1
|
Zhang C, Yi L, Bai Y, Yang X, He J, Bai Y, Zhang Y, Li B, Zhang J. Cyclodextrin inclusion complex enhances solubility and antimicrobial activity of chlortetracycline hydrochloride. Talanta 2025; 292:127977. [PMID: 40121991 DOI: 10.1016/j.talanta.2025.127977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Chlortetracycline hydrochloride (CTC) is a broad-spectrum tetracycline antibiotic used to prevent or resist different bacterial infections. However, due to its poor aqueous stability and physicochemical instability, its clinical development is limited. To improve such properties, CTC complexation with β-cyclodextrin (β-CD) and 2-hydroxypropanol-β-cyclodextrin (HP-β-CD) was performed using different preparation techniques (Freeze drying and ball milling). Inclusion complexes were comprehensively characterized using different analytical techniques and showed different properties distinct to pure CTC. In the presence of both CDs, CTC solubility was significantly improved. After ratio optimization, the optimal molar ratio after freeze-drying was determined to be 1:5. Compared to pure CTC powder (4 mg/mL), the solubility of CTC/HP-β-CD improved approximately 9 times (36 mg/mL), and a new CTC injection was successfully prepared. The antibacterial activity (in vivo and in vitro) of the CTC/HP-β-CD injection was then examined in natural infection chickens. Pathological tissue images showed that a 20 mg/kg CTC/HP-β-CD dose increased antibacterial activity and therapeutic effects. Additionally, we determined five clinical strains and statistically verified that CTC/HP-β-CD exhibits stronger antibacterial activity compared to CTC and other tetracycline drugs, with the most significant effect observed against Pseudomonas aeruginosa (MIC value of 2 μg/mL). Thus, these findings suggest that CTC/HP-β-CD inclusion complexes could be promising for pharmaceutical development, warranting further clinical evaluation, as solubility was significantly increased, and enhanced antibacterial activity was recorded in vivo and in vitro.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou, 730050, Gansu, China; College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, 730070, Gansu, China.
| | - Lankun Yi
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou, 730050, Gansu, China; College of Life Science and Food Engineering, Hebei University of Engineering, Hanshan District, Handan, 056038, Hebei, China
| | - Yubin Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Xiaorong Yang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Jian He
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou, 730050, Gansu, China; College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, 730070, Gansu, China
| | - Yuting Bai
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou, 730050, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, 730070, Gansu, China
| | - Bing Li
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou, 730050, Gansu, China.
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Qilihe District, Lanzhou, 730050, Gansu, China; College of Veterinary Medicine, Gansu Agricultural University, Anning District, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
2
|
Xu Q, Hu M, Xu S, Ihenetu SC, Chen X, Li Y, Yao H. Effects of biofertilizers on nonsymbiotic nitrogen fixation in different paddy soils. ENVIRONMENTAL RESEARCH 2025; 275:121416. [PMID: 40122497 DOI: 10.1016/j.envres.2025.121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/02/2024] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
The excessive application of chemical nitrogen fertilizers to paddy fields has led to numerous environmental problems. Nitrogen-fixing biofertilizers are adequate substitutes for chemical nitrogen fertilizers. In this study, two representative paddy soils (HH and SH) in China with significant differences in their nitrogen fixation activities and physicochemical properties were selected. The effects of 11 kinds of commercial nitrogen-fixing biofertilizers on the properties, nonsymbiotic biological nitrogen fixation activities and nifH gene abundance of the soil were assessed. The results revealed that different biofertilizers exerted distinct effects on the biological nitrogen fixation (BNF) rate and nifH gene abundance of these soils. The BNF rates of HH soil and SH soil ranged from 10.35 to 21.95 μg kg-1·d-1 and from 2.53 to 35.27 μg kg-1·d-1, respectively. The highest increase in BNF was 80.87 % in HH soils and more than tenfold in SH soils. Mo is a component of nitrogen-fixing enzymes, and the results showed that Mo content was positively correlated with the rate of nitrogen fixation in SH soils, which was the most important factor affecting the rate of nitrogen fixation. Application of biofertilizers with high Mo content in Mo-deficient paddy soils may be an effective measure to increase soil N input. The size of the nitrogen-fixing strain population in the 11 biofertilizers ranged from 2.6 × 103 to 1.2 × 108 CFU g-1, and 32 strains were identified by 16S rRNA gene sequencing. Strains B4 (Pantoea wallisii), B5 (Pantoea anthophila), and B8 (Bacillus paralicheniformis) had the highest BNF rates in nitrogen-free medium. This study elucidated the contributions of various commercial biofertilizers to nonsymbiotic nitrogen fixation in paddy soils and revealed the underlying mechanisms. These findings provide a theoretical foundation for the development and practical application of biofertilizers, and will inform strategies to increase the efficacy of biofertilizers in agricultural settings.
Collapse
Affiliation(s)
- Qiong Xu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Mengyuan Hu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Stanley Chukwuemeka Ihenetu
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315830, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xunqi Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaying Li
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315830, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315830, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
3
|
Abdel-Monem DA, Sabry SA, Ghozlan HA, Zaghloul EH. Preparation of Novel Marine Enterococcus faecium MSD8 Exopolysaccharide Ointment and In Vivo Evaluation of Its Impact on Cutaneous Wound Healing in Male Albino Rats. Probiotics Antimicrob Proteins 2025; 17:963-975. [PMID: 39133428 PMCID: PMC12055640 DOI: 10.1007/s12602-024-10334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
The current study describes the isolation of exopolysaccharide (EPS) producing lactic acid bacteria (LAB) from marine samples and testing different sugar additives with different proportions for enhanced EPS yield. The isolate MSD8 showed the most potential, yielding 200 mg/L of EPS after being cultivated at 37 °C for 48 h on de Man Rogosa and Sharpe medium (MRS) supplemented with 3% sucrose. The marine isolate MSD8 was identified as Enterococcus faecium with 99.58% probability using 16S rRNA gene sequencing. The obtained sequence was deposited in GenBank and assigned the accession number MW924065. The feature of MSD8-EPS was characterized by estimating the total carbohydrate content by UV-vis to be ~ 71%. The FTIR analysis further indicated the presence of characteristic bands of polysaccharide. The cytotoxicity of the produced MSD8-EPS was assessed using human skin fibroblasts (HSF). The IC50 was determined to be > 100 μg/mL, which signifies that MSD8-EPS is safe for skin application. The produced EPS was used to prepare a novel ointment, which was tested for wound healing ability in male albino rats. The ointment significantly (P ≤ 0.05) shortened the time needed for wound healing, as it successfully healed the wounds by 94.93% on the 7th day and completely (100%) healed the wound by the 12th day. In comparison, the control group was healed by 73.2% and 84.83%, respectively. The data confirm that the prepared ointment can safely be used for pharmaceutical wound care products.
Collapse
Affiliation(s)
- Doaa A Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Soraya A Sabry
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hanan A Ghozlan
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman H Zaghloul
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| |
Collapse
|
4
|
Babajide AM, Adebami GE, Adebayo-Tayo BC. Screening of rhizobacteria from monkey pod trees for plant growth promoters and evaluating the antifungal potential of the biosynthesized selenium nanoparticles. Sci Rep 2025; 15:16797. [PMID: 40369107 PMCID: PMC12078570 DOI: 10.1038/s41598-025-96330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/27/2025] [Indexed: 05/16/2025] Open
Abstract
Rhizobacteria, residing in the root zone of plants, are essential for enhancing plant growth and development and have recently been recognized for their role in nanoparticle synthesis. This study aims to isolate new strains of rhizobacteria from monkey pod trees, evaluate their potential as plant growth promoters, and assess their ability to synthesize selenium nanoparticles (SeNPs) with antifungal properties. The objectives include screening the isolates for phosphate solubilization potential, indolic compound production, nitrogen fixation, and SeNPs synthesis. The best-performing isolates were identified through molecular techniques, and the synthesized SeNPs were characterized and tested for antifungal activity. Out of 30 rhizobacterial strains screened, isolates RS3E and RS3F, identified as Lysinibacillus sphaericus and Bacillus amyloliquefaciens, respectively, showed significant phosphate solubilization (PSI ranging from 2.0 to 3.80 mm) and Indole Acetic Acid (IAA) production. The greenly synthesized SeNPs exhibited a maximum absorption at 262 nm, with scanning and transmission electron microscopy confirming their spherical nature and average particle size of 16.704 nm. Further validation of SeNPs synthesis was achieved using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray (EDX) analysis. The SeNPs demonstrated excellent antifungal activity against Aspergillus niger and Aspergillus flavus, with inhibition zones ranging from 23.0 to 45.0 mm. This study highlights the potential of rhizobacteria-derived SeNPs as effective antifungal agents, offering a sustainable approach to fungal treatment in agriculture.
Collapse
Affiliation(s)
- Abu M Babajide
- Department of Microbiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Gboyega E Adebami
- Department of Biological Sciences, Mountain Top University, Ibafo, Ogun State, Nigeria.
| | | |
Collapse
|
5
|
Flores CAR, Siringan MAT, Relucio-San Diego MACV. Multiple Plant Growth-Promoting Activities Exhibited by Root-Associated Bacteria Isolated From Bamboo and Corn. Int J Microbiol 2025; 2025:6374935. [PMID: 40226840 PMCID: PMC11987075 DOI: 10.1155/ijm/6374935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/30/2024] [Accepted: 02/13/2025] [Indexed: 04/15/2025] Open
Abstract
Plant growth-promoting bacteria found in the plant roots and rhizosphere stimulate growth and reduce plant diseases through various direct and indirect mechanisms. They are proven as efficient biofertilizers that enable farmers to reduce or eliminate the use of expensive and environmentally harmful chemical fertilizers. The goal of this study was to isolate, characterize, and identify nitrogen-fixing bacteria with additional plant growth-promoting traits from the roots of bamboo (Bambusa sp.) and corn (Zea mays L.) grown in Cagayan Province, Philippines. A total of 27 bacteria were isolated and identified based on 16S rRNA gene sequencing and phylogenetic analysis. Selected isolates were also subjected to whole-genome sequencing to obtain accurate identification. The isolates were classified into 12 genera, the majority of which belonged to Leclercia, Pantoea, Klebsiella, and Exiguobacterium. Assays for four plant growth-promoting activities revealed that all isolates exhibited at least two activities in vitro. Four isolates (15%) tested positive for the nitrogen-fixation gene nifH, which was mostly detected in Klebsiella isolates. Eleven (41%) solubilized phosphate and Pantoea isolates showed the highest potential. All strains (100%) synthesized indole-3-acetic acid (IAA), and 24 (89%) produced siderophores. Notably, Enterobacter roggenkampii strain B1-01 and Klebsiella oxytoca strain B1-04 displayed all the examined plant growth-promoting traits. Our findings demonstrated that the roots of bamboo and corn host a variety of beneficial bacteria exhibiting significant plant growth-promoting activities under in vitro conditions. These strains could be used for future investigations into microbe-plant interactions and have the potential to be harnessed for various agricultural applications.
Collapse
Affiliation(s)
- Camille Andrea R. Flores
- Microbiological Research and Services Laboratory, Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, Metro Manila, Philippines
| | - Maria Auxilia T. Siringan
- Microbiological Research and Services Laboratory, Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, Metro Manila, Philippines
| | - Mary Ann Cielo V. Relucio-San Diego
- Microbiological Research and Services Laboratory, Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City, Metro Manila, Philippines
| |
Collapse
|
6
|
Butler I, Turner O, Mohammed K, Akhtar M, Evans D, Lambourne J, Harris K, O'Sullivan DM, Sergaki C. Standardization of 16S rRNA gene sequencing using nanopore long read sequencing technology for clinical diagnosis of culture negative infections. Front Cell Infect Microbiol 2025; 15:1517208. [PMID: 40115075 PMCID: PMC11922894 DOI: 10.3389/fcimb.2025.1517208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/23/2025] Open
Abstract
The integration of long-read sequencing technology, such as nanopore sequencing technology [Oxford Nanopore Technologies (ONT)], into routine diagnostic laboratories has the potential to transform bacterial infection diagnostics and improve patient management. Analysis of amplicons from long-read sequencing of the 16S rRNA gene generates a comprehensive view of the microbial community within clinical samples, significantly enhancing sensitivity and capacity to analyse mixed bacterial populations compared to short read sequencing approaches. This study evaluates various ONT sequencing approaches and library preparation kits to establish a reliable testing and quality framework for clinical implementation. This study highlights the critical importance of using well-characterized reference materials in validating and revalidating long-read sequencing methods, leveraging a combination of standardized reference materials and clinical samples to navigate the evolving landscape of microbial diagnostics. It presents a robust validation framework for laboratory accreditation and outlines a methodology for comparing the performance of newer ONT chemistries with earlier versions. Additionally, the study details the methods and quality control measures necessary for achieving more accurate and efficient diagnoses of bacterial infections, ultimately reducing time to treatment and enhancing patient outcomes.
Collapse
Affiliation(s)
- Ian Butler
- Department of Microbiology, National Health Services (NHS) East and South East London Pathology Partnership, Bart's Health NHS Trust, London, United Kingdom
| | - Olivia Turner
- Department of Microbiology, National Health Services (NHS) East and South East London Pathology Partnership, Bart's Health NHS Trust, London, United Kingdom
| | - Kulsoom Mohammed
- Department of Microbiology, National Health Services (NHS) East and South East London Pathology Partnership, Bart's Health NHS Trust, London, United Kingdom
| | - Mazeda Akhtar
- Department of Microbiology, National Health Services (NHS) East and South East London Pathology Partnership, Bart's Health NHS Trust, London, United Kingdom
| | - Daniel Evans
- Molecular and Cell Biology, National Measurement Laboratory (NML), Laboratory of the Government Chemist (LGC), London, United Kingdom
| | - Jonathan Lambourne
- Department of Microbiology, National Health Services (NHS) East and South East London Pathology Partnership, Bart's Health NHS Trust, London, United Kingdom
| | - Kathryn Harris
- Department of Microbiology, National Health Services (NHS) East and South East London Pathology Partnership, Bart's Health NHS Trust, London, United Kingdom
| | - Denise M. O'Sullivan
- Molecular and Cell Biology, National Measurement Laboratory (NML), Laboratory of the Government Chemist (LGC), London, United Kingdom
- School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Chrysi Sergaki
- Medicines and Healthcare Products Regulatory Agency (MHRA), London, United Kingdom
| |
Collapse
|
7
|
Priadi G, Octaviana S, Pramono AK, Sari TD, Afiati F, Setiyoningrum F, Wibowo DS, Sipriyadi, Meliah S, Nofiani R. Assessing the Role of Myxobacteria Isolates in the Biotransformation of Flavoring Substances. Curr Microbiol 2025; 82:164. [PMID: 40029366 DOI: 10.1007/s00284-025-04123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Myxobacteria are well known for producing secondary metabolites with various potential applications, including volatile compounds that serve as flavors, although this capability is less documented. This study characterizes the morphology of six Myxococcus strains (InaCC B1497, B1482, B1498, B1483, B1484, and B1486) obtained from the Indonesian Culture Collection (InaCC) and evaluates their potential for flavor biotransformation. Morphological observations were conducted on fruiting bodies, vegetative cells, myxospores, and colony shapes using dissection and binocular microscopes. All strains were identified as Myxococcus with 99% similarity to Myxococcus stipitatus DSM14675T based on 16S rRNA gene sequencing. Strains InaCC B1484 and B1486 demonstrated the ability to convert geraniol into various terpenes and hydrocarbons, with strain B1486 producing high levels of citral and geranyl oleate, while B1484 yielded significant amounts of geranial and nerol. Both isolates also showed capability for limonene conversion, with B1486 displaying a broader range of aromatic hydrocarbons. Draft genome sequences for strains InaCC B1484 and B1486, each approximately 10.75 Mbp, revealed 99.99% ANI (average nucleotide identity) with each other and 89.5% ANI with the reference genome Myxococcus stipitatus DSM14675T. Both genomes contain genes associated with terpenoid and polyketide biosynthesis, including pathways for geraniol and limonene degradation.
Collapse
Affiliation(s)
- Gunawan Priadi
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, Indonesia
| | - Senlie Octaviana
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, Indonesia.
| | | | - Titi Dwi Sari
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu, Indonesia
| | - Fifi Afiati
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, Indonesia
| | - Fitri Setiyoningrum
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, Indonesia
| | - Des Saputro Wibowo
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, Indonesia
| | - Sipriyadi
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Bengkulu, Bengkulu, Indonesia
| | - Siti Meliah
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Bogor, Indonesia
| | - Risa Nofiani
- Department of Chemistry, Universitas Tanjungpura, Pontianak, Indonesia
| |
Collapse
|
8
|
Heisi HD, Nkuna R, Matambo T. Rhizosphere microbial community structure and PICRUSt2 predicted metagenomes function in heavy metal contaminated sites: A case study of the Blesbokspruit wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178147. [PMID: 39733577 DOI: 10.1016/j.scitotenv.2024.178147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
This study investigated the microbial diversity inhabiting the roots (rhizosphere) of macrophytes thriving along the Blesbokspruit wetland, South Africa's least conserved Ramsar site. The wetland suffers from decades of pollution from mining wastewater, agriculture, and sewage. The current study focused on three macrophytes: Phragmites australis (common reed), Typha capensis (bulrush), and Eichhornia crassipes (water hyacinth). The results revealed a greater abundance and diversity of microbes (Bacteria and Fungi) associated with the free-floating E. crassipes compared to P. australis and T. capensis. Furthermore, the correlation between microbial abundance and metals, showed a strong correlation between fungal communities and metals such as nickel (Ni) and arsenic (As), while bacterial communities correlated more with lead (Pb) and chromium (Cr). The functional analysis predicted by PICRUSt2 identified genes related to xenobiotic degradation, suggesting the potential of these microbes to break down pollutants. Moreover, specific bacterial groups - Proteobacteria, Verrucomicrobia, Cyanobacteria, and Bacteroidetes - were linked to this degradation pathway. These findings suggest a promising avenue for microbe-assisted phytoremediation, a technique that utilizes plants and their associated microbes to decontaminate polluted environments.
Collapse
Affiliation(s)
- Hlalele D Heisi
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa.
| | - Rosina Nkuna
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa
| | - Tonderayi Matambo
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
9
|
Rethinavelu G, Dharshini RS, Manickam R, Balakrishnan A, Ramya M, Maddela NR, Prasad R. Unveiling the microbial diversity of biofilms on titanium surfaces in full-scale water-cooling plants using metagenomics approach. Folia Microbiol (Praha) 2024; 69:1331-1341. [PMID: 38771555 DOI: 10.1007/s12223-024-01170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Microbial colonization on the titanium condenser material (TCM) used in the cooling system leads to biofouling and corrosion and influences the water supply. The primary investigation of the titanium condenser was infrequently studied on characterizing biofilm-forming bacterial communities. Different treatment methods like electropotential charge, ultrasonication, and copper coating of titanium condenser material may influence the microbial population over the surface of the titanium condensers. The present study aimed to catalog the primary colonizers and the effect of different treatment methods on the microbial community. CFU (1.7 × 109 CFU/mL) and ATP count (< 5000 × 10-7 relative luminescence units) showed a minimal microbial population in copper-coated surface biofilm as compared with the other treatments. Live and dead cell result also showed consistency with colony count. The biofilm sample on the copper-coated surface showed an increased dead cell count and decreased live cells. In the metagenomic approach, the microbiome coverage was 10.06 Mb in samples derived from copper-coated TCM than in other treated samples (electropotential charge-17.94 Mb; ultrasonication-20.01 Mb), including control (10.18 Mb). Firmicutes preponderate the communities in the biofilm samples, and Proteobacteria stand next in the population in all the treated condenser materials. At the genus level, Lactobacillaceae and Azospirillaceae dominated the biofilm community. The metagenome data suggested that the attached community is different from those biofilm samples based on the environment that influences the bacterial community. The outcome of the present study depicts that copper coating was effective against biofouling and corrosion resistance of titanium condenser material for designing long-term durability.
Collapse
Affiliation(s)
- Gayathri Rethinavelu
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Rajathirajan Siva Dharshini
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
- Microbiology Team, CavinKare Research Center, 12 Poonamallee Road, Ekkattuthangal, Chennai, 600032, India
| | - Ranjani Manickam
- SRM-DBT Platform for Advanced Life Science Technologies, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India
| | - Anandkumar Balakrishnan
- Corrosion Science and Technology Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu, Tamil Nadu, India.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Manabí, Ecuador
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India.
| |
Collapse
|
10
|
Chen PK, Liu CY, Kuo HY, Lee YT, Liu YH, Zhang YZ, Kao CY. Emergence of extensively-drug-resistant hypervirulent Acinetobacter baumannii isolated from patients with bacteraemia: bacterial phenotype and virulence analysis. Int J Antimicrob Agents 2024; 64:107358. [PMID: 39414173 DOI: 10.1016/j.ijantimicag.2024.107358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/15/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
OBJECTIVES Individuals infected with extensively-drug-resistant (XDR) Acinetobacter baumannii are difficult to cure and have a high mortality rate. This study compared the genomic and phenotypic differences between XDR and non-multi-drug-resistant (MDR) A. baumannii, and further characterized hypervirulent XDR A. baumannii. METHODS In total, 1403 acinetobacter isolates were collected from patients with bacteraemia between 1997 and 2015. Antimicrobial susceptibility tests were performed to categorize isolates into non-MDR, MDR and XDR groups. The presence of selected virulence-associated genes was determined by polymerase chain reaction. Bacterial phenotypes, including iron acquisition, biofilm formation, capsule production, and virulence to larvae and mice, were determined. RESULTS Multi-locus sequence typing revealed a high prevalence of sequence type (ST) 2 (81.6%) and ST129 (18.4%) among 49 XDR isolates, and the STs of 18 non-MDR isolates were more diverse. Virulence-associated phenotypic assays showed that XDR isolates had higher iron acquisition ability, greater capsule production, and virulence to Galleria mellonella larvae. However, their ability to form biofilm was lower compared with that of non-MDR isolates. XDR isolates were more likely to have virulence genes (tonB, hemO, abaI and ptk), while non-MDR isolates were more likely to have pld and ompA genes. Twenty-one XDR isolates that had a <20% larvae survival rate after 7 days post-infection were defined as hypervirulent XDR isolates. Among them, isolates 1677 (ST129) and 929-1 (ST2) caused the death of all infected mice within 2 days. CONCLUSION Some subpopulations of highly-drug-resistant ST2 isolates exhibit high virulence. As such, it is of utmost importance to continue monitoring the spread of hypervirulent XDR A. baumannii isolates.
Collapse
Affiliation(s)
- Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Ying Liu
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Han-Yueh Kuo
- National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan; National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tzu Lee
- Department of Emergency Medicine, Taipei Veteran General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Han Liu
- Department of Emergency Medicine, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Yen-Zhen Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Health Innovation Centre, National Yang Ming Chiao Tung University, Taipei, Taiwan; Microbiota Research Centre, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
11
|
Thabah S, Joshi SR. Performance Evaluation of Native Plant Growth-Promoting Bacteria Associated with Organic Tea Plantations for Development of Bioinoculants for Crop Plants. Curr Microbiol 2024; 81:444. [PMID: 39495358 DOI: 10.1007/s00284-024-03962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
This study aimed at isolation of native plant growth-promoting bacteria (PGPB) associated with organic tea plantations. Most research on tea and associated microbes have been on Darjeeling and Assam, known for their world-class tea. However, emerging tea plantations in remote Northeast India are gaining prominence due to their unique geographical location, favorable climate, and organic practices. This study investigated PGBP associated with these organic tea plantations, aimed to assess their potential cross-infectivity on non-host plants. A total of 58 PGP bacterial isolates were isolated from four organic tea plantations. Six potential isolates were further evaluated individually and as consortium for their PGP on rice and maize. Bacillus, Pseudomonas, and Serratia spp. as individual and in consortium were found to have potent cross-infectivity with significant growth promotion in non-host plants indicated by plant height, root length, shoot, and root weight. The present findings suggest that PGPB native to organic tea plantations have potential cross-infectivity for use as a biofertilizers to improve the growth and productivity of non-host crops. This provides prospectives of using native bacteria on non-host plants paving the way for their potential application in sustainable agriculture practices for growth promotion of staple food crops.
Collapse
Affiliation(s)
- Stevenson Thabah
- Microbiology Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - S R Joshi
- Microbiology Laboratory, Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
12
|
Kim B, Jeon HJ, Rhee MH, Kim JH, Han JE. The effects of Panax ginseng on growth enhancement, innate immunity, and microbiome profiling in Penaeus vannamei. J Ginseng Res 2024; 48:552-558. [PMID: 39583171 PMCID: PMC11583340 DOI: 10.1016/j.jgr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background In aquaculture, feed additives are widely explored. Among them, Panax ginseng Meyer, a natural herbal remedy, has demonstrated its efficacy in many aquaculture species. However, research regarding Penaeus vannamei shrimp, one of the most significant species in aquaculture, remains limited. Methods This study investigates the benefits of P. ginseng for P. vannamei, specifically its effects on growth, innate immunity, and shrimp microbiome. Juvenile P. vannamei were fed commercial feed mixed with red ginseng extract at 5 concentrations (0.00 %, 0.05 %, 0.10 %, 0.50 %, and 1.00 %) for 6 weeks. Body weight was measured on days 21 and 42. On day 42, three shrimp per group were selected for further analysis. Results In the growth study, Group 0.10 % displayed significantly improved FBW, WG, SGR, and FCR compared to those in Group 0.00 % on day 42. The qPCR assay showed significantly higher IGF-BP gene expression in Groups 0.05 %, 0.10 %, and 1.00 % compared to Group 0.00 %. In the innate immunity analysis, SOD activity was significantly higher in Groups 0.05 % and 0.50 % compared to that in Group 0.00 %. In the bacterial community analysis, Group 0.10 % exhibited higher Flavobacteriaceae and lower Vibrionaceae at the family level compared to Group 0.00 %. At the genus level, Group 0.10 % showed increased unspecified Flavobacteriaceae and decreased Vibrio compared to Group 0.00 %. Conclusion Adding P. ginseng to the feed enhanced growth, immune response, and microbiome composition in P. vannamei. Further research on refining dosage levels and utilizing red ginseng residues could boost commercial productivity and economic benefits in aquaculture practices.
Collapse
Affiliation(s)
- Bumkeun Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hye Jin Jeon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
- Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
13
|
Aktaş A, Ekren BY, Yaşa B, Sezerman OU, Nakipoğlu Y. Investigation of the Impact of Antibiotic Administration on the Preterm Infants' Gut Microbiome Using Next-Generation Sequencing-Based 16S rRNA Gene Analysis. Antibiotics (Basel) 2024; 13:977. [PMID: 39452243 PMCID: PMC11505465 DOI: 10.3390/antibiotics13100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Background: The human gut microbiota is an extensive population of microorganisms, and it shows significant variations between periods of optimal health and periods of illness. Vancomycin-resistant Enterococcus (VRE) and carbapenem-resistant Klebsiella pneumoniae (CRKP) are both pathogenic agents (BPAs) that can colonize in the gut after dysbiosis of microbiotal composition following antibiotic treatment. Methods: This study aimed to investigate the impact of antibiotics on the microbiotal composition of the gut. For this purpose, the first pass meconiums of 20 patients and the first rectal swabs containing BPAs of the same patients after antibiotic treatment were studied using next-generation sequencing-based 16S rRNA gene analysis. The V1-V9 region of 16S rRNA was sequenced with Oxford Nanopore. Results: Twenty-five phyla were detected in the meconiums, and 12 of them were absent after antibiotic treatment. The four most prevalent phyla in meconiums were Bacillota, Pseudomonadota, Bacteroidota, and Actinomycetota. Only the relative abundance of Pseudomonadota was increased, while a significant decrease was observed in the other three phyla (p < 0.05). A significant decrease was observed in alpha-diversity in rectal swabs containing BPAs versus meconiums (p = 0.00408), whereas an increased variance was observed in beta-diversity in all samples (p < 0.05). As a result of a LEfSe analysis, Pseudomonadota was found to have a higher relative abundance in rectal swabs, and Bacillota was significantly higher in the meconiums of the twins. Conclusions: Our study strongly verified the relationship between the administration of antibiotics, dysbiosis, and colonization of BPAs in the infants' gut microbiota. Further research would be beneficial and needed, comprising the natural development process of the infants' gut microbiota.
Collapse
Affiliation(s)
- Ahmet Aktaş
- Medical Microbiology Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| | - Berkay Yekta Ekren
- Department of Biostatistics and Bioinformatics, Acıbadem MAA University, 34752 Istanbul, Türkiye
| | - Beril Yaşa
- Child Health and Diseases Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| | - Osman Uğur Sezerman
- Department of Biostatistics and Bioinformatics, Acıbadem MAA University, 34752 Istanbul, Türkiye
| | - Yaşar Nakipoğlu
- Medical Microbiology Department, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Türkiye
| |
Collapse
|
14
|
Sariboga R, Sarioglu OF. Cellulolytic characterization of the rumen-isolated Acinetobacter pittii ROBY and design of a potential controlled-release drug delivery system. ENGINEERING MICROBIOLOGY 2024; 4:100164. [PMID: 39629113 PMCID: PMC11611041 DOI: 10.1016/j.engmic.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 12/06/2024]
Abstract
A novel cellulolytic bacterial strain, ROBY, was isolated from a bovine rumen sample using the enrichment culture method. This isolate was found to be Acinetobacter pittii, with >99 % similarity according to 16S rRNA gene sequence analysis. The potential use of this strain in combination with doxorubicin (Dox)-integrated cellulose nanoparticles (Dox-CNPs) was evaluated as a proof-of-concept study for the further development of this approach as a novel controlled-release drug delivery strategy. The isolate can utilize CNPs as the sole carbon source for growth and degrade both Dox-CNPs and empty CNPs with high efficiency. Extracellular cellulases isolated from bacteria may also be used to trigger Dox release. The results also demonstrated that the release of Dox into the environment due to nanoparticle degradation in the samples incubated with Dox-CNPs significantly affected bacterial cell viability (∼75 % decrease), proving the release of Dox due to bacterial cellulase activity and suggesting the great potential of this approach for further development.
Collapse
Affiliation(s)
- Ruken Sariboga
- Istanbul Medeniyet University, Department of Molecular Biology and Genetics, Istanbul 34730, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul 34730, Turkey
| | - Omer Faruk Sarioglu
- Istanbul Medeniyet University, Department of Molecular Biology and Genetics, Istanbul 34730, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul 34730, Turkey
| |
Collapse
|
15
|
Irankhahi P, Riahi H, Hassani SB, Eskafi M, Azimzadeh Irani M, Shariatmadari Z. The role of the protective shield against UV-C radiation and its molecular interactions in Nostoc species (Cyanobacteria). Sci Rep 2024; 14:19258. [PMID: 39164328 PMCID: PMC11336245 DOI: 10.1038/s41598-024-70002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Cyanobacteria possess special defense mechanisms to protect themselves against ultraviolet (UV) radiation. This study combines experimental and computational methods to identify the role of protective strategies in Nostoc species against UV-C radiation. To achieve this goal, various species of the genus Nostoc from diverse natural habitats in Iran were exposed to artificial UV-C radiation. The results indicated that UV-C treatment significantly reduced the photosynthetic pigments while simultaneously increasing the activity of antioxidant enzymes. Notably, N. sphaericum ISB97 and Nostoc sp. ISB99, the brown Nostoc species isolated from habitats with high solar radiations, exhibited greater resistance compared to the green-colored species. Additionally, an increase in scytonemin content occurred with a high expression of key genes associated with its synthesis (scyF and scyD) during the later stages of UV-C exposure in these species. The molecular docking of scytonemin with lipopolysaccharides of the cyanobacteria that mainly cover the extracellular matrix revealed the top/side positioning of scytonemin on the glycans of these lipopolysaccharides to form a UV-protective shield. These findings pave the way for exploring the molecular effects of scytonemin in forming the UV protection shield in cyanobacteria, an aspect that has been ambiguous until now.
Collapse
Affiliation(s)
- Pardis Irankhahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Hossein Riahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Seyedeh Batool Hassani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Maryam Eskafi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Maryam Azimzadeh Irani
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Zeinab Shariatmadari
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| |
Collapse
|
16
|
Hussein SN, Safaie N, Shams-bakhsh M, Al-Juboory HH. Harnessing rhizobacteria: Isolation, identification, and antifungal potential against soil pathogens. Heliyon 2024; 10:e35430. [PMID: 39170238 PMCID: PMC11337714 DOI: 10.1016/j.heliyon.2024.e35430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Rhizobacteria play a crucial role in plant health by providing natural antagonism against soil-borne fungi. The use of rhizobacteria has been viewed as an alternative to the use of chemicals that could be useful for the integrated management of plant diseases and also increase yield in an environmentally friendly manner. However, there is limited understanding of the specific mechanisms by which rhizobacteria inhibit these pathogens and the diversity of rhizobacterial species involved. This study aims to isolate, identify, and characterize rhizobacteria with antagonistic activities against soil-borne fungi. Laboratory tests were carried out on isolated rhizobacteria to evaluate their inhibitory activity against Rhizoctonia solani, Pythium aphanidermatum and Macrophomina phaseolina. The selected bacteria were identified using the Vitek 2 compact system and 16S rRNA genes. Experiments were carried out to evaluate the plant growth promotion and biocontrol ability of these selected isolates. Out of 324 rhizobacteria isolates obtained from various plant species, twelve were chosen due to their strong (>50 %) wide-ranging antifungal activity against three significant phytopathogenic fungi species. According to the identification results, they belong to the following species: Aeribacillus pallidus ECC4, Alloiococcus otitis BRE6, Aneurinibacillus thermoaerophilus ECL1, A. thermoaerophilus SDV1, Bacillus halotolerans DMC8, B. megaterium SKE2, B. megaterium TNK1, B. subtilis NAS1, Enterobacter cloacae complex BZD3, Leclercia adecarboxylata DKS3, Paenibacillus polymyxa TRS4, and Staphylococcus lentus BZD2. Eleven isolates produced protease, six isolates produced chitinase, and seven isolates were highly effective in producing hydrogen cyanide. Ten isolates could fix nitrogen, while all isolates could produce potassium, indole-3-acetic acid, siderophore, and ammonia. These findings enhance our understanding of rhizobacterial biodiversity and their potential as biocontrol agents in sustainable agriculture.
Collapse
Affiliation(s)
- Safaa N. Hussein
- Tarbiat Modares University, Faculty of Agriculture, Department of Plant Pathology, Iran
| | - Naser Safaie
- Tarbiat Modares University, Faculty of Agriculture, Department of Plant Pathology, Iran
| | - Masoud Shams-bakhsh
- Tarbiat Modares University, Faculty of Agriculture, Department of Plant Pathology, Iran
| | - Hurria H. Al-Juboory
- Baghdad University, College of Agriculture, Department of Plant Protection, Iraq
| |
Collapse
|
17
|
Aarthi N, Dubey VK, Shylesha AN, Kukreti A, Patil J, Chandrashekara KM, Aravindaram K, Seegenahalli R, Shivakumar N, Channappa M. Insights into the whole genome sequence of Bacillus thuringiensis NBAIR BtPl, a strain toxic to the melon fruit fly, Zeugodacus cucurbitae. Curr Genet 2024; 70:13. [PMID: 39101952 DOI: 10.1007/s00294-024-01298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
Bacillus thuringiensis is the most widely used biopesticide, targets a diversity of insect pests belonging to several orders. However, information regarding the B. thuringiensis strains and toxins targeting Zeugodacus cucurbitae is very limited. Therefore, in the present study, we isolated and identified five indigenous B. thuringiensisstrains toxic to larvae of Z. cucurbitae. However, of five strains NBAIR BtPl displayed the highest mortality (LC50 = 37.3 μg/mL) than reference strain B. thuringiensis var. israelensis (4Q1) (LC50 = 45.41 μg/mL). Therefore, the NBAIR BtPl was considered for whole genome sequencing to identify the cry genes present in it. Whole genome sequencing of our strain revealed genome size of 6.87 Mb with 34.95% GC content. Homology search through the BLAST algorithm revealed that NBAIR BtPl is 99.8% similar to B. thuringiensis serovar tolworthi, and gene prediction through Prokka revealed 7406 genes, 7168 proteins, 5 rRNAs, and 66 tRNAs. BtToxin_Digger analysis of NBAIR BtPl genome revealed four cry gene families: cry1, cry2, cry8Aa1, and cry70Aa1. When tested for the presence of these four cry genes in other indigenous strains, results showed that cry70Aa1 was absent. Thus, the study provided a basis for predicting cry70Aa1 be the possible reason for toxicity. In this study apart from novel genes, we also identified other virulent genes encoding zwittermicin, chitinase, fengycin, and bacillibactin. Thus, the current study aids in predicting potential toxin-encoding genes responsible for toxicity to Z. cucurbitae and thus paves the way for the development of B. thuringiensis-based formulations and transgenic crops for management of dipteran pests.
Collapse
Affiliation(s)
- Nekkanti Aarthi
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Vinod K Dubey
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, 492 012, India
| | - Arakalagud N Shylesha
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Aditya Kukreti
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Jagadeesh Patil
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Keerthi M Chandrashekara
- Division of Crop Protection, ICAR-Indian Institute of Horticultural Research, Bengaluru, 560 089, India
| | - Kandan Aravindaram
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Ruqiya Seegenahalli
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Nanditha Shivakumar
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Manjunatha Channappa
- Insect Bacteriology Laboratory, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India.
| |
Collapse
|
18
|
Jyoti K, Soni K, Chandra R. Pharmaceutical industrial wastewater exhibiting the co-occurrence of biofilm-forming genes in the multidrug-resistant bacterial community poses a novel environmental threat. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107019. [PMID: 39002428 DOI: 10.1016/j.aquatox.2024.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
The interaction of the environment with the effluent of wastewater treatment plants, having antibiotics, multidrug-resistant (MDR) bacteria, and biofilm-forming genes (BFGs), has vast environmental risks. Antibiotic pollution bottlenecks environmental bacteria and has the potential to significantly lower the biodiversity of environmental bacteria, causing an alteration in ecological equilibrium. It can induce selective pressure for antibiotic resistance (AR) and can transform the non-resistant environmental bacteria into a resistant form through HGT. This study investigated the occurrence of MDR bacteria, showing phenotypic and genotypic characteristics of biofilm. The bacteria were isolated from the pharmaceutical wastewater treatment plants (WWTPs) of Dehradun and Haridwar (India), located in the pharmaceutical areas. The findings of this study demonstrate the coexistence of BFGs and MDR clinical bacteria in the vicinity of pharmaceutical industrial wastewater treatment plants. A total of 47 bacteria were isolated from both WWTPs and tested for antibiotic resistance to 13 different antibiotics; 16 isolates (34.04 %) tested positive for MDR. 5 (31.25 %) of these 16 MDR isolates were producing biofilm and identified as Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Burkholderia cepacia. The targeted BFGs in this study were ompA, bap and pslA. The most common co-occurring gene was ompA (80 %), with pslA (40 %) being the least common. A. baumannii contains all three targeted genes, whereas B. cepacia only has bap. Except for B. cepacia, all the biofilm-forming MDR isolates show AR to all the tested antibiotics and prove that the biofilm enhances the AR potential. The samples of both wastewater treatment plants also showed the occurrence of tetracycline, ampicillin, erythromycin and chloramphenicol, along with high levels of BOD, COD, PO4-3, NO3-, heavy metals and organic pollutants. The co-occurrence of MDR and biofilm-forming tendency in the clinical strain of bacteria and its environmental dissemination may have an array of hazardous impacts on human and environmental health.
Collapse
Affiliation(s)
- Km Jyoti
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Kuldeep Soni
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India
| | - Ram Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226025, India.
| |
Collapse
|
19
|
Zeng C, Liu Y, Zhang B, Zhang C, Li N, Ji L, Lan C, Qin B, Yang Y, Wang J, Chen T, Fang C, Lin W. The functional identification and evaluation of endophytic bacteria sourced from the roots of tolerant Achyranthes bidentata to overcome monoculture problems of Rehmannia glutinosa. Front Microbiol 2024; 15:1399406. [PMID: 39081886 PMCID: PMC11286500 DOI: 10.3389/fmicb.2024.1399406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
The isolation and identification of plant growth-promoting endophytic bacteria (PGPEB) from Achyranthes bidentata roots have profound theoretical and practical implications in ecological agriculture, particularly as bio-inoculants to address challenges associated with continuous monoculture. Our research revealed a significant increase in the abundance of these beneficial bacteria in A. bidentata rhizosphere soil under prolonged monoculture conditions, as shown by bioinformatics analysis. Subsequently, we isolated 563 strains of endophytic bacteria from A. bidentata roots. Functional characterization highlighted diverse plant growth-promoting traits among these bacteria, including the secretion of indole-3-acetic acid (IAA) ranging from 68.01 to 73.25 mg/L, phosphorus and potassium solubilization capacities, and antagonistic activity against pathogenic fungi (21.54%-50.81%). Through 16S rDNA sequencing, we identified nine strains exhibiting biocontrol and growth-promoting potential. Introduction of a synthetic microbial consortium (SMC) in pot experiments significantly increased root biomass by 48.19% in A. bidentata and 27.01% in replanted Rehmannia glutinosa. These findings provide innovative insights and strategies for addressing continuous cropping challenges, highlighting the practical promise of PGPEB from A. bidentata in ecological agriculture to overcome replanting obstacles for non-host plants like R. glutinosa, thereby promoting robust growth in medicinal plants.
Collapse
Affiliation(s)
- Chunli Zeng
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yazhou Liu
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bianhong Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chenjing Zhang
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Niu Li
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Leshan Ji
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chaojie Lan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bin Qin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuncheng Yang
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Juanying Wang
- College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Ting Chen
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Changxun Fang
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxiong Lin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Cho I, Lee SY, Cho KS. Enhancement of the germination and growth of Panicum miliaceum and Brassica juncea in Cd- and Zn-contaminated soil inoculated with heavy-metal-tolerant Leifsonia sp. ZP3. World J Microbiol Biotechnol 2024; 40:245. [PMID: 38884883 DOI: 10.1007/s11274-024-04053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
The addition of plant-growth-promoting bacteria (PGPB) to heavy-metal-contaminated soils can significantly improve plant growth and productivity. This study isolated heavy-metal-tolerant bacteria with growth-promoting traits and investigated their inoculation effects on the germination rates and growth of millet (Panicum miliaceum) and mustard (Brassica juncea) in Cd- and Zn-contaminated soil. Leifsonia sp. ZP3, which is resistant to Cd (0.5 mM) and Zn (1 mM), was isolated from forest soil. The ZP3 strain exhibited plant-growth-promoting activity, including indole-3-acetic acid production, phosphate solubilization, catalase activity, and 2,2-diphenyl-1-picrylhydrazyl radical scavenging. In soil contaminated with low concentrations of Cd (0.232 ± 0.006 mM) and Zn (6.376 ± 0.256 mM), ZP3 inoculation significantly increased the germination rates of millet and mustard 8.35- and 31.60-fold, respectively, compared to the non-inoculated control group, while the shoot and root lengths of millet increased 1.77- and 4.44-fold (p < 0.05). The chlorophyll content and seedling vigor index were also 4.40 and 18.78 times higher in the ZP3-treated group than in the control group (p < 0.05). The shoot length of mustard increased 1.89-fold, and the seedling vigor index improved 53.11-fold with the addition of ZP3 to the contaminated soil (p < 0.05). In soil contaminated with high concentrations of Cd and Zn (0.327 ± 0.016 and 8.448 ± 0.250 mM, respectively), ZP3 inoculation led to a 1.98-fold increase in the shoot length and a 2.07-fold improvement in the seedling vigor index compared to the control (p < 0.05). The heavy-metal-tolerant bacterium ZP3 isolated in this study thus represents a promising microbial resource for improving the efficiency of phytoremediation in Cd- and Zn-contaminated soil.
Collapse
Affiliation(s)
- Ian Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Soo Yeon Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
21
|
Pedlar M, Emery MJ, Warburton PJ. Amplifying PCR productivity and environmental sustainability through shortened cycling protocols. Biochimie 2024; 221:60-64. [PMID: 38262587 DOI: 10.1016/j.biochi.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Since its inception in the 1980s, advancements in PCR technology using improved thermal cyclers, engineered DNA polymerases and commercial master mixes, have led to increased PCR productivity. Despite these advancements, PCR cycling protocols have largely remained unchanged over the same period. This study aimed to systemically evaluate the effect of reduced PCR cycling parameters on amplicon production. The 1466bp fragment from the 16S rRNA gene present in low-, medium- and high-CG bacteria was amplified using three commercially available PCR master mixes. The shortest cycling parameters required to successfully amplify the 16S fragment from all bacteria and master mixes comprised 30-cycles of 5 s denaturation, 25 s annealing, and 25 s extension. While all produced an amplicon with sufficient yield to enable downstream sequence analysis, the PCRBIO Ultra Mix in conjunction with the shortened parameters was found to achieve the highest amplicon yield across low-, medium- and high CG bacteria. Comparing the run times to that of a typical 16S PCR protocol, the shortened cycling parameters reduced the program duration by 46 % and consumed 50 % less electricity, translating into increased productivity and helping to improve laboratory environmental sustainability.
Collapse
Affiliation(s)
- Matthew Pedlar
- School of Biomedical Sciences, University of Plymouth, PL4 8AA, UK
| | - Matthew J Emery
- School of Biological and Marine Sciences, University of Plymouth, PL4 8AA, UK
| | | |
Collapse
|
22
|
Sun C, Wang Z, Li Y, Huang J. Antibiotic resistance spectrums of Escherichia coli and Enterococcus spp. strains against commonly used antimicrobials from commercial meat-rabbit farms in Chengdu City, Southwest China. Front Vet Sci 2024; 11:1369655. [PMID: 38756516 PMCID: PMC11096573 DOI: 10.3389/fvets.2024.1369655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Antimicrobial resistance (AMR) is commonly associated with the inappropriate use of antibiotics during meat-rabbit production, posing unpredictable risks to rabbit welfare and public health. However, there is limited research on the epidemiological dynamics of antibiotic resistance among bacteria indicators derived from local healthy meat-rabbits. To bridge the knowledge gap between antibiotic use and AMR distribution, a total of 75 Escherichia coli (E. coli) and 210 Enterococcus spp. strains were successfully recovered from fecal samples of healthy meat-rabbits. The results revealed that diverse AMR phenotypes against seven commonly used antimicrobials, including ampicillin (AMP), amoxicillin-clavulanic acid (A/C), doxycycline (DOX), enrofloxacin (ENR), florfenicol (FFC), gentamicin (GEN), and polymycin B (PMB), were observed among most strains of E. coli and Enterococcus spp. in two rabbit farms, although the distribution pattern of antibiotic resistance between young and adult rabbits was similar. Among them, 66 E. coli strains showed resistance against 6 antimicrobials except for PMB. However, 164 Enterococcus spp. strains only exhibited acquired resistance against DOX and GEN. Notably, the DOX-based AMR phenotypes for E. coli and Enterococcus spp. strains were predominant, indicating the existing environmental stress conferred by DOX exposure. The MICs tests suggested elevated level of antibiotic resistance for resistant bacteria. Unexpectedly, all GEN-resistant Enterococcus spp. strains resistant high-level gentamicin (HLGR). By comparison, the blaTEM, tetA, qnrS and floR were highly detected among 35 multi-resistant E. coli strains, and aac[6']-Ie-aph[2']-Ia genes widely spread among the 40 double-resistant Enterococcus spp. strains. Nevertheless, the presence of ARGs were not concordant with the resistant phenotypes for a portion of resistant bacteria. In conclusion, the distribution of AMR and ARGs are prevalent in healthy meat-rabbits, and the therapeutic antimicrobials use in farming practice may promote the antibiotic resistance transmission among indicator bacteria. Therefore, periodic surveillance of antibiotic resistance in geographic locations and supervisory measures for rational antibiotic use are imperative strategies for combating the rising threats posed by antibiotic resistance, as well as maintaining rabbit welfare and public health.
Collapse
Affiliation(s)
- Chen Sun
- College of Animal Husbandary and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Ziye Wang
- College of Animal Husbandary and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Yan Li
- College of Animal Husbandary and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Institute of Qinhai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Jian Huang
- College of Animal Husbandary and Veterinary Medicine, Southwest Minzu University, Chengdu, China
- Institute of Qinhai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| |
Collapse
|
23
|
Kimemia BB, Musila L, Langat S, Odoyo E, Cinkovich S, Abuom D, Yalwala S, Khamadi S, Johnson J, Garges E, Ojwang E, Eyase F. Detection of pathogenic bacteria in ticks from Isiolo and Kwale counties of Kenya using metagenomics. PLoS One 2024; 19:e0296597. [PMID: 38687700 PMCID: PMC11060535 DOI: 10.1371/journal.pone.0296597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
Ticks are arachnid ectoparasites that rank second only to mosquitoes in the transmission of human diseases including bacteria responsible for anaplasmosis, ehrlichiosis, spotted fevers, and Lyme disease among other febrile illnesses. Due to the paucity of data on bacteria transmitted by ticks in Kenya, this study undertook a bacterial metagenomic-based characterization of ticks collected from Isiolo, a semi-arid pastoralist County in Eastern Kenya, and Kwale, a coastal County with a monsoon climate in the southern Kenyan border with Tanzania. A total of 2,918 ticks belonging to 3 genera and 10 species were pooled and screened in this study. Tick identification was confirmed through the sequencing of the Cytochrome C Oxidase Subunit 1 (COI) gene. Bacterial 16S rRNA gene PCR amplicons obtained from the above samples were sequenced using the MinION (Oxford Nanopore Technologies) platform. The resulting reads were demultiplexed in Porechop, followed by trimming and filtering in Trimmomatic before clustering using Qiime2-VSearch. A SILVA database pretrained naïve Bayes classifier was used to classify the Operational Taxonomic Units (OTUs) taxonomically. The bacteria of clinical interest detected in pooled tick assays were as follows: Rickettsia spp. 59.43% of pools, Coxiella burnetii 37.88%, Proteus mirabilis 5.08%, Cutibacterium acnes 6.08%, and Corynebacterium ulcerans 2.43%. These bacteria are responsible for spotted fevers, query fever (Q-fever), urinary tract infections, skin and soft tissue infections, eye infections, and diphtheria-like infections in humans, respectively. P. mirabilis, C. acnes, and C. ulcerans were detected only in Isiolo. Additionally, COI sequences allowed for the identification of Rickettsia and Coxiella species to strain levels in some of the pools. Diversity analysis revealed that the tick genera had high levels of Alpha diversity but the differences between the microbiomes of the three tick genera studied were not significant. The detection of C. acnes, commonly associated with human skin flora suggests that the ticks may have contact with humans potentially exposing them to bacterial infections. The findings in this study highlight the need for further investigation into the viability of these bacteria and the competency of ticks to transmit them. Clinicians in these high-risk areas also need to be appraised for them to include Rickettsial diseases and Q-fever as part of their differential diagnosis.
Collapse
Affiliation(s)
- Bryson Brian Kimemia
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa (USAMRD-A), Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Lillian Musila
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa (USAMRD-A), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI), Centre for Microbiology Research, Nairobi, Kenya
| | - Solomon Langat
- Kenya Medical Research Institute (KEMRI), Centre for Virus Research, Nairobi, Kenya
| | - Erick Odoyo
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa (USAMRD-A), Nairobi, Kenya
| | - Stephanie Cinkovich
- United States Armed Forces Health Surveillance Division, Global Emerging Infections Surveillance Branch, Silver Spring, Maryland, United States of America
| | - David Abuom
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa (USAMRD-A), Nairobi, Kenya
| | - Santos Yalwala
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa (USAMRD-A), Nairobi, Kenya
| | - Samoel Khamadi
- Kenya Medical Research Institute (KEMRI), Centre for Virus Research, Nairobi, Kenya
| | - Jaree Johnson
- United States Armed Forces Pest Management Board, Silver Spring, Maryland, United States of America
| | - Eric Garges
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa (USAMRD-A), Nairobi, Kenya
| | - Elly Ojwang
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa (USAMRD-A), Nairobi, Kenya
| | - Fredrick Eyase
- Department of Emerging Infectious Diseases, United States Army Medical Research Directorate-Africa (USAMRD-A), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI), Centre for Virus Research, Nairobi, Kenya
| |
Collapse
|
24
|
Crisostomo-Panuera JS, Nieva ASDV, Ix-Balam MA, Díaz-Valderrama JR, Alviarez-Gutierrez E, Oliva-Cruz SM, Cumpa-Velásquez LM. Diversity and functional assessment of indigenous culturable bacteria inhabiting fine-flavor cacao rhizosphere: Uncovering antagonistic potential against Moniliophthora roreri. Heliyon 2024; 10:e28453. [PMID: 38601674 PMCID: PMC11004713 DOI: 10.1016/j.heliyon.2024.e28453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
The Peruvian Amazonian native cacao faces ongoing challenges that significantly undermine its productivity. Among them, frosty pod rot disease and cadmium accumulation result in losses that need for effective and environmentally safe strategies, such as those based on bacteria. To explore the biological resources in the cacao soil, a descriptive study was conducted to assess the diversity of culturable bacteria across three production districts in the Amazonas region: La Peca, Imaza, and Cajaruro. The study also focused on the functional properties of these bacteria, particularly those related to the major issues limiting cacao cultivation. For this purpose, 90 native bacterial isolates were obtained from the cacao rhizosphere. According to diversity analysis, the community was composed of 19 bacterial genera, with a dominance of the Bacillaceae family and variable distribution among the districts. This variability was statistically supported by the PCoA plots and is related to the pH of the soil environment. The functional assessment revealed that 56.8% of the isolates showed an antagonism index greater than 75% after 7 days of confrontation. After 15 days of confrontation with Moniliophthora roreri, 68.2% of the bacterial population demonstrated this attribute. This capability was primarily exhibited by Bacillus strains. On the other hand, only 4.5% were capable of removing cadmium, highlighting the biocontrol potential of the bacterial community. In addition, some isolates produced siderophores (13.63%), solubilized phosphate (20.45%), and solubilized zinc (4.5%). Interestingly, these traits showed an uneven distribution, which correlated with the divergence found by the beta diversity. Our results revealed a diverse bacterial community inhabiting the Amazonian cacao rhizosphere, showcasing crucial functional properties related to the biocontrol of M. roreri. The information generated serves as a significant resource for the development of further biotechnological tools that can be applied to native Amazonian cacao.
Collapse
Affiliation(s)
- Jhusephin Sheshira Crisostomo-Panuera
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Amira Susana del Valle Nieva
- Centro Regional de Energía y Ambiente para el Desarrollo Sustentable (CREAS-CONICET-UNCA). Nuñez del Prado 366, Catamarca, Argentina
| | - Manuel Alejandro Ix-Balam
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Jorge Ronny Díaz-Valderrama
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Eliana Alviarez-Gutierrez
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Segundo Manuel Oliva-Cruz
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| | - Liz Marjory Cumpa-Velásquez
- Laboratorio de Investigación en Sanidad Vegetal, Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza (UNTRM), Calle Higos Urco 342, Chachapoyas, Amazonas, Peru
| |
Collapse
|
25
|
Jiao W, Wen J, Li N, Ou T, Qiu C, Ji Y, Lin K, Liu X, Xie J. The biocontrol potentials of rhizospheric bacterium Bacillus velezensis K0T24 against mulberry bacterial wilt disease. Arch Microbiol 2024; 206:213. [PMID: 38616201 DOI: 10.1007/s00203-024-03935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Mulberry bacterial wilt disease, caused by Ralstonia pseudosolanacearum, is a devastating soil-borne disease in the silk-mulberry-related industry. In this study, through high-throughput sequencing, we compared the rhizosphere bacterial composition of the mulberry-resistant cultivar (K10) and susceptible cultivar (G12), confirming Bacillus as a genus-level biomarker for K10. Next, twelve Bacillus spp. isolates, derived from the rhizosphere of K10, were screened for their antagonistic activity against R. pseudosolanacearum. The isolate showing strong antagonism was identified as B. velezensis K0T24 and selected for further analysis. The fermentation supernatant of B. velezensis K0T24 significantly inhibited the growth of R. pseudosolanacearum (82.47%) and the expression of its pathogenic genes. Using B. velezensis K0T24 in mulberry seedlings also increased defense enzyme activities and achieved a control efficacy of up to 55.17% against mulberry bacterial wilt disease. Collectively, our findings demonstrate the potential of B. velezensis K0T24 in suppressing mulberry bacterial wilt disease.
Collapse
Affiliation(s)
- Wenlian Jiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Ju Wen
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Na Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Ting Ou
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Changyu Qiu
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Zhuang Autonomous Region Sericultural Technology Promotion Station, Nanning, Guangxi Zhuang Autonomous Region, 530007, China
| | - Yutong Ji
- Westa College, Southwest University, Chongqing, 400715, China
| | - Kai Lin
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China
| | - Xiaojiao Liu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
| | - Jie Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Science, Southwest University, No.2 Tiansheng Road, Beibei District, Chongqing, 400715, China.
- Westa College, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
26
|
Chen B, Zhang M, Lin D, Ye J, Tang K. Roseihalotalea indica gen. nov., sp. nov., a halophilic Bacteroidetes from mesopelagic Southwest Indian Ocean with higher carbohydrate metabolic potential. Antonie Van Leeuwenhoek 2024; 117:66. [PMID: 38607563 DOI: 10.1007/s10482-024-01965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The pink-colored and strictly aerobic bacterium strain, designated as TK19036T, was isolated from mesopelagic layer of the Southwest Indian Ocean. This novel isolate can grow at 10-45 °C (optimum, 30 °C), pH 6.0-8.0 (optimum, pH 7.0), and 2-14% NaCl concentrations (w/v) (optimum, 6%). The predominant respiratory quinone was Menaquinone-7. Major polar lipid profiles contained two aminolipids, aminophospholipid, two glycolipids, phosphatidylethanolamine, and three unknown polar lipids. The preponderant cellular fatty acids were iso-C15:0, C16:1 ω5c and iso-C17:0 3-OH. Phylogenetic analyses based on 16S rRNA gene sequence uncovered that the strain TK19036T pertained to the family Catalinimonadaceae under phylum Bacteroidota, and formed a distinct lineage with the closed species Tunicatimonas pelagia NBRC 107804T. The up-to-bacteria-core gene phylogenetic trees also demonstrated a deep and novel branch formed by the strain TK19036T within the family Catalinimonadaceae. Based on chemotaxonomic, phylogenetic and genomic features presented above, strain TK19036T represents a novel species from a novel genus of the family Catalinimonadaceae, for which the name Roseihalotalea indica gen. nov. sp. nov. is proposed. The type strain is TK19036T (= CGMCC 1.18940T = NBRC 116371T).
Collapse
Affiliation(s)
- Beihan Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Mingzhe Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- School of Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Dan Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Jianing Ye
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Leonard LM, Simpson AMR, Li S, Reddivari L, Cross TWL. A Gnotobiotic Mouse Model with Divergent Equol-Producing Phenotypes: Potential for Determining Microbial-Driven Health Impacts of Soy Isoflavone Daidzein. Nutrients 2024; 16:1079. [PMID: 38613113 PMCID: PMC11013052 DOI: 10.3390/nu16071079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The implications of soy consumption on human health have been a subject of debate, largely due to the mixed evidence regarding its benefits and potential risks. The variability in responses to soy has been partly attributed to differences in the metabolism of soy isoflavones, compounds with structural similarities to estrogen. Approximately one-third of humans possess gut bacteria capable of converting soy isoflavone daidzein into equol, a metabolite produced exclusively by gut microbiota with significant estrogenic potency. In contrast, lab-raised rodents are efficient equol producers, except for those raised germ-free. This discrepancy raises concerns about the applicability of traditional rodent models to humans. Herein, we designed a gnotobiotic mouse model to differentiate between equol producers and non-producers by introducing synthetic bacterial communities with and without the equol-producing capacity into female and male germ-free mice. These gnotobiotic mice display equol-producing phenotypes consistent with the capacity of the gut microbiota received. Our findings confirm the model's efficacy in mimicking human equol production capacity, offering a promising tool for future studies to explore the relationship between endogenous equol production and health outcomes like cardiometabolic health and fertility. This approach aims to refine dietary guidelines by considering individual microbiome differences.
Collapse
Affiliation(s)
- Lindsay M. Leonard
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (L.M.L.); (A.M.R.S.)
| | - Abigayle M. R. Simpson
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (L.M.L.); (A.M.R.S.)
| | - Shiyu Li
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (L.R.)
| | - Lavanya Reddivari
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA; (S.L.); (L.R.)
| | - Tzu-Wen L. Cross
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (L.M.L.); (A.M.R.S.)
| |
Collapse
|
28
|
Shaaban MT, Mohamed BS, Zayed M, El-Sabbagh SM. Antibacterial, antibiofilm, and anticancer activity of silver-nanoparticles synthesized from the cell-filtrate of Streptomyces enissocaesilis. BMC Biotechnol 2024; 24:8. [PMID: 38321442 PMCID: PMC10848522 DOI: 10.1186/s12896-024-00833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Silver nanoparticles (Ag-NPs) have a unique mode of action as antibacterial agents in addition to their anticancer and antioxidant properties. In this study, microbial nanotechnology is employed to synthesize Ag-NPs using the cell filtrate of Streptomyces enissocaesilis BS1. The synthesized Ag-NPs are confirmed by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Also, the effects of different factors on Ag-NPs synthesis were evaluated to set the optimum synthesis conditions. Also, the antibacterial, antibiofilm, and anticancer activity of Ag-NPs was assessed. The X-ray diffraction (XRD) analysis confirmed the crystalline nature of the sample and validated that the crystal structure under consideration is a face-centered cubic (FCC) pattern. The TEM examination displayed the spherical particles of the Ag-NPs and their average size, which is 32.2 nm. Fourier transform infrared spectroscopy (FTIR) revealed significant changes in functionality after silver nanoparticle dispersion, which could be attributed to the potency of the cell filtrate of Streptomyces enissocaesilis BS1 to act as both a reducing agent and a capping agent. The bioactivity tests showed that our synthesized Ag-NPs exhibited remarkable antibacterial activity against different pathogenic strains. Also, when the preformed biofilms of Pseudomonas aeruginosa ATCC 9027, Salmonella typhi ATCC 12023, Escherichia coli ATCC 8739, and Staphylococcus aureus ATCC 6598 were exposed to Ag NPs 50 mg/ml for 24 hours, the biofilm biomass was reduced by 10.7, 34.6, 34.75, and 39.08%, respectively. Furthermore, the Ag-NPs showed in vitro cancer-specific sensitivity against human breast cancer MCF-7 cell lines and colon cancer cell line Caco-2, and the IC50 was 0.160 mg/mL and 0.156 mg/mL, respectively. The results of this study prove the ease and efficiency of the synthesis of Ag-NPs using actinomycetes and demonstrate the significant potential of these Ag-NPs as anticancer and antibacterial agents.
Collapse
Affiliation(s)
- Mohamed T Shaaban
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Briksam S Mohamed
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt.
| | - Muhammad Zayed
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Sabha M El-Sabbagh
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| |
Collapse
|
29
|
Alvarez-Aponte ZI, Govindaraju AM, Hallberg ZF, Nicolas AM, Green MA, Mok KC, Fonseca-García C, Coleman-Derr D, Brodie EL, Carlson HK, Taga ME. Phylogenetic distribution and experimental characterization of corrinoid production and dependence in soil bacterial isolates. THE ISME JOURNAL 2024; 18:wrae068. [PMID: 38648288 PMCID: PMC11287214 DOI: 10.1093/ismejo/wrae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Soil microbial communities impact carbon sequestration and release, biogeochemical cycling, and agricultural yields. These global effects rely on metabolic interactions that modulate community composition and function. However, the physicochemical and taxonomic complexity of soil and the scarcity of available isolates for phenotypic testing are significant barriers to studying soil microbial interactions. Corrinoids-the vitamin B12 family of cofactors-are critical for microbial metabolism, yet they are synthesized by only a subset of microbiome members. Here, we evaluated corrinoid production and dependence in soil bacteria as a model to investigate the ecological roles of microorganisms involved in metabolic interactions. We isolated and characterized a taxonomically diverse collection of 161 soil bacteria from a single study site. Most corrinoid-dependent bacteria in the collection prefer B12 over other corrinoids, while all tested producers synthesize B12, indicating metabolic compatibility between producers and dependents in the collection. Furthermore, a subset of producers release B12 at levels sufficient to support dependent isolates in laboratory culture at estimated ratios of up to 1000 dependents per producer. Within our isolate collection, we did not find strong phylogenetic patterns in corrinoid production or dependence. Upon investigating trends in the phylogenetic dispersion of corrinoid metabolism categories across sequenced bacteria from various environments, we found that these traits are conserved in 47 out of 85 genera. Together, these phenotypic and genomic results provide evidence for corrinoid-based metabolic interactions among bacteria and provide a framework for the study of nutrient-sharing ecological interactions in microbial communities.
Collapse
Affiliation(s)
- Zoila I Alvarez-Aponte
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Alekhya M Govindaraju
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Zachary F Hallberg
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Alexa M Nicolas
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Myka A Green
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Kenny C Mok
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Citlali Fonseca-García
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
| | - Devin Coleman-Derr
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, United States
| | - Eoin L Brodie
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Hans K Carlson
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Michiko E Taga
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| |
Collapse
|
30
|
Al-Shuaibi BK, Kazerooni EA, Hussain S, Velazhahan R, Al-Sadi AM. Plant-Disease-Suppressive and Growth-Promoting Activities of Endophytic and Rhizobacterial Isolates Associated with Citrullus colocynthis. Pathogens 2023; 12:1275. [PMID: 38003740 PMCID: PMC10674396 DOI: 10.3390/pathogens12111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
This study was conducted to investigate the antagonistic potential of endophytic and rhizospheric bacterial isolates obtained from Citrullus colocynthis in suppressing Fusarium solani and Pythium aphanidermatum and promoting the growth of cucumber. Molecular identification of bacterial strains associated with C. colocynthis confirmed that these strains belong to the Achromobacter, Pantoea, Pseudomonas, Rhizobium, Sphingobacterium, Bacillus, Sinorhizobium, Staphylococcus, Cupriavidus, and Exiguobacterium genera. A dual culture assay showed that nine of the bacterial strains exhibited antifungal activity, four of which were effective against both pathogens. Strains B27 (Pantoea dispersa) and B28 (Exiguobacterium indicum) caused the highest percentage of inhibition towards F. solani (48.5% and 48.1%, respectively). P. aphanidermatum growth was impeded by the B21 (Bacillus cereus, 44.7%) and B28 (Exiguobacterium indicum, 51.1%) strains. Scanning electron microscopy showed that the strains caused abnormality in phytopathogens' mycelia. All of the selected bacterial strains showed good IAA production (>500 ppm). A paper towel experiment demonstrated that these strains improved the seed germination, root/shoot growth, and vigor index of cucumber seedlings. Our findings suggest that the bacterial strains from C. colocynthis are suppressive to F. solani and P. aphanidermatum and can promote cucumber growth. This appears to be the first study to report the efficacy of these bacterial strains from C. colocynthis against F. solani and P. aphanidermatum.
Collapse
Affiliation(s)
| | | | | | | | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (B.K.A.-S.); (E.A.K.); (S.H.)
| |
Collapse
|
31
|
Ganesh Kumar A, Manisha D, Nivedha Rajan N, Sujitha K, Magesh Peter D, Kirubagaran R, Dharani G. Biodegradation of phenanthrene by piezotolerant Bacillus subtilis EB1 and genomic insights for bioremediation. MARINE POLLUTION BULLETIN 2023; 194:115151. [PMID: 37453166 DOI: 10.1016/j.marpolbul.2023.115151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/28/2023] [Accepted: 06/04/2023] [Indexed: 07/18/2023]
Abstract
A marine strain B. subtilis EB1, isolated from Equator water, showed excellent degradation towards a wide range of hydrocarbons. Degradation studies revealed dense growth with 93 % and 83 % removal of phenanthrene within 72 h at 0.1 and 20 MPa, respectively. The identification of phenanthrene degradation metabolites by GC-MS combined with its whole genome analysis provided the pathway involved in the degradation process. Whole genome sequencing indicated a genome size of 3,983,989 bp with 4331 annotated genes. The genome provided the genetic compartments, which includes monooxygenase, dioxygenase, dehydrogenase, biosurfactant synthesis catabolic genes for the biodegradation of aromatic compounds. Detailed COG and KEGG pathway analysis confirmed the genes involved in the oxygenation reaction of hydrocarbons, piezotolerance, siderophores, chemotaxis and transporter systems which were specific to adaptation for survival in extreme marine habitat. The results of this study will be a key to design an optimal bioremediation strategy for oil contaminated extreme marine environment.
Collapse
Affiliation(s)
- A Ganesh Kumar
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India.
| | - D Manisha
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - N Nivedha Rajan
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - K Sujitha
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - D Magesh Peter
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - R Kirubagaran
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| | - G Dharani
- Marine Biotechnology Division, National Institute of Ocean Technology, Ministry of Earth Sciences (MoES), Government of India, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
32
|
Liu Y, Ma L, Cheng J, Su J. Effects of Omeprazole on Recurrent Clostridioides difficile Infection Caused by ST81 Strains and Their Potential Mechanisms. Antimicrob Agents Chemother 2023; 67:e0022123. [PMID: 37223895 PMCID: PMC10269155 DOI: 10.1128/aac.00221-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Clostridioides difficile infection (CDI) is associated with high recurrence rates that have substantial effects on patients' quality of life. To investigate the risk factors and potential mechanisms contributing to recurrent CDI (rCDI), a total of 243 cases were enrolled in this study. The history of omeprazole (OME) medication and ST81 strain infection were considered the two independent risks with the highest odds ratios in rCDI. In the presence of OME, we detected concentration-dependent increases in the MIC values of fluoroquinolone antibiotics against ST81 strains. Mechanically, OME facilitated ST81 strain sporulation and spore germination by blocking the pathway of purine metabolism and also promoted an increase in cell motility and toxin production by turning the flagellar switch to the ON state. In conclusion, OME affects several biological processes during C difficile growth, which have fundamental impacts on the development of rCDI caused by ST81 strains. Programmed OME administration and stringent surveillance of the emerging ST81 genotype are matters of considerable urgency and significance in rCDI prevention.
Collapse
Affiliation(s)
- Yifeng Liu
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Liyan Ma
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingwei Cheng
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianrong Su
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Deb S, Dutta TK. Characterization of an antimicrobial pentapeptide produced by a drug-sensitive Pseudomonas aeruginosa strain PAST18. Biochem Biophys Res Commun 2023; 663:78-86. [PMID: 37119769 DOI: 10.1016/j.bbrc.2023.04.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/01/2023]
Abstract
The members of the genus Pseudomonas can secrete a wide range of ribosomally encoded antagonistic peptides and proteins, ranging from small microcins to large tailocins. In this study, a drug-sensitive Pseudomonas aeruginosa strain isolated from a high-altitude virgin soil sample showed a broad range of antibacterial activity against Gram-positive and Gram-negative bacteria. The antimicrobial compound, purified by affinity chromatography, ultrafiltration, and high-performance liquid chromatography, showed a molecular weight (M + H)+ of 494.7667 daltons, as revealed by ESI-MS analysis. The MS-MS analysis divulged the compound as an antimicrobial pentapeptide with the sequence NH2-Thr-Leu-Ser-Ala-Cys-COOH (TLSAC) and was further verified by evaluating the antimicrobial activity of the chemically synthesized pentapeptide. The extracellularly released pentapeptide, which is relatively hydrophobic in nature, is encoded in a symporter protein, as appraised from the whole genome sequence analysis of strain PAST18. The influence of different environmental factors was examined to determine the stability of the antimicrobial peptide (AMP), which was also assessed for several other biological functions, including antibiofilm activity. Further, the antibacterial mechanism of the AMP was evaluated by a permeability assay. Overall, the characterised pentapeptide, as revealed in this study, may find use as a potential biocontrol agent in various commercial applications.
Collapse
Affiliation(s)
- Saikat Deb
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, EN-80, Sector V, Salt Lake, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
34
|
Yadav A, Boruah JLH, Geed SR, Sharma RK, Saikia R. Occurrence, identification and characterization of diazotrophic bacteria from aerial roots of Rhynchostylis retusa (L.) Blume for plant growth-promoting activity. Arch Microbiol 2023; 205:131. [PMID: 36947279 DOI: 10.1007/s00203-023-03458-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/23/2023]
Abstract
In this study, the diversity of diazotrophic bacteria of orchid Rhynchostylis retusa (L.) Blume and its potential application in plant growth promotion were evaluated. About 183 nitrogen-fixing bacteria were isolated to screen various plant growth-promoting traits viz. phosphate solubilization,IAA, siderophore, HCN, biofilm and ammonia production. Based on 16S rRNA gene sequencing analysis Achromobacter, Arthrobacter, Acinetobacter, Bacillus, Brevibacterium, Curtobacterium, Erwinia, Kosakonia, Lysinibacillus, Klebseilla, Microbacterium, Mixta, Pantoea, Pseudomonas and Stenotrophomonas isolates were selected and showed positive results for PGP traits. Overall, genus Pantoea, Brevibacterium, Achromobacter, Arthrobacter, Klebsiella, Mixta, Bacillus, and Pseudomonas had the most pronounced PGP characteristics and acetylene reduction among the screened isolates. BOX PCR fingerprinting analysis showed variation in polymorphic banding patterns among diazotrophic strains. PCR amplification of nifH gene and the presence of 37 kDa nitrogenase reductase enzyme band in western blot indicated presence of nitrogenase activity. Our study showed that orchid R. retusa diazotroph interaction helps orchid plant to fix nitrogen, essential nutrients, and control pathogen entry. To the best of our knowledge, this is the first report on characterization of diazotrophic bacterial community from aerial roots of R. retusa.
Collapse
Affiliation(s)
- Archana Yadav
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India.
- Department of Applied Biology, University of Science and Technology, Baridua, Meghalaya, India.
| | - Jyoti Lakshmi Hati Boruah
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Sachin Rameshrao Geed
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Rabin K Sharma
- Department of Applied Biology, University of Science and Technology, Baridua, Meghalaya, India
| | - Ratul Saikia
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
35
|
Romero-Calle DX, Pedrosa-Silva F, Tomé LMR, Sousa TJ, de Oliveira Santos LTS, de Carvalho Azevedo VA, Brenig B, Benevides RG, Venancio TM, Billington C, Góes-Neto A. Hybrid Genomic Analysis of Salmonella enterica Serovar Enteritidis SE3 Isolated from Polluted Soil in Brazil. Microorganisms 2022; 11:111. [PMID: 36677403 PMCID: PMC9861973 DOI: 10.3390/microorganisms11010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In Brazil, Salmonella enterica serovar Enteritidis is a significant health threat. Salmonella enterica serovar Enteritidis SE3 was isolated from soil at the Subaé River in Santo Amaro, Brazil, a region contaminated with heavy metals and organic waste. Illumina HiSeq and Oxford Nanopore Technologies MinION sequencing were used for de novo hybrid assembly of the Salmonella SE3 genome. This approach yielded 10 contigs with 99.98% identity with S. enterica serovar Enteritidis OLF-SE2-98984-6. Twelve Salmonella pathogenic islands, multiple virulence genes, multiple antimicrobial gene resistance genes, seven phage defense systems, seven prophages and a heavy metal resistance gene were encoded in the genome. Pangenome analysis of the S. enterica clade, including Salmonella SE3, revealed an open pangenome, with a core genome of 2137 genes. Our study showed the effectiveness of a hybrid sequence assembly approach for environmental Salmonella genome analysis using HiSeq and MinION data. This approach enabled the identification of key resistance and virulence genes, and these data are important to inform the control of Salmonella and heavy metal pollution in the Santo Amaro region of Brazil.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thiago J. Sousa
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, 37073 Göttingen, Germany
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
| | - Thiago M. Venancio
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, P.O. Box 29-181, Christchurch 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
36
|
Yadav A, Mudoi KD, Kumar N, Geed SR, Gogoi P, Sharma RK, Saikia R. Auxin biosynthesis by Microbacterium testaceum Y411 associated with orchid aerial roots and their efficacy in micropropagation. FRONTIERS IN PLANT SCIENCE 2022; 13:1037109. [PMID: 36518501 PMCID: PMC9742431 DOI: 10.3389/fpls.2022.1037109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Root-associated bacteria strongly affect plant growth and development by synthesizing growth regulators and stress-relieving metabolites. The present study is mainly focused on assessing aerial root-associated bacteria of Rhynchostylis retusa (L.) Blume is an endemic epiphytic orchid responsible for auxin production and influencing plant growth. A bacterial isolate, Microbacterium testaceum Y411, was found to be the most active producer of indole-3-acetic acid (IAA). The maximum IAA production (170µg/mL) was recorded with the bacterium at optimum process parameters such as pH 7, temperature 30°C, and tryptophan 1000 µg/mL in a culture medium for 48 h. The extracted auxin was purified and analyzed by FT-IR, HPLC, and HR-MS, indicating bacterial auxin has a similar mass value to 4-chloroindole-3-acetic acid auxin. Furthermore, the bacterial auxin was tested on in vitro propagation of orchid, Cymbidium aloifolium, and 90% seed germination was recorded in Murashige and Skoog's medium supplemented with bacterial auxin. The novel results obtained in this study are used for agricultural applications and the Microbacterium testaceum Y411 is a valuable biotechnological resource for a natural auxin.
Collapse
Affiliation(s)
- Archana Yadav
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
- Department of Applied Biology, University of Science and Technology, Meghalaya, India
| | - Kalpataru Dutta Mudoi
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Niraj Kumar
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Sachin Rameshrao Geed
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Parishmita Gogoi
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| | - Rabin K. Sharma
- Department of Applied Biology, University of Science and Technology, Meghalaya, India
| | - Ratul Saikia
- Microbial Biotechnology Laboratory, Biological Sciences and Technology Division, Council of Scientific & Industrial Research (CSIR)-North East Institute of Science and Technology, Jorhat, Assam, India
| |
Collapse
|
37
|
Milk Pathogens in Correlation with Inflammatory, Oxidative and Nitrosative Stress Markers in Goat Subclinical Mastitis. Animals (Basel) 2022; 12:ani12233245. [PMID: 36496766 PMCID: PMC9740090 DOI: 10.3390/ani12233245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Goat mastitis is still frequently diagnosed in dairy farms, with serious consequences on milk quality and composition. The aim of this study was to establish correlations between milk microorganisms and biochemical parameters in goats with no signs of clinical mastitis. Thus, 76 milk samples were collected from a dairy goat farm, Carpathian breed, followed by microbiological, molecular (16S rRNA sequencing) and somatic cells analysis, determination of lactate dehydrogenase (LDH), β-glucuronidase, catalase (CAT), glutathione peroxidase (GPx) activity, total antioxidant capacity (TAC), nitric oxide (NO) and lipid peroxides (LPO) using spectrophotometry and the ELISA method for 8-hydroxy-deoxyguanosine (8-OHdG) as the oxidative DNA damage indicator. Samples positive for bacterial growth showed a significant (p < 0.05) increase in the number of somatic cells, LDH and β-glucuronidase activity, as well as higher levels of CAT, GPx, NO, LPO and 8-OHdG compared with pathogen-free milk whereas TAC was lower in milk from an infected udder. These findings suggest that subclinical mastitis is associated with increased enzymatic activity and induction of oxidative stress. Nevertheless, changes in biochemical parameters tended to vary depending on the pathogen, the most notable mean values being observed overall in milk positive for Staphylococcus aureus.
Collapse
|
38
|
Azizah M, Pohnert G. Orchestrated Response of Intracellular Zwitterionic Metabolites in Stress Adaptation of the Halophilic Heterotrophic Bacterium Pelagibaca bermudensis. Mar Drugs 2022; 20:727. [PMID: 36422005 PMCID: PMC9695272 DOI: 10.3390/md20110727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023] Open
Abstract
Osmolytes are naturally occurring organic compounds that protect cells against various forms of stress. Highly polar, zwitterionic osmolytes are often used by marine algae and bacteria to counteract salinity or temperature stress. We investigated the effect of several stress conditions including different salinities, temperatures, and exposure to organic metabolites released by the alga Tetraselmis striata on the halophilic heterotrophic bacterium Pelagibaca bermudensis. Using ultra-high-performance liquid chromatography (UHPLC) on a ZIC-HILIC column and high-resolution electrospray ionization mass spectrometry, we simultaneously detected and quantified the eleven highly polar compounds dimethylsulfoxonium propionate (DMSOP), dimethylsulfoniopropionate (DMSP), gonyol, cysteinolic acid, ectoine, glycine betaine (GBT), carnitine, sarcosine, choline, proline, and 4-hydroxyproline. All compounds are newly described in P. bermudensis and potentially involved in physiological functions essential for bacterial survival under variable environmental conditions. We report that adaptation to various forms of stress is accomplished by adjusting the pattern and amount of the zwitterionic metabolites.
Collapse
Affiliation(s)
- Muhaiminatul Azizah
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany
- MPG Fellow Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
39
|
Olofinsae SA, Adeleke OE, Ibeh BO. Occurrence of Pseudomonas lactis and Pseudomonas paralactis Amongst Non-Lactose-Fermenting Bacterial Isolates in Chickens and Their Antimicrobial Resistance Patterns. Microbiol Insights 2022; 15:11786361221130313. [PMID: 36329710 PMCID: PMC9623376 DOI: 10.1177/11786361221130313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
A serious concern of public-health proportion is rising from the carriage of antibiotic resistance determinant in Non-Lactose-Fermenting Bacteria and acquisition of virulence particularly in strains that are not routinely isolated or screened from common food animals. This study investigated the resistance profile and pathogenicity potential of selected Non-Lactose-Fermenting Bacteria isolated from 18 poultry farms. In total, we investigated the antibiotic susceptibility patterns of 25 Pseudomonas lactis and 71 Pseudomonas paralactis isolated from chicken faeces by testing them against 12 antibiotics. Resistance genes borne by the selected isolates were screened by sequencing the genetic location of resistance determinants was determined by plasmid curing. The virulence potential of the studied strains was determined phenotypically. Pseudomonas lactis isolates were mostly resistant to azetronam (93%), followed by trimethoprim (90%), cefotaxime (86%) and then amoxicillin/clavulanic acid (57%), while Pseudomonas paralactis. isolates were most resistant to azetronam (94%), trimethoprim (90%), cefepime (80%), piperacillin (75%) and amoxicillin/clavulanic acid (70%). The Multiple Antibiotic Resistance Index of Pseudomonas lactis and Pseudomonas paralactis isolates respectively ranged from 0.0 to 0.8 and 0.0 to 0.9. Polymerase Chain Reaction revealed the presence of antibiotic resistance factors such as blaCTX-M, qnrS, aac (6')-lb-cr and blaSHV while plasmid curing revealed carriages of resistance determinants on Resistance Plasmid. Moreover, virulence enzymes such as alkaline protease and phospholipase C were found in 3% and 12% of Pseudomonas paralactis and Pseudomonas lactis, respectively. This study reports the first occurrence of Pseudomonas lactis and Pseudomonas paralactis strains from chicken faeces, and their antimicrobial resistance and relative virulence suggest the encroachment of food animals by the under-studied non-lactose-fermenting bacteria that should alert public health concerns.
Collapse
Affiliation(s)
- Samson A Olofinsae
- Department of Pharmaceutical
Microbiology, Faculty of Pharmacy, University of Ibadan, Nigeria,Samson A Olofinsae, Department of
Pharmaceutical, Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan,
Oyo State 200005, Nigeria.
| | - Olufemi E Adeleke
- Department of Pharmaceutical
Microbiology, Faculty of Pharmacy, University of Ibadan, Nigeria
| | - Bartholomew O Ibeh
- Department of Medical Biotechnology,
National Biotechnology Development Agency, Abuja, Nigeria
| |
Collapse
|
40
|
Rusch DB, Huang J, Hemmerich C, Hahn MW. High-resolution phylogenetic and population genetic analysis of microbial communities with RoC-ITS. ISME COMMUNICATIONS 2022; 2:99. [PMID: 37938727 PMCID: PMC9723582 DOI: 10.1038/s43705-022-00183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2023]
Abstract
Microbial communities are inter-connected systems of incredible complexity and dynamism that play crucial roles in health, energy, and the environment. To better understand microbial communities and how they respond to change, it is important to know which microbes are present and their relative abundances at the greatest taxonomic resolution possible. Here, we describe a novel protocol (RoC-ITS) that uses the single-molecule Nanopore sequencing platform to assay the composition of microbial communities at the subspecies designation. Using rolling-circle amplification, this methodology produces long-read sequences from a circular construct containing the complete 16S ribosomal gene and the neighboring internally transcribed spacer (ITS). These long reads can be used to generate a high-fidelity circular consensus sequence. Generally, the ribosomal 16S gene provides phylogenetic information down to the species-level, while the much less conserved ITS region contains strain-level information. When linked together, this combination of markers allows for the identification of individual ribosomal units within a specific organism and the assessment of their relative stoichiometry, as well as the ability to monitor subtle shifts in microbial community composition with a single generic assay. We applied RoC-ITS to an artificial microbial community that was also sequenced using the Illumina platform, to assess its accuracy in quantifying the relative abundance and identity of each species.
Collapse
Affiliation(s)
- Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA.
| | - Jie Huang
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Chris Hemmerich
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Matthew W Hahn
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
41
|
Flavobacterium soyae sp. nov., isolated from the rhizosphere of soya bean. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped bacterium without flagella, designated SCIV07T, was isolated from soya bean rhizosphere soil collected from Bazhong, Sichuan Province, PR China and characterized by using polyphasic taxonomy. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SCIV07T belonged to the genus
Flavobacterium
and most closely related to the type strains
Flavobacterium chungangense
LMG 26729T (97.91 %),
Flavobacterium reichenbachii
LMG 25512T (97.77 %),
Flavobacterium oncorhynchi
CCUG 59446T (97.7 %),
Flavobacterium chilense
LMG 26360T (97.7 %) and
Flavobacterium plurextorum
CCUG 60112T (97.63 %). The average nucleotide identity and in silico DNA–DNA hybridization values between strain SCIV07T and closely related
Flavobacterium
species were lower than thresholds of 95 and 70 %, respectively, for species delineation. Catalase and oxidase were positive. Strain SCIV07T produced flexirubin-type pigments. Menaquinone-6 was the sole respiratory quinone. The major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and two unidentified lipids. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3OH and summed feature 3 (C16 : 1 ω6c/C16 : 1 ω7c). Physiological and biochemical features differentiated strain SCIV07T from the closely related
Flavobacterium
species. Based on the polyphasic taxonomic data, strain SCIV07T represents a novel species of the genus
Flavobacterium
, for which the name Flavobacterium soyae sp. nov. is proposed. The type strain is SCIV07T (=GDMCC 1.2481T=JCM 34673T).
Collapse
|
42
|
Gao J, Sun D, Li B, Yang C, Wang W. Integrated identification of growth pattern and taxon of bacterium in gut microbiota via confocal fluorescence imaging-oriented single-cell sequencing. MLIFE 2022; 1:350-358. [PMID: 38818223 PMCID: PMC10989894 DOI: 10.1002/mlf2.12041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/01/2024]
Abstract
Despite the fast progress in our understanding of the complex functions of gut microbiota, it is still challenging to directly investigate the in vivo microbial activities and processes on an individual cell basis. To gain knowledge of the indigenous growth/division patterns of the diverse mouse gut bacteria with a relatively high throughput, here, we propose an integrative strategy, which combines the use of fluorescent probe labeling, confocal imaging with single-cell sorting, and sequencing. Mouse gut bacteria sequentially labeled by two fluorescent d-amino acid probes in vivo were first imaged by confocal microscopy to visualize their growth patterns, which can be unveiled by the distribution of the two fluorescence signals on each bacterium. Bacterial cells of interest on the imaging slide were then sorted using a laser ejection equipment, and the collected cells were then sequenced individually to identify their taxa. Our strategy allows integrated acquirement of the growth pattern knowledge of a variety of gut bacteria and their genomic information on a single-cell basis, which should also have great potential in studying many other complex bacterial systems.
Collapse
Affiliation(s)
- Juan Gao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Di Sun
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bei Li
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and PhysicsChinese Academy of SciencesChangchunChina
| | - Chaoyong Yang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, Xiamen UniversityCollege of Chemistry and Chemical EngineeringXiamenChina
| | - Wei Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
43
|
Medina-Paz F, Herrera-Estrella L, Heil M. All Set before Flowering: A 16S Gene Amplicon-Based Analysis of the Root Microbiome Recruited by Common Bean ( Phaseolus vulgaris) in Its Centre of Domestication. PLANTS (BASEL, SWITZERLAND) 2022; 11:1631. [PMID: 35807585 PMCID: PMC9269403 DOI: 10.3390/plants11131631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Plant roots recruit most prokaryotic members of their root microbiota from the locally available inoculum, but knowledge on the contribution of native microorganisms to the root microbiota of crops in native versus non-native areas remains scarce. We grew common bean (Phaseolus vulgaris) at a field site in its centre of domestication to characterise rhizosphere and endosphere bacterial communities at the vegetative, flowering, and pod filling stage. 16S r RNA gene amplicon sequencing of ten samples yielded 9,401,757 reads, of which 8,344,070 were assigned to 17,352 operational taxonomic units (OTUs). Rhizosphere communities were four times more diverse than in the endosphere and dominated by Actinobacteria, Bacteroidetes, Crenarchaeota, and Proteobacteria (endosphere: 99% Proteobacteria). We also detected high abundances of Gemmatimonadetes (6%), Chloroflexi (4%), and the archaeal phylum Thaumarchaeota (Candidatus Nitrososphaera: 11.5%): taxa less frequently reported from common bean rhizosphere. Among 154 OTUs with different abundances between vegetative and flowering stage, we detected increased read numbers of Chryseobacterium in the endosphere and a 40-fold increase in the abundances of OTUs classified as Rhizobium and Aeromonas (equivalent to 1.5% and over 6% of all reads in the rhizosphere). Our results indicate that bean recruits specific taxa into its microbiome when growing 'at home'.
Collapse
Affiliation(s)
- Francisco Medina-Paz
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato 36824, GTO, Mexico;
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad de Genómica Avanzada, Irapuato 36824, GTO, Mexico; or
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79424, USA
| | - Martin Heil
- Laboratorio de Ecología de Plantas, Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados (CINVESTAV)—Unidad Irapuato, Irapuato 36824, GTO, Mexico;
| |
Collapse
|
44
|
Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut. BIOLOGY 2022; 11:biology11050632. [PMID: 35625360 PMCID: PMC9138089 DOI: 10.3390/biology11050632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The genus Shewanella is widely distributed in niches ranging from an aquatic environment to spoiled fish and is loaded with various ecologically and commercially important metabolites. Bacterial species under this genus find application in bioelectricity generation and bioremediation due to their capability to use pollutants as the terminal electron acceptor and could produce health-beneficial omega-3 fatty acids, particularly eicosapentaenoic acid (EPA). Here, the genome sequence of an EPA-producing bacterium, Shewanella sp. N2AIL, isolated from the gastrointestinal tract of Tilapia fish, is reported. The genome size of the strain was 4.8 Mb with a GC content of 46.3% containing 4385 protein-coding genes. Taxonogenomic analysis assigned this strain to the genus Shewanella on the basis of average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH), phylogenetically most closely related with S. baltica NCTC 10735T. The comparative genome analysis with the type strain of S. baltica revealed 693 unique genes in the strain N2AIL, highlighting the variation at the strain level. The genes associated with stress adaptation, secondary metabolite production, antibiotic resistance, and metal reduction were identified in the genome suggesting the potential of the bacterium to be explored as an industrially important strain. PUFA synthase gene cluster of size ~20.5 kb comprising all the essential domains for EPA biosynthesis arranged in five ORFs was also identified in the strain N2AIL. The study provides genomic insights into the diverse genes of Shewanella sp. N2AIL, which is particularly involved in adaptation strategies and prospecting secondary metabolite potential, specifically the biosynthesis of omega-3 polyunsaturated fatty acids.
Collapse
|
45
|
Toushik SH, Kim K, Ashrafudoulla M, Mizan MFR, Roy PK, Nahar S, Kim Y, Ha SD. Korean kimchi-derived lactic acid bacteria inhibit foodborne pathogenic biofilm growth on seafood and food processing surface materials. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Sharifudin SA, Ho WY, Yeap SK, Abdullah R, Koh SP. Fermentation and characterisation of potential kombucha cultures on papaya-based substrates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Belmok A, Rodrigues-Oliveira T, Lopes FAC, Krüger RH, Kyaw CM. The influence of primer choice on archaeal phylogenetic analyses based on 16S rRNA gene PCR. BRAZ J BIOL 2021; 83:e247529. [PMID: 34550284 DOI: 10.1590/1519-6984.247529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023] Open
Abstract
Polymerase chain reaction (PCR) assays targeting 16S rRNA genes followed by DNA sequencing are still important tools to characterize microbial communities present in environmental samples. However, despite the crescent number of deposited archaeal DNA sequences in databases, until now we do not have a clear picture of the effectiveness and specificity of the universal primers widely used to describe archaeal communities from different natural habitats. Therefore, in this study, we compared the phylogenetic profile obtained when Cerrado lake sediment DNA samples were submitted to 16S rDNA PCR employing three Archaea-specific primer sets commonly used. Our findings reveal that specificity of primers differed depending on the source of the analyzed DNA. Furthermore, archaeal communities revealed by each primer pair varied greatly, indicating that 16S rRNA gene primer choice affects the community profile obtained, with differences in both taxon detection and operational taxonomic unit (OTU) estimates.
Collapse
Affiliation(s)
- A Belmok
- Universidade de Brasília - UnB, Instituto de Ciências Biológicas, Departmento de Biologia Celular, Brasília, DF, Brasil
| | - T Rodrigues-Oliveira
- Universidade de Brasília - UnB, Instituto de Ciências Biológicas, Departmento de Biologia Celular, Brasília, DF, Brasil
| | - F A C Lopes
- Universidade Federal do Tocantins - UFT, Laboratório de Microbiologia, Porto Nacional, TO, Brasil
| | - R H Krüger
- Universidade de Brasília - UnB, Instituto de Ciências Biológicas, Departmento de Biologia Celular, Brasília, DF, Brasil
| | - C M Kyaw
- Universidade de Brasília - UnB, Instituto de Ciências Biológicas, Departmento de Biologia Celular, Brasília, DF, Brasil
| |
Collapse
|
48
|
Chaiya L, Gavinlertvatana P, Teaumroong N, Pathom-aree W, Chaiyasen A, Sungthong R, Lumyong S. Enhancing Teak ( Tectona grandis) Seedling Growth by Rhizosphere Microbes: A Sustainable Way to Optimize Agroforestry. Microorganisms 2021; 9:microorganisms9091990. [PMID: 34576884 PMCID: PMC8465541 DOI: 10.3390/microorganisms9091990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
With its premium wood quality and resistance to pests, teak is a valuable tree species remarkably required for timber trading and agroforestry. The nursery stage of teak plantation needs critical care to warrant its long-term productivity. This study aimed to search for beneficial teak rhizosphere microbes and assess their teak-growth-promoting potentials during nursery stock preparation. Three teak rhizosphere/root-associated microbes, including two teak rhizobacteria (a nitrogen-fixing teak root endophyte-Agrobacterium sp. CGC-5 and a teak rhizosphere actinobacterium-Kitasatospora sp. TCM1-050) and an arbuscular mycorrhizal fungus (Claroideoglomus sp. PBT03), were isolated and used in this study. Both teak rhizobacteria could produce in vitro phytohormones (auxins) and catalase. With the pot-scale assessments, applying these rhizosphere microbes in the form of consortia offered better teak-growth-promoting activities than the individual applications, supported by significantly increased teak seedling biomass. Moreover, teak-growth-promoting roles of the arbuscular mycorrhizal fungus were highly dependent upon the support by other teak rhizobacteria. Based on our findings, establishing the synergistic interactions between beneficial rhizosphere microbes and teak roots was a promising sustainable strategy to enhance teak growth and development at the nursery stage and reduce chemical inputs in agroforestry.
Collapse
Affiliation(s)
- Leardwiriyakool Chaiya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (L.C.); (W.P.-a.)
| | | | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Wasu Pathom-aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (L.C.); (W.P.-a.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amornrat Chaiyasen
- Soil Science Research Group, Agricultural Production Science Research and Development Division, Department of Agriculture, Ministry of Agriculture and Cooperatives, Bangkok 10900, Thailand;
| | - Rungroch Sungthong
- Laboratory of Hydrology and Geochemistry of Strasbourg, University of Strasbourg, UMR 7517 CNRS/EOST, 67084 Strasbourg, France
- Correspondence: (R.S.); (S.L.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (L.C.); (W.P.-a.)
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Correspondence: (R.S.); (S.L.)
| |
Collapse
|
49
|
Comparative Analyses of the Subgingival Microbiome in Chronic Periodontitis Patients with and without Gingival Erosive Oral Lichen Planus Based on 16S rRNA Gene Sequencing. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9995225. [PMID: 34258290 PMCID: PMC8257348 DOI: 10.1155/2021/9995225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022]
Abstract
The aim of the study was to compare the microbiota composition and bacterial diversity of subgingival plaque in chronic periodontitis patients with and without gingival erosive oral lichen planus. The subgingival plaque samples of 20 chronic periodontitis patients with gingival erosive oral lichen planus (CP-OLP group) and 19 chronic periodontitis patients without gingival erosive oral lichen planus (CP group) were analyzed by 16S rRNA gene high-throughput sequencing. Compared with the CP group, the richness and diversity of subgingival plaque microflora in the CP-OLP group decreased significantly. There were some differences between the two groups in the composition of microflora on the levels of phylum and genus. Distributions of Prevotella and Leptotrichia in the CP-OLP group were significantly lower than those in the CP group. The dominant genera in CP-OLP group were Pseudomonas and Granulicatella. These results indicated that gingival erosive oral lichen planus may influence the structure and proportion of subgingival plaque microflora.
Collapse
|
50
|
Study on the mechanisms of the cross-resistance to TET, PIP, and GEN in Staphylococcus aureus mediated by the Rhizoma Coptidis extracts. J Antibiot (Tokyo) 2021; 74:330-336. [PMID: 33500562 DOI: 10.1038/s41429-021-00407-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
The purpose of this study was focused on the mechanisms of the cross-resistance to tetracycline (TET), piperacillin Sodium (PIP), and gentamicin (GEN) in Staphylococcus aureus (SA) mediated by Rhizoma Coptidis extracts (RCE). The selected strains were exposed continuously to RCE at the sublethal concentrations for 12 days, respectively. The susceptibility change of the drug-exposed strains was determined by analysis of the minimum inhibitory concentration. The 16S rDNA sequencing method was used to identify the RCE-exposed strain. Then the expression of resistant genes in the selected isolates was analyzed by transcriptome sequencing. The results indicated that RCE could trigger the preferential cross-resistance to TET, PIP, and GEN in SA. The correlative resistant genes to the three kinds of antibiotics were upregulated in the RCE-exposed strain, and the mRNA levels of the resistant genes determined by RT-qPCR were consistent with those from the transcriptome analysis. It was suggested from these results that the antibacterial Traditional Chinese Medicines might be a significant factor of causing the bacterial antibiotic-resistance.
Collapse
|