1
|
Xu H, He D, Tao H. A biomimetic nano-NET strategy for the treatment of MRSA-related implant-associated infection. RSC Adv 2025; 15:14821-14837. [PMID: 40337221 PMCID: PMC12057620 DOI: 10.1039/d5ra00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has spread across diverse global environments, and MRSA-related infection is a major threat to public health. Implant-associated infection (IAI) caused by MRSA remains a tough global clinical problem. Conventional antibiotic therapy has limited efficacy in treating MRSA-related IAI, and antibiotic abuse has resulted in the emergence of multidrug-resistant bacteria. Hence, there is a necessity to explore more effective approaches to deal with MRSA-related IAI. Herein, inspired by neutrophil extracellular traps (NETs) released by neutrophils to kill microorganisms, this study proposes a novel biomimetic nano-NET strategy using an epsilon-poly-l-lysine-coated CuO2 nanoplatform, denoted as PCPNAs. The function-adaptive nanoplatform exhibited excellent Fenton-like performance, including robust ROS generation and GSH scavenging ability. PCPNAs showed >90% cell viability in mammalian cells and reduced bacterial burden by 7.65 log10 CFU in vitro. Moreover, the positively charged PCPNAs could easily bind to negatively charged MRSA cells through charge-coupling and simultaneously exerted a trapping effect on MRSA cells. Notably, PCPNAs self-assembled into web-like structures to physically trap and kill biofilm bacteria, achieving 99.58% biofilm eradication. Furthermore, PCPNAs showed satisfactory biocompatibility in vivo and displayed ideal anti-bacterial and anti-inflammatory effects in a mouse model with implant-associated infection. With further development and optimization, the biomimetic nano-NET strategy based on PCPNAs provides a new therapeutic option for the treatment of MRSA-related implant-associated infection.
Collapse
Affiliation(s)
- Huan Xu
- Department of Orthopedics Surgery, Lishui Hospital, Zhejiang University School of Medicine No. 289, Kuocang Road Lishui Zhejiang 323000 China
| | - Dengwei He
- Department of Orthopedics Surgery, Lishui Hospital, Zhejiang University School of Medicine No. 289, Kuocang Road Lishui Zhejiang 323000 China
| | - Huimin Tao
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine No. 88, Jiefang Road Hangzhou Zhejiang 310009 China
| |
Collapse
|
2
|
Kaczmarczyk O, Augustyniak D, Żak A. Imaging of Hydrated and Living Cells in Transmission Electron Microscope: Summary, Challenges, and Perspectives. ACS NANO 2025; 19:12710-12733. [PMID: 40156542 PMCID: PMC11984313 DOI: 10.1021/acsnano.5c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025]
Abstract
Transmission electron microscopy (TEM) is well-known for performing in situ studies in the nanoscale. Hence, scientists took this opportunity to explore the subtle processes occurring in living organisms. Nevertheless, such observations are complex─they require delicate samples kept in the liquid phase, low electron dose, and proper cell viability verification methods. Despite being highly demanding, so-called "live-cell" experiments have seen some degree of success. The presented review consists of an exhaustive literature review on reported "live-cell" studies and associated subjects, including liquid phase imaging, electron radiation interactions with liquids, and methods for cell viability testing. The challenges of modern, reliable research on living organisms are widely explained and discussed, and future perspectives for developing these techniques are presented.
Collapse
Affiliation(s)
- Olga Kaczmarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Augustyniak
- Department
of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | - Andrzej Żak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wroclaw, Poland
- Department
of Material Science and Engineering, Massachusetts
Institute of Science and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Wang C, Wang L, Liu M, Bi W, Xu Y. High-Efficiency and Stable Cathode Disinfection in Real Water Systems via Convenient In Situ Prepared Copper-Cuprous Oxide Nanowires. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19471-19481. [PMID: 40101240 DOI: 10.1021/acsami.5c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
As global pollution intensifies, water contamination─a critical issue for both human and ecological survival─has become increasingly severe. Consequently, there is an urgent need for a rapid and stable water disinfection method to ensure clean water. In this study, high-surface-area Cu composite films were first deposited on a conductive substrate through an in situ electrodeposition process. The derived copper nanowire (M-Cu/Cu2O NWs) electrodes were then synthesized by controlled in situ growth and electrochemical reduction-decomposition of the Cu composite films. The working electrode was then placed on the cathode for water disinfection. The results demonstrated excellent and stable antimicrobial performance against Escherichia coli, Staphylococcus aureus, and Citrobacter freundii. The in situ reduction method for preparing derived copper electrodes can help prevent reoxidation during synthesis, promote the formation of an excellent crystal structure, and reduce grain boundaries and defects, thereby enhancing the mechanical strength and chemical stability of the Cu/Cu2O nanowires. Furthermore, the cathodic environment of the working electrode significantly reduces metal corrosion caused by oxidation, further enhancing its durability. The sterilization mechanism is the membrane's electroporation caused by nanowires' tip effect. It has been demonstrated that the M-Cu/Cu2O NWs cathode electrode can continuously maintain a bacterial inactivation rate above 90% for 30 days at an 8 V working potential. Due to the simple electrode fabrication method, stable disinfection efficiency, and significant reduction in copper ion release, which minimizes secondary environmental contamination, this system holds great potential for safe and stable water treatment applications.
Collapse
Affiliation(s)
- Chuanqi Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Miao Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Weilin Bi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Ahmed Nawaz Qureshi YZ, Li M, Chang H, Song Y. Microfluidic chip systems for color-based antimicrobial susceptibility test a review. Biosens Bioelectron 2025; 273:117160. [PMID: 39827743 DOI: 10.1016/j.bios.2025.117160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Clinical bacteria pose a significant public health threat, underscoring the need for reliable and rapid diagnostic methods for early disease detection, which can facilitate patient recovery. Current diagnostic methods for rapid pathogen detection often take hours to days and require numerous reagents and lengthy protocols. Microfluidic chip system offers a promising solution for clinical microbiology detection by reducing detection time with minimal setup and providing a point-of-care solution for patients. These systems are also easier to handle and, with advancements in technology, offer more conclusive observations. This review focuses on recent developments in microfluidic chip-based systems that use colored fluorescent and non-fluorescent dyes for phenotypic tests in clinical pathogen detection. Recent advancements in non-conventional observation methods, such as smartphones and software combined with microscopy, are paving the way for microfluidic systems to revolutionize point-of-care devices. Significant challenges for these systems include antimicrobial susceptibility testing protocols, which depend on color formation, observation methods, and reducing detection time. In the future, working with live cultures remains a major hurdle in developing efficient and accurate microfluidic diagnostic systems for antimicrobial susceptibility testing.
Collapse
Affiliation(s)
- Yasmeen Zamir Ahmed Nawaz Qureshi
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China; Department of Maritime Sciences, Bahria University Karachi Campus, Karachi, 75260, Pakistan
| | - Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Hui Chang
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
5
|
Liu Z, Lei L, Zhang Z, Du M, Chen Z. Ultrasound-responsive engineered bacteria mediated specific controlled expression of catalase and efficient radiotherapy. Mater Today Bio 2025; 31:101620. [PMID: 40104641 PMCID: PMC11914755 DOI: 10.1016/j.mtbio.2025.101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/17/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The limited efficacy of radiotherapy (RT) in breast cancer is intricately linked to the hypoxic tumor microenvironment. Delivering catalase (CAT) to decompose hydrogen peroxide (H2O2) into oxygen is a promising strategy to address this. However, challenges such as low transport efficiency, accumulation in normal organs, and lack of spatiotemporal control hinder its clinical application. To address this, we developed an innovative ultrasound-responsive engineered bacteria-based CAT delivery system (UEB), which effectively overcomes these challenges by targeting tumors, ensuring efficient CAT expression, and providing precise spatiotemporal control over H2O2 decomposition. When subjected to ultrasound irradiation, the decomposition of H2O2 and the production of oxygen by UEB increased threefold, demonstrating excellent capability in alleviating hypoxia. CAT accumulation in normal organs was minimized through this ultrasound-responsive delivery strategy. Moreover, these engineered bacteria enhance reactive oxygen species (ROS) generation, improving RT outcomes and significantly inhibiting tumor growth, resulting in a 10-fold tumor size reduction. This study demonstrates a promising strategy for the specific, controlled expression of CAT by the application of ultrasound-responsive engineered bacteria to enhance the efficacy of tumor radiotherapy.
Collapse
Affiliation(s)
- Zichao Liu
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Lingling Lei
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zenan Zhang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- Department of Medical Imaging, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
6
|
Zhang J, Takacs CN, McCausland JW, Mueller EA, Buron J, Thappeta Y, Wachter J, Rosa PA, Jacobs-Wagner C. Borrelia burgdorferi loses essential genetic elements and cell proliferative potential during stationary phase in culture but not in the tick vector. J Bacteriol 2025; 207:e0045724. [PMID: 39950812 PMCID: PMC11925233 DOI: 10.1128/jb.00457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025] Open
Abstract
The Lyme disease agent Borrelia burgdorferi is a polyploid bacterium with a segmented genome in which both the chromosome and over 20 distinct plasmids are present in multiple copies per cell. This pathogen can survive for at least 9 months in its tick vector in an apparent dormant state between blood meals, without losing cell proliferative capability when re-exposed to nutrients. Cultivated B. burgdorferi cells grown to stationary phase or resuspended in nutrient-limited media are often used to study the effects of nutrient deprivation. However, a thorough assessment of the spirochete's ability to recover from nutrient depletion has been lacking. Our study shows that starved B. burgdorferi cultures rapidly lose cell proliferative ability. Loss of genetic elements essential for cell proliferation contributes to the observed proliferative defect in stationary phase. The gradual decline in copies of genetic elements is not perfectly synchronized between chromosomes and plasmids, generating cells that harbor one or more copies of the essential chromosome but lack all copies of one or more non-essential plasmids. This phenomenon likely contributes to the well-documented issue of plasmid loss during in vitro cultivation of B. burgdorferi. In contrast, B. burgdorferi cells from ticks starved for 14 months showed no evidence of reduced cell proliferative ability or plasmid loss. Beyond their practical implications for studying B. burgdorferi, these findings suggest that the midgut of the tick vector offers a unique environment that supports the maintenance of B. burgdorferi's segmented genome and cell proliferative potential during periods of tick fasting.IMPORTANCEBorrelia burgdorferi causes Lyme disease, a prevalent tick-borne illness. B. burgdorferi must survive long periods (months to a year) of apparent dormancy in the midgut of the tick vector between blood meals. Resilience to starvation is a common trait among bacteria. However, this study reveals that, in laboratory cultures, B. burgdorferi poorly endures starvation and rapidly loses viability. This decline is linked to a gradual loss of genetic elements required for cell proliferation. These results suggest that the persistence of B. burgdorferi in nature is likely shaped more by unique environmental conditions in the midgut of the tick vector than by an innate ability of this bacterium to endure nutrient deprivation.
Collapse
Affiliation(s)
- Jessica Zhang
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Constantin N. Takacs
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Joshua W. McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Elizabeth A. Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Jeline Buron
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Yashna Thappeta
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Jenny Wachter
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Patricia A. Rosa
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Mahdizade Ari M, Scholz KJ, Cieplik F, Al-Ahmad A. Viable but non-cultivable state in oral microbiota: a critical review of an underexplored microbial survival strategy. Front Cell Infect Microbiol 2025; 15:1533768. [PMID: 40171166 PMCID: PMC11959090 DOI: 10.3389/fcimb.2025.1533768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The viable but non-cultivable (VBNC) state and persister cells, two dormancy phenomena in bacteria, differ in various aspects. The entry of bacteria into the VBNC state as a survival strategy under stressful conditions has gained increasing attention in recent years, largely due to the higher tolerance of VBNC cells to antibiotics and antimicrobials resulting from their low metabolic activity. The oral cavity favors biofilm growth in dental hard tissues, resulting in tooth decay and periodontitis. Despite advances in VBNC state detection in the food industry and environment, the entry capability of oral bacteria into the VBNC state remains poorly documented. Furthermore, the VBNC state has recently been observed in oral pathogens, including Porphyromonas gingivalis, which shows potential relevance in chronic systemic infections, Enterococcus faecalis, an important taxon in endodontic infections, and Helicobacter pylori, which exhibits transient presence in the oral cavity. Further research could create opportunities to develop novel therapeutic strategies to control oral pathogens. The inability of conventional culture-based methods to identify VBNC bacteria and the metabolic reactivation of dormant cells to restore susceptibility to therapies highlights a notable gap in anti-VBNC state strategies. The lack of targeted approaches tested for efficacy against VBNC bacteria underscores the need to develop novel detection methods. This review discusses the VBNC state, its importance in public health, and diagnostic techniques, with a special focus on the VBNC state in oral bacteria.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Konstantin Johannes Scholz
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Fabian Cieplik
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
8
|
Kamanina OA, Rybochkin PV, Borzova DV, Soromotin VN, Galushko AS, Kashin AS, Ivanova NM, Zvonarev AN, Suzina NE, Holicheva AA, Boiko DA, Arlyapov VA, Ananikov VP. Sustainable catalysts in a short time: harnessing bacteria for swift palladium nanoparticle production. NANOSCALE 2025; 17:5289-5300. [PMID: 39878071 DOI: 10.1039/d4nr03661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Adapting biological systems for nanoparticle synthesis opens an orthogonal Green direction in nanoscience by reducing the reliance on harsh chemicals and energy-intensive procedures. This study addresses the challenge of efficient catalyst preparation for organic synthesis, focusing on the rapid formation of palladium (Pd) nanoparticles using bacterial cells as a renewable and eco-friendly support. The preparation of catalytically active nanoparticles on the bacterium Paracoccus yeei VKM B-3302 represents a more suitable approach to increase the reaction efficiency due to its resistance to metal salts. We introduce an efficient method that significantly reduces the preparation time of Pd nanoparticles on Paracoccus yeei bacteria to only 7 min, greatly accelerating the process compared with traditional methods. Our findings reveal the major role of live bacterial cells in the formation and stabilization of Pd nanoparticles, which exhibit high catalytic activity in the Mizoroki-Heck reaction. This method not only ensures high yields of the desired product but also offers a greener and more sustainable alternative to conventional catalytic processes. The rapid preparation and high efficiency of this biohybrid catalyst opens new perspectives for the application of biosupported nanoparticles in organic synthesis and a transformative sustainable pathway for chemical production processes.
Collapse
Affiliation(s)
| | | | | | | | - Alexey S Galushko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
| | - Alexey S Kashin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
| | - Nina M Ivanova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
| | - Anton N Zvonarev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Natalia E Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | | | - Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
| | | | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 119991, Russia.
- Organic Chemistry Department, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| |
Collapse
|
9
|
Yuan H, Chen F, Zhang J, Guo X, Zhang J, Yan W. Investigating the Synergistic Bactericidal Effects of Cold Plasma and Ultraviolet Radiation on Pseudomonas fragi. Foods 2025; 14:550. [PMID: 40001996 PMCID: PMC11854783 DOI: 10.3390/foods14040550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Cold plasma is a novel non-thermal processing technology with broad application prospects in food preservation. When combined with other physical sterilization technologies, it enhances sterilization efficiency and broadens its application scope, providing a safe and effective alternative to traditional sterilization methods. In this paper, the sterilization effect of surface dielectric barrier discharge (SDBD) plasma combined with 222 nm ultraviolet (UV) irradiation against Pseudomonas fragi (P. fragi) was explored for the first time. The sterilization process parameters of SDBD + UV were optimized using the response surface methodology. And the sterilization mechanism of SDBD + UV was preliminary elucidated. The results indicated that the SDBD + UV treatment was highly effective against P. fragi. It could eliminate 6.35 Log CFU/g of P. fragi within 150 s, establishing optimal sterilization parameters: a radiation distance of 16.4 cm and a saving time (a period of preservation in which the samples were retained in the device after the treatment) of 120 s. Furthermore, the treatment caused significant damage to the cell membrane of P. fragi, leading to membrane perforation and content leakage. It also induced oxidative stress, as evidenced by membrane lipid peroxidation, alterations in intracellular reactive oxygen species (ROS) content, and a decrease in antioxidant enzyme activity. This study provides a theoretical basis for the application of cold plasma combined with 222 nm UV treatment in the meat industry.
Collapse
Affiliation(s)
- Haidu Yuan
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.Z.); (X.G.); (J.Z.)
| | - Fei Chen
- Springsnow Food Group Co., Ltd., Yantai 265200, China;
| | - Jiajia Zhang
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.Z.); (X.G.); (J.Z.)
| | - Xinglei Guo
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.Z.); (X.G.); (J.Z.)
| | - Jianhao Zhang
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.Z.); (X.G.); (J.Z.)
| | - Wenjing Yan
- National Center of Meat Quality & Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Y.); (J.Z.); (X.G.); (J.Z.)
| |
Collapse
|
10
|
Huo H, Dan W, Qin L, Bo J, Zhang X, Yang C, Bai B, Ren J, Shi B, Li J. Novel steroidal β-carboline derivatives as promising antibacterial candidates against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2025; 283:117187. [PMID: 39709796 DOI: 10.1016/j.ejmech.2024.117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
A novel series of steroidal β-carboline quaternary ammonium derivatives (SCQADs) derived from natural cholic acid and its derivatives was designed, synthesized and biologically evaluated against four Gram-positive bacteria for the first time. Most of these derivatives exhibited promising antibacterial activity against the tested strains, particularly, compound 21g displayed strong antibacterial activity against MRSA (MIC = 0.5-1 μg/mL) with low cytotoxicity. Meanwhile, derivative 21g was able to quickly kill Gram-positive bacteria within 0.5 h without inducing bacterial resistance. Preliminary mechanistic explorations indicated that compound 21g destroyed bacterial cell membranes to exert its antibacterial effects. Moreover, 21g exhibited high in vivo efficacy and high survival protection in a mouse skin abscess model. These findings suggested that compound 21g has great potential to develop as an antibacterial agent.
Collapse
Affiliation(s)
- Haibo Huo
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Wenjia Dan
- School of Life Science and Technology, Shandong Second Medical University, Shandong, China
| | - Libo Qin
- Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Jiaxue Bo
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Xiaonan Zhang
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Chaofu Yang
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
| | - Bianxia Bai
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China
| | - Jiahong Ren
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China.
| | - Baojun Shi
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Li
- Department of Life Sciences, Changzhi University, Changzhi, 046011, Shanxi, China; Department of Chemistry, Changzhi University, Changzhi, 046011, Shanxi, China.
| |
Collapse
|
11
|
Marasini S, Dean SJ, Swift S, Hussan JR, Craig JP. In vitro anti-biofilm efficacy of therapeutic low dose 265 nm UVC. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 263:113091. [PMID: 39787975 DOI: 10.1016/j.jphotobiol.2024.113091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE Preclinical studies have confirmed the safety and efficacy of narrowband low-intensity ultraviolet C light (UVC) in managing bacterial corneal infection. To further consolidate these findings, the present study aimed to explore in vitro anti-biofilm efficacy of low-intensity UVC light for its potential use in biofilm-related infections. METHODS Pseudomonas aeruginosa biofilm was grown in chamber well slides for 48 h and exposed to one of the following challenges: UVC (265 nm wavelength, intensity 1.93 mW/cm2) for 15 s, 30 s, 60 s or 120 s duration, 70% propanol (positive control), or no exposure (negative control). Bacterial LIVE/DEAD staining was conducted at 1 h, 4 h, 6 h and 8 h after challenge exposures to assess the temporal pattern of biofilm inactivation, and slides were imaged using confocal microscopy. Treatment efficacy was quantified by dead biofilm biomass (volume/area - μm3/μm2) for different treatment groups at each time point. RESULTS At each time point post-exposure, dead biofilm biomass was consistently higher in the alcohol- and UVC-challenged groups than in the unchallenged control (p < 0.05), suggesting a sustained biocidal impact after a given challenge. The quantity of dead biofilm biomass did not differ between UVC groups at any time point (p > 0.05). Observed by confocal microscopy, UVC-exposed biofilm demonstrated predominantly intermediate-stage biofilm (i.e., dying state) at 1 h, which progressed to dead biofilm by 4 h. CONCLUSION Low doses of UVC demonstrated potent anti-biofilm activity, even in exposures as short as 15 s, the dose that has previously been deemed to be effective in managing corneal infection in vivo. These data support the potential for this UVC light-based technology to serve as an affordable, convenient, and effective means of treating ocular infections associated with bacterial biofilm.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.
| | - Simon J Dean
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand.
| | - Jagir R Hussan
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Jennifer P Craig
- Department of Ophthalmology, Aotearoa New Zealand National Eye Centre, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Jiao Y, Ran M, Wu J, Li J. Boron contributes to enhance antimony tolerance in rice (Oryza sativa L.) by activating antioxidant system, modifying the cell wall component and promoting cell wall deposition of Sb. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124100. [PMID: 39813807 DOI: 10.1016/j.jenvman.2025.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/02/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Boron (B) is essential for plant growth and helps mitigate metal toxicity in various crop plants. However, the potential role and underlying mechanisms of B in alleviating antimony (Sb) toxicity in rice remain unexplored. In this study, we investigated the effects of H₃BO₃ supplementation (30, 50, and 75 μM) on morphological growth, physiological and biochemical traits, Sb content, and the subcellular distribution of Sb in rice plants under 100 μM Sb stress during the seedling stage in a hydroponic system. The results revealed that Sb toxicity severely impaired rice growth, reducing shoot biomass by 38.3%, shoot and root length by 38.9% and 23.2%, and leaf relative water content by 15.5%. Supplementation with 30 μM B mitigated these adverse effects by enhancing photosynthesis and chlorophyll synthesis, restoring root activity, and improving oxidative balance through increased antioxidant enzyme activities in rice tissues. Furthermore, B supplementation significantly reduced Sb concentration in roots by 56.28%, while promoting Sb distribution in the cell wall (CW) fraction. Scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDS) microanalysis confirmed that B enhanced Sb adsorption on root CWs. Fourier transform infrared spectroscopy (FTIR) analysis indicated increased carboxyl groups in the CWs following B application under Sb treatment. Moreover, B supplementation increased the levels of pectin and hemicellulose and elevated pectin methylesterase (PME) activity by 22.0%, 69.0%, and 29.0% in roots, respectively, thus promoting Sb chelation onto the CWs. Taken together, our results provide a scientific basis and theoretical guidance for applying B to alleviate Sb toxicity in crops.
Collapse
Affiliation(s)
- Ying Jiao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Maodi Ran
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaxing Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaokun Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
13
|
Condé TO, Dorigan AF, Moreira SI, da Silveira PR, Alves E. Microscopic Characterization of the Infectious Process, ROS Production, and Fungi Cellular Death of Alternaria alternata on Tangerine Resistant to QoIs. Microsc Res Tech 2025; 88:407-415. [PMID: 39390770 DOI: 10.1002/jemt.24710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
Quinone outside inhibitor (QoI) fungicide resistance in Alternaria alternata populations was reported in Brazil for the first time in 2019, in São Paulo orchards, and the mutation G143A in cytochrome b (cytb) was found in resistant isolates. Our study investigated the infectious process, production of reactive oxygen species (ROS), and fungal cell death in resistant (QoI-R) and sensitive (QoI-S) A. alternata pathotype tangerine (Aapt) isolates. Morphological characterization of Aapt isolates was performed using confocal laser scanning microscopy (CLSM). Alternaria brown spot (ABS) symptoms were produced by Aapt isolates on tangelo cv. BRS Piemonte. Germination of QoI-R conidia and production of germ tubes on tangelo leaflets treated with 100 μg mL-1 of pyraclostrobin 18 h after inoculation (hai) was observed using scanning electron microscopy (SEM). At the same time, QoI-S conidial germination was inhibited on tangelo leaflets treated with pyraclostrobin. ROS production and cell death in Aapt isolates at high fungicide concentrations were observed using CLSM. QoI-S conidia exhibited high ROS production, indicating high oxidative stress. When dyed with propidium iodate (PI), QoI-S conidia emitted red fluorescence, showing cell death and confirming their sensitive phenotype. In contrast, QoI-R conidia neither produced ROS nor exhibited red fluorescence, indicating no cell death and confirming their resistant phenotype. Therefore, our findings evidence that microscopic techniques may help characterize events during fungi-plant interactions, ROS production, cell death, and Aapt phenotypes resistant and sensitive to QoIs using fluorometric protocols.
Collapse
Affiliation(s)
- Thiago Oliveira Condé
- Department of Plant Pathology, Federal University of Lavras-UFLA, Lavras, Minas Gerais, Brazil
- Department of Biology, Federal University of Lavras-UFLA, Lavras, Minas Gerais, Brazil
| | - Adriano Francis Dorigan
- Department of Plant Pathology, Federal University of Lavras-UFLA, Lavras, Minas Gerais, Brazil
| | - Silvino Intra Moreira
- Agricultural Sciences Institute, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras-UFLA, Lavras, Minas Gerais, Brazil
| |
Collapse
|
14
|
Kim JH, Park BI, Kim YH, Yoon JS, Choi NY, Kim KJ. Chrysanthemum zawadskii var. latilobum Flower Essential Oil Reduces MRSA Pathogenicity by Inhibiting Virulence Gene Expression. Molecules 2025; 30:553. [PMID: 39942657 PMCID: PMC11820971 DOI: 10.3390/molecules30030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The essential oil extracted from the flowers of Chrysanthemum zawadskii var. latilobum (Maxim.) Kitam (CZEO), family Asteraceae, was investigated to determine its ability to inhibit the pathogenicity of methicillin-resistant Staphylococcus aureus (MRSA). The chemical composition of CZEO was analyzed using gas chromatography-flame ionization detector and gas chromatography-mass spectrometry, and 88 compounds were identified and categorized as monoterpenes (68.82%), sesquiterpenes (17.82%), and others (5.01%). CZEO inhibited MRSA floating cell growth, acid production, and biofilm formation in a concentration-dependent manner. Furthermore, confocal laser scanning and scanning electron microscopy confirmed that the CZEO treatment decreased MRSA viability and notably reduced the three-dimensional density of the biofilm. Real-time PCR demonstrated that the mRNA expression of the MRSA gene A (mecA), accessory gene regulator A (agrA), staphylococcal accessory regulator A (sarA), and staphylococcal enterotoxin A (sea), which are pivotal genes implicated in MRSA pathogenicity, declined in a concentration-dependent manner following the CZEO treatment compared with the control. Thus, CZEO appeared to directly target the pathogenicity MRSA regulators. These findings substantiate the potential of CZEO as a natural antimicrobial agent for preventing MRSA infections.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Department of Convergence Technology for Food Industry, School of Food, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul 02841, Republic of Korea;
| | - Bog-Im Park
- Department of Food and Nutrition, School of Food, Kunsan National University, Kunsan 54150, Jeonbuk, Republic of Korea;
| | - Young-Hoi Kim
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Jeonbuk, Republic of Korea;
| | - Ji-Su Yoon
- Transdisciplinary Major in Learning Health Systems, Department of Health and Safety Convergence Science, Graduate School, Korea University, Seoul 02841, Republic of Korea;
| | - Na-Young Choi
- Clothing and Textiles Major, College of Education, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| | - Kang-Ju Kim
- Department of Oral Microbiology, School of Dentistry, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
15
|
Tchatchiashvili T, Jundzill M, Marquet M, Mirza KA, Pletz MW, Makarewicz O, Thieme L. CAM/TMA-DPH as a promising alternative to SYTO9/PI for cell viability assessment in bacterial biofilms. Front Cell Infect Microbiol 2025; 14:1508016. [PMID: 39906213 PMCID: PMC11790577 DOI: 10.3389/fcimb.2024.1508016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
Introduction Accurately assessing biofilm viability is essential for evaluating both biofilm formation and the efficacy of antibacterial treatments. Traditional SYTO9 and propidium iodide (PI) live/dead staining in biofilm viability assays often ace challenges due to non-specific staining, limiting precise differentiation between live and dead cells. To address this limitation, we investigated an alternative staining method employing calcein acetoxymethyl (CAM) to detect viable cells based on esterase activity, and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) to assess the remaining biofilm population. Methods Biofilms of Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecium were matured and exposed to varying concentrations of antibiotics or sterile medium. Biofilm viability was assessed using CAM/TMA-DPH or SYTO9/PIstaining, followed by analysis with confocal laser scanning microscopy (CLSM) and ImageJ-based biofilm surface coverage quantification. Viability findings were compared with colony-forming units (CFU/mL), a standard microbial viability measure. Results CAM/TMA-DPH staining demonstrated strong positive correlations with CFU counts across all bacterial species (r = 0.59 - 0.91), accurately reflecting biofilm vitality. In contrast, SYTO9/PI staining consistently underestimated the viability of untreated biofilms, particularly in Klebsiella pneumoniae, where a negative correlation with CFU/mL was observed (r = -0.04). Positive correlations for SYTO9/PI staining were noted in other species (r = 0.65 - 0.79). These findings underscore the limitations of membrane integrity-based staining methods and highlight the advantages of metabolic-based probes like CAM/TMA-DPH. Discussion Our findings suggest that CAM/TMA-DPH staining provides a promising alternative to SYTO9/PI for cell viability assessment in bacterial biofilms, highlighting the advantages of metabolic-based probes over traditional membrane integrity assays. The consistency of CAM/TMA-DPH staining across different bacterial species underscores its potential to advance studies on biofilm and contribute to the development of more effective anti-biofilm treatments, which is essential for clinical management of biofilm-associated infections.
Collapse
Affiliation(s)
- Tinatini Tchatchiashvili
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mateusz Jundzill
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mike Marquet
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kamran A. Mirza
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Mathias W. Pletz
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| | - Lara Thieme
- Institute of Infectious Disease and Infection Control, Jena University Hospital, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Infectious Disease and Infection Control, Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
| |
Collapse
|
16
|
Walenkiewicz B, VanNieuwenhze MS. Fluorescent d-amino Acid-Based Approach Enabling Fast and Reliable Measure of Antibiotic Susceptibility in Bacterial Cells. ACS Chem Biol 2025; 20:162-171. [PMID: 39668630 DOI: 10.1021/acschembio.4c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The threat of multidrug-resistant bacteria has been increasing steadily in the past century, posing a major health risk (Organización Mundial de la Salud. Directrices Sobre Componentes Básicos Para Los Programas de Prevención y Control de Infecciones a Nivel Nacional y de Establecimientos de Atención de Salud Para Pacientes Agudos; Organización Mundial de la Salud: Ginebra, 2017). Even though every year, 226 million antibiotics are prescribed in the United States alone, 50% of these prescriptions are inappropriate for the patient's condition (CDC. Get Smart about Antibiotics Week; Centers for Disease Control and Prevention. 2016,https://www.cdc.gov/media/dpk/antibiotic-resistance/antibiotics-week-2016/dpk-antibiotics-week-2016.html). The increasing abuse of antibiotics in healthcare as well as agriculture has resulted in the rise of antibiotic resistance at an alarming rate. In a clinical setting, timely and accurate recognition of the pathogen allows for the most effective choice of treatment, highlighting the need for novel, fast, and reliable antibiotic susceptibility testing. Traditional susceptibility testing techniques require costly and complex experimental setups or extended cell incubation periods, delaying a timely treatment response to the infection. Herein, we report that a short-pulse fluorescent d-amino acid (FDAA)-based approach provides insight not only into bacterial antibiotic susceptibility but also into the mechanism of action of the antibiotic. Using the FDAA-labeling signal as a reflection of peptidoglycan (PG) integrity after antibiotic treatment, we observed that drugs targeting PG biosynthesis resulted in a significant decrease in fluorescence, while antimicrobials affecting other cellular targets resulted in no fluorescence changes. Our method was validated and optimized via fluorescence microscopy and spectrofluorometry, shortening the required procedure time to 15 min and providing reliably reproducible results. Significantly, we demonstrate that our protocol can be used to identify β-lactam-resistant bacterial strains, further demonstrating the utility of these valuable molecular tools.
Collapse
Affiliation(s)
- Barbara Walenkiewicz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Michael S VanNieuwenhze
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
Hassan MA, Noor S, Park J, Nabawy A, Dedhiya M, Patel R, Rotello VM. Gelatin Nanoemulsion-Based Co-Delivery of Terbinafine and Essential Oils for Treatment of Candida albicans Biofilms. Microorganisms 2025; 13:127. [PMID: 39858895 PMCID: PMC11767362 DOI: 10.3390/microorganisms13010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Fungal infections represent a significant global health challenge. Candida albicans is a particularly widespread pathogen, with both molecular and biofilm-based mechanisms making it resistant to or tolerant of available antifungal drugs. This study reports a combination therapy, active against C. albicans, utilizing terbinafine and essential oils incorporated into a gelatin-based nanoemulsion system (T-GNE). Eugenol and methyl eugenol/terbinafine T-GNEs had an additive efficacy, while carvacrol (CT-GNE) worked synergistically with terbinafine, providing effective antifungal treatment with minimal mammalian cell toxicity. Confocal microscopy demonstrated that CT-GNE penetrated the dense C. albicans biofilm and disrupted the fungal cell membrane. Overall, the combination of essential oils with terbinafine in GNE provided a promising treatment for fungal biofilms.
Collapse
Affiliation(s)
- Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; (M.A.H.); (S.N.); (J.P.); (A.N.); (M.D.)
| | - Sadaf Noor
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; (M.A.H.); (S.N.); (J.P.); (A.N.); (M.D.)
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; (M.A.H.); (S.N.); (J.P.); (A.N.); (M.D.)
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; (M.A.H.); (S.N.); (J.P.); (A.N.); (M.D.)
| | - Maitri Dedhiya
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; (M.A.H.); (S.N.); (J.P.); (A.N.); (M.D.)
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA;
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA; (M.A.H.); (S.N.); (J.P.); (A.N.); (M.D.)
| |
Collapse
|
18
|
Irianti MI, Malloci G, Ruggerone P, Lodinsky EV, Vincken JP, Pos KM, Araya-Cloutier C. Indole phytochemical camalexin as a promising scaffold for AcrB efflux pump inhibitors against Escherichia coli. Biomed Pharmacother 2025; 182:117779. [PMID: 39731937 DOI: 10.1016/j.biopha.2024.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Escherichia coli is amongst the most frequent causative agent of nosocomial infections and the overexpression of the efflux pump gene acrB plays a major role in its resistance to various antibiotics. In this study, we evaluated two indole phytochemicals, camalexin and brassinin, as potential AcrB efflux pump inhibitors. Among these two phytochemicals, camalexin increased the accumulation of ethidium in acrB proficient E.coli with no membrane permeabilization effect observed, indicating a direct interaction of camalexin with the pump. Camalexin also showed up to 64-fold MIC reduction for drugs in the acrB proficient strain. Brassinin was less effective, showing up to 4-fold MIC reduction for the same drugs. Camalexin did not potentiate drugs in the AcrB inactive strain D407N. Plate dilution assays in E. coli acrB variants further corroborated the effect of camalexin in diminishing pump activity. Blind docking results suggested that camalexin and brassinin may enter mainly via CH3, one of the channels present in AcrB, and camalexin showed a more stable binding mode than brassinin in the distal binding pocket of AcrB. Camalexin, therefore, holds potential as a scaffold for further development as a potent AcrB inhibitor to tackle antimicrobial resistance in the gram-negative bacterium E. coli.
Collapse
Affiliation(s)
- Marina Ika Irianti
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen 6708 PD, the Netherlands; Laboratory of Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | | | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen 6708 PD, the Netherlands
| | - Klaas Martinus Pos
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main D-60438, Germany.
| | - Carla Araya-Cloutier
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden, Wageningen 6708 PD, the Netherlands.
| |
Collapse
|
19
|
Easwaran M, Govindaraj RG, Naderi M, Brylinski M, De Zoysa M, Shin HJ. Evaluating the antibacterial activity of engineered phage ФEcSw endolysin against multidrug-resistant Escherichia coli strain Sw1. Int J Antimicrob Agents 2025; 65:107395. [PMID: 39612993 DOI: 10.1016/j.ijantimicag.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
OBJECTIVE The emergence of bacteriophage-encoded endolysins hold significant promise as novel antibacterial agents, particularly against the growing threat of antibiotic-resistant bacteria. Therefore, we investigated the phage ФEcSw endolysin to enhance the lytic activity against multi-drug-resistant Escherichia coli Sw1 through site-directed mutagenesis (SDM) guided by in silico identification of critical residues. METHODS A computational analysis was conducted to elucidate the protein folding pattern, identify the active domains, and recognize critical residues of ФEcSw endolysin. Structural similarity-based docking simulations were employed to identify residues potentially involved in both recognition and cleavage of the bacterial peptidoglycan. Phage endolysin was amplified, cloned, expressed, and purified from phage ФEcSw. Pure endolysin (EL) activity was subsequently validated through SDM. RESULTS Our studies revealed both open and closed conformations of ФEcSw endolysin within specific residue ranges (51-60 and 128-141). Notably, the active site was identified and contains the crucial catalytic residues, Glu19 and Asp34. A time-kill assay demonstrated that the holin (HL) - EL effectively reduced E. coli Sw1 growth by 46% within 12 h. Furthermore, treatment with HL, EL, and HL-EL significantly increased bacterial membrane permeability (11%, 74%, and 85%, respectively) within just 1 h. Importantly, SDM identified a double mutant (K19/H34) of the endolysin exhibiting the highest lytic activity compared to the wild-type and other mutants (E19D, E19K, D34E, and D34H) due to increase net charge from +3.23 to +6.29. CONCLUSIONS Our findings demonstrate that phage endolysins and HLs or engineered endolysin hold significant potential as therapeutic agents to combat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Maheswaran Easwaran
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Rajiv Gandhi Govindaraj
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA; HotSpot Therapeutics, Boston, MA, USA
| | - Misagh Naderi
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA; Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
| | - Mahanama De Zoysa
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Rethinavelu G, Dharshini RS, Manickam R, Balakrishnan A, Ramya M, Maddela NR, Prasad R. Unveiling the microbial diversity of biofilms on titanium surfaces in full-scale water-cooling plants using metagenomics approach. Folia Microbiol (Praha) 2024; 69:1331-1341. [PMID: 38771555 DOI: 10.1007/s12223-024-01170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Microbial colonization on the titanium condenser material (TCM) used in the cooling system leads to biofouling and corrosion and influences the water supply. The primary investigation of the titanium condenser was infrequently studied on characterizing biofilm-forming bacterial communities. Different treatment methods like electropotential charge, ultrasonication, and copper coating of titanium condenser material may influence the microbial population over the surface of the titanium condensers. The present study aimed to catalog the primary colonizers and the effect of different treatment methods on the microbial community. CFU (1.7 × 109 CFU/mL) and ATP count (< 5000 × 10-7 relative luminescence units) showed a minimal microbial population in copper-coated surface biofilm as compared with the other treatments. Live and dead cell result also showed consistency with colony count. The biofilm sample on the copper-coated surface showed an increased dead cell count and decreased live cells. In the metagenomic approach, the microbiome coverage was 10.06 Mb in samples derived from copper-coated TCM than in other treated samples (electropotential charge-17.94 Mb; ultrasonication-20.01 Mb), including control (10.18 Mb). Firmicutes preponderate the communities in the biofilm samples, and Proteobacteria stand next in the population in all the treated condenser materials. At the genus level, Lactobacillaceae and Azospirillaceae dominated the biofilm community. The metagenome data suggested that the attached community is different from those biofilm samples based on the environment that influences the bacterial community. The outcome of the present study depicts that copper coating was effective against biofouling and corrosion resistance of titanium condenser material for designing long-term durability.
Collapse
Affiliation(s)
- Gayathri Rethinavelu
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Rajathirajan Siva Dharshini
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
- Microbiology Team, CavinKare Research Center, 12 Poonamallee Road, Ekkattuthangal, Chennai, 600032, India
| | - Ranjani Manickam
- SRM-DBT Platform for Advanced Life Science Technologies, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Anandkumar Balakrishnan
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India.
| |
Collapse
|
21
|
Auerbach D, Alaugaily I, Davis S, Azim AA. A promising approach utilising photothermal energy to disinfect the root canal system: An in vitro investigation. AUST ENDOD J 2024; 50:571-579. [PMID: 38995151 DOI: 10.1111/aej.12872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/30/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
This study aimed to assess root canal disinfection through various irrigation protocols, including a novel photothermal system called 'LEAP'. Mandibular premolars were infected with Enterococcus faecalis and divided into five groups for different treatments: Group 1: standard needle irrigation; Group 2: passive ultrasonic irrigation; Group 3: GentleWave; Group 4: LEAP; and Group 5: Group 1 + Group 4. Microbial counts were measured before (S1) and after disinfection (S2) using colony-forming units (CFU) and confocal laser scanning microscopy (CLSM). Results revealed a significant reduction in bacterial counts for all groups (p < 0.05). While the percentage of dead bacteria near the canal wall (0-50 μm) did not differ significantly, at 50-150 μm, LEAP and SNI + LEAP exhibited significantly higher bacterial reduction than other groups (p < 0.05). The findings indicate that LEAP is comparable to existing irrigation devices in the main root canal and notably superior in tubular disinfection.
Collapse
Affiliation(s)
- Daniela Auerbach
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Ibrahim Alaugaily
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
- Department of Restorative Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Scott Davis
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Adham A Azim
- Department of Endodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| |
Collapse
|
22
|
Petrilli R, Fabbretti A, Pucci K, Pagliaretta G, Napolioni V, Falconi M. Development and Characterization of Ammonia Removal Moving Bed Biofilms for Landfill Leachate Treatment. Microorganisms 2024; 12:2404. [PMID: 39770607 PMCID: PMC11677484 DOI: 10.3390/microorganisms12122404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Urbanization growth has intensified the challenge of managing and treating increasing amounts of municipal solid waste (MSW). Landfills are commonly utilized for MSW disposal because of their low construction and operation costs. However, this practice produces huge volumes of landfill leachate, a highly polluting liquid rich in ammoniacal nitrogen (NH3-N), organic compounds, and various heavy metals, making it difficult to treat in conventional municipal wastewater treatment plants (WWTPs). In recent years, research has shown that microbial biofilms, developed on carriers of different materials and called "moving bed biofilm reactors" (MBBRs), may offer promising solutions for bioremediation. This study explored the biofilm development and the nitrification process of moving bed biofilms (MBBs) obtained from high ammonia-selected microbial communities. Using crystal violet staining and confocal laser-scanning microscopy, we followed the biofilm formation stages correlating nitrogen removal to metagenomic analyses. Our results indicate that MBBs unveiled a 10-fold more enhanced nitrification rate than the dispersed microbial community present in the native sludge of the Porto Sant'Elpidio (Italy) WWTP. Four bacterial families, Chitinophagaceae, Comamonadaceae, Sphingomonadaceae, and Nitrosomonadaceae, accumulate in structured biofilms and significantly contribute to the high ammonium removal rate of 80% in 24 h as estimated in leachate-containing wastewaters.
Collapse
Affiliation(s)
- Rossana Petrilli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
- Eco Control Laboratorio Ascolano s.r.l., 63900 Fermo, FM, Italy;
| | - Attilio Fabbretti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| | - Kathleen Pucci
- Eco Elpidiense s.r.l., 63821 Porto Sant’Elpidio, FM, Italy;
| | - Graziella Pagliaretta
- Eco Control Laboratorio Ascolano s.r.l., 63900 Fermo, FM, Italy;
- Eco Elpidiense s.r.l., 63821 Porto Sant’Elpidio, FM, Italy;
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| | - Maurizio Falconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, 62032 Camerino, MC, Italy; (R.P.); (A.F.); (V.N.)
| |
Collapse
|
23
|
Lin Z, Liang Z, He S, Chin FWL, Huang D, Hong Y, Wang X, Li D. Salmonella dry surface biofilm: morphology, single-cell landscape, and sanitization. Appl Environ Microbiol 2024; 90:e0162324. [PMID: 39494899 PMCID: PMC11577771 DOI: 10.1128/aem.01623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
In this study, Salmonella Typhimurium dry surface biofilm (DSB) formation was investigated in comparison with wet surface biofilm (WSB) development. Confocal laser scanning microscopic analysis revealed a prominent green cell signal during WSB formation, whereas a red signal predominated during DSB formation. Electron microscopy was also used to compare the features of DSB and WSB. Overall, WSB was unevenly scattered over the surface, whereas DSB was evenly dispersed. In contrast to WSB cells, which have a distinct plasma membrane and outer membrane layer, DSB cells are contained in large capsules and compressed. Next, microbiome single-cell transcriptomics was used to investigate the functional heterogeneity of the Salmonella DSB microbiome, with nine clusters successfully identified. Although over 60% of the dried cells were metabolically inactive, the rest of the Salmonella cells still demonstrated specific antioxidative and virulence capabilities, suggesting a possible concern for low-moisture food (LMF) safety. Finally, because sanitization in LMF industries must be conducted without water, a list of 39 flavonoids was tested for their combined effect with 70% isopropyl alcohol (IPA) against DSB, and morin induced the greatest reduction in the green:red ratio from 3.67 to 0.43. Significantly higher reductions of Salmonella viability in DSB were achieved by 10-, 100-, 1,000-, and 10,000-µg/mL morin (1.69 ± 0.25, 3.21 ± 0.23, 4.32 ± 0.24, and 5.18 ± 0.16 log CFU/sample reductions) than 70% IPA alone (1.55 ± 0.20 log CFU/sample reduction) (P < 0.05), indicating the potential to be formulated as a dry sanitizer for the LMF industry.IMPORTANCEDSB growth of foodborne pathogens in LMF processing environments is associated with food safety, financial loss, and compromised consumer trust. This work is the first comprehensive examination of the characteristics of Salmonella DSB while exploring its underlying survival mechanisms. Furthermore, morin dissolved in 70% IPA was proposed as an efficient dry sanitizer against DSB to provide insights into biofilm control during LMF processing.
Collapse
Affiliation(s)
- Zejia Lin
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Zhiqian Liang
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Shuang He
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Fion Wei Lin Chin
- Department of Food Science and Technology, National University of Singapore, , Singapore
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, , Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dan Li
- Department of Food Science and Technology, National University of Singapore, , Singapore
- National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
24
|
Choubey R, Chatterjee M, Pandey PK, Mishra A, Datta B. Coassembly of Cell-Penetrating Peptide Octaarginine with Acetazolamide: Emergent Interactions with E. coli. ACS OMEGA 2024; 9:46204-46216. [PMID: 39583731 PMCID: PMC11579775 DOI: 10.1021/acsomega.4c06800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
The investigation of established pharmaceutical agents for recalibrating usage strongly supplements new drug development. In this work, we have prepared coassembled complexes of acetazolamide (AZM) with the cationic peptide octaarginine (R8) in an attempt to enhance its potency and scope of use. R8 and AZM in different weight ratios coassemble into remarkable nano- and microstructures such as ribbons, sheets, and stick-like structures. A combination of FTIR, XRD, SEM, and DSC has been used to characterize the R8:AZM coassemblies. The sulfonamide SO2 and NH2 groups of AZM are associated with the guanidinium amine, free amine, and terminal carbonyl groups of R8 resulting in distinctive topologies. Treatment of Escherichia coli with the complexes results in a distinctive pattern of membrane disruption and pore formation. The R8:AZM coassemblies inhibit carbonic anhydrase and E. coli growth with greater efficiency compared to bare AZM. The 1:5 w/w complex leads to pronounced outer and inner membrane rupture and significantly restricts glucose uptake by E. coli. The ability of R8 and AZM to coassemble into a distinctive set of structures based solely on differences in their relative proportions and their engagement with E. coli as more than the sum of their parts are novel facets of R8 and AZM behavior and underscore a straightforward and elegant approach for enhancing the scope of use of small molecule drugs.
Collapse
Affiliation(s)
- Rinku Choubey
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Moumita Chatterjee
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Pramina Kumari Pandey
- Department
of Materials Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Department
of Materials Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Bhaskar Datta
- Department
of Chemistry, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382355, India
- Department
of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
25
|
Idris AL, Fan X, Li W, Pei H, Muhammad MH, Guan X, Huang T. Galactose-1-phosphate uridylyltransferase GalT promotes biofilm formation and enhances UV-B resistance of Bacillus thuringiensis. World J Microbiol Biotechnol 2024; 40:383. [PMID: 39551829 DOI: 10.1007/s11274-024-04195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Ultraviolet radiation (UV) is a major abiotic stress resulting in relative short duration of Bacillus thuringiensis (Bt) biopesticides in the field, which is expected to be solved by formation of Bt biofilm with higher UV resistance. Therefore, one of the important prerequisite works is to clarify the functions of biofilm-associated genes on biofilm formation and UV resistance of Bt. In this study, comparative genomics and bioinformatic analysis indicated that BTXL6_19475 gene involved in biofilm formation of Bt XL6 was likely to encode a galactose-1-phosphate uridylyltransferase (GalT, E.C. 2.7.7.12). Heterologous expression of the BTXL6_19475 gene in Escherichia coli and detection of its GalT enzyme activity in vitro proved that the gene did encode GalT. Comparing the wild type Bt strain XL6 with galT gene knockout mutant Bt XL6ΔgalT and its complementary strain Bt XL6ΔgalT::19,475, GalT promoted the biofilm formation and enhanced the UV-B resistance of Bt XL6 likely by increasing its D-ribose production and reducing its alanine aryldamidase activity. GalT did not affect the growth and the cell motility of Bt XL6. A regulation map had been proposed to elucidate how GalT promoted biofilm formation and enhanced UV-B resistance of Bt XL6 by the cross-talk between Leloir pathway, Embden-Meyerhof glycolysis pathway and pentose phosphate pathway. Our finding provides a theoretical basis for the efficient use of biofilm genes to improve the UV resistance of Bt biofilms and thus extend field duration of Bt formulations based on biofilm engineering.
Collapse
Affiliation(s)
- Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wen Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hankun Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Musa Hassan Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianpei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Biopesticide Research Center, College of Life Sciences & College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
26
|
Zaragoza-Contreras R, Aguilar-Ayala DA, García-Morales L, Ares MA, Helguera-Repetto AC, Cerna-Cortés JF, León-Solis L, Suárez-Sánchez F, González-Y-Merchand JA, Rivera-Gutiérrez S. Novel Populations of Mycobacterium smegmatis Under Hypoxia and Starvation: Some Insights on Cell Viability and Morphological Changes. Microorganisms 2024; 12:2280. [PMID: 39597669 PMCID: PMC11596219 DOI: 10.3390/microorganisms12112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The general features of the shift to a dormant state in mycobacterial species include several phenotypic changes, reduced metabolic activities, and increased resistance to host and environmental stress conditions. In this study, we aimed to provide novel insights into the viability state and morphological changes in dormant M. smegmatis that contribute to its long-term survival under starvation or hypoxia. To this end, we conducted assays to evaluate cell viability, morphological changes and gene expression. During starvation, M. smegmatis exhibited a reduction in cell length, the presence of viable but non-culturable (VBNC) cells and the formation of anucleated small cells, potentially due to a phenomenon known as reductive cell division. Under hypoxia, a novel population of pleomorphic mycobacteria with a rough surface before the cells reached nonreplicating persistence 1 (NRP1) was identified. This population exhibited VBNC-like behaviour, with a loss of cell wall rigidity and the presence of lipid-body-like structures. Based on dosR and hspX expression, we suggest that M. smegmatis encounters reductive stress conditions during starvation, while lipid storage may induce oxidative stress during hypoxia. These insights into the heterogeneous populations presented here could offer valuable opportunities for developing new therapeutic strategies to control dormant mycobacterial populations.
Collapse
Affiliation(s)
- Ruben Zaragoza-Contreras
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Diana A. Aguilar-Ayala
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Lázaro García-Morales
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico;
| | - Miguel A. Ares
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría, Mexico City 06720, Mexico
| | - Addy Cecilia Helguera-Repetto
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes (InPer), Ciudad de México 11000, Mexico;
| | - Jorge Francisco Cerna-Cortés
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Lizbel León-Solis
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Fernando Suárez-Sánchez
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Especialidades, Mexico City 06720, Mexico;
| | - Jorge A. González-Y-Merchand
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| | - Sandra Rivera-Gutiérrez
- Departamento de Microbiología Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (ENCB, IPN), Ciudad de México 11340, Mexico (D.A.A.-A.); (M.A.A.); (J.F.C.-C.); (L.L.-S.); (J.A.G.-Y.-M.)
| |
Collapse
|
27
|
Malik S, Kumaraguru G, Bruat M, Chefdor F, Depierreux C, Héricourt F, Carpin S, Shanmugam G, Lamblin F. Organic extracts from sustainable hybrid poplar hairy root cultures as potential natural antimicrobial and antibiofilm agents. PROTOPLASMA 2024; 261:1311-1326. [PMID: 39060468 DOI: 10.1007/s00709-024-01971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
In order to meet growing consumer demands in terms of naturalness, the pharmaceutical, food, and cosmetic industries are looking for active molecules of plant origin. In this context, hairy roots are considered a promising biotechnological system for the sustainable production of compounds of interest. Poplars (genus Populus, family Salicaceae) are trees of ecological interest in temperate alluvial forests and are also cultivated for their industrial timber. Poplar trees also produce specialized metabolites with a wide range of bioactive properties. The present study aimed to assess the hybrid poplar hairy root extracts for antimicrobial and antibiofilm activities against four main life-threatening strains of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. Ethyl acetate extracts from two hairy root lines (HP15-3 and HP A4-12) showed significant antibacterial properties as confirmed by disc diffusion assay. Antibiofilm activities were found to be dose dependent with significant biofilm inhibition (75-95%) recorded at 1000 µg.mL-1 in all the bacterial strains tested. Dose-dependent enhancement in the release of exopolysaccharides was observed in response to treatment with extracts, possibly because of stress and bacterial cell death. Fluorescence microscopy confirmed loss of cell viability of treated bacterial cells concomitant with increased production of reactive oxygen species compared to the untreated control. Overall, this study demonstrates for the first time a high potential of poplar hairy root extracts as a natural and safe platform to produce antimicrobial agents in pharmaceutical, food, industrial water management, or cosmetic industries.
Collapse
Affiliation(s)
- Sonia Malik
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Gowtham Kumaraguru
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Margot Bruat
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Françoise Chefdor
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Christiane Depierreux
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - François Héricourt
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Sabine Carpin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France
| | - Girija Shanmugam
- Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Frédéric Lamblin
- Laboratory of Physiology, Ecology and Environment, INRAE, Orléans University, USC1328, 45067 Orléans Cedex 2, Orléans, France.
| |
Collapse
|
28
|
Krenev IA, Egorova EV, Khaydukova MM, Mikushina AD, Zabrodskaya YA, Komlev AS, Eliseev IE, Shamova OV, Berlov MN. Characterization of Structural Properties and Antimicrobial Activity of the C3f Peptide of Complement System. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2069-2082. [PMID: 39647833 DOI: 10.1134/s000629792411018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024]
Abstract
The C3f peptide is a by-product of regulation of the activated complement system with no firmly established function of its own. We have previously shown that C3f exhibits moderate antimicrobial activity against some Gram-positive bacteria in vitro. Presence of two histidine residues in the amino acid sequence of the peptide suggests enhancement of its antimicrobial activity at lower pH and in the presence of metal cations, particularly zinc cations. Since such conditions could be realized in inflammatory foci, the study of dependence of C3f activity on pH and presence of metal cations could provide an opportunity to assess biological significance of antimicrobial properties of the peptide. The peptide C3f and its analogs with histidine residues substituted by lysines or serines, C3f[H/K] and C3f[H/S], were prepared by solid-phase synthesis. Using CD spectroscopy, we found that C3f contained a β-hairpin and unstructured regions; presence of Zn2+ did not affect conformation of the peptide. In the present work, it was shown that C3f could also exhibit antimicrobial activity against Gram-negative bacteria, in particular, Pseudomonas aeruginosa ATCC 27583. Exposure of P. aeruginosa and Listeria monocytogenes EGD to the peptide was accompanied by disruption of the barrier function of bacterial membranes. Zn2+ ions, unlike Cu2+ ions, enhanced antimicrobial activity of C3f against L. monocytogenes, with 4- and 8-fold molar excess of Zn2+ being no more effective than a 20% excess. Activity of the C3f analogs was also enhanced to some extent by the zinc ions. Thus, we hypothesize existence of the histidine-independent formation of C3f-Zn2+ complexes leading to increase in the total charge and antimicrobial activity of the peptide. In the presence of 0.15 M NaCl, C3f lost its antimicrobial activity regardless of the presence of Zn2+, indicating an insignificant role of C3f as an endogenous antimicrobial peptide. Presence of C3f eliminated bactericidal effect of Zn2+ against the zinc-sensitive Escherichia coli strain ESBL 521/17, indirectly confirming interaction of the peptide with Zn2+. Activity of C3f against Micrococcus luteus A270 increased with decreasing pH, while effect of pH on the C3f activity against L. monocytogenesis was more complex. In this work, we show significance of the factors such as pH and metal cations in realization of antimicrobial activity of peptides based on the example of C3f.
Collapse
Affiliation(s)
- Ilia A Krenev
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Ekaterina V Egorova
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Maria M Khaydukova
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Research Institute of Hygiene, Occupational Pathology and Human Ecology, Saint Petersburg, 192019, Russia
| | - Anna D Mikushina
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Alferov University, Saint Petersburg, 194021, Russia
| | - Yana A Zabrodskaya
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Smorodintsev Research Institute of Influenza, Saint Petersburg, 197376, Russia
- Peter the Great Saint Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Aleksey S Komlev
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
| | - Igor E Eliseev
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Alferov University, Saint Petersburg, 194021, Russia
| | - Olga V Shamova
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mikhail N Berlov
- Institute of Experimental Medicine, Saint Petersburg, 197022, Russia.
- Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
29
|
Zhang J, Takacs CN, McCausland JW, Mueller EA, Buron J, Thappeta Y, Wachter J, Rosa PA, Jacobs-Wagner C. Borrelia burgdorferi loses essential genetic elements and cell proliferative potential during stationary phase in culture but not in the tick vector. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620338. [PMID: 39554112 PMCID: PMC11565743 DOI: 10.1101/2024.10.28.620338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The Lyme disease agent Borrelia burgdorferi is a polyploid bacterium with a segmented genome in which both the chromosome and over 20 distinct plasmids are present in multiple copies per cell. This pathogen can survive at least nine months in its tick vector in an apparent dormant state between blood meals, without losing cell proliferative capability when re-exposed to nutrients. Cultivated B. burgdorferi cells grown to stationary phase or resuspended in nutrient-limited media are often used to study the effects of nutrient deprivation. However, a thorough assessment of the spirochete's ability to recover from nutrient depletion has been lacking. Our study shows that starved B. burgdorferi cultures rapidly lose cell proliferative. Loss of genetic elements essential for cell proliferation contributes to the observed proliferative defect in stationary phase. The gradual decline in copies of genetic elements is not perfectly synchronized between chromosomes and plasmids, generating cells that harbor one or more copies of the essential chromosome but lack all copies of one or more non-essential plasmids. This phenomenon likely contributes to the well-documented issue of plasmid loss during in vitro cultivation of B. burgdorferi. In contrast, B. burgdorferi cells from ticks starved for 14 months showed no evidence of reduced cell proliferative ability or plasmid loss. Beyond their practical implications for studying B. burgdorferi, these findings suggest that the midgut of the tick vector offers a unique environment that supports the maintenance of B. burgdorferi's segmented genome and cell proliferative potential during periods of tick fasting.
Collapse
Affiliation(s)
- Jessica Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Constantin N. Takacs
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Joshua W. McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth A. Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeline Buron
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yashna Thappeta
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Jenny Wachter
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Patricia A. Rosa
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Mwangi EW, Shemesh M, Rodov V. Investigating the Antibacterial Effect of a Novel Gallic Acid-Based Green Sanitizer Formulation. Foods 2024; 13:3322. [PMID: 39456384 PMCID: PMC11507653 DOI: 10.3390/foods13203322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The purpose of the present study was to investigate the mechanism of action of our newly developed green sanitizer formulation comprising a natural phenolic compound, gallic acid (GA), strengthened by the Generally Recognized as Safe (GRAS) materials hydrogen peroxide (H2O2) and DL-lactic acid (LA). Combining 8 mM GA with 1 mM H2O2 resulted in an abundant generation of reactive oxygen species (ROS) and a bactericidal effect towards Gram-negative (Escherichia coli, Pseudomonas syringae, and Pectobacterium brasiliense) and Gram-positive (Bacillus subtilis) bacteria (4 to 8 log CFU mL-1 reduction). However, the exposure to this dual formulation (DF) caused only a modest 0.7 log CFU mL-1 reduction in the Gram-positive L. innocua population. Amending the DF with 20 mM LA to yield a triple formulation (TF) resulted in the efficient synergistic control of L. innocua proliferation without increasing ROS production. Despite the inability to grow on plates (>7 log CFU mL-1 population reduction), the TF-exposed L. innocua maintained high intracellular ATP pools and stable membrane integrity. The response of L. innocua to TF could be qualified as a "viable but nonculturable" (VBNC) phenomenon, while with the other species tested this formulation caused cell death. This research system may offer a platform for exploring the VBNC phenomenon, a critical food safety topic.
Collapse
Affiliation(s)
- Esther W. Mwangi
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel; (E.W.M.); (M.S.)
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Moshe Shemesh
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel; (E.W.M.); (M.S.)
| | - Victor Rodov
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel; (E.W.M.); (M.S.)
| |
Collapse
|
31
|
Qian J, Lu D, Zhang Z, Chen D, Zhao F, Huo S, Wang F, Ma H, Kan J. Effect of low-frequency alternating magnetic field on exopolysaccharide production and antioxidant capacity of Pleurotus citrinopileatus by submerged fermentation. Int Microbiol 2024:10.1007/s10123-024-00604-9. [PMID: 39422857 DOI: 10.1007/s10123-024-00604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
The objective of this study was to investigate the effect of low-frequency alternating magnetic field (LF-AMF) on the production of extracellular polysaccharide (EPS) by submerged fermentation of Pleurotus citrinopileatus. The fermentation conditions optimized by the central composite design method were as follows: fermentation time of 6.18 days, temperature of 28.28 °C, shaking speed of 149.04 r/min, and inoculum amount of 8.43%. Under these conditions, a LF-AMF was applied to the submerged fermentation of P. citrinopileatus. When the intensity of LF-AMF was 40 Gs, the initial intervention time was 24 h after inoculation, and the treatment time was 6 h at one time, the mycelial biomass of P. citrinopileatus increased by 11.30%, and the EPS yield increased by 23.09% compared with the fermentation without LF-AMF treatment. The morphology of mycelium after LF-AMF treatment was observed by scanning electron microscopy. It was found that the surface of mycelium was wrinkled, and the structure of mycelium was loose, which might be more conducive to the production of EPS. Mycelium diameter decreased, and ATPase activity increased, indicating that LF-AMF had a positive effect on the production of EPS by P. citrinopileatus fermentation. Moreover, LF-AMF could improve the permeability of the mycelial cell membrane, facilitate the exchange of intracellular and extracellular substances, and increase the metabolic capacity of P. citrinopileatus. In vitro antioxidant test of EPS showed that LF-AMF treatment also improved its antioxidant capacity.
Collapse
Affiliation(s)
- Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Dazhou Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Zixuan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Di Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Feng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| |
Collapse
|
32
|
Rashtchi P, van der Linden E, Habibi M, Abee T. Biofilm formation of Lactiplantibacillus plantarum food isolates under flow and resistance to disinfectant agents. Heliyon 2024; 10:e38502. [PMID: 39397932 PMCID: PMC11466677 DOI: 10.1016/j.heliyon.2024.e38502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Bacterial biofilms formed in food processing environments can be resilient against cleaning and disinfection causing recontamination and spoilage of foods. We investigated the biofilm formation of six Lactiplantibacillus plantarum food spoilage isolates (FBR1-FBR6) using WCFS1 as a reference strain, and examined the impact of benzalkonium chloride (BKC) and peracetic acid (PAA) on planktonic and biofilm cells formed under static and dynamic flow conditions. We used a custom-designed setup composed of a 48-well plate with 0.8 ml culture volumes. We quantified biofilm formation under static and dynamic flow conditions with a flow rate of 3.2 ml/h using plate counting, Crystal Violet (CV) staining, and fluorescence staining techniques. Our findings revealed significant differences in biofilm formation and disinfectant resistance among studied strains and cell types. We observed that flow promoted biofilm formation in some strains and increased the number of culturable cells within biofilms in all strains. Furthermore, biofilm cells demonstrated higher resistance to disinfectants in comparison to planktonic cells for certain strains. Interestingly, cells from dispersed under flow biofilms show higher resistance to disinfectants than cells from static biofilms. The results indicate the importance of flow conditions in influencing L. plantarum food isolates biofilm formation and disinfection resistance, which may have implications for product contamination and spoilage risks.
Collapse
Affiliation(s)
- P. Rashtchi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - E. van der Linden
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - M. Habibi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, 6708WG, the Netherlands
| | - T. Abee
- Food Microbiology, Wageningen University, Wageningen, 6708WG, the Netherlands
| |
Collapse
|
33
|
Fritzsche S, Hübner H, Oldiges M, Castiglione K. Comparative evaluation of the extracellular production of a polyethylene terephthalate degrading cutinase by Corynebacterium glutamicum and leaky Escherichia coli in batch and fed-batch processes. Microb Cell Fact 2024; 23:274. [PMID: 39390488 PMCID: PMC11468216 DOI: 10.1186/s12934-024-02547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND With a growing global population, the generation of plastic waste and the depletion of fossil resources are major concerns that need to be addressed by developing sustainable and efficient plastic recycling methods. Biocatalytic recycling is emerging as a promising ecological alternative to conventional processes, particularly in the recycling of polyethylene terephthalate (PET). However, cost-effective production of the involved biocatalyst is essential for the transition of enzymatic PET recycling to a widely used industrial technology. Extracellular enzyme production using established organisms such as Escherichia coli or Corynebacterium glutamicum offers a promising way to reduce downstream processing costs. RESULTS In this study, we compared extracellular recombinant protein production by classical secretion in C. glutamicum and by membrane leakage in E. coli. A superior extracellular release of the cutinase ICCGDAQI was observed with E. coli in batch and fed-batch processes on a litre-scale. This phenomenon in E. coli, in the absence of a signal peptide, might be associated with membrane-destabilizing catalytic properties of the expressed cutinase. Optimisations regarding induction, expression temperature and duration as well as carbon source significantly enhanced extracellular cutinase activity. In particular, in fed-batch cultivation of E. coli at 30 °C with lactose as carbon source and inducer, a remarkable extracellular activity (137 U mL-1) and cutinase titre (660 mg L-1) were achieved after 48 h. Literature values obtained with other secretory organisms, such as Bacillus subtilis or Komagataella phaffii were clearly outperformed. The extracellular ICCGDAQI produced showed high efficacy in the hydrolysis of PET textile fibres, either chromatographically purified or unpurified as culture supernatant. In less than 18 h, 10 g L-1 substrate was hydrolysed using supernatant containing 3 mg cutinase ICCGDAQI at 70 °C, pH 9 with terephthalic acid yields of up to 97.8%. CONCLUSION Extracellular production can reduce the cost of recombinant proteins by simplifying downstream processing. In the case of the PET-hydrolysing cutinase ICCGDAQI, it was even possible to avoid chromatographic purification and still achieve efficient PET hydrolysis. With such production approaches and their further optimisation, enzymatic recycling of PET can contribute to a more efficient and environmentally friendly solution to the industrial recycling of plastics in the future.
Collapse
Affiliation(s)
- Stefanie Fritzsche
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Holger Hübner
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Kathrin Castiglione
- Institute of Bioprocess Engineering, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 3, 91052, Erlangen, Germany.
| |
Collapse
|
34
|
Carvalho F, Carreaux A, Sartori-Rupp A, Tachon S, Gazi AD, Courtin P, Nicolas P, Dubois-Brissonnet F, Barbotin A, Desgranges E, Bertrand M, Gloux K, Schouler C, Carballido-López R, Chapot-Chartier MP, Milohanic E, Bierne H, Pagliuso A. Aquatic environment drives the emergence of cell wall-deficient dormant forms in Listeria. Nat Commun 2024; 15:8499. [PMID: 39358320 PMCID: PMC11447242 DOI: 10.1038/s41467-024-52633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.
Collapse
Affiliation(s)
- Filipe Carvalho
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexis Carreaux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Anastasia D Gazi
- Ultrastructural Bioimaging Facility, Institut Pasteur, Paris, France
| | - Pascal Courtin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | | | - Aurélien Barbotin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Desgranges
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthieu Bertrand
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Karine Gloux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
35
|
Cibulková I, Řehořová V, Wilhelm M, Soukupová H, Hajer J, Duška F, Daňková H, Cahová M. Evaluating Bacterial Viability in Faecal Microbiota Transplantation: A Comparative Analysis of In Vitro Cultivation and Membrane Integrity Methods. J Clin Lab Anal 2024; 38:e25105. [PMID: 39360586 PMCID: PMC11520942 DOI: 10.1002/jcla.25105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Faecal microbiota transplantation (FMT) is a developing therapy for disorders related to gut dysbiosis. Despite its growing application, standardised protocols for FMT filtrate preparation and quality assessment remain undeveloped. The viability of bacteria in the filtrate is crucial for FMT's efficacy and for validating protocol execution. We compared two methods-in vitro cultivation and membrane integrity assessment-for their accuracy, reproducibility and clinical applicability in measuring bacterial viability in frozen FMT stool filtrate. METHODS Bacterial viability in stool filtrate was evaluated using (i) membrane integrity through fluorescent DNA staining with SYTO9 and propidium iodide, followed by flow cytometry and (ii) culturable bacteria counts (colony-forming units, CFU) under aerobic or anaerobic conditions. RESULTS Using different types of samples (pure bacterial culture, stool of germ-free and conventionally bred mice, native and heat-treated human stool), we refined the bacterial DNA staining protocol integrated with flow cytometry for assessment of bacterial viability in frozen human stool samples. Both the membrane integrity-based and cultivation-based methods exhibited significant variability in bacterial viability across different FMT filtrates, without correlation. The cultivation-based method showed a mean coefficient of variance of 30.3%, ranging from 7.4% to 60.1%. Conversely, the membrane integrity approach yielded more reproducible results, with a mean coefficient of variance for viable cells of 6.4% ranging from 0.2% to 18.2%. CONCLUSION Bacterial viability assessment in stool filtrate using the membrane integrity method offers robust and precise data, making it a suitable option for faecal material evaluation in FMT. In contrast, the cultivation-dependent methods produce inconsistent outcomes.
Collapse
Affiliation(s)
- Ivana Cibulková
- Division of Gastroenterology, Department of Internal MedicineKralovske Vinohrady University HospitalPragueCzech Republic
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Veronika Řehořová
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Anaesthesia and Intensive Care MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Marek Wilhelm
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Hana Soukupová
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of MicrobiologyKralovske Vinohrady University HospitalPragueCzech Republic
| | - Jan Hajer
- Division of Gastroenterology, Department of Internal MedicineKralovske Vinohrady University HospitalPragueCzech Republic
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
| | - František Duška
- The Third Faculty of MedicineCharles UniversityPragueCzech Republic
- Department of Anaesthesia and Intensive Care MedicineKralovske Vinohrady University HospitalPragueCzech Republic
| | - Helena Daňková
- Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Monika Cahová
- Department of Experimental MedicineInstitute for Clinical and Experimental MedicinePragueCzech Republic
| |
Collapse
|
36
|
Hyeon GE, Eom YB. Totarol exhibits antibacterial effects through antibiofilm and combined interaction against vancomycin-resistant Enterococcus faecalis. Can J Microbiol 2024; 70:426-432. [PMID: 39058360 DOI: 10.1139/cjm-2024-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rise of vancomycin-resistant enterococci (VRE) due to antibiotic overuse poses a significant threat to long-term care patients and those with impaired immune systems. Therefore, it is imperative to seek alternatives to overcome multidrug resistance. This study aimed to evaluate totarol, a natural compound derived from Podocarpus totara, for its antibacterial activity against vancomycin-resistant Enterococcus faecalis (VREF). Totarol exhibited potent antibacterial activity at a very low concentration of 0.25 µg/mL and demonstrated antibiofilm effects through biofilm inhibitory concentration and biofilm eradication concentration assays. Confocal laser scanning microscopy confirmed that totarol inhibited not only biofilm mass but also bacterial cell viability. The combinatorial use of sublethal concentrations of totarol and vancomycin showed antibacterial activity, as observed in the time-kill assay. Quantitative polymerase chain reaction assays revealed a concentration-dependent downregulation of key virulence genes (vanA, ace, asa, efaA, and esp) in VREF when exposed to totarol. In summary, totarol emerges as a promising adjuvant with vancomycin for inhibiting VREF, addressing vancomycin resistance and biofilm formation-critical challenges associated with VRE infection. Since this was an in vitro study, the role of totarol in the clinical implications of VREF treatment remains to be demonstrated.
Collapse
Affiliation(s)
- Ga-Eun Hyeon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| | - Yong-Bin Eom
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam, 31538, Republic of Korea
| |
Collapse
|
37
|
Zheng Y, Chi J, Ou J, Jiang L, Wang L, Luo R, Yan Y, Xu Z, Peng T, Cai J, Wu C, Teng P, Quan G, Lu C. Imidazole-Rich, Four-Armed Host-Defense Peptidomimetics as Promising Narrow-Spectrum Antibacterial Agents and Adjuvants against Pseudomonas Aeruginosa Infections. Adv Healthc Mater 2024; 13:e2400664. [PMID: 39039988 DOI: 10.1002/adhm.202400664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/21/2024] [Indexed: 07/24/2024]
Abstract
The development of narrow-spectrum antimicrobial agents is paramount for swiftly eradicating pathogenic bacteria, mitigating the onset of drug resistance, and preserving the homeostasis of bacterial microbiota in tissues. Owing to the limited affinity between the hydrophobic lipid bilayer interior of bacterial cells and most hydrophilic, polar peptides, the construction of a distinctive class of four-armed host-defense peptides/peptidomimetics (HDPs) is proposed with enhanced specificity and membrane perturbation capability against Pseudomonas aeruginosa by incorporating imidazole groups. These groups demonstrate substantial affinity for unsaturated phospholipids, which are predominantly expressed in the cell membrane of P. aeruginosa, thereby enabling HDPs to exhibit narrow-spectrum activity against this bacterium. Computational simulations and experimental investigations have corroborated that the imidazole-rich, four-armed peptidomimetics exhibit notable selectivity toward bacteria over mammalian cells. Among them, 4H10, characterized by its abundant and densely distributed imidazole groups, exhibits impressive activity against various clinically isolated P. aeruginosa strains. Moreover, 4H10 has demonstrated potential as an antibiotic adjuvant, enhancing doxycycline accumulation and exerting effects on intracellular targets by efficiently disrupting bacterial cell membranes. Consequently, the hydrogel composed of 4H10 and doxycycline emerged as a promising topical agent, significantly diminishing the skin P. aeruginosa burden by 97.1% within 2 days while inducing minimal local and systemic toxicity.
Collapse
Affiliation(s)
- Yuwei Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jiaying Chi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jiayu Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Ling Jiang
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Liqing Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Rui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Yilang Yan
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, China
| | - Zejun Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Peng Teng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 511436, China
- College of Pharmacy, Jinan University, Guangzhou, 511436, China
| |
Collapse
|
38
|
Lim SWY, Ow SY, Sutarlie L, Lee YY, Suwardi A, Tan CKI, Cheong WCD, Loh XJ, Su X. Bioaerosol Inactivation by a Cold Plasma Ionizer Coupled with an Electrostatic Precipitator. Microorganisms 2024; 12:1923. [PMID: 39338597 PMCID: PMC11433785 DOI: 10.3390/microorganisms12091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Despite best efforts in air purification, airborne infectious diseases will continue to spread due to the continuous emission of bioaerosols by the host/infected person. Hence, a shift in focus from air purification to bioaerosol inactivation is urgently needed. To explore the potential of the cold plasma technology for preventing rapid spread of airborne infectious diseases, we studied a cold plasma ionizer (CPI) device and an electrostatic precipitator (ESP)-coupled CPI (CPI-ESP) device for the inactivation and cleaning of surface-spread microorganisms and bioaerosols, using porcine respiratory coronavirus (PRCV), Escherichia coli (E. coli), and aerosolized E. coli as representatives. We firstly demonstrated that CPI coupled with ESP is an effective technology for inactivating virus and bacteria spread on surfaces in an in-house test chamber. We then demonstrated the efficacy of CPI-coupled ESP for the inactivation of aerosolized E. coli in the same chamber. Furthermore, we have demonstrated the efficiency of a CPI-ESP coupled device for the inactivation of naturally occurring airborne microbials in a few indoor settings (i.e., a living room, a discussion room, a schoolroom, and an office) to determine the treatment duration- and human activity-dependent efficacy. To understand the disinfection mechanism, we conducted a fluorescence microscopy study to reveal different degrees of E. coli bacteria cell membrane damage under CPI treatment.
Collapse
Affiliation(s)
| | | | - Laura Sutarlie
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore; (S.W.Y.L.); (S.Y.O.); (Y.Y.L.); (A.S.); (C.K.I.T.); (W.C.D.C.); (X.J.L.)
| | | | | | | | | | | | - Xiaodi Su
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore; (S.W.Y.L.); (S.Y.O.); (Y.Y.L.); (A.S.); (C.K.I.T.); (W.C.D.C.); (X.J.L.)
| |
Collapse
|
39
|
Hu X, Xiong Q, Hou S, Duan H. Metabolic labeling of peptidoglycan enabled optical analysis of probiotic vitality. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6164-6172. [PMID: 39189146 DOI: 10.1039/d4ay00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The growing awareness of the health benefits associated with probiotics has led to an increasing interest in probiotic products. To develop probiotic functional foods that deliver health benefits, it is essential to characterize both probiotic viability (the ability to survive) and vitality (the ability to remain active and effective). However, traditional probiotic assays only provide limited information about their survival state. To gain a comprehensive understanding of probiotic states, a D-amino-acid-based metabolic labeling strategy was applied to quantitatively depict probiotic vitality. In this approach, probiotics were first metabolically incorporated with azido-modified D-lysine and then labeled with dibenzocyclooctyne-sulfo-Cy5 through click chemistry. This two-step labeling process provides a visual representation of the metabolic levels of probiotics as well as the bacterial membrane integrity. Besides, this method is capable of characterizing the influence of various environmental conditions, from manufacturing to oral administration, on probiotic vitality. With its rapid detection process and general applicability, this strategy has the potential to be widely implemented in the food industry for probiotic vitality evaluation.
Collapse
Affiliation(s)
- Xinping Hu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Qirong Xiong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
| | - Shuai Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| |
Collapse
|
40
|
Jan H, Ghayas S, Higazy D, Ahmad NM, Yaghmur A, Ciofu O. Antibacterial and anti-biofilm activities of antibiotic-free phosphatidylglycerol/docosahexaenoic acid lamellar and non-lamellar liquid crystalline nanoparticles. J Colloid Interface Sci 2024; 669:537-551. [PMID: 38729002 DOI: 10.1016/j.jcis.2024.04.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Infectious diseases, particularly those associated with biofilms, are challenging to treat due to an increased tolerance to commonly used antibiotics. This underscores the urgent need for innovative antimicrobial strategies. Here, we present an alternative simple-by-design approach focusing on the development of biocompatible and antibiotic-free nanocarriers from docosahexaenoic acid (DHA) that has the potential to combat microbial infections and phosphatidylglycerol (DOPG), which is attractive for use as a biocompatible prominent amphiphilic component of Gram-positive bacterial cell membranes. We assessed the anti-bacterial and anti-biofilm activities of these nanoformulations (hexosomes and vesicles) against S. aureus and S. epidermidis, which are the most common causes of infections on catheters and medical devices by different methods (including resazurin assay, time-kill assay, and confocal laser scanning microscopy on an in vitro catheter biofilm model). In a DHA-concentration-dependent manner, these nano-self-assemblies demonstrated strong anti-bacterial and anti-biofilm activities, particularly against S. aureus. A five-fold reduction of the planktonic and a four-fold reduction of biofilm populations of S. aureus were observed after treatment with hexosomes. The nanoparticles had a bacteriostatic effect against S. epidermidis planktonic cells but no anti-biofilm activity was detected. We discuss the findings in terms of nanoparticle-bacterial cell interactions, plausible alterations in the phospholipid membrane composition, and potential penetration of DHA into these membranes, leading to changes in their structural and biophysical properties. The implications for the future development of biocompatible nanocarriers for the delivery of DHA alone or in combination with other anti-bacterial agents are discussed, as novel treatment strategies of Gram-positive infections, including biofilm-associated infections.
Collapse
Affiliation(s)
- Habibullah Jan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sana Ghayas
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Doaa Higazy
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Nasir Mahmood Ahmad
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | - Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
41
|
Guo N, Chen J, Kong F, Gao Y, Bian J, Liu T, Hong G, Zhao Z. 5-aminolevulinic acid photodynamic therapy for chronic wound infection in rats with diabetes. Biomed Pharmacother 2024; 178:117132. [PMID: 39047418 DOI: 10.1016/j.biopha.2024.117132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Recent research indicated that ulcers and peripheral vascular disease resulting from drug-resistant bacterial infections are the main causes of delayed healing in chronic diabetic wounds. 5-Aminolevulinic acid (ALA) is a second-generation endogenous photosensitizer. The therapeutic effect and mechanism of ALA-mediated photodynamic therapy (ALA-PDT) on methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds in diabetic rats were investigated in this study. The results revealed the promising antibacterial effects of ALA-PDT MRSA in vitro, with a minimum inhibitory concentration and minimum bactericidal concentration of 250 and 500 μM, respectively. ALA-PDT also changed the permeability and structural integrity of bacterial cell membranes by producing reactive oxygen species. Meanwhile, ALA-PDT accelerated wound healing in MRSA-infected diabetic rats, with 5 % ALA-PDT achieving complete sterilization in 14 days and wound closure in 21 days. Treatment with 5 % ALA-PDT additionally improved the histopathological appearance of skin tissue, as well as fibrosis, inflammatory cytokine release, and angiogenesis-related protein expression. These findings indicated that ALA-PDT significantly promoted the healing of MRSA-infected wounds in diabetic rats by eliminating bacteria, inhibiting inflammation, generating granulation tissues, promoting neovascularization, and restoring damaged nerves. In addition, the healing mechanism was related to the activation of inflammatory and angiogenesis pathways through the regulation of tumor necrosis factor-alpha and interleukin-6 expression and upregulation of CD206, CD31, and VEGF. These findings underscored the potential role of ALA-PDT in promoting the healing of chronic diabetic wounds.
Collapse
Affiliation(s)
- Ning Guo
- School of Basic Medical Sciences, Hebei University, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Jingyu Chen
- Tianjin University of Traditional Chinese Medicine, China.
| | - Feiyan Kong
- School of Basic Medical Sciences, Hebei University, China.
| | | | | | - Tianjun Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Ge Hong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Zhanjuan Zhao
- School of Basic Medical Sciences, Hebei University, China.
| |
Collapse
|
42
|
Machingauta A, Mukanganyama S. Antibacterial Activity and Proposed Mode of Action of Extracts from Selected Zimbabwean Medicinal Plants against Acinetobacter baumannii. Adv Pharmacol Pharm Sci 2024; 2024:8858665. [PMID: 39220823 PMCID: PMC11364482 DOI: 10.1155/2024/8858665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Acinetobacter baumannii was identified by the WHO as a priority pathogen in which the research and development of new antibiotics is urgently needed. Plant phytochemicals have potential as sources of new antimicrobials. The objective of the study was to determine the antibacterial activity of extracts of selected Zimbabwean medicinal plants against A. baumannii and determine their possible mode of action. Extracts were prepared from the leaves of the eight plants including the bark of Erythrina abyssinica using solvents of different polarities. Antibacterial activity was evaluated using the microbroth dilution method coupled with the in vitro iodonitrotetrazolium colorimetric assay. The effect of the extracts on membrane integrity was determined by quantifying the amount of protein and nucleic acid leaked from the cells after exposure to the extracts. The effects of the extracts on biofilms were investigated. Toxicity studies were carried out using sheep erythrocytes and murine peritoneal cells. Seven out of eight evaluated plant extracts were found to have antibacterial activity. The Combretum apiculatum acetonie (CAA) extract showed the highest inhibitory activity against A. baumannii with a minimal inhibitory concentration of 125 µg/mL. The minimum inhibitory concentration (MIC) of the CAA extract caused a protein leakage of 32 µg/mL from A. baumannii. The Combretum apiculatum acetonie (CAA), C. apiculatum methanolic (CAM), Combretum zeyheri methanolic (CZM), and Erythrina abyssinica methanolic (EAM) extracts inhibited A. baumannii biofilm formation. The EAM extract was shown to disrupt mature biofilms. The potent extracts were nontoxic to sheep erythrocytes and mouse peritoneal cells. The activities shown by the extracts indicate that the plants have potential as sources of effective antibacterial and antibiofilm formation agents against A. baumannii.
Collapse
Affiliation(s)
- Auxillia Machingauta
- Bio-Molecular Interactions Analyses GroupDepartment of Biotechnology and BiochemistryUniversity of Zimbabwe, Mt Pleasant, P.O. Box 167, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of TherapeuticsNatural Products Research UnitAfrican Institute of Biomedical Science and TechnologyWilkins Hospital, Block C, Corner J. Tongogara and R. Tangwena, Harare, Zimbabwe
| |
Collapse
|
43
|
Jara-Medina NR, Cueva DF, Cedeño-Pinargote AC, Gualle A, Aguilera-Pesantes D, Méndez MÁ, Orejuela-Escobar L, Cisneros-Heredia DF, Cortez-Zambrano R, Miranda-Moyano N, Tejera E, Machado A. Eco-alternative treatments for Vibrio parahaemolyticus and V. cholerae biofilms from shrimp industry through Eucalyptus (Eucalyptus globulus) and Guava (Psidium guajava) extracts: A road for an Ecuadorian sustainable economy. PLoS One 2024; 19:e0304126. [PMID: 39137207 PMCID: PMC11321589 DOI: 10.1371/journal.pone.0304126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/07/2024] [Indexed: 08/15/2024] Open
Abstract
Understanding how environmental variables influence biofilm formation becomes relevant for managing Vibrio biofilm-related infections in shrimp production. Therefore, we evaluated the impact of temperature, time, and initial inoculum in the biofilm development of these two Vibrio species using a multifactorial experimental design. Planktonic growth inhibition and inhibition/eradication of Vibrio biofilms, more exactly V. parahaemolyticus (VP87 and VP275) and V. cholerae (VC112) isolated from shrimp farms were evaluated by Eucalyptus and Guava aqueous leaf extracts and compared to tetracycline and ceftriaxone. Preliminary results showed that the best growth conditions of biofilm development for V. parahaemolyticus were 24 h and 24°C (p <0.001), while V. cholerae biofilms were 72 h and 30°C (p <0.001). Multivariate linear regression ANOVA was applied using colony-forming unit (CFU) counting assays as a reference, and R-squared values were applied as goodness-of-fit measurements for biofilm analysis. Then, both plant extracts were analyzed with HPLC using double online detection by diode array detector (DAD) and mass spectrometry (MS) for the evaluation of their chemical composition, where the main identified compounds for Eucalyptus extract were cypellogin A, cypellogin B, and cypellocarpin C, while guavinoside A, B, and C compounds were the main compounds for Guava extract. For planktonic growth inhibition, Eucalyptus extract showed its maximum effect at 200 μg/mL with an inhibition of 75% (p < 0.0001) against all Vibrio strains, while Guava extract exhibited its maximum inhibition at 1600 μg/mL with an inhibition of 70% (p < 0.0001). Both biofilm inhibition and eradication assays were performed by the two conditions (24 h at 24°C and 72 h at 30°C) on Vibrio strains according to desirability analysis. Regarding 24 h at 24°C, differences were observed in the CFU counting between antibiotics and plant extracts, where both plant extracts demonstrated a higher reduction of viable cells when compared with both antibiotics at 8x, 16x, and 32x MIC values (Eucalyptus extract: 1600, 3200, and 6400 μg/mL; while Guava extract: 12800, 25600, and 52000 μg/mL). Concerning 72 h at 30°C, results showed a less notorious biomass inhibition by Guava leaf extract and tetracycline. However, Eucalyptus extract significantly reduced the total number of viable cells within Vibrio biofilms from 2x to 32x MIC values (400-6400 μg/mL) when compared to the same MIC values of ceftriaxone (5-80 μg/mL), which was not able to reduce viable cells. Eucalyptus extract demonstrated similar results at both growth conditions, showing an average inhibition of approximately 80% at 400 μg/mL concentration for all Vibrio isolates (p < 0.0001). Moreover, eradication biofilm assays demonstrated significant eradication against all Vibrio strains at both growth conditions, but biofilm eradication values were substantially lower. Both extract plants demonstrated a higher reduction of viable cells when compared with both antibiotics at 8x, 16x, and 32x MIC values at both growth sets, where Eucalyptus extract at 800 μg/mL reduced 70% of biomass and 90% of viable cells for all Vibrio strains (p < 0.0001). Overall results suggested a viable alternative against vibriosis in the shrimp industry in Ecuador.
Collapse
Affiliation(s)
- Nicolás Renato Jara-Medina
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Dario Fernando Cueva
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ariana Cecibel Cedeño-Pinargote
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Arleth Gualle
- Colegio de Ciencias e Ingenierías, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | | | - Miguel Ángel Méndez
- Colegio de Ciencias e Ingenierías, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Lourdes Orejuela-Escobar
- Colegio de Ciencias e Ingenierías, Departamento de Ingeniería Química, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Instituto de Investigaciones Biológicas y Ambientales BIÓSFERA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego F. Cisneros-Heredia
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Herbario de Botánica Económica, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Rebeca Cortez-Zambrano
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Herbario de Botánica Económica, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Facultad de Medicina Veterinaria, Universidad UTE, Quito, Ecuador
| | - Nelson Miranda-Moyano
- Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBIOTROP, Herbario de Botánica Económica, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - António Machado
- Laboratorio de Bacteriología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Calle Diego de Robles y Pampite, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
44
|
Turicea B, Sahoo DK, Allbaugh RA, Stinman CC, Kubai MA. Novel treatment of infectious keratitis in canine corneas using ultraviolet C (UV-C) light. Vet Ophthalmol 2024. [PMID: 39118265 DOI: 10.1111/vop.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE To investigate the therapeutic effect of 275 nm wavelength ultraviolet C (UV-C) light for treatment of bacterial keratitis in canine corneas using an affordable, broadly available modified handheld device. METHODS UV-C therapy (UVCT) was evaluated in two experiments: in vitro using triplicates of three bacterial genera (Staphylococcus, Streptococcus, Pseudomonas spp., and a mix of all species) where the UVCT was performed at a distance of 10, 15, and 20 mm with 1 or 2 doses (4 h apart) for 5, 15, or 30 s; ex vivo model where healthy canine corneal buttons were inoculated superficially and deep (330 μm) with the same bacterial isolates and treated at a 10 mm distance for 15 s with one dose of 22.5 mJ/cm2. Fluorescent marker (STYO9-PI) was used to label (green = live bacteria, red = dead bacteria), and confocal microscopy was used to image the bacteria. RESULTS In vitro results showed all plates treated with UVCT had 100% bactericidal effect for all isolates with single dose of 15 s at 10 mm distance or two doses, 4 h apart at 15 mm and was ineffective with single dose at 15-20 mm. The ex vivo results confirmed a significant decrease in bacterial load for all isolates on samples inoculated superficially but were inconclusive for intrastromal ones. CONCLUSIONS UVCT confirmed the therapeutic potential for all tested isolates, for both in vitro and ex vivo experiments using a single exposure of 15 s. While safety studies are underway, clinical trials are warranted.
Collapse
Affiliation(s)
- Bactelius Turicea
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Dipak K Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Rachel A Allbaugh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Chloe C Stinman
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, Iowa, USA
| | - Melissa A Kubai
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
45
|
Liu Q, Tang T, Tian Z, Ding S, Wang L, Chen D, Wang Z, Zheng W, Lee H, Lu X, Miao X, Liu L, Sun L. A high-performance watermelon skin ion-solvating membrane for electrochemical CO 2 reduction. Nat Commun 2024; 15:6722. [PMID: 39112472 PMCID: PMC11306604 DOI: 10.1038/s41467-024-51139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Ion-solvating membranes have been gaining increasing attention as core components of electrochemical energy conversion and storage devices. However, the development of ion-solvating membranes with low ion resistance and high ion selectivity still poses challenges. In order to propose an effective strategy for high-performance ion-solvating membranes, this study conducted a comprehensive investigation on watermelon skin membranes through a combination of experimental research and molecular dynamics simulation. The micropores and continuous hydrogen-bonding networks constructed by the synergistic effect of cellulose fiber and pectin enable the hypodermis of watermelon skin membranes to have a high ion conductivity of 282.3 mS cm-1 (room temperature, saturated with 1 M KOH). The negatively charged groups and hydroxyl groups on the microporous channels increase the formate penetration resistance of watermelon skin membranes in contrast to commercially available membranes, and this is crucial for CO2 electroreduction. Therefore, the confinement of proton donors and negatively charged groups within three-dimensional microporous polymers gives inspiration for the design of high-performance ion-solvating membranes.
Collapse
Affiliation(s)
- Qinglu Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Tang Tang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Ziyu Tian
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Shiwen Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Dexin Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Zhiwei Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Wentao Zheng
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Husileng Lee
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China
| | - Xingyu Lu
- Instrumentation and Service Center for Molecular Science, Westlake University, Hangzhou, 310024, China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, China
| | - Lin Liu
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China.
- School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
46
|
Jin Z, Wang YC. Mitigating fungal contamination of cereals: The efficacy of microplasma-based far-UVC lamps against Aspergillus flavus and Fusarium graminearum. Food Res Int 2024; 190:114550. [PMID: 38945594 DOI: 10.1016/j.foodres.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Fungal contaminations of cereal grains are a profound food-safety and food-security concern worldwide, threatening consumers' and animals' health and causing enormous economic burdens. Because far-ultraviolet C (far-UVC) light at 222 nm has recently been shown to be human-safe, we investigated its efficacy as an alternative to thermal, chemical, and conventional 254 nm UVC anti-fungal treatments. Our microplasma-based far-UVC lamp system achieved a 5.21-log reduction in the conidia of Aspergillus flavus suspended in buffer with a dose of 1032.0 mJ/cm2, and a 5.11-log reduction of Fusarium graminearum conidia in suspension with a dose of 619.2 mJ/cm2. We further observed that far-UVC treatments could induce fungal-cell apoptosis, alter mitochondrial membrane potential, lead to the accumulation of intracellular reactive oxygen species, cause lipid peroxidation, and result in cell-membrane damage. The lamp system also exhibited a potent ability to inhibit the mycelial growth of both A. flavus and F. graminearum. On potato dextrose agar plates, such growth was completely inhibited after doses of 576.0 mJ/cm2 and 460.8 mJ/cm2, respectively. To test our approach's efficacy at decontaminating actual cereal grains, we designed a cubical 3D treatment chamber fitted with six lamps. At a dose of 780.0 mJ/cm2 on each side, the chamber achieved a 1.88-log reduction of A. flavus on dried yellow corn kernels and a 1.11-log reduction of F. graminearum on wheat grains, without significant moisture loss to either cereal type (p > 0.05). The treatment did not cause significant changes in the propensity of wheat grains to germinate in the week following treatment (p > 0.05). However, it increased the germination propensity of corn kernels by more than 71% in the same timeframe (p < 0.05). Collectively, our results demonstrate that 222 nm far-UVC radiation can effectively inactivate fungal growth in liquid, on solid surfaces, and on cereal grains. If scalable, its emergence as a safe, cost-effective alternative tool for reducing fungi-related post-harvest cereal losses could have important positive implications for the fight against world hunger and food insecurity.
Collapse
Affiliation(s)
- Zhenhui Jin
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Yi-Cheng Wang
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Center for Digital Agriculture, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
47
|
Chand U, Kushawaha PK. Silibinin-loaded chitosan-capped silver nanoparticles exhibit potent antimicrobial, antibiofilm, and anti-inflammatory activity against drug-resistant nosocomial pathogens. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1771-1793. [PMID: 38787751 DOI: 10.1080/09205063.2024.2355744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Nanoparticles capped with natural products can be a cost-effective alternative to treat drug-resistant nosocomial infections. Therefore, silibinin-loaded chitosan-capped silver nanoparticles (S-C@AgNPs) were synthesized to evaluate their antimicrobial and anti-inflammatory potential. The S-C@AgNPs plasmon peak was found at 430 nm and had a particle size distribution of about 130 nm with an average hydrodynamic diameter of 101.37 nm. The Scanning Electron Microscopy images showed the presence of sphere-shaped homogeneous nanoparticles. The Fourier Transform Infrared Spectroscopy analysis confirmed the loading of silibinin and chitosan on the AgNPs surface. The minimum inhibitory concentration of the S-C@AgNPs was reported between 3.12 μg/ml to 12.5 μg/ml and a minimum bactericidal concentration between 6.25 μg/ml to 25 μg/ml against drug-resistant nosocomial pathogens. Moreover, concentration-dependent significant inhibition of the biofilm formation was reported against P. aeruginosa (70.21%) and K. pneumoniae (71.02%) at 30 μg/ml, and the highest destruction of preformed biofilm was observed at 100 μg/ml against P. aeruginosa (89.74%) and K. pneumoniae (77.65%) as compared to individual bacterial control. Additionally, the fluorescence live/dead assay for bacterial biofilm confirmed that 100 µg/ml effectively inhibits the biofilm formed by these pathogens. S-C@AgNPs also showed anti-inflammatory activity, which is evident by the significant decrease in the proinflammatory cytokines and chemokines level in THP1 cells treated with LPS. This study concluded that S-C@AgNPs have potent antimicrobial, antibiofilm, and anti-inflammatory properties and could be a potential option for treating drug resistant nosocomial infections.
Collapse
Affiliation(s)
- Umesh Chand
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
48
|
Poteete O, Cox P, Ruffin F, Sutton G, Brinkac L, Clarke TH, Fouts DE, Fowler VG, Thaden JT. Serum susceptibility of Escherichia coli and its association with patient clinical outcomes. PLoS One 2024; 19:e0307968. [PMID: 39074102 DOI: 10.1371/journal.pone.0307968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
The innate immune system eliminates bloodstream pathogens such as Escherichia coli in part through complement protein deposition and subsequent bacterial death (i.e., "serum killing"). Some E. coli strains have developed mechanisms to resist serum killing, though the extent of variation in serum killing among bloodstream infection (BSI) isolates and the clinical impact of this variation is not well understood. To address this issue, we developed a novel assay that uses flow cytometry to perform high throughput serum bactericidal assays (SBAs) with E. coli BSI isolates (n = 183) to define the proportion of surviving bacteria after exposure to serum. We further determined whether E. coli resistance to serum killing is associated with clinical outcomes (e.g., in-hospital attributable mortality, in-hospital total mortality, septic shock) and bacterial genotype in the corresponding patients with E. coli BSI. Our novel flow cytometry-based SBA performed similarly to a traditional SBA, though with significantly decreased hands-on bench work. Among E. coli BSI isolates, the mean proportion that survived exposure to 25% serum was 0.68 (Standard deviation 0.02, range 0.57-0.93). We did not identify associations between E. coli resistance to serum killing and clinical outcomes in our adjusted models. Together, this study describes a novel flow cytometry-based approach to the bacterial SBA that allowed for high-throughput testing of E. coli BSI isolates and identified high variability in resistance to serum killing among a large set of BSI isolates.
Collapse
Affiliation(s)
- Orianna Poteete
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| | - Phillip Cox
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| | - Felicia Ruffin
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| | - Granger Sutton
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Lauren Brinkac
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Thomas H Clarke
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Derrick E Fouts
- J. Craig Venter Institute, Rockville, MD, United States of America
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
- Duke Clinical Research Institute, Durham, NC, United States of America
| | - Joshua T Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
49
|
Liang J, Zheng X, Ning T, Wang J, Wei X, Tan L, Shen F. Revealing the Viable Microbial Community of Biofilm in a Sewage Treatment System Using Propidium Monoazide Combined with Real-Time PCR and Metagenomics. Microorganisms 2024; 12:1508. [PMID: 39203351 PMCID: PMC11356008 DOI: 10.3390/microorganisms12081508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/03/2024] Open
Abstract
Microbial community composition, function, and viability are important for biofilm-based sewage treatment technologies. Most studies of microbial communities mainly rely on the total deoxyribonucleic acid (DNA) extracted from the biofilm. However, nucleotide materials released from dead microorganisms may interfere with the analysis of viable microorganisms and their metabolic potential. In this study, we developed a protocol to assess viability as well as viable community composition and function in biofilm in a sewage treatment system using propidium monoazide (PMA) coupled with real-time quantitative polymerase chain reaction (qPCR) and metagenomic technology. The optimal removal of PMA from non-viable cells was achieved by a PMA concentration of 4 μM, incubation in darkness for 5 min, and exposure for 5 min. Simultaneously, the detection limit can reach a viable bacteria proportion of 1%, within the detection concentration range of 102-108 CFU/mL (colony forming unit/mL), showing its effectiveness in removing interference from dead cells. Under the optimal conditions, the result of PMA-metagenomic sequencing revealed that 6.72% to 8.18% of non-viable microorganisms were influenced and the composition and relative abundance of the dominant genera were changed. Overall, this study established a fast, sensitive, and highly specific biofilm viability detection method, which could provide technical support for accurately deciphering the structural composition and function of viable microbial communities in sewage treatment biofilms.
Collapse
Affiliation(s)
- Jiayin Liang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiangqun Zheng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Institute of Environment and Sustainable Development in Agriculture, No.12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Tianyang Ning
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Jiarui Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Xiaocheng Wei
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China; (J.L.); (X.Z.); (T.N.); (J.W.); (F.S.)
- Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China
| |
Collapse
|
50
|
Pîndaru AM, Măruțescu L, Popa M, Chifiriuc MC. A Label-Free Optical Flow Cytometry Based-Method for Rapid Assay of Disinfectants' Bactericidal Activity. Int J Mol Sci 2024; 25:7158. [PMID: 39000264 PMCID: PMC11241575 DOI: 10.3390/ijms25137158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Selecting the appropriate disinfectant to control and prevent healthcare-associated infections (HAIs) is a challenging task for environmental health experts due to the large number of available disinfectant products. This study aimed to develop a label-free flow cytometry (FCM) method for the rapid evaluation of bactericidal activity and to compare its efficacy with that of standard qualitative/quantitative suspension tests. The bactericidal efficiency of eight commercial disinfectants containing quaternary ammonium compounds (QACs) was evaluated against four strains recommended by EN 13727 (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus hirae) and four multidrug-resistant pathogens. The proposed FCM protocol measures changes in scattered light and counts following disinfectant exposure, neutralization, and culture steps. Unlike other available FCM-based methods, this approach does not rely on autofluorescence measurements, impedance cytometry, or fluorescent dyes. The FCM scattered light signals revealed both decreased count rates and morphological changes after treatment with minimum inhibitory concentrations (MICs) and higher concentrations for all tested bacteria. The results from the FCM measurements showed excellent correlation with those from standard assays, providing a rapid tool for monitoring the susceptibility profile of clinical, multidrug-resistant pathogens to chemical disinfectants, which could support infection prevention and control procedures for healthcare environments. This label-free FCM protocol offers a novel and rapid tool for environmental health experts, aiding in the optimization of disinfectant selection for the prevention and control of HAIs.
Collapse
Affiliation(s)
- Andreea Maria Pîndaru
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
| | - Luminița Măruțescu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Marcela Popa
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (A.M.P.); (M.C.C.)
- Research Institute of University of Bucharest, University of Bucharest, 050663 Bucharest, Romania;
| |
Collapse
|