1
|
Bassini-Silva R, Calchi AC, Castro-Santiago AC, Marocco JC, Dorigoni L, de Quadros RM, André MR, Barros-Battesti DM, Dowling APG, Labruna MB, Jacinavicius FDC. Molecular evidence of Wolbachia in bat-associated mite Periglischrus Iheringi Oudemans, 1902 (Mesostigmata: Spinturnicidae) from Brazil. Vet Res Commun 2024; 49:60. [PMID: 39738989 DOI: 10.1007/s11259-024-10632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Wolbachia is an intracellular endosymbiont bacterium found in nematodes and arthopods. Regarding mites, the Wolbachia supergroup U has been described based on strains found in the genus Spinturnix. In this study, ten specimens of Periglischrus iheringi (Mesostigmata: Spinturnicidae), collected from Artibeus obscurus (Chiroptera: Phyllostomidae) in Santa Catarina State, were found to be infected with Wolbachia. Phylogenetic analysis based on the 16 S rRNA gene revealed that the detected Wolbachia strain belongs to Supergroup F, which has also been detected in other ectoparasitic arthropods, such as Columbicola columbae (slender pigeon lice) and Cimex lectularius (bed bug). This study presents the first molecular detection of Wolbachia in P. iheringi.
Collapse
Affiliation(s)
| | - Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Reprodução e Saúde Única, Jaboticabal, SP, Brazil
| | | | | | | | - Rosiléia Marinho de Quadros
- Departamento de Medicina Veterinária, Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina (Cav Udesc), Lages, SC, Brazil
- Laboratório de Zoologia e Parasitologia, Universidade do Planalto Catarinense (UNIPLAC), Lages, SC, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Reprodução e Saúde Única, Jaboticabal, SP, Brazil
| | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Departamento de Patologia, Faculdade de Ciências Agrárias e Veterinárias-UNESP, Reprodução e Saúde Única, Jaboticabal, SP, Brazil
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, FMVZ-USP, São Paulo, SP, Brazil
| | - Ashley P G Dowling
- Department of Entomology & Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Marcelo Bahia Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, FMVZ-USP, São Paulo, SP, Brazil
| | | |
Collapse
|
2
|
Tischer M, Bleidorn C. Further evidence of low infection frequencies of Wolbachia in soil arthropod communities. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105641. [PMID: 39004260 DOI: 10.1016/j.meegid.2024.105641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Endosymbiotic Alphaproteobacteria of the genus Wolbachia are exclusively transferred maternally from mother to offspring, but horizontal transfer across species boundaries seems to be frequent as well. However, the (ecological) mechanisms of how these bacteria are transferred between distantly related arthropod hosts remain unclear. Based on the observation that species that are part of the same ecological community often also share similar Wolbachia strains, host ecology has been hypothesized as an important factor enabling transmission and a key factor in explaining the global distribution of Wolbachia lineages. In this study, we focus on the diversity and abundance of Wolbachia strains in soil arthropods, a so far rather neglected community. We screened 82 arthropod morphotypes collected in the beech forest (dominated by Fagus sp.) soil in the area of Göttingen in central Germany for the presence of Wolbachia. By performing a PCR screen with Wolbachia-MLST markers (coxA, dnaA, fbpA, ftsZ, gatB, and hcpA), we found a rather low infection frequency of 12,2%. Additionally, we performed metagenomic screening of pooled individuals from the same sampling site and could not find evidence that this low infection frequency is an artefact due to PCR-primer bias. Phylogenetic analyses of the recovered Wolbachia strains grouped them in three known supergroups (A, B, and E), with the first report of Wolbachia in Protura (Hexapoda). Moreover, Wolbachia sequences from the pseudoscorpion Neobisium carcinoides cluster outside the currently known supergroup diversity. Our screening supports results from previous studies that the prevalence of Wolbachia infections seems to be lower in soil habitats than in above-ground terrestrial habitats. The reasons for this pattern are not completely understood but might stem from the low opportunity of physical contact and the prevalence of supergroups that are less suited for horizontal transfer.
Collapse
Affiliation(s)
- Marta Tischer
- Department for Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| | - Christoph Bleidorn
- Department for Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany.
| |
Collapse
|
3
|
Grève P, Moumen B, Bouchon D. Three feminizing Wolbachia strains in a single host species: comparative genomics paves the way for identifying sex reversal factors. Front Microbiol 2024; 15:1416057. [PMID: 39238888 PMCID: PMC11376236 DOI: 10.3389/fmicb.2024.1416057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction Endosymbiotic bacteria in the genus Wolbachia have evolved numerous strategies for manipulating host reproduction in order to promote their own transmission. This includes the feminization of males into functional females, a well-studied phenotype in the isopod Armadillidium vulgare. Despite an early description of this phenotype in isopods and the development of an evolutionary model of host sex determination in the presence of Wolbachia, the underlying genetic mechanisms remain elusive. Methods Here we present the first complete genomes of the three feminizing Wolbachia (wVulC, wVulP, and wVulM) known to date in A. vulgare. These genomes, belonging to Wolbachia B supergroup, contain a large number of mobile elements such as WO prophages with eukaryotic association modules. Taking advantage of these data and those of another Wolbachia-derived feminizing factor integrated into the host genome (f element), we used a comparative genomics approach to identify putative feminizing factors. Results This strategy has enabled us to identify three prophage-associated genes secreted by the Type IV Secretion System: one ankyrin repeat domain-containing protein, one helix-turn-helix transcriptional regulator and one hypothetical protein. In addition, a latrotoxin-related protein, associated with phage relic genes, was shared by all three genomes and the f element. Conclusion These putative feminization-inducing proteins shared canonical interaction features with eukaryotic proteins. These results pave the way for further research into the underlying functional interactions.
Collapse
Affiliation(s)
- Pierre Grève
- Université de Poitiers, Ecologie et Biologie des Interactions, UMR CNRS 7267, Poitiers, France
| | - Bouziane Moumen
- Université de Poitiers, Ecologie et Biologie des Interactions, UMR CNRS 7267, Poitiers, France
| | - Didier Bouchon
- Université de Poitiers, Ecologie et Biologie des Interactions, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
4
|
Mirchandani C, Wang P, Jacobs J, Genetti M, Pepper-Tunick E, Sullivan WT, Corbett-Detig R, Russell SL. Mixed Wolbachia infections resolve rapidly during in vitro evolution. PLoS Pathog 2024; 20:e1012149. [PMID: 39052691 DOI: 10.1371/journal.ppat.1012149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
The intracellular symbiont Wolbachia pipientis evolved after the divergence of arthropods and nematodes, but it reached high prevalence in many of these taxa through its abilities to infect new hosts and their germlines. Some strains exhibit long-term patterns of co-evolution with their hosts, while other strains are capable of switching hosts. This makes strain selection an important factor in symbiont-based biological control. However, little is known about the ecological and evolutionary interactions that occur when a promiscuous strain colonizes an infected host. Here, we study what occurs when two strains come into contact in host cells following horizontal transmission and infection. We focus on the faithful wMel strain from Drosophila melanogaster and the promiscuous wRi strain from Drosophila simulans using an in vitro cell culture system with multiple host cell types and combinatorial infection states. Mixing D. melanogaster cell lines stably infected with wMel and wRi revealed that wMel outcompetes wRi quickly and reproducibly. Furthermore, wMel was able to competitively exclude wRi even from minuscule starting quantities, indicating that this is a nearly deterministic outcome, independent of the starting infection frequency. This competitive advantage was not exclusive to wMel's native D. melanogaster cell background, as wMel also outgrew wRi in D. simulans cells. Overall, wRi is less adept at in vitro growth and survival than wMel and its in vivo state, revealing differences between the two strains in cellular and humoral regulation. These attributes may underlie the observed low rate of mixed infections in nature and the relatively rare rate of host-switching in most strains. Our in vitro experimental framework for estimating cellular growth dynamics of Wolbachia strains in different host species and cell types provides the first strategy for parameterizing endosymbiont and host cell biology at high resolution. This toolset will be crucial to our application of these bacteria as biological control agents in novel hosts and ecosystems.
Collapse
Affiliation(s)
- Cade Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Pingting Wang
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jodie Jacobs
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Maximilian Genetti
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Evan Pepper-Tunick
- Institute for Systems Biology, Seattle, Washington, United States of America
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, United States of America
| | - William T Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Shelbi L Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
5
|
Mirchandani C, Wang P, Jacobs J, Genetti M, Pepper-Tunick E, Sullivan WT, Corbett-Detig R, Russell SL. Mixed Wolbachia infections resolve rapidly during in vitro evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.586911. [PMID: 38585949 PMCID: PMC10996604 DOI: 10.1101/2024.03.27.586911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The intracellular symbiont Wolbachia pipientis evolved after the divergence of arthropods and nematodes, but it reached high prevalence in many of these taxa through its abilities to infect new hosts and their germlines. Some strains exhibit long-term patterns of co-evolution with their hosts, while other strains are capable of switching hosts. This makes strain selection an important factor in symbiont-based biological control. However, little is known about the ecological and evolutionary interactions that occur when a promiscuous strain colonizes an infected host. Here, we study what occurs when two strains come into contact in host cells following horizontal transmission and infection. We focus on the faithful wMel strain from Drosophila melanogaster and the promiscuous wRi strain from Drosophila simulans using an in vitro cell culture system with multiple host cell types and combinatorial infection states. Mixing D. melanogaster cell lines stably infected with wMel and wRi revealed that wMel outcompetes wRi quickly and reproducibly. Furthermore, wMel was able to competitively exclude wRi even from minuscule starting quantities, indicating that this is a nearly deterministic outcome, independent of the starting infection frequency. This competitive advantage was not exclusive to wMel's native D. melanogaster cell background, as wMel also outgrew wRi in D. simulans cells. Overall, wRi is less adept at in vitro growth and survival than wMel and its in vivo state, revealing differences between cellular and humoral regulation. These attributes may underlie the observed low rate of mixed infections in nature and the relatively rare rate of host-switching in most strains. Our in vitro experimental framework for estimating cellular growth dynamics of Wolbachia strains in different host species, tissues, and cell types provides the first strategy for parameterizing endosymbiont and host cell biology at high resolution. This toolset will be crucial to our application of these bacteria as biological control agents in novel hosts and ecosystems.
Collapse
Affiliation(s)
- Cade Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Pingting Wang
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Jodie Jacobs
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Maximilian Genetti
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Evan Pepper-Tunick
- Institute for Systems Biology, Seattle, Washington, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, USA
| | - William T Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Russ Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Shelbi L Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
6
|
Kwak Y, Hansen AK. Unveiling metabolic integration in psyllids and their nutritional endosymbionts through comparative transcriptomics analysis. iScience 2023; 26:107930. [PMID: 37810228 PMCID: PMC10558732 DOI: 10.1016/j.isci.2023.107930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Psyllids, a group of insects that feed on plant sap, have a symbiotic relationship with an endosymbiont called Carsonella. Carsonella synthesizes essential amino acids and vitamins for its psyllid host, but lacks certain genes required for this process, suggesting a compensatory role of psyllid host genes. To investigate this, gene expression was compared between two psyllid species, Bactericera cockerelli and Diaphorina citri, in specialized cells where Carsonella resides (bacteriomes). Collaborative psyllid genes, including horizontally transferred genes, showed patterns of conserved gene expression; however, species-specific patterns were also observed, suggesting differences in the nutritional metabolism between psyllid species. Also, the recycling of nitrogen in bacteriomes may primarily rely on glutamate dehydrogenase (GDH). Additionally, lineage-specific gene clusters were differentially expressed in B. cockerelli and D. citri bacteriomes and are highlighted here. These findings shed light on potential host adaptations for the regulation of this symbiosis due to host, microbiome, and environmental differences.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, 5200 Lake Road, Merced, CA 95343, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Vinayagam S, Nirmolia T, Chetry S, Kumar NP, Saini P, Bhattacharyya DR, Bhowmick IP, Sattu K, Patgiri SJ. Molecular Evidence of Wolbachia Species in Wild-Caught Aedes albopictus and Aedes aegypti Mosquitoes in Four States of Northeast India. J Trop Med 2023; 2023:6678627. [PMID: 37706052 PMCID: PMC10497363 DOI: 10.1155/2023/6678627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
Wolbachia, a Gram-negative intracellular bacterium, naturally infects many arthropods, including mosquito vectors responsible for the spread of arboviral diseases such as Zika, chikungunya, and dengue fever. Certain Wolbachia strains are involved in inhibiting arbovirus replication in mosquitoes, and this phenomenon is currently being studied to combat disease vectors. A study was conducted in four states in north-eastern India to investigate the presence of natural Wolbachia infection in wild-caught Aedes albopictus and Aedes aegypti mosquitoes, the established vectors of dengue. The detection of a Wolbachia infection was confirmed by nested PCR and sequencing in the two mosquito species Ae. aegypti and Ae. albopictus. Positivity rates observed in Ae. aegypti and Ae. albopictus pools were 38% (44 of 115) and 85% (41 of 48), respectively, and the difference was significant (chi-square = 28.3174, p = 0.00000010). Sequencing revealed that all detected Wolbachia strains belonged to supergroup B. Although Wolbachia infection in Ae. aegypti has been previously reported from India, no such reports are available from north-eastern India. Data on naturally occurring Wolbachia strains are essential for selecting the optimal strain for the development of Wolbachia-based control measures. This information will be helpful for the future application of Wolbachia-based vector control measures in this part of the country.
Collapse
Affiliation(s)
- Sathishkumar Vinayagam
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
- Periyar University, Centre for PG & Research Studies, Dharmapuri 635205, India
| | - Tulika Nirmolia
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | - Sumi Chetry
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | | | - Prasanta Saini
- ICMR-Vector Control Research Centre, Puducherry 605006, India
| | | | - Ipsita Pal Bhowmick
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| | - Kamaraj Sattu
- Periyar University, Centre for PG & Research Studies, Dharmapuri 635205, India
| | - Saurav Jyoti Patgiri
- ICMR-Regional Medical Research Centre North East Region, Dibrugarh, Assam 786010, India
| |
Collapse
|
8
|
Oladipupo SO, Laidoudi Y, Beckmann JF, Hu XP, Appel AG. The prevalence of Wolbachia in multiple cockroach species and its implication for urban insect management. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1307-1316. [PMID: 37247378 DOI: 10.1093/jee/toad098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Cockroach management relies heavily on the use of conventional insecticides in urban settings, which no longer provide the anticipated level of control. Knowledge of cockroach endosymbionts, like Wolbachia, might provide novel avenues for control. Therefore, we screened 16 cockroach species belonging to 3 families (Ectobiidae, Blattidae, and Blaberidae) for the presence of Wolbachia. We mapped the evolution of Wolbachia-cockroach relationships based on maximum likelihood phylogeny and phylogenetic species clustering on a multi-loci sequence dataset (i.e., coxA, virD4, hcpA, and gatB) of Wolbachia genes. We confirmed the previous report of Wolbachia in 1 Ectobiid species; Supella longipalpa (Fab.), and detected the presence of Wolbachia in 2 Ectobiid species; Balta notulata (Stål) and Pseudomops septentrionalis Hebard, and 1 Blaberid species; Gromphadorhina portentosa (Schaum). All cockroach-associated Wolbachia herein detected were clustered with the ancestor of F clade Wolbachia of Cimex lectularius L. (bed bugs). Since Wolbachia provision C. lectularius with biotin vitamins that confer reproductive fitness, we screened the cockroach-associated Wolbachia for the presence of biotin genes. In toto, our results reveal 2 important findings: (i) Wolbachia is relatively uncommon among cockroach species infecting about 25% of species investigated, and (ii) cockroach-associated Wolbachia have biotin genes that likely provide nutritional benefits to their hosts. Thus, we discuss the potential of exploring Wolbachia as a tool for urban insect management.
Collapse
Affiliation(s)
- Seun O Oladipupo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Younes Laidoudi
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, 13005 Marseille, France
| | - John F Beckmann
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Arthur G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
9
|
Sharma AK, Som A. Assigning new supergroups V and W to the Wolbachia diversity. Bioinformation 2023; 19:336-340. [PMID: 37808371 PMCID: PMC10557451 DOI: 10.6026/97320630019336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 10/10/2023] Open
Abstract
Wolbachia are endosymbiotic and alphaproteobacteria that belong to the order Rickettsiales. They are known to infect half of the insect population and cause host manipulation, and have been categorized into 19 monophyletic lineages called supergroups. Recently, two strains, wCfeJ and wCfeT were isolated from cat fleas (Ctenocephalides felis), but their supergroup relationships were not assigned. In this article, we have attempted to classify these two novel strains and establish their evolutionary lineage (i.e., supergroup designation). For this we performed 16S rRNA similarity analysis and reconstructed 16S rRNA phylogeny of 52 Wolbachia strains (including two novel strains) belong to 19 supergroups. We also performed average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) studies to measure genomic similarity between the two novel genomes. The results revealed that 16S rRNA similarity between the two novel strains is 97.94%, which is below the threshold value of 98.6% and phylogeny shows that they are placed at the two different positions (i.e., showing distinct evolutionary lineages). Further, genomic similarity analysis revealed that the novel genomes have ANI and dDDH values 79% and 22.4% respectively, which were below the threshold value of ANI (95%) and dDDH (70%). These results suggested that the novel strains neither shared a species boundary between them nor with any other previously identified supergroups, which designate them as two new supergroups, namely supergroup V (strain wCfeJ) and supergroup W (strain wCfeT).
Collapse
Affiliation(s)
- Amresh Kumar Sharma
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
10
|
Remmal I, Bel Mokhtar N, Maurady A, Reda Britel M, El Fakhouri K, Asimakis E, Tsiamis G, Stathopoulou P. Characterization of the Bacterial Microbiome in Natural Populations of Barley Stem Gall Midge, Mayetiola hordei, in Morocco. Microorganisms 2023; 11:microorganisms11030797. [PMID: 36985370 PMCID: PMC10051481 DOI: 10.3390/microorganisms11030797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Mayetiola hordei (Kieffer), known as barley stem gall midge, is one of the most destructive barley pests in many areas around the world, inflicting significant qualitative and quantitative damage to crop production. In this study, we investigate the presence of reproductive symbionts, the effect of geographical origin on the bacterial microbiome's structure, and the diversity associated with natural populations of M. hordei located in four barley-producing areas in Morocco. Wolbachia infection was discovered in 9% of the natural populations using a precise 16S rDNA PCR assay. High-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene indicated that the native environments of samples had a substantial environmental impact on the microbiota taxonomic assortment. Briefly, 5 phyla, 7 classes, and 42 genera were identified across all the samples. To our knowledge, this is the first report on the bacterial composition of M. hordei natural populations. The presence of Wolbachia infection may assist in the diagnosis of ideal natural populations, providing a new insight into the employment of Wolbachia in the control of barley midge populations, in the context of the sterile insect technique or other biological control methods.
Collapse
Affiliation(s)
- Imane Remmal
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
- Faculty of Sciences and Technology of Tangier, Abdelmalek Essâadi University, Tétouan 93000, Morocco
| | - Mohammed Reda Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, BP 1818 Tanger Principal, Tanger 90000, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 30100 Agrinio, Greece
| |
Collapse
|
11
|
Mahmood S, Nováková E, Martinů J, Sychra O, Hypša V. Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts. MICROBIOME 2023; 11:22. [PMID: 36750860 PMCID: PMC9903615 DOI: 10.1186/s40168-023-01462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Wolbachia belong to highly abundant bacteria which are frequently found in invertebrate microbiomes and manifest by a broad spectrum of lifestyles from parasitism to mutualism. Wolbachia supergroup F is a particularly interesting clade as it gave rise to symbionts of both arthropods and nematodes, and some of its members are obligate mutualists. Investigations on evolutionary transitions among the different symbiotic stages have been hampered by a lack of the known diversity and genomic data for the supergroup F members. RESULTS Based on amplicon screening, short- and long-read WGS approaches, and laser confocal microscopy, we characterize five new supergroup F Wolbachia strains from four chewing lice species. These strains reached different evolutionary stages and represent two remarkably different types of symbiont genomes. Three of the genomes resemble other known members of Wolbachia F supergroup, while the other two show typical signs of ongoing gene inactivation and removal (genome size, coding density, low number of pseudogenes). Particularly, wMeur1, a symbiont fixed in microbiomes of Menacanthus eurysternus across four continents, possesses a highly reduced genome of 733,850 bp. The horizontally acquired capacity for pantothenate synthesis and localization in specialized bacteriocytes suggest its obligate nutritional role. CONCLUSIONS The genome of wMeur1 strain, from the M. eurysternus microbiome, represents the smallest currently known Wolbachia genome and the first example of Wolbachia which has completed genomic streamlining as known from the typical obligate symbionts. This points out that despite the large amount and great diversity of the known Wolbachia strains, evolutionary potential of these bacteria still remains underexplored. The diversity of the four chewing lice microbiomes indicates that this vast parasitic group may provide suitable models for further investigations. Video Abstract.
Collapse
Affiliation(s)
- Sazzad Mahmood
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, ASCR, V.V.I., České Budějovice, Czech Republic
| | - Jana Martinů
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, ASCR, V.V.I., České Budějovice, Czech Republic
| | - Oldřich Sychra
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czech Republic
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Parasitology, Biology Centre, ASCR, V.V.I., České Budějovice, Czech Republic.
| |
Collapse
|
12
|
Liu B, Ren YS, Su CY, Abe Y, Zhu DH. Pangenomic analysis of Wolbachia provides insight into the evolution of host adaptation and cytoplasmic incompatibility factor genes. Front Microbiol 2023; 14:1084839. [PMID: 36819029 PMCID: PMC9937081 DOI: 10.3389/fmicb.2023.1084839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The genus Wolbachia provides a typical example of intracellular bacteria that infect the germline of arthropods and filarial nematodes worldwide. Their importance as biological regulators of invertebrates, so it is particularly important to study the evolution, divergence and host adaptation of these bacteria at the genome-wide level. Methods Here, we used publicly available Wolbachia genomes to reconstruct their evolutionary history and explore their adaptation under host selection. Results Our findings indicate that segmental and single-gene duplications, such as DNA methylase, bZIP transcription factor, heat shock protein 90, in single monophyletic Wolbachia lineages (including supergroups A and B) may be responsible for improving the ability to adapt to a broad host range in arthropod-infecting strains. In contrast to A strains, high genetic diversity and rapidly evolving gene families occur in B strains, which may promote the ability of supergroup B strains to adapt to new hosts and their large-scale spreading. In addition, we hypothesize that there might have been two independent horizontal transfer events of cif genes in two sublineages of supergroup A strains. Interestingly, during the independent evolution of supergroup A and B strains, the rapid evolution of cif genes in supergroup B strains resulted in the loss of their functional domain, reflected in a possible decrease in the proportion of induced cytoplasmic incompatibility (CI) strains. Discussion This present study highlights for reconstructing of evolutionary history, addressing host adaptation-related evolution and exploring the origin and divergence of CI genes in each Wolbachia supergroup. Our results thus not only provide a basis for further exploring the evolutionary history of Wolbachia adaptation under host selection but also reveal a new research direction for studying the molecular regulation of Wolbachia- induced cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Bo Liu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ye-Song Ren
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Cheng-Yuan Su
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China
| | - Yoshihisa Abe
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Sciences, Central South University of Forestry and Technology, Changsha, China,*Correspondence: Dao-Hong Zhu, ✉
| |
Collapse
|
13
|
Conjard S, Meyer DF, Aprelon R, Pagès N, Gros O. Evidence of new strains of Wolbachia symbiont colonising semiaquatic bugs (Hemiptera: Gerroidea) in mangrove environment of the Lesser Antilles. PLoS One 2022; 17:e0273668. [PMID: 36040904 PMCID: PMC9426913 DOI: 10.1371/journal.pone.0273668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Wolbachia Hertig, 1936 is an intracellular bacterial symbiont colonizing many arthropods. Of the studies done on the bacteria present in the superfamily Gerroidea Leach, 1815, no report of Wolbachia infection had yet been made. Thus, we checked the presence of Wolbachia in six Gerroidea species which colonize tropical aquatic environments by PCR using wsp primer set before sequencing and phylogenetic analyses. Insects were collected in the marine fringe of mangroves, in river estuaries, in swampy mangroves, and in ponds from Guadeloupe islands (Caribbean). Two new strains of Wolbachia were detected in these Gerroidea. They were named wLfran and wRmang. The wsp sequences suggest that the strains belong to the already described E supergroup or similar. wLfran is present in Limnogonus franciscanus Stål, 1859 and Rheumatobates trinitatis (China, 1943) while wRmang appears to be present exclusively in R. mangrovensis (China, 1943). Three other species were analysed, but did not appear to be infected: Brachymetra albinerva (Amyot & Serville, 1843), Halobates micans Eschscheltz, 1822, and Microvelia pulchella Westwood, 1834. The results presented here highlight for the first time the presence of new intracellular Wolbachia strains in Gerroidea colonising tropical aquatic environments like mangrove habitats from inlands to sea shore.
Collapse
Affiliation(s)
- Suzanne Conjard
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles Pointe-à-Pitre, Guadeloupe, France
- * E-mail: (SC); (DFM)
| | - Damien F. Meyer
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
- * E-mail: (SC); (DFM)
| | - Rosalie Aprelon
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
| | - Nonito Pagès
- CIRAD, UMR ASTRE, Petit-Bourg, Guadeloupe, France
- ASTRE, Université Montpellier, CIRAD, INRA, Montpellier, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles Pointe-à-Pitre, Guadeloupe, France
| |
Collapse
|
14
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|
15
|
Hill T, Unckless RL, Perlmutter JI. Positive Selection and Horizontal Gene Transfer in the Genome of a Male-Killing Wolbachia. Mol Biol Evol 2022; 39:msab303. [PMID: 34662426 PMCID: PMC8763111 DOI: 10.1093/molbev/msab303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia's success as a male-killer of divergent host species.
Collapse
Affiliation(s)
- Tom Hill
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|
16
|
Abstract
Endosymbiotic Wolbachia bacteria are known to influence the host physiology, microbiota composition, and dissemination of pathogens. We surveyed a population of Tabanus nigrovittatus, commonly referred to as "greenheads," from Crane Beach (Ipswich, MA, USA) for the presence of the alphaproteobacterial symbiont Wolbachia. We studied the COI (mitochondrial cytochrome oxidase) marker gene to evaluate the phylogenetic diversity of the studied specimens. The DNA sequences show strong similarity (between 99.9 and 98%) among the collected specimens but lower similarity to closely related entries in the NCBI database (only between 96.3 and 94.7%), suggesting a more distant relatedness. Low levels of Wolbachia presence necessitated a nested PCR approach, and using 5 markers (ftsZ, fbpA, dnaA, coxA, and gatB), we determined that two recognized "supergroups" of Wolbachia species were represented in the studied specimens, members of clades A and B. Using next-generation sequencing, we also surveyed the insect gut microbiomes of a subset of flies, using Illumina and PacBio 16S rRNA gene sequencing with barcoded primers. The composition of Proteobacteria also varied from fly to fly, with components belonging to Gammaproteobacteria making up the largest percentage of organisms (30 to 70%) among the microbiome samples. Most of the samples showed the presence of Spiroplasma, a member of the phylum Mollicutes, although the frequency of its presence was variable, ranging from 2 to 57%. Another noteworthy bacterial phylum consistently identified was Firmicutes, though the read abundances were typically below 10%. Of interest is an association between Wolbachia presence and higher Alphaproteobacteria representation in the microbiomes, suggesting that the presence of Wolbachia affects the host microbiome. IMPORTANCE Tabanus nigrovittatus greenhead populations contain two supergroups of Wolbachia endosymbionts, members of supergroups A and B. Analysis of the greenhead microbiome using next-generation sequencing revealed that the majority of bacterial species detected belonged to Gammaproteobacteria, with most of the samples also showing the presence of Spiroplasma, a member of the Mollicutes phylum also known to infect insects. An association between Wolbachia presence and higher Alphaproteobacteria representation in the microbiomes suggests that Wolbachia presence affects the host microbiome composition.
Collapse
|
17
|
Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi. INSECTS 2021; 12:insects12100871. [PMID: 34680640 PMCID: PMC8539649 DOI: 10.3390/insects12100871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Diverse strains of Wolbachia bacteria, carried by many arthropods, as well as some nematodes, interact in many different ways with their hosts. These include male killing, reproductive incompatibility, nutritional supplementation and suppression or enhancement of the transmission of diseases such as dengue and malaria. Consequently, Wolbachia have an important role to play in novel strategies to control human and livestock diseases and their vectors. Similarly, cell lines derived from insect hosts of Wolbachia constitute valuable research tools in this field. During the generation of novel cell lines from mosquito and sand fly vectors, we isolated two strains of Wolbachia and demonstrated their infectivity for cells from a range of other insects and ticks. These new insect cell lines and Wolbachia strains will aid in the fight against mosquitoes, sand flies and, potentially, ticks and the diseases that these arthropods transmit to humans and their domestic animals. Abstract Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host–endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.
Collapse
|
18
|
The Incidence of Wolbachia Bacterial Endosymbiont in Bisexual and Parthenogenetic Populations of the Psyllid Genus Cacopsylla (Hemiptera, Psylloidea). INSECTS 2021; 12:insects12100853. [PMID: 34680622 PMCID: PMC8540236 DOI: 10.3390/insects12100853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022]
Abstract
Wolbachia is one of the most common intracellular bacteria; it infects a wide variety of insects, other arthropods, and some nematodes. Wolbachia is ordinarily transmitted vertically from mother to offspring and can manipulate physiology and reproduction of their hosts in different ways, e.g., induce feminization, male killing, and parthenogenesis. Despite the great interest in Wolbachia, many aspects of its biology remain unclear and its incidence across many insect orders, including Hemiptera, is still poorly understood. In this report, we present data on Wolbachia infection in five jumping plant-lice species (Hemiptera, Psylloidea) of the genus Cacopsylla Ossiannilsson, 1970 with different reproductive strategies and test the hypothesis that Wolbachia mediates parthenogenetic and bisexual patterns observed in some Cacopsylla species. We show that the five species studied are infected with a single Wolbachia strain, belonging to the supergroup B. This strain has also been found in different insect orders (Lepidoptera, Hemiptera, Plecoptera, Orthoptera, Hymenoptera, Diptera) and even in acariform mites (Trombidiformes), suggesting extensive horizontal transmission of Wolbachia between representatives of these taxa. Our survey did not reveal significant differences in infection frequency between parthenogenetic and bisexual populations or between males and females within bisexual populations. However, infection rate varied notably in different Cacopsylla species or within distinct populations of the same species. Overall, we demonstrate that Wolbachia infects a high proportion of Cacopsylla individuals and populations, suggesting the essential role of this bacterium in their biology.
Collapse
|
19
|
Growth and Maintenance of Wolbachia in Insect Cell Lines. INSECTS 2021; 12:insects12080706. [PMID: 34442272 PMCID: PMC8396524 DOI: 10.3390/insects12080706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Wolbachia is an intracellular bacterium that occurs in arthropods and in filarial worms. First described nearly a century ago in the reproductive tissues of Culex pipiens mosquitoes, Wolbachia is now known to occur in roughly 50% of insect species, and has been considered the most abundant intracellular bacterium on earth. In insect hosts, Wolbachia modifies reproduction in ways that facilitate spread of the microbe within the host population, but otherwise is relatively benign. In this “gene drive” capacity, Wolbachia provides a tool for manipulating mosquito populations. In mosquitoes, Wolbachia causes cytoplasmic incompatibility, in which the fusion of egg and sperm nuclei is disrupted, and eggs fail to hatch, depending on the presence/absence of Wolbachia in the parent insects. Recent findings demonstrate that Wolbachia from infected insects can be transferred into mosquito species that do not host a natural infection. When transinfected into Aedes aegypti, an important vector of dengue and Zika viruses, Wolbachia causes cytoplasmic incompatibility and, in addition, decreases the mosquito’s ability to transmit viruses to humans. This review addresses the maintenance of Wolbachia in insect cell lines, which provide a tool for high-level production of infectious bacteria. In vitro technologies will improve use of Wolbachia for pest control, and provide the microbiological framework for genetic engineering of this promising biocontrol agent. Abstract The obligate intracellular microbe, Wolbachia pipientis (Rickettsiales; Anaplasmataceae), is a Gram-negative member of the alpha proteobacteria that infects arthropods and filarial worms. Although closely related to the genera Anaplasma and Ehrlichia, which include pathogens of humans, Wolbachia is uniquely associated with invertebrate hosts in the clade Ecdysozoa. Originally described in Culex pipiens mosquitoes, Wolbachia is currently represented by 17 supergroups and is believed to occur in half of all insect species. In mosquitoes, Wolbachia acts as a gene drive agent, with the potential to modify vector populations; in filarial worms, Wolbachia functions as a symbiont, and is a target for drug therapy. A small number of Wolbachia strains from supergroups A, B, and F have been maintained in insect cell lines, which are thought to provide a more permissive environment than the natural host. When transferred back to an insect host, Wolbachia produced in cultured cells are infectious and retain reproductive phenotypes. Here, I review applications of insect cell lines in Wolbachia research and describe conditions that facilitate Wolbachia infection and replication in naive host cells. Progress in manipulation of Wolbachia in vitro will enable genetic and biochemical advances that will facilitate eventual genetic engineering of this important biological control agent.
Collapse
|
20
|
Manoj RRS, Latrofa MS, Mendoza-Roldan JA, Otranto D. Molecular detection of Wolbachia endosymbiont in reptiles and their ectoparasites. Parasitol Res 2021; 120:3255-3261. [PMID: 34292377 PMCID: PMC8397688 DOI: 10.1007/s00436-021-07237-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022]
Abstract
Wolbachia, a maternally transmitted Gram-negative endosymbiont of onchocercid nematodes and arthropods, has a role in the biology of their host; thus it has been exploited for the filariasis treatment in humans. To assess the presence and prevalence of this endosymbiont in reptiles and their ectoparasites, blood and tail tissue as well as ticks and mites collected from them were molecularly screened for Wolbachia DNA using two sets of primers targeting partial 16S rRNA and Wolbachia surface protein (wsp) genes. Positive samples were screened for the partial 12S rRNA and cytochrome c oxidase subunit 1 (cox1) genes for filarioids. Of the different species of lizards (Podarcis siculus, Podarcis muralis and Lacerta bilineata) and snakes (Elaphe quatuorlineata and Boa constrictor constrictor) screened from three collection sites, only P. siculus scored positive for Wolbachia 16S rRNA. Among ectoparasites collected from reptiles (Ixodes ricinus ticks and Neotrombicula autumnalis, Ophionyssus sauracum and Ophionyssus natricis mites), I. ricinus (n = 4; 2.8%; 95% CI, 0.9–7) from P. siculus, N. autumnalis (n = 2 each; 2.8%; 95% CI, 0.9–6.5) from P. siculus and P. muralis and O. natricis (n = 1; 14.3%; 95% CI, 0.7–55.4) from Boa constrictor constrictor scored positive for Wolbachia DNA. None of the positive Wolbachia samples scored positive for filarioids. This represents the first report of Wolbachia in reptilian hosts and their ectoparasites, which follows a single identification in the intestinal cells of a filarioid associated with a gecko. This data could contribute to better understand the reptile filarioid-Wolbachia association and to unveil the evolutionary pattern of Wolbachia in its filarial host.
Collapse
Affiliation(s)
| | | | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
21
|
Zhang Y, Liu S, Jiang R, Zhang C, Gao T, Wang Y, Liu C, Long Y, Zhang Y, Yang Y. Wolbachia Strain wGri From the Tea Geometrid Moth Ectropis grisescens Contributes to Its Host's Fecundity. Front Microbiol 2021; 12:694466. [PMID: 34349742 PMCID: PMC8326765 DOI: 10.3389/fmicb.2021.694466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Members of the Wolbachia genus manipulate insect-host reproduction and are the most abundant bacterial endosymbionts of insects. The tea Geometrid moth Ectropis grisescens (Warren) (Lepidoptera: Geometridae) is the most devastating insect pest of tea plants [Camellia sinensis (L.) O. Kuntze] in China. However, limited data on the diversity, typing, or phenotypes of Wolbachia in E. grisescens are available. Here, we used a culture-independent method to compare the gut bacteria of E. grisescens and other tea Geometridae moths. The results showed that the composition of core gut bacteria in larvae of the three Geometridae moth species was similar, except for the presence of Wolbachia. Moreover, Wolbachia was also present in adult female E. grisescens samples. A Wolbachia strain was isolated from E. grisescens and designated as wGri. Comparative analyses showed that this strain shared multilocus sequence types and Wolbachia surface protein hypervariable region profiles with cytoplasmic incompatibility (CI)-inducing strains in supergroup B; however, the wGri-associated phenotypes were undetermined. A reciprocal cross analysis showed that Wolbachia-uninfected females mated with infected males resulted in 100% embryo mortality (0% eggs hatched per female). Eggs produced by mating between uninfected males and infected females hatched normally. These findings indicated that wGri induces strong unidirectional CI in E. grisescens. Additionally, compared with uninfected females, Wolbachia-infected females produced approximately 30-40% more eggs. Together, these results show that this Wolbachia strain induces reproductive CI in E. grisescens and enhances the fecundity of its female host. We also demonstrated that wGri potential influences reproductive communication between E. grisescens and Ectropis obliqua through CI.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Song Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Rui Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Chen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tian Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yun Wang
- Lu'an Academy of Agricultural Sciences, Lu'an, China
| | - Cui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yanhua Long
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yinglao Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
22
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021. [PMID: 33945798 DOI: 10.20944/preprints202103.0338.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
23
|
Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, Bordenstein SR, Bordenstein SR. Living in the endosymbiotic world of Wolbachia: A centennial review. Cell Host Microbe 2021; 29:879-893. [PMID: 33945798 PMCID: PMC8192442 DOI: 10.1016/j.chom.2021.03.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
The most widespread intracellular bacteria in the animal kingdom are maternally inherited endosymbionts of the genus Wolbachia. Their prevalence in arthropods and nematodes worldwide and stunning arsenal of parasitic and mutualistic adaptations make these bacteria a biological archetype for basic studies of symbiosis and applied outcomes for curbing human and agricultural diseases. Here, we conduct a summative, centennial analysis of living in the Wolbachia world. We synthesize literature on Wolbachia's host range, phylogenetic diversity, genomics, cell biology, and applications to filarial, arboviral, and agricultural diseases. We also review the mobilome of Wolbachia including phage WO and its essentiality to hallmark reproductive phenotypes in arthropods. Finally, the Wolbachia system is an exemplar for discovery-based science education using biodiversity, biotechnology, and bioinformatics lessons. As we approach a century of Wolbachia research, the interdisciplinary science of this symbiosis stands as a model for consolidating and teaching the integrative rules of endosymbiotic life.
Collapse
Affiliation(s)
- Rupinder Kaur
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA.
| | - J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Karissa L Cross
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexander J Mansueto
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Victoria Stewart
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Sarah R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
24
|
Baião GC, Janice J, Galinou M, Klasson L. Comparative Genomics Reveals Factors Associated with Phenotypic Expression of Wolbachia. Genome Biol Evol 2021; 13:6277727. [PMID: 34003269 DOI: 10.1093/gbe/evab111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is a widespread, vertically transmitted bacterial endosymbiont known for manipulating arthropod reproduction. Its most common form of reproductive manipulation is cytoplasmic incompatibility (CI), observed when a modification in the male sperm leads to embryonic lethality unless a compatible rescue factor is present in the female egg. CI attracts scientific attention due to its implications for host speciation and in the use of Wolbachia for controlling vector-borne diseases. However, our understanding of CI is complicated by the complexity of the phenotype, whose expression depends on both symbiont and host factors. In the present study, we perform a comparative analysis of nine complete Wolbachia genomes with known CI properties in the same genetic host background, Drosophila simulans STC. We describe genetic differences between closely related strains and uncover evidence that phages and other mobile elements contribute to the rapid evolution of both genomes and phenotypes of Wolbachia. Additionally, we identify both known and novel genes associated with the modification and rescue functions of CI. We combine our observations with published phenotypic information and discuss how variability in cif genes, novel CI-associated genes, and Wolbachia titer might contribute to poorly understood aspects of CI such as strength and bidirectional incompatibility. We speculate that high titer CI strains could be better at invading new hosts already infected with a CI Wolbachia, due to a higher rescue potential, and suggest that titer might thus be a relevant parameter to consider for future strategies using CI Wolbachia in biological control.
Collapse
Affiliation(s)
- Guilherme Costa Baião
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessin Janice
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Galinou
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Manoj RRS, Latrofa MS, Epis S, Otranto D. Wolbachia: endosymbiont of onchocercid nematodes and their vectors. Parasit Vectors 2021; 14:245. [PMID: 33962669 PMCID: PMC8105934 DOI: 10.1186/s13071-021-04742-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Background Wolbachia is an obligate intracellular maternally transmitted, gram-negative bacterium which forms a spectrum of endosymbiotic relationships from parasitism to obligatory mutualism in a wide range of arthropods and onchocercid nematodes, respectively. In arthropods Wolbachia produces reproductive manipulations such as male killing, feminization, parthenogenesis and cytoplasmic incompatibility for its propagation and provides an additional fitness benefit for the host to protect against pathogens, whilst in onchocercid nematodes, apart from the mutual metabolic dependence, this bacterium is involved in moulting, embryogenesis, growth and survival of the host. Methods This review details the molecular data of Wolbachia and its effect on host biology, immunity, ecology and evolution, reproduction, endosymbiont-based treatment and control strategies exploited for filariasis. Relevant peer-reviewed scientic papers available in various authenticated scientific data bases were considered while writing the review. Conclusions The information presented provides an overview on Wolbachia biology and its use in the control and/or treatment of vectors, onchocercid nematodes and viral diseases of medical and veterinary importance. This offers the development of new approaches for the control of a variety of vector-borne diseases. Graphic Abstract ![]()
Collapse
Affiliation(s)
| | | | - Sara Epis
- Department of Biosciences and Pediatric CRC 'Romeo Ed Enrica Invernizzi', University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy. .,Faculty of Veterinary Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
26
|
Konecka E, Olszanowski Z. Wolbachia supergroup E found in Hypochthonius rufulus (Acari: Oribatida) in Poland. INFECTION GENETICS AND EVOLUTION 2021; 91:104829. [PMID: 33794350 DOI: 10.1016/j.meegid.2021.104829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 11/19/2022]
Abstract
Data on the spread of intracellular bacteria in oribatid mites (Acari: Oribatida) are scarce. Our work fills a gap in the research on endosymbionts in this group of invertebrates and provides information on Wolbachia infection in Hypochthonius rufulus (Acari: Oribatida) from soil, litter and moss sample collected in south-eastern Poland. This is the first report of Wolbachia in H. rufulus. Phylogeny based on the analysis of the 16S rRNA, gatB, fbpA, gltA, ftsZ and hcpA gene sequences revealed that Wolbachia from H. rufulus represented supergroup E and was related to bacterial endosymbionts of Collembola. The unique sequence within Wolbachia supergroup E was detected for the 16S rRNA gene of the bacteria from H. rufulus. The sequences of Wolbachia 16S rRNA and housekeeping genes have been deposited in publicly available databases and are an important source of molecular data for comparative studies.
Collapse
Affiliation(s)
- Edyta Konecka
- Department of Microbiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
| | - Ziemowit Olszanowski
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
27
|
Fallon AM. DNA recombination and repair in Wolbachia: RecA and related proteins. Mol Genet Genomics 2021; 296:437-456. [PMID: 33507381 DOI: 10.1007/s00438-020-01760-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022]
Abstract
Wolbachia is an obligate intracellular bacterium that has undergone extensive genomic streamlining in its arthropod and nematode hosts. Because the gene encoding the bacterial DNA recombination/repair protein RecA is not essential in Escherichia coli, abundant expression of this protein in a mosquito cell line persistently infected with Wolbachia strain wStri was unexpected. However, RecA's role in the lytic cycle of bacteriophage lambda provides an explanation for retention of recA in strains known to encode lambda-like WO prophages. To examine DNA recombination/repair capacities in Wolbachia, a systematic examination of RecA and related proteins in complete or nearly complete Wolbachia genomes from supergroups A, B, C, D, E, F, J and S was undertaken. Genes encoding proteins including RecA, RecF, RecO, RecR, RecG and Holliday junction resolvases RuvA, RuvB and RuvC are uniformly absent from Wolbachia in supergroup C and have reduced representation in supergroups D and J, suggesting that recombination and repair activities are compromised in nematode-associated Wolbachia, relative to strains that infect arthropods. An exception is filarial Wolbachia strain wMhie, assigned to supergroup F, which occurs in a nematode host from a poikilothermic lizard. Genes encoding LexA and error-prone polymerases are absent from all Wolbachia genomes, suggesting that the SOS functions induced by RecA-mediated activation of LexA do not occur, despite retention of genes encoding a few proteins that respond to LexA induction in E. coli. Three independent E. coli accessions converge on a single Wolbachia UvrD helicase, which interacts with mismatch repair proteins MutS and MutL, encoded in nearly all Wolbachia genomes. With the exception of MutL, which has been mapped to a eukaryotic association module in Phage WO, proteins involved in recombination/repair are uniformly represented by single protein annotations. Putative phage-encoded MutL proteins are restricted to Wolbachia supergroups A and B and show higher amino acid identity than chromosomally encoded MutL orthologs. This analysis underscores differences between nematode and arthropod-associated Wolbachia and describes aspects of DNA metabolism that potentially impact development of procedures for transformation and genetic manipulation of Wolbachia.
Collapse
Affiliation(s)
- Ann M Fallon
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul, MN, 55108, USA.
| |
Collapse
|
28
|
Lefoulon E, Foster JM, Truchon A, Carlow CKS, Slatko BE. The Wolbachia Symbiont: Here, There and Everywhere. Results Probl Cell Differ 2021; 69:423-451. [PMID: 33263882 DOI: 10.1007/978-3-030-51849-3_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wolbachia symbionts, first observed in the 1920s, are now known to be present in about 30-70% of tested arthropod species, in about half of tested filarial nematodes (including the majority of human filarial nematodes), and some plant-parasitic nematodes. In arthropods, they are generally viewed as parasites while in nematodes they appear to be mutualists although this demarcation is not absolute. Their presence in arthropods generally leads to reproductive anomalies, while in nematodes, they are generally required for worm development and reproduction. In mosquitos, Wolbachia inhibit RNA viral infections, leading to populational reductions in human RNA virus pathogens, whereas in filarial nematodes, their requirement for worm fertility and survival has been channeled into their use as drug targets for filariasis control. While much more research on these ubiquitous symbionts is needed, they are viewed as playing significant roles in biological processes, ranging from arthropod speciation to human health.
Collapse
Affiliation(s)
- Emilie Lefoulon
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA
| | - Jeremy M Foster
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA
| | - Alex Truchon
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA
| | - C K S Carlow
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA
| | - Barton E Slatko
- Molecular Parasitology Group, New England Biolabs, Inc., Ipswich, MA, USA.
| |
Collapse
|
29
|
Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, Beckmann JF, Krueger LM, Macaluso KR, Azad AF, Gillespie JJ. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646. [PMID: 33362982 PMCID: PMC7750005 DOI: 10.7717/peerj.10646] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.
Collapse
Affiliation(s)
| | - Victoria I. Verhoeve
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | | - Mariah Plumer
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Spiridon E. Sevdalis
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - John F. Beckmann
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Laura M. Krueger
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Kevin R. Macaluso
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Abdu F. Azad
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Joseph J. Gillespie
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| |
Collapse
|
30
|
Lefoulon E, Clark T, Guerrero R, Cañizales I, Cardenas-Callirgos JM, Junker K, Vallarino-Lhermitte N, Makepeace BL, Darby AC, Foster JM, Martin C, Slatko BE. Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microb Genom 2020; 6:mgen000487. [PMID: 33295865 PMCID: PMC8116671 DOI: 10.1099/mgen.0.000487] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/14/2020] [Indexed: 01/13/2023] Open
Abstract
Wolbachia are alpha-proteobacteria symbionts infecting a large range of arthropod species and two different families of nematodes. Interestingly, these endosymbionts are able to induce diverse phenotypes in their hosts: they are reproductive parasites within many arthropods, nutritional mutualists within some insects and obligate mutualists within their filarial nematode hosts. Defining Wolbachia 'species' is controversial and so they are commonly classified into 17 different phylogenetic lineages, termed supergroups, named A-F, H-Q and S. However, available genomic data remain limited and not representative of the full Wolbachia diversity; indeed, of the 24 complete genomes and 55 draft genomes of Wolbachia available to date, 84 % belong to supergroups A and B, exclusively composed of Wolbachia from arthropods. For the current study, we took advantage of a recently developed DNA-enrichment method to produce four complete genomes and two draft genomes of Wolbachia from filarial nematodes. Two complete genomes, wCtub and wDcau, are the smallest Wolbachia genomes sequenced to date (863 988 bp and 863 427 bp, respectively), as well as the first genomes representing supergroup J. These genomes confirm the validity of this supergroup, a controversial clade due to weaknesses of the multilocus sequence typing approach. We also produced the first draft Wolbachia genome from a supergroup F filarial nematode representative (wMhie), two genomes from supergroup D (wLsig and wLbra) and the complete genome of wDimm from supergroup C. Our new data confirm the paradigm of smaller Wolbachia genomes from filarial nematodes containing low levels of transposable elements and the absence of intact bacteriophage sequences, unlike many Wolbachia from arthropods, where both are more abundant. However, we observe differences among the Wolbachia genomes from filarial nematodes: no global co-evolutionary pattern, strong synteny between supergroup C and supergroup J Wolbachia, and more transposable elements observed in supergroup D Wolbachia compared to the other supergroups. Metabolic pathway analysis indicates several highly conserved pathways (haem and nucleotide biosynthesis, for example) as opposed to more variable pathways, such as vitamin B biosynthesis, which might be specific to certain host-symbiont associations. Overall, there appears to be no single Wolbachia-filarial nematode pattern of co-evolution or symbiotic relationship.
Collapse
Affiliation(s)
- Emilie Lefoulon
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
- Present address: School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Travis Clark
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| | - Ricardo Guerrero
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Israel Cañizales
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
- Ediciones La Fauna KPT SL, Madrid, Spain
| | - Jorge Manuel Cardenas-Callirgos
- Neotropical Parasitology Research Network - NEOPARNET, Asociación Peruana de Helmintología e Invertebrados Afines – APHIA, Peru
| | - Kerstin Junker
- Epidemiology, Parasites and Vectors, ARC-Onderstepoort Veterinary Institute, Onderstepoort 0110, South Africa
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jeremy M. Foster
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d’Histoire Naturelle, CNRS, Paris, France
| | - Barton E. Slatko
- Molecular Parasitology Group, New England Biolabs, Ipswich, MA, USA
| |
Collapse
|
31
|
Sanaei E, Charlat S, Engelstädter J. Wolbachia
host shifts: routes, mechanisms, constraints and evolutionary consequences. Biol Rev Camb Philos Soc 2020; 96:433-453. [DOI: 10.1111/brv.12663] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ehsan Sanaei
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| | - Sylvain Charlat
- Laboratoire de Biométrie et Biologie Evolutive Université de Lyon, Université Lyon 1, CNRS, UMR 5558 43 boulevard du 11 novembre 1918 Villeurbanne F‐69622 France
| | - Jan Engelstädter
- School of Biological Sciences The University of Queensland Saint Lucia Brisbane QLD 4067 Australia
| |
Collapse
|
32
|
Laidoudi Y, Levasseur A, Medkour H, Maaloum M, Ben Khedher M, Sambou M, Bassene H, Davoust B, Fenollar F, Raoult D, Mediannikov O. An Earliest Endosymbiont, Wolbachia massiliensis sp. nov., Strain PL13 from the Bed Bug ( Cimex hemipterus), Type Strain of a New Supergroup T. Int J Mol Sci 2020; 21:E8064. [PMID: 33138055 PMCID: PMC7662661 DOI: 10.3390/ijms21218064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
The symbiotic Wolbachia are the most sophisticated mutualistic bacterium among all insect-associated microbiota. Wolbachia-insect relationship fluctuates from the simple facultative/parasitic to an obligate nutritional-mutualistic association as it was the case of the bedbug-Wolbachia from Cimexlectularius. Understanding this association may help in the control of associated arthropods. Genomic data have proven to be reliable tools in resolving some aspects of these symbiotic associations. Although, Wolbachia appear to be fastidious or uncultivated bacteria which strongly limited their study. Here we proposed Drosophila S2 cell line for the isolation and culture model to study Wolbachia strains. We therefore isolated and characterized a novel Wolbachia strain associated with the bedbug Cimexhemipterus, designated as wChem strain PL13, and proposed Wolbachiamassiliensis sp. nov. strain wChem-PL13 a type strain of this new species from new supergroup T. Phylogenetically, T-supergroup was close to F and S-supergroups from insects and D-supergroup from filarial nematodes. We determined the 1,291,339-bp genome of wChem-PL13, which was the smallest insect-associated Wolbachia genomes. Overall, the wChem genome shared 50% of protein coding genes with the other insect-associated facultative Wolbachia strains. These findings highlight the diversity of Wolbachia genotypes as well as the Wolbachia-host relationship among Cimicinae subfamily. The wChem provides folate and riboflavin vitamins on which the host depends, while the bacteria had a limited translation mechanism suggesting its strong dependence to its hosts. However, the clear-cut distinction between mutualism and parasitism of the wChem in C. hemipterus cannot be yet ruled out.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille Univ, IRD, AP-HM, MEPHI, 13385 Marseille, France; (Y.L.); (A.L.); (H.M.); (M.B.K.); (B.D.); (D.R.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| | - Anthony Levasseur
- Aix Marseille Univ, IRD, AP-HM, MEPHI, 13385 Marseille, France; (Y.L.); (A.L.); (H.M.); (M.B.K.); (B.D.); (D.R.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| | - Hacène Medkour
- Aix Marseille Univ, IRD, AP-HM, MEPHI, 13385 Marseille, France; (Y.L.); (A.L.); (H.M.); (M.B.K.); (B.D.); (D.R.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| | - Mossaab Maaloum
- Laboratory of Biology and Health, Faculty of Sciences Ben M’sik, Hassan II University, Sidi Othmane, Casablanca 7955, Morocco;
| | - Mariem Ben Khedher
- Aix Marseille Univ, IRD, AP-HM, MEPHI, 13385 Marseille, France; (Y.L.); (A.L.); (H.M.); (M.B.K.); (B.D.); (D.R.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| | - Masse Sambou
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, 13385 Marseille, France; (M.S.); (H.B.)
- Campus Commun UCAD-IRD of Hann, Dakar 10200, Senegal
| | - Hubert Bassene
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, 13385 Marseille, France; (M.S.); (H.B.)
- Campus Commun UCAD-IRD of Hann, Dakar 10200, Senegal
| | - Bernard Davoust
- Aix Marseille Univ, IRD, AP-HM, MEPHI, 13385 Marseille, France; (Y.L.); (A.L.); (H.M.); (M.B.K.); (B.D.); (D.R.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| | - Florence Fenollar
- IHU Méditerranée Infection, 13385 Marseille, France;
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France, 13385 Marseille, France; (M.S.); (H.B.)
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, 13385 Marseille, France; (Y.L.); (A.L.); (H.M.); (M.B.K.); (B.D.); (D.R.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, AP-HM, MEPHI, 13385 Marseille, France; (Y.L.); (A.L.); (H.M.); (M.B.K.); (B.D.); (D.R.)
- IHU Méditerranée Infection, 13385 Marseille, France;
| |
Collapse
|
33
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
34
|
Isolation and Propagation of Laboratory Strains and a Novel Flea-Derived Field Strain of Wolbachia in Tick Cell Lines. Microorganisms 2020; 8:microorganisms8070988. [PMID: 32630209 PMCID: PMC7409115 DOI: 10.3390/microorganisms8070988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Wolbachia are intracellular endosymbionts of several invertebrate taxa, including insects and nematodes. Although Wolbachia DNA has been detected in ticks, its presence is generally associated with parasitism by insects. To determine whether or not Wolbachia can infect and grow in tick cells, cell lines from three tick species, Ixodes scapularis, Ixodes ricinus and Rhipicephalus microplus, were inoculated with Wolbachia strains wStri and wAlbB isolated from mosquito cell lines. Homogenates prepared from fleas collected from cats in Malaysia were inoculated into an I. scapularis cell line. Bacterial growth and identity were monitored by microscopy and PCR amplification and sequencing of fragments of Wolbachia genes. The wStri strain infected Ixodes spp. cells and was maintained through 29 passages. The wAlbB strain successfully infected Ixodes spp. and R. microplus cells and was maintained through 2–5 passages. A novel strain of Wolbachia belonging to the supergroup F, designated wCfeF, was isolated in I. scapularis cells from a pool of Ctenocephalides sp. cat fleas and maintained in vitro through two passages over nine months. This is the first confirmed isolation of a Wolbachia strain from a flea and the first isolation of any Wolbachia strain outside the “pandemic” A and B supergroups. The study demonstrates that tick cells can host multiple Wolbachia strains, and can be added to panels of insect cell lines to improve success rates in isolation of field strains of Wolbachia.
Collapse
|