysis of beta-diversity revealed lower inter-individual variance than inter-laboratory variances. The taxonomic profiles of P5 and P6 were more similar to those of MGP than those obtained by P1, P2, P3, and P4. Reanalysis of the raw sequences obtained by partial-length metabarcoding profiling, using a single bioinformatic pipeline, harmonized the description of the bacterial profiles, which were more similar to each other, except for P3, and closer to the profiles obtained by MGP. This study highlights the major impact of the bioinformatics pipeline, and primarily the database used for taxonomic annotation. Laboratories need to benchmark and optimize their bioinformatic pipelines using standards to monitor their effectiveness in accurately detecting taxa present in gut microbiota.
Collapse
Affiliation(s)
- Hugo Roume
- Université Paris-Saclay, INRAE, MetaGenoPolis, 78350, Jouy-en-Josas, France
- Discovery & Front End Innovation, Lesaffre Institute of Science & Technology, Lesaffre International, 101 rue de Menin, 59700, Marcq-en-Barœul, France
| | - Stanislas Mondot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Adrien Saliou
- BIOASTER, Microbiology Technology Institute, 40 Avenue Tony Garnier, 69007, Lyon, France
| | | | - Joël Doré
- Université Paris-Saclay, INRAE, MetaGenoPolis, 78350, Jouy-en-Josas, France.
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France.
| |
Collapse
|
42
|
Liou CW, Cheng SJ, Yao TH, Lai TT, Tsai YH, Chien CW, Kuo YL, Chou SH, Hsu CC, Wu WL. Microbial metabolites regulate social novelty via CaMKII neurons in the BNST. Brain Behav Immun 2023; 113:104-123. [PMID: 37393058 DOI: 10.1016/j.bbi.2023.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.
Collapse
Affiliation(s)
- Chia-Wei Liou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Tzu-Hsuan Yao
- Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Tzu-Ting Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Yu-Hsuan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan
| | - Che-Wei Chien
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan
| | - Yu-Lun Kuo
- Biotools Co. Ltd, New Taipei City 22175, Taiwan
| | - Shih-Hsuan Chou
- Biotools Co. Ltd, New Taipei City 22175, Taiwan; Graduate Institute of Biomedical and Pharmaceutical Science, Fu-Jen Catholic University, New Taipei City 24205, Taiwan
| | - Cheng-Chih Hsu
- Leeuwenhoek Laboratories Co. Ltd, Taipei 10672, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Wei-Li Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, 1 University Rd, Tainan 70101, Taiwan.
| |
Collapse
|
43
|
Warner BB, Rosa BA, Ndao IM, Tarr PI, Miller JP, England SK, Luby JL, Rogers CE, Hall-Moore C, Bryant RE, Wang JD, Linneman LA, Smyser TA, Smyser CD, Barch DM, Miller GE, Chen E, Martin J, Mitreva M. Social and psychological adversity are associated with distinct mother and infant gut microbiome variations. Nat Commun 2023; 14:5824. [PMID: 37726348 PMCID: PMC10509221 DOI: 10.1038/s41467-023-41421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
Health disparities are driven by underlying social disadvantage and psychosocial stressors. However, how social disadvantage and psychosocial stressors lead to adverse health outcomes is unclear, particularly when exposure begins prenatally. Variations in the gut microbiome and circulating proinflammatory cytokines offer potential mechanistic pathways. Here, we interrogate the gut microbiome of mother-child dyads to compare high-versus-low prenatal social disadvantage, psychosocial stressors and maternal circulating cytokine cohorts (prospective case-control study design using gut microbiomes from 121 dyads profiled with 16 S rRNA sequencing and 89 dyads with shotgun metagenomic sequencing). Gut microbiome characteristics significantly predictive of social disadvantage and psychosocial stressors in the mothers and children indicate that different discriminatory taxa and related pathways are involved, including many species of Bifidobacterium and related pathways across several comparisons. The lowest inter-individual gut microbiome similarity was observed among high-social disadvantage/high-psychosocial stressors mothers, suggesting distinct environmental exposures driving a diverging gut microbiome assembly compared to low-social disadvantage/low-psychosocial stressors controls (P = 3.5 × 10-5 for social disadvantage, P = 2.7 × 10-15 for psychosocial stressors). Children's gut metagenome profiles at 4 months also significantly predicted high/low maternal prenatal IL-6 (P = 0.029), with many bacterial species overlapping those identified by social disadvantage and psychosocial stressors. These differences, based on maternal social and psychological status during a critical developmental window early in life, offer potentially modifiable targets to mitigate health inequities.
Collapse
Affiliation(s)
- Barbara B Warner
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| | - Bruce A Rosa
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - I Malick Ndao
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Phillip I Tarr
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - J Philip Miller
- Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Joan L Luby
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Carla Hall-Moore
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Renay E Bryant
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Jacqueline D Wang
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Laura A Linneman
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Tara A Smyser
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Psychiatry, & Radiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Gregory E Miller
- Institute for Policy Research & Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - Edith Chen
- Institute for Policy Research & Department of Psychology, Northwestern University, Evanston, IL, 60208, USA
| | - John Martin
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Makedonka Mitreva
- Departments of Medicine and Genetics, and McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
44
|
Lin WH, Tsai TS. Comparisons of the Oral Microbiota from Seven Species of Wild Venomous Snakes in Taiwan Using the High-Throughput Amplicon Sequencing of the Full-Length 16S rRNA Gene. BIOLOGY 2023; 12:1206. [PMID: 37759605 PMCID: PMC10525742 DOI: 10.3390/biology12091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023]
Abstract
A venomous snake's oral cavity may harbor pathogenic microorganisms that cause secondary infection at the wound site after being bitten. We collected oral samples from 37 individuals belonging to seven species of wild venomous snakes in Taiwan, including Naja atra (Na), Bungarus multicinctus (Bm), Protobothrops mucrosquamatus (Pm), Trimeresurus stejnegeri (Ts), Daboia siamensis (Ds), Deinagkistrodon acutus (Da), and alpine Trimeresurus gracilis (Tg). Bacterial species were identified using full-length 16S rRNA amplicon sequencing analysis, and this is the first study using this technique to investigate the oral microbiota of multiple Taiwanese snake species. Up to 1064 bacterial species were identified from the snake's oral cavities, with 24 pathogenic and 24 non-pathogenic species among the most abundant ones. The most abundant oral bacterial species detected in our study were different from those found in previous studies, which varied by snake species, collection sites, sampling tissues, culture dependence, and analysis methods. Multivariate analysis revealed that the oral bacterial species compositions in Na, Bm, and Pm each were significantly different from the other species, whereas those among Ts, Ds, Da, and Tg showed fewer differences. Herein, we reveal the microbial diversity in multiple species of wild snakes and provide potential therapeutic implications regarding empiric antibiotic selection for wildlife medicine and snakebite management.
Collapse
Affiliation(s)
- Wen-Hao Lin
- Institute of Wildlife Conservation, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan;
| | - Tein-Shun Tsai
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
45
|
Vientós‐Plotts AI, Ericsson AC, Reinero CR. The respiratory microbiota and its impact on health and disease in dogs and cats: A One Health perspective. J Vet Intern Med 2023; 37:1641-1655. [PMID: 37551852 PMCID: PMC10473014 DOI: 10.1111/jvim.16824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Healthy lungs were long thought of as sterile, with presence of bacteria identified by culture representing contamination. Recent advances in metagenomics have refuted this belief by detecting rich, diverse, and complex microbial communities in the healthy lower airways of many species, albeit at low concentrations. Although research has only begun to investigate causality and potential mechanisms, alterations in these microbial communities (known as dysbiosis) have been described in association with inflammatory, infectious, and neoplastic respiratory diseases in humans. Similar studies in dogs and cats are scarce. The microbial communities in the respiratory tract are linked to distant microbial communities such as in the gut (ie, the gut-lung axis), allowing interplay of microbes and microbial products in health and disease. This review summarizes considerations for studying local microbial communities, key features of the respiratory microbiota and its role in the gut-lung axis, current understanding of the healthy respiratory microbiota, and examples of dysbiosis in selected respiratory diseases of dogs and cats.
Collapse
Affiliation(s)
- Aida I. Vientós‐Plotts
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| | - Aaron C. Ericsson
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- University of Missouri Metagenomics CenterUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Carol R. Reinero
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
46
|
Kishore D, Birzu G, Hu Z, DeLisi C, Korolev KS, Segrè D. Inferring microbial co-occurrence networks from amplicon data: a systematic evaluation. mSystems 2023; 8:e0096122. [PMID: 37338270 PMCID: PMC10469762 DOI: 10.1128/msystems.00961-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/14/2023] [Indexed: 06/21/2023] Open
Abstract
Microbes commonly organize into communities consisting of hundreds of species involved in complex interactions with each other. 16S ribosomal RNA (16S rRNA) amplicon profiling provides snapshots that reveal the phylogenies and abundance profiles of these microbial communities. These snapshots, when collected from multiple samples, can reveal the co-occurrence of microbes, providing a glimpse into the network of associations in these communities. However, the inference of networks from 16S data involves numerous steps, each requiring specific tools and parameter choices. Moreover, the extent to which these steps affect the final network is still unclear. In this study, we perform a meticulous analysis of each step of a pipeline that can convert 16S sequencing data into a network of microbial associations. Through this process, we map how different choices of algorithms and parameters affect the co-occurrence network and identify the steps that contribute substantially to the variance. We further determine the tools and parameters that generate robust co-occurrence networks and develop consensus network algorithms based on benchmarks with mock and synthetic data sets. The Microbial Co-occurrence Network Explorer, or MiCoNE (available at https://github.com/segrelab/MiCoNE) follows these default tools and parameters and can help explore the outcome of these combinations of choices on the inferred networks. We envisage that this pipeline could be used for integrating multiple data sets and generating comparative analyses and consensus networks that can guide our understanding of microbial community assembly in different biomes. IMPORTANCE Mapping the interrelationships between different species in a microbial community is important for understanding and controlling their structure and function. The surge in the high-throughput sequencing of microbial communities has led to the creation of thousands of data sets containing information about microbial abundances. These abundances can be transformed into co-occurrence networks, providing a glimpse into the associations within microbiomes. However, processing these data sets to obtain co-occurrence information relies on several complex steps, each of which involves numerous choices of tools and corresponding parameters. These multiple options pose questions about the robustness and uniqueness of the inferred networks. In this study, we address this workflow and provide a systematic analysis of how these choices of tools affect the final network and guidelines on appropriate tool selection for a particular data set. We also develop a consensus network algorithm that helps generate more robust co-occurrence networks based on benchmark synthetic data sets.
Collapse
Affiliation(s)
- Dileep Kishore
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Gabriel Birzu
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Applied Physics, Stanford University, Stanford, California, USA
| | - Zhenjun Hu
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Charles DeLisi
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Kirill S. Korolev
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Cattò C, Mu A, Moreau JW, Wang N, Cappitelli F, Strugnell R. Biofilm colonization of stone materials from an Australian outdoor sculpture: Importance of geometry and exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117948. [PMID: 37080094 DOI: 10.1016/j.jenvman.2023.117948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The safeguarding of Australian outdoor stone heritage is currently limited by a lack of information concerning mechanisms responsible for the degradation of the built heritage. In this study, the bacterial community colonizing the stone surface of an outdoor sculpture located at the Church of St. John the Evangelist in Melbourne was analysed, providing an overview of the patterns of microbial composition associated with stone in an anthropogenic context. Illumina MiSeq 16S rRNA gene sequencing together with confocal laser microscope investigations highlighted the bacterial community was composed of both phototrophic and chemotrophic microorganisms characteristic of stone and soil, and typical of arid, salty and urban environments. Cardinal exposure, position and surface geometry were the most important factors in determining the structure of the microbial community. The North-West exposed areas on the top of the sculpture with high light exposure gave back the highest number of sequences and were dominated by Cyanobacteria. The South and West facing in middle and lower parts of the sculpture received significantly lower levels of radiation and were dominated by Actinobacteria. Proteobacteria were observed as widespread on the sculpture. This pioneer research provided an in-depth investigation of the microbial community structure on a deteriorated artistic stone in the Australian continent and provides information for the identification of deterioration-associated microorganisms and/or bacteria beneficial for stone preservation.
Collapse
Affiliation(s)
- Cristina Cattò
- Department of Food Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milano, Italy; Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Andre Mu
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia; Doherty Applied Microbial Genomics, Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - John W Moreau
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom; School of Geographical, Atmospheric and Earth Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Nancy Wang
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| | - Francesca Cappitelli
- Department of Food Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Richard Strugnell
- Department of Microbiology and Immunology, At the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
48
|
Pomyen Y, Chaisaingmongkol J, Rabibhadana S, Pupacdi B, Sripan D, Chornkrathok C, Budhu A, Budhisawasdi V, Lertprasertsuke N, Chotirosniramit A, Pairojkul C, Auewarakul CU, Ungtrakul T, Sricharunrat T, Phornphutkul K, Sangrajang S, Loffredo CA, Harris CC, Mahidol C, Wang XW, Ruchirawat M. Gut dysbiosis in Thai intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Sci Rep 2023; 13:11406. [PMID: 37452065 PMCID: PMC10349051 DOI: 10.1038/s41598-023-38307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Primary liver cancer (PLC), which includes intrahepatic cholangiocarcinoma (iCCA) and hepatocellular carcinoma (HCC), has the highest incidence of all cancer types in Thailand. Known etiological factors, such as viral hepatitis and chronic liver disease do not fully account for the country's unusually high incidence. However, the gut-liver axis, which contributes to carcinogenesis and disease progression, is influenced by the gut microbiome. To investigate this relationship, fecal matter from 44 Thai PLC patients and 76 healthy controls were subjected to whole-genome metagenomic shotgun sequencing and then analyzed by marker gene-based and assembly based methods. Results revealed greater gut microbiome heterogeneity in iCCA compared to HCC and healthy controls. Two Veillonella species were found to be more abundant in iCCA samples and could distinguish iCCA from HCC and healthy controls. Conversely, Ruminococcus gnavus was depleted in iCCA patients and could distinguish HCC from iCCA samples. High Veillonella genus counts in the iCCA group were associated with enriched amino acid biosynthesis and glycolysis pathways, while enriched phospholipid and thiamine metabolism pathways characterized the HCC group with high Blautia genus counts. These findings reveal distinct landscapes of gut dysbiosis among Thai iCCA and HCC patients and warrant further investigation as potential biomarkers.
Collapse
Affiliation(s)
- Yotsawat Pomyen
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jittiporn Chaisaingmongkol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Siritida Rabibhadana
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Benjarath Pupacdi
- Translational Research Unit, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Donlaporn Sripan
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Chidchanok Chornkrathok
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Anuradha Budhu
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Vajarabhongsa Budhisawasdi
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | - Chirayu U Auewarakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Teerapat Ungtrakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | | | | | | | | | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chulabhorn Mahidol
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Mathuros Ruchirawat
- Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
49
|
Karpe AV, Beale DJ, Tran CD. Intelligent Biological Networks: Improving Anti-Microbial Resistance Resilience through Nutritional Interventions to Understand Protozoal Gut Infections. Microorganisms 2023; 11:1800. [PMID: 37512972 PMCID: PMC10383877 DOI: 10.3390/microorganisms11071800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Enteric protozoan pathogenic infections significantly contribute to the global burden of gastrointestinal illnesses. Their occurrence is considerable within remote and indigenous communities and regions due to reduced access to clean water and adequate sanitation. The robustness of these pathogens leads to a requirement of harsh treatment methods, such as medicinal drugs or antibiotics. However, in addition to protozoal infection itself, these treatments impact the gut microbiome and create dysbiosis. This often leads to opportunistic pathogen invasion, anti-microbial resistance, or functional gastrointestinal disorders, such as irritable bowel syndrome. Moreover, these impacts do not remain confined to the gut and are reflected across the gut-brain, gut-liver, and gut-lung axes, among others. Therefore, apart from medicinal treatment, nutritional supplementation is also a key aspect of providing recovery from this dysbiosis. Future proteins, prebiotics, probiotics, synbiotics, and food formulations offer a good solution to remedy this dysbiosis. Furthermore, nutritional supplementation also helps to build resilience against opportunistic pathogens and potential future infections and disorders that may arise due to the dysbiosis. Systems biology techniques have shown to be highly effective tools to understand the biochemistry of these processes. Systems biology techniques characterize the fundamental host-pathogen interaction biochemical pathways at various infection and recovery stages. This same mechanism also allows the impact of the abovementioned treatment methods of gut microbiome remediation to be tracked. This manuscript discusses system biology approaches, analytical techniques, and interaction and association networks, to understand (1) infection mechanisms and current global status; (2) cross-organ impacts of dysbiosis, particularly within the gut-liver and gut-lung axes; and (3) nutritional interventions. This study highlights the impact of anti-microbial resistance and multi-drug resistance from the perspective of protozoal infections. It also highlights the role of nutritional interventions to add resilience against the chronic problems caused by these phenomena.
Collapse
Affiliation(s)
- Avinash V Karpe
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Black Mountain Science and Innovation Park, Acton, ACT 2601, Australia
- Socio-Eternal Thinking for Unity (SETU), Melbourne, VIC 3805, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Cuong D Tran
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Gate 13 Kintore Ave., Adelaide, SA 5000, Australia
| |
Collapse
|
50
|
Goswami K, Clarkson S, Tipton C, Phillips CD, Dennis DA, Klatt BA, O'Malley M, Smith EL, Gililland J, Pelt CE, Peters CL, Malkani AL, Palumbo BT, Lyons ST, Bernasek TL, Minter J, Goyal N, Purtill W, McDonald JF, Cross MB, Prieto HA, Lee GC, Hansen EN, Bini SA, Ward DT, Zhao N, Shohat N, Higuera CA, Nam D, Della Valle CJ, Parvizi J. The Microbiome of Osteoarthritic Hip and Knee Joints: A Prospective Multicenter Investigation. J Bone Joint Surg Am 2023; 105:821-829. [PMID: 37192280 DOI: 10.2106/jbjs.22.00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
BACKGROUND Recent advances in high-throughput DNA sequencing technologies have made it possible to characterize the microbial profile in anatomical sites previously assumed to be sterile. We used this approach to explore the microbial composition within joints of osteoarthritic patients. METHODS This prospective multicenter study recruited 113 patients undergoing hip or knee arthroplasty between 2017 and 2019. Demographics and prior intra-articular injections were noted. Matched synovial fluid, tissue, and swab specimens were obtained and shipped to a centralized laboratory for testing. Following DNA extraction, microbial 16S-rRNA sequencing was performed. RESULTS Comparisons of paired specimens indicated that each was a comparable measure for microbiological sampling of the joint. Swab specimens were modestly different in bacterial composition from synovial fluid and tissue. The 5 most abundant genera were Escherichia, Cutibacterium, Staphylococcus, Acinetobacter, and Pseudomonas. Although sample size varied, the hospital of origin explained a significant portion (18.5%) of the variance in the microbial composition of the joint, and corticosteroid injection within 6 months before arthroplasty was associated with elevated abundance of several lineages. CONCLUSIONS The findings revealed that prior intra-articular injection and the operative hospital environment may influence the microbial composition of the joint. Furthermore, the most common species observed in this study were not among the most common in previous skin microbiome studies, suggesting that the microbial profiles detected are not likely explained solely by skin contamination. Further research is needed to determine the relationship between the hospital and a "closed" microbiome environment. These findings contribute to establishing the baseline microbial signal and identifying contributing variables in the osteoarthritic joint, which will be valuable as a comparator in the contexts of infection and long-term arthroplasty success. LEVEL OF EVIDENCE Diagnostic Level II . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Karan Goswami
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Samuel Clarkson
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Craig Tipton
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | | | - Brian A Klatt
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael O'Malley
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric L Smith
- New England Baptist Hospital, Chestnut Hill, Massachusetts
| | - Jeremy Gililland
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah
| | | | | | - Arthur L Malkani
- University of Louisville Adult Reconstruction Program, Louisville, Kentucky
| | - Brian T Palumbo
- University of South Florida Department of Orthopaedic Surgery, Clearwater, Florida
| | - Steven T Lyons
- University of South Florida Department of Orthopaedic Surgery, Clearwater, Florida
| | - Thomas L Bernasek
- University of South Florida Department of Orthopaedic Surgery, Clearwater, Florida
| | | | - Nitin Goyal
- Anderson Orthopaedic Research Institute, Alexandria, Virginia
| | - William Purtill
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | | | | | - Hernan A Prieto
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, Florida
| | - Gwo-Chin Lee
- Penn Presbyterian Medical Center, Philadelphia, Pennsylvania
| | - Erik N Hansen
- University of California San Francisco, San Francisco, California
| | - Stefano A Bini
- University of California San Francisco, San Francisco, California
| | - Derek T Ward
- University of California San Francisco, San Francisco, California
| | - Neil Zhao
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Noam Shohat
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Carlos A Higuera
- Department of Orthopaedic Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Dennis Nam
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Craig J Della Valle
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Javad Parvizi
- Rothman Orthopaedic Institute, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|