1
|
Yu J, Pu H, Sun DW. Stacked long and short-term memory (SLSTM) - assisted terahertz spectroscopy combined with permutation importance for rapid red wine varietal identification. Talanta 2025; 291:127650. [PMID: 40037161 DOI: 10.1016/j.talanta.2025.127650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
Mislabeling of low-value red wines as high-value ones is common, which seriously undermines consumer rights and interests. However, traditional sensory and chemical analysis methods have limitations, which highlights the need for novel detection techniques. To address above issues, terahertz time-domain spectroscopy (THz-TDS) combined with deep learning (DL) was employed to distinguish different red wine varieties quickly and non-destructively, contributing to correctly identifying red wine labels. Compared with the other models, the stacked long and short-term memory (SLSTM) model based on the first derivative (1-st der) spectra performed the best (Precision: 85.72 %, Recall: 85.61 %, F1-score: 85.59 %, Accuracy: 85.61 %). In addition, feature selection (FS) was used to explore the feasibility of improving model accuracy and reducing prediction time by eliminating redundant frequencies. Compared to full frequency, the 1-st der-SLSTM model based on permutation importance (PI) performed slightly lower (Precision: 84.42 %, Recall: 84.10 %, F1-score: 84.14 %, Accuracy: 84.18 %), but the prediction time was reduced by 2 s. Therefore, different models can be selected based on different detection needs by weighing accuracy and prediction time. In conclusion, the current research demonstrates that the SLSTM-assisted THz-TDS technology provides a novel approach for fast, accurate and non-destructive for fast, accurate and non-destructive discrimination of red wine labels, facilitating the maintenance of market discipline.
Collapse
Affiliation(s)
- Jingxiao Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
2
|
Zeng R, Zheng M, Gao Y, Hu J, Ahmad J, Farooq MU, Liu S, Lin X, Allakhverdiev SI, Shabala S. Differential gene expression and metabolic pathways in Toona sinensis: Influence on colour and aroma. PHYSIOLOGIA PLANTARUM 2025; 177:e70146. [PMID: 40069569 PMCID: PMC11896931 DOI: 10.1111/ppl.70146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 03/15/2025]
Abstract
Toona sinensis, a plant species renowned for its culinary and medicinal properties, exhibits diverse colour variations that contribute to its aesthetic appeal and commercial value. Understanding the molecular mechanisms underlying colour and aroma traits in Toona sinensis is crucial for breeding programs and quality regulation in agriculture and the food industry. The present investigation included a comprehensive analysis of the transcriptomic and metabolomic profiles of Toona sinensis with different colours, including green, red, and red leaves with green stems. Metabolic analysis revealed that the flavonoid biosynthesis pathway governs the colour distinction between green and red Toona sinensis. The top 10 metabolites influenced by transcriptome include terpenoids (5), heterocyclic compounds (1), phenol (1), ketone (1), aldehyde (1), and alcohol (1). Fifteen highly expressed genes impacted by phenylpropanoid, sesquiterpenoid, and triterpenoid biosynthesis in coloured Toona sinensis. Functional annotation and pathway analysis revealed that terpene metabolites are predominantly synthesized via terpene metabolic pathway, involving eight key gene families. This study underscores the importance of multi-omics approaches in unravelling the genetic and metabolic basis of phenotypic traits in plant species aimed at improving colour, aroma, and nutritional quality in plants and derived products. HIGHLIGHTS: Flavonoid biosynthesis pathway governs the colour distinction between green and red Toona sinensis. The top 10 metabolites influenced by transcriptome include five terpenoids, one heterocyclic compound, one phenol, one ketone, one aldehyde, and one alcohol. Fifteen highly expressed genes impacted by phenylpropanoid, sesquiterpenoid, and triterpenoid biosynthesis in coloured Toona sinensis. Terpene metabolites are predominantly synthesized via the terpene metabolic pathway, involving eight key gene families. The net photosynthetic rate and intercellular CO2 concentration are relatively high in the red Toon sinensis morph.
Collapse
Affiliation(s)
- Rui Zeng
- College of Chemistry and Life ScienceChengdu Normal UniversityChengduSichuanChina
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life SciencesChengdu Normal UniversityChengduChina
| | - Mingmin Zheng
- College of Chemistry and Life ScienceChengdu Normal UniversityChengduSichuanChina
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life SciencesChengdu Normal UniversityChengduChina
| | - Yunhong Gao
- Sichuan Yizhong Agricultural Development Co., LtdChengduChina
| | | | - Javed Ahmad
- Wheat Research InstituteAyub Agricultural Research Institute FaisalabadPunjabPakistan
| | - Muhammad Umer Farooq
- Wheat Research InstituteAyub Agricultural Research Institute FaisalabadPunjabPakistan
| | - Songqing Liu
- College of Chemistry and Life ScienceChengdu Normal UniversityChengduSichuanChina
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life SciencesChengdu Normal UniversityChengduChina
| | - Xiangmei Lin
- College of Chemistry and Life ScienceChengdu Normal UniversityChengduSichuanChina
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia
- Faculty of Engineering and Natural SciencesBahcesehir UniversityIstanbulTurkey
| | - Sergey Shabala
- School of Biological ScienceUniversity of Western AustraliaCrawleyAustralia
- International Research Centre for Environmental Membrane BiologyFoshan UniversityFoshanChina
| |
Collapse
|
3
|
Guan Y, Sun Y, Yuan N, Zhang R, Lu S, Li Q, Lu X, Pang L, Hu W. The Effects of Nisin Treatment on the Phenylpropanoid and Physiological Mechanisms of Fresh-Cut Pumpkin. Foods 2025; 14:733. [PMID: 40077438 PMCID: PMC11898963 DOI: 10.3390/foods14050733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Pumpkin is rich in nutritional value, and it can be eaten as a vegetable or as a staple food, making it popular among modern consumers. However, after fresh cutting, pumpkins are susceptible to moisture loss, softening, microbial contamination, and browning, all of which significantly compromise their quality during storage. Therefore, it is essential to develop effective preservation techniques for maintaining the quality of fresh-cut pumpkins. Nisin, a safe natural preservative, has not yet been studied for use on fresh-cut pumpkins. This study examines the effects of nisin treatment on the quality of fresh-cut pumpkins and then explores preservation mechanisms based on physiological and metabolomic analysis. Results show that 0.4 g/L nisin treatment effectively delays surface browning without impacting odor and maintains microbial safety throughout storage. Additionally, nisin significantly enhances the activities of phenylalanine ammonia-lyase, cinnamate-4-hydroxylase, 4-coumarate-CoA ligase, and cinnamyl alcohol dehydrogenase, thereby promoting the accumulation of total phenols and carotenoids. The result of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of differential metabolites between control and nisin-treated groups reveals that the most significant pathways affected by nisin treatment are amino acid metabolism and phenylpropanoid metabolism, which suggests that nisin enhances preservation by modulating phenylpropanoid metabolism and alleviating amino acid metabolism. This study provides a theoretical basis and offers new insights into improving the storage quality of fresh-cut pumpkins.
Collapse
Affiliation(s)
- Yuge Guan
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Yan Sun
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Ning Yuan
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Rentao Zhang
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Sainan Lu
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Qianqian Li
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Xinghua Lu
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Linjiang Pang
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China (X.L.)
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
4
|
VanderWeide J, Pico J, Petersen M, Yan Y, Zandberg WF, Castellarin SD. Free monoterpenoid accumulation in 'Riesling' (Vitis vinifera L.) is light-sensitive and uncoupled from grape hexose accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109212. [PMID: 39642439 DOI: 10.1016/j.plaphy.2024.109212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 12/09/2024]
Abstract
Monoterpenoid biosynthesis mirrors hexoses accumulation in grape berries during ripening and is affected by environmental factors such as solar radiation. However, no research has confirmed the dependency of monoterpenoid accumulation on grape maturity. Using potted 'Riesling' (Vitis vinifera L.) vines, we girdled (GD) shoots at veraison to halt leaf photoassimilate translocation to berries and also utilized light-impenetrable bags to exclude light exposure (LE) to grape clusters to <2 μmol m-2s-1 during ripening. GD and LE were compared to an untreated control (CT), and a combined (GDxLE) treatment. GD caused leaf photosynthetic assimilation to decline from one-week post-treatment until harvest maturity due to feedback inhibition of photosynthesis. This was coupled to a decrease in hexoses and ABA accumulation in GD berries. Meanwhile, LE did not affect photosynthetic assimilation, or hexoses and ABA accumulation. We hypothesized that the accumulation of free and bound monoterpenoids in 'Riesling' berries would also be reduced by GD, if monoterpenoid accumulation was dependent on grape maturity. LE significantly decreased free monoterpenoids compared to CT. However, GD did not alter total free and bound monoterpenoid concentrations. GD decreased free linalool oxide I and II and bound linalool oxide I compared to CT, and increased citral I and II and α-terpineol. Although exogenous jasmonate applications stimulate monoterpenoid biosynthesis in grapes, we showed that endogenous jasmonate concentrations were not altered by GD or LE; therefore, any monoterpenoid modulation by GD and LE treatments was not mediated by endogenous jasmonate levels. This study indicates that free monoterpenoid biosynthesis during ripening is uncoupled from hexose accumulation and is strongly regulated by solar radiation.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Horticulture, Michigan State University, 1066 Bogue St., East Lansing, MI, USA, 48842.
| | - Joana Pico
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Malin Petersen
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Yifan Yan
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Wesley F Zandberg
- Department of Chemistry, University of British Columbia-Okanagan, 3247 Research Road, Kelowna, BC, V1V 1V7, Canada.
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
5
|
Zheng Y, Yu Q, Lu A, Chen X, Yang K, Zhang J, Huang Y, Liu R. Comparative transcriptome analysis reveals the key role of photosynthetic traits in the formation of differences in photothermal sensitivity in tobacco. BMC Genomics 2025; 26:84. [PMID: 39875828 PMCID: PMC11773975 DOI: 10.1186/s12864-025-11253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND The photothermal sensitivity of tobacco refers to how tobacco plants respond to variations in the photothermal conditions of their growth environment. The degree of this sensitivity is crucial for determining the optimal planting regions for specific varieties, as well as for improving the quality and yield of tobacco leaves. However, the precise mechanisms underlying the development of photothermal sensitivity in tobacco remain unclear. RESULTS In this study, two tobacco varieties with significant differences in sensitivity, previously selected using a photothermal sensitivity model, were chosen as materials. Two experimental sites with considerable differences in photothermal conditions were selected for planting. The aim was to comparatively analyze the changes in agronomic traits, biomass, and physiological indices of the varieties under different experimental conditions, as well as to conduct transcriptome analyses. The transcriptome results revealed significant enrichment of differentially expressed genes (DEGs) related to photosynthesis, plant hormone signal transduction, and flavonoid biosynthesis pathways. In the photosynthesis and plant hormone signaling pathways, genes such as Lhcb, aldo, AUX/IAA, and SAUR were significantly upregulated. This upregulation promoted photosynthetic efficiency by enhancing the process of photosynthesis. However, this promotion also led to the increased production of harmful substances such as hydrogen peroxide and superoxide radicals, which can damage cellular structure and function. In the flavonoid biosynthesis pathway, genes such as FLS, CHI, and PAL were significantly upregulated, which enhanced the plant's antioxidant capacity. This effectively mitigated the harmful effects of oxidative stress, helping to maintain normal photosynthetic function. CONCLUSION The findings of this study suggest that the photosynthetic capacity of tobacco plants is enhanced through the coordinated regulation of the photosynthesis, plant hormone signaling, and flavonoid biosynthesis pathways. This enhancement plays a pivotal role in modulating the plants' photothermal adaptability, ultimately contributing to variations in their photothermal sensitivity.
Collapse
Affiliation(s)
- Yanfeng Zheng
- Tobacco College of Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality Research in Guizhou Province, Guiyang, China
| | - Qiwei Yu
- Bijie Tobacco Company, Guiyang, China
| | - Anbin Lu
- Tobacco College of Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality Research in Guizhou Province, Guiyang, China
| | - Xiue Chen
- Bijie Tobacco Company, Guiyang, China
| | - Kai Yang
- Bijie Tobacco Company, Guiyang, China
| | - Jingyao Zhang
- Tobacco College of Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality Research in Guizhou Province, Guiyang, China
| | - Ying Huang
- Tobacco College of Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality Research in Guizhou Province, Guiyang, China
| | - Renxiang Liu
- Tobacco College of Guizhou University, Guiyang, China.
- Key Laboratory of Tobacco Quality Research in Guizhou Province, Guiyang, China.
| |
Collapse
|
6
|
Rodriguez-Izquierdo A, Carrasco D, Valledor L, Bota J, López-Hidalgo C, Revilla MA, Arroyo-Garcia R. The scion-driven transcriptomic changes guide the resilience of grafted near-isohydric grapevines under water deficit. HORTICULTURE RESEARCH 2025; 12:uhae291. [PMID: 39906169 PMCID: PMC11789524 DOI: 10.1093/hr/uhae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/03/2024] [Indexed: 02/06/2025]
Abstract
The large diversity of grapevine cultivars includes genotypes more tolerant to water deficit than others. Widely distributed cultivars, like Merlot, are more sensitive to water deprivation than local cultivars like Callet, which are more adapted to water deficit due to their Mediterranean origin. Despite their tolerance, adaptation to water deficit influenced by grafting in rootstocks like 110 Richter is key to facing drought in vineyards, defining the scion-rootstock relationship. To understand these differences, we explored transcriptomic, metabolic, hormonal and physiological responses under three levels of water deficit (mild, high, and extreme), using 110 Richter as the rootstock in both cultivars. Results revealed that sensitivity to abscisic acid (ABA) is essential for water deficit tolerance in the aerial part, guiding root responses. Callet/110 Richter activates more gene expression patterns in response to ABA, reducing water loss compared to Merlot/110 Richter in both aerial and root parts. This modulation in Callet/110 Richter involves regulating metabolic pathways to increase cell turgor, reducing photosynthesis, and producing molecules like polyphenols or flavonoids to respond to oxidative stress. In contrast, Merlot/110 Richter shows a lack of specific response, especially in the roots, indicating less resilience to water stress. Therefore, selecting genotypes more sensitive to ABA and their interaction with rootstocks is key for managing vineyards in future climate change scenarios.
Collapse
Affiliation(s)
- Alberto Rodriguez-Izquierdo
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC – Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - David Carrasco
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC – Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071 Oviedo, Spain
| | - Josefina Bota
- Research Group on Plant Biology under Mediterranean Conditions (PlantMed), Biology Department, Agro-Environmental and Water Economy Institute-Universitat de les Illes Balears (INAGEA), Universitat de les Illes Balears (UIB), Carretera de Valldemossa, km 7.5, 07122 Palma, Spain
| | - Cristina López-Hidalgo
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071 Oviedo, Spain
| | - Maria A Revilla
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071 Oviedo, Spain
| | - Rosa Arroyo-Garcia
- Centro de Biotecnología y Genómica de Plantas (CBGP-INIA), CSIC – Universidad Politécnica de Madrid, Campus Montegancedo, Madrid, Spain
| |
Collapse
|
7
|
Wang Q, Du B, Bai Y, Chen Y, Li F, Du J, Wu X, Yan L, Bai Y, Chai G. Saline-alkali stress affects the accumulation of proanthocyanidins and sesquiterpenoids via the MYB5-ANR/TPS31 cascades in the rose petals. HORTICULTURE RESEARCH 2024; 11:uhae243. [PMID: 39534410 PMCID: PMC11554761 DOI: 10.1093/hr/uhae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/18/2024] [Indexed: 11/16/2024]
Abstract
Rose (Rosa rugosa) petals are rich in diverse secondary metabolites, which have important physiological functions as well as great economic values. Currently, it remains unclear how saline and/or alkaline stress(es) influence the accumulation of secondary metabolites in rose. In this study, we analyzed the transcriptome and metabolite profiles of rose petals under aline-alkali stress and uncovered the induction mechanism underlying major metabolites. Dramatic changes were observed in the expression of 1363 genes and the abundances of 196 metabolites in petals in response to saline-alkali stress. These differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) are mainly associated with flavonoid and terpenoid metabolism and the reconstruction of cell walls. Of them, TERPENE SYNTHASE 31 (TPS31) overexpression in tobacco leaves driven by its own promoter resulted in significant alterations in the levels of diverse terpenoids, which were differentially influenced by saline-alkali stress. An integrated analysis of metabolomic and transcriptomic data revealed a high correlation between the abundances of flavonoids/terpenoids and the expression of the transcription factor MYB5. MYB5 may orchestrate the biosynthesis of sesquiterpenoids and proanthocyanidins through direct regulation of TPS31 and ANR expression under aline-alkali stress. Our finding facilitates improving the bioactive substance accumulation of rose petals by metabolic engineering.
Collapse
Affiliation(s)
- Qiao Wang
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
| | - Baoquan Du
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Yujing Bai
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Yan Chen
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Forestry College, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Saihan District, Huhhot 010018, China
| | - Feng Li
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Jinzhe Du
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Xiuwen Wu
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, No. 42 Wenhua Dong Road, Lixia District, Jinan 250014, China
| | - Yue Bai
- Forestry College, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Saihan District, Huhhot 010018, China
| | - Guohua Chai
- College of Resources and Environment, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, No. 7 Zhihui Road, Guangrao County, Dongying 257000, China
| |
Collapse
|
8
|
Bono M, Ferrer‐Gallego R, Pou A, Rivera‐Moreno M, Benavente JL, Mayordomo C, Deis L, Carbonell‐Bejerano P, Pizzio GA, Navarro‐Payá D, Matus JT, Martinez‐Zapater JM, Albert A, Intrigliolo DS, Rodriguez PL. Chemical activation of ABA signaling in grapevine through the iSB09 and AMF4 ABA receptor agonists enhances water use efficiency. PHYSIOLOGIA PLANTARUM 2024; 176:e14635. [PMID: 39588706 PMCID: PMC11590044 DOI: 10.1111/ppl.14635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Grapevine (Vitis vinifera L.) is the world's third most valuable horticultural crop, and the current environmental scenario is massively shifting the grape cultivation landscape. The increase in heatwaves and drought episodes alter fruit ripening, compromise grape yield and vine survival, intensifying the pressure on using limited water resources. ABA is a key phytohormone that reduces canopy transpiration and helps plants to cope with water deficit. However, the exogenous application of ABA is impractical because it suffers fast catabolism, and UV-induced isomerization abolishes its bioactivity. Consequently, there is an emerging field for developing molecules that act as ABA receptor agonists and modulate ABA signaling but have a longer half-life. We have explored the foliar application of the iSB09 and AMF4 agonists in the two grapevine cultivars cv. 'Bobal' and 'Tempranillo' to induce an ABA-like response to facilitate plant adaptation to drought. The results indicate that iSB09 and AMF4 act through the VviPYL1-like, VviPYL4-like, and VviPYL8-like ABA receptors to trigger stomatal closure, reduce plant transpiration, and increase water use efficiency. Structural and bioinformatic analysis of VviPYL1 in complex with ABA or these agonists revealed key structural determinants for efficient ligand binding, providing a mechanistic framework to understand receptor activation by the ligands. Physiological analyses further demonstrated that iSB09 has a more sustained effect on reducing transpiration than ABA, and agonist spraying of grapevine leaves protected PSII during drought stress. These findings offer innovative approaches to strengthen the vine's response to water stress and reduce plant consumptive water use under limited soil water conditions.
Collapse
Affiliation(s)
- Mar Bono
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas‐Universidad Politécnica de ValenciaValencia
| | - Raul Ferrer‐Gallego
- Centro de Investigaciones sobre Desertificación (CIDE), Consejo Superior de Investigaciones Científicas‐Universitat de València‐Generalitat ValencianaMoncada (Valencia)
| | - Alicia Pou
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC‐Gobierno de la Rioja‐Universidad de La Rioja, Finca La GrajeraLogroño
| | - Maria Rivera‐Moreno
- Instituto de Química‐Física “Blas Cabrera” (IQF) Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Juan L. Benavente
- Instituto de Química‐Física “Blas Cabrera” (IQF) Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Cristian Mayordomo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas‐Universidad Politécnica de ValenciaValencia
| | - Leonor Deis
- Fisiología Vegetal y Microbiología, Instituto de Biología Agrícola de Mendoza y Cátedra de Fisiología Vegetal, Facultad de Ciencias Agrarias, CONICET‐Universidad Nacional de CuyoMendozaArgentina
| | - Pablo Carbonell‐Bejerano
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC‐Gobierno de la Rioja‐Universidad de La Rioja, Finca La GrajeraLogroño
| | - Gaston A. Pizzio
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València‐CSICPaternaValenciaSpain
| | - David Navarro‐Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València‐CSICPaternaValenciaSpain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València‐CSICPaternaValenciaSpain
| | - Jose Miguel Martinez‐Zapater
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC‐Gobierno de la Rioja‐Universidad de La Rioja, Finca La GrajeraLogroño
| | - Armando Albert
- Instituto de Química‐Física “Blas Cabrera” (IQF) Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Diego S. Intrigliolo
- Centro de Investigaciones sobre Desertificación (CIDE), Consejo Superior de Investigaciones Científicas‐Universitat de València‐Generalitat ValencianaMoncada (Valencia)
| | - Pedro L. Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas‐Universidad Politécnica de ValenciaValencia
| |
Collapse
|
9
|
Wang L, He P, Hui M, Li H, Sun A, Yin H, Gao X. Metabolomics combined with transcriptomics and physiology reveals the regulatory responses of soybean plants to drought stress. Front Genet 2024; 15:1458656. [PMID: 39512800 PMCID: PMC11541050 DOI: 10.3389/fgene.2024.1458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Drought, a prevalent environmental stressor, has had significant consequences on soybean (Glycine max L.), notably impeding its growth and production. Therefore, it is crucial to gain insight into the regulatory responses of soybean plants exposed to drought stress during soybean flowering in the field. In this study, the cultivar 'Liaodou 15' was performed light drought (LD, 24.3% soil moisture content), moderate drought (MD, 20.6% soil moisture content) and severe drought (SD, 16.9% soil moisture content) treatments at flowering stages of soybean and then rehydrated (30% soil moisture content) until harvest. The yield-related indicators were measured and revealed that MD and SD treatments significantly reduced 6.3% and 10.8% of the 100-grain weight. Soybean plants subjected to three drought stresses showed that net photosynthetic rates were 20.8%, 51.5% and 71.8% lower in LD, MD and SD than that of CK. The WUE increased by 31.8%, 31.5% and 18.8% under three drought stress treatments compared to CK. In addition, proline content was 25.94%, 41.01% and 65.43% greater than that of CK under three drought stress treatments. The trend of the MDA content was consistent with that of the proline content. SOD activity was significantly increasing by 10.86%, 46.73% and 14.54% under three drought stress treatments. The activity of CAT in the SD treatment increased by 49.28%. All the indices recovered after rehydration. Furthermore, 54,78 and 51 different expressed metabolomics (DEMs) were identified in the LDCK/LD, MDCK/MD and SDCK/SD groups, respectively. There were 1,211, 1,265 and 1,288 different expressed genes (DEGs) were upregulated and 1,003, 1,819 and 1,747 DEGs were downregulated. Finally, combined transcriptomic and metabolomic analysis suggested that 437 DEGs and 24 DEMs of LDCK/LD group, 741 DEGs and 35 DEMs of MDCK/MD group, 633 DEGs and 23 DEMs of SDCK/SD group, were highly positively correlated in soybean plants under drought stress. Drought stress induced the expression of the PAO1, PAO4, PAO5 and P5CS genes to promote the accumulation of spermidine and proline. Our study elucidates the responses of drought-stressed soybean plants in the field and provides a genetic basis for the breeding of drought-tolerant soybean plants.
Collapse
Affiliation(s)
- Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| | - Peijin He
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Mengmeng Hui
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- Liaoyang Meteorological Bureau, Liaoyang, Liaoning, China
| | - Anni Sun
- Anshan Meteorological Bureau, Anshan, Liaoning, China
| | - Hong Yin
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
10
|
Luo M, Feng B, Zhu W, Liang Z, Xu W, Fu J, Miao L, Dong Z. Proteomics and metabolomics analysis of American shad (Alosa sapidissima) liver responses to heat stress. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111686. [PMID: 38936462 DOI: 10.1016/j.cbpa.2024.111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
The dramatic changes in the global climate pose a major threat to the survival of many organisms, including fish. To date, the regulatory mechanisms behind the physiological responses of fish to temperature changes have been studied, and a comprehensive analysis of the regulatory mechanisms of temperature tolerance will help to propose effective strategies for fish to cope with global warming. In this study, we investigated the expression profiles of proteins and metabolites in liver tissues of American shad (Alosa sapidissima) corresponding to different water temperatures (24 °C, 27 °C and 30 °C) at various times (1-month intervals) under natural culture conditions. Proteomic analysis showed that the expression levels of the heat shock protein family (e.g. HSPE1, HSP70, HSPA5 and HSPA.1) increase significantly with temperature and that many differentially expressed proteins were highly enriched especially in pathways related to the endoplasmic reticulum, oxidative phosphorylation and glycolysis/gluconeogenesis processes. In addition, the results of conjoint metabolomics and proteomics analysis suggested that the contents of several important amino acids and chemical compounds, including L-serine, L-isoleucine, L-cystine, choline and betaine, changed significantly under high-temperature environmental stress, affecting the metabolic levels of starch, amino acid and glucose, which is thought to represent a possible energy conservation method for A. sapidissima to cope with rapid changes in external temperature. In summary, our findings demonstrate that living under high temperatures for a long period of time leads to different physiological defense responses in A. sapidissima, which provides some new ideas for analyzing the molecular regulatory patterns of adaptation to high temperature and also provides a theoretical basis for the subsequent improvement of fish culture in response to global warming.
Collapse
Affiliation(s)
- Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bingbing Feng
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, 210036, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhengyuan Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wei Xu
- Fisheries Technology Extension Center of Jiangsu Province, Nanjing, 210036, China
| | - Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Linghong Miao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| |
Collapse
|
11
|
Leng F, Fang W, Chen T, Wang C, Wang S, Wang L, Xie Z, Zhang X. Different frequencies of water deficit irrigation treatments improve fruit quality of Zitian seedless grapes under on-tree storage. Food Chem 2024; 454:139629. [PMID: 38805920 DOI: 10.1016/j.foodchem.2024.139629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
In this study, we assessed the impact of varied water deficit irrigation frequencies (T1: 2.5 L/4 days; T2: 5 L/8 days; CK: 5 L/4 days) on Zitian Seedless grapes from veraison to post-ripening. Notably, total soluble solids increased during on-tree storage compared to at maturity, while total anthocyanin content decreased, particularly in CK (60.16%), T1 (62.35%), and less in T2 (50.54%). Glucose and fructose levels increased significantly in T1 and T2, more so in T2, but slightly declined in CK. Tartaric acid content increased by 41.42% in T2. Moreover, compared to regular irrigation, water deficit treatments enhanced phenolic metabolites and volatile compounds, including chlorogenic acid, various flavonoids, viniferin, hexanal, 2-nonenal, 2-hexen-1-ol, (E)-, 3-hydroxy-dodecanoic acid, and 1-hexanol, etc. Overall, the T2 treatment outperformed T1 and CK in maintaining grape quality. This study reveals that combining on-tree storage with water deficit irrigation not only improves grape quality but also water efficiency.
Collapse
Affiliation(s)
- Feng Leng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China
| | - Wenfei Fang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China
| | - Ting Chen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China
| | - Chengyang Wang
- Zhoushan Academy of Agriculture Sciences, Zhejiang 316000, PR China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Zhaosen Xie
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, PR China.
| | - Xianan Zhang
- Forestry and Fruit Research Institute, Shanghai, Academy of Agricultural Sciences, Shanghai 201403, PR China.
| |
Collapse
|
12
|
Hu L, Lv X, Zhang Y, Du W, Fan S, Kong L. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Int J Mol Sci 2024; 25:10430. [PMID: 39408761 PMCID: PMC11476764 DOI: 10.3390/ijms251910430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Wheat is the most widely grown crop in the world; its production is severely disrupted by increasing water deficit. Plant roots play a crucial role in the uptake of water and perception and transduction of water deficit signals. In the past decade, the mechanisms of drought tolerance have been frequently reported; however, the transcriptome and metabolome regulatory network of root responses to water stress has not been fully understood in wheat. In this study, the global transcriptomic and metabolomics profiles were employed to investigate the mechanisms of roots responding to water stresses using the drought-tolerant (DT) and drought-susceptible (DS) wheat genotypes. The results showed that compared with the control group, wheat roots exposed to polyethylene glycol (PEG) had 25941 differentially expressed genes (DEGs) and more upregulated genes were found in DT (8610) than DS (7141). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs of the drought-tolerant genotype were preferably enriched in the flavonoid biosynthetic process, anthocyanin biosynthesis and suberin biosynthesis. The integrated analysis of the transcriptome and metabolome showed that in DT, the KEGG pathways, including flavonoid biosynthesis and arginine and proline metabolism, were shared by differentially accumulated metabolites (DAMs) and DEGs at 6 h after treatment (HAT) and pathways including alanine, aspartate, glutamate metabolism and carbon metabolism were shared at 48 HAT, while in DS, the KEGG pathways shared by DAMs and DEGs only included arginine and proline metabolism at 6 HAT and the biosynthesis of amino acids at 48 HAT. Our results suggest that the drought-tolerant genotype may relieve the drought stress by producing more ROS scavengers, osmoprotectants, energy and larger roots. Interestingly, hormone signaling plays an important role in promoting the development of larger roots and a higher capability to absorb and transport water in drought-tolerant genotypes.
Collapse
Affiliation(s)
- Ling Hu
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China;
| | - Xuemei Lv
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
13
|
Zhu K, Liu J, Lyu A, Luo T, Chen X, Peng L, Hu L. Analysis of the Mechanism of Wood Vinegar and Butyrolactone Promoting Rapeseed Growth and Improving Low-Temperature Stress Resistance Based on Transcriptome and Metabolomics. Int J Mol Sci 2024; 25:9757. [PMID: 39273704 PMCID: PMC11395900 DOI: 10.3390/ijms25179757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Rapeseed is an important oil crop in the world. Wood vinegar could increase the yield and abiotic resistance of rapeseed. However, little is known about the underlying mechanisms of wood vinegar or its valid chemical components on rapeseed. In the present study, wood vinegar and butyrolactone (γ-Butyrolactone, one of the main components of wood vinegar) were applied to rapeseed at the seedling stage, and the molecular mechanisms of wood vinegar that affect rapeseed were studied by combining transcriptome and metabolomic analyses. The results show that applying wood vinegar and butyrolactone increases the biomass of rapeseed by increasing the leaf area and the number of pods per plant, and enhances the tolerance of rapeseed under low temperature by reducing membrane lipid oxidation and improving the content of chlorophyll, proline, soluble sugar, and antioxidant enzymes. Compared to the control, 681 and 700 differentially expressed genes were in the transcriptional group treated with wood vinegar and butyrolactone, respectively, and 76 and 90 differentially expressed metabolites were in the metabolic group. The combination of transcriptome and metabolomic analyses revealed the key gene-metabolic networks related to various pathways. Our research shows that after wood vinegar and butyrolactone treatment, the amino acid biosynthesis pathway of rapeseed may be involved in mediating the increase in rapeseed biomass, the proline metabolism pathway of wood vinegar treatment may be involved in mediating rapeseed's resistance to low-temperature stress, and the sphingolipid metabolism pathway of butyrolactone treatment may be involved in mediating rapeseed's resistance to low-temperature stress. It is suggested that the use of wood vinegar or butyrolactone are new approaches to increasing rapeseed yield and low-temperature resistance.
Collapse
Affiliation(s)
- Kunmiao Zhu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Liu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Ang Lyu
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Tao Luo
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Chen
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Lijun Peng
- Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430072, China
| | - Liyong Hu
- Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Jiang Y, Wang J, Han Y, Wang B, Lei C, Sam FE, Li J, Ma T, Zhang B, Feng L. Transcriptome and metabolite profiles reveal the role of benzothiadiazole in controlling isoprenoid synthesis and berry ripening in chardonnay grapes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106041. [PMID: 39277368 DOI: 10.1016/j.pestbp.2024.106041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Benzothiadiazole (BTH) regulates grape development, ripening, volatiles, and phenolics. This study used metabolomics and transcriptomics to understand how exogenous BTH affects Chardonnay grapes' maturation and synthesis of isoprenoids. A 0.37 mM BTH solution was sprayed during the swelling and veraison stages, and then the ripe grapes were analyzed. Our results show that BTH application significantly increased levels of important isoprenoids such as free terpinen-4-ol, bound linalool, and 8'-apo-β-carotenal. Additionally, BTH was found to modulate several signaling pathways, including those involved in ethylene biosynthesis, salicylic acid synthesis, the abscisic acid pathway, and sugar metabolism, by regulating the expression of genes like VvACO4, VvTAR, VvPLD, VvTIP1-1, VvSTKs, VvPK, VvSUC2, VvGST4, and VvSTS. BTH also promoted grapevine resistance by up-regulating the expression of VvHSP20, VvGOLS4, VvOLP, and VvPR-10. Furthermore, BTH affected isoprenoids biosynthesis by regulating the expression of VvTPS35 and VvMYB24. Moreover, 13 hub genes in the MEgreen module were identified as crucial for the biosynthesis of isoprenoids. BTH application during the swelling stage remarkably promoted isoprenoid biosynthesis more effectively than veraison. Our study provides insights into the molecular mechanisms underlying BTH-induced regulation of grape development and offers a promising approach for enhancing the quality and resistance of grapes.
Collapse
Affiliation(s)
- Yumei Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jianfeng Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuqi Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Wang
- Technical Center of Lanzhou Customs, Lanzhou 730000, China
| | - Chunni Lei
- Technical Center of Lanzhou Customs, Lanzhou 730000, China
| | - Faisal Eudes Sam
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Jixin Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tengzhen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Bo Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Lidan Feng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
15
|
Shi T, Su Y, Lan Y, Duan C, Yu K. The molecular basis of flavonoid biosynthesis response to water, light, and temperature in grape berries. FRONTIERS IN PLANT SCIENCE 2024; 15:1441893. [PMID: 39258302 PMCID: PMC11384997 DOI: 10.3389/fpls.2024.1441893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Flavonoids, including proanthocyanidins (PAs), anthocyanins and flavonols are essential secondary metabolites that contribute to the nutritional value and sensory quality of grape berry and red wine. Advances in molecular biology technology have led to substantial progress in understanding the regulation of flavonoid biosynthesis. The influence of terroir on grape berries and wine has garnered increasing attention, yet its comprehensive regulatory network remains underexplored. In terms of application, environmental factors such as water, light, and temperature are more easily regulated in grapevines compared to soil conditions. Therefore, we summarize their effects on flavonoid content and composition, constructing a network that links environmental factors, hormones, and metabolites to provide a deeper understanding of the underlying mechanisms. This review enriches the knowledge of the regulatory network mechanisms governing flavonoid responses to environmental factors in grapes.
Collapse
Affiliation(s)
- Tianci Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Su
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
16
|
Shi M, Savoi S, Sarah G, Soriano A, Weber A, Torregrosa L, Romieu C. Vitis rotundifolia Genes Introgressed with RUN1 and RPV1: Poor Recombination and Impact on V. vinifera Berry Transcriptome. PLANTS (BASEL, SWITZERLAND) 2024; 13:2095. [PMID: 39124212 PMCID: PMC11314213 DOI: 10.3390/plants13152095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Thanks to several Vitis vinifera backcrosses with an initial V. vinifera L. × V. rotundifolia (previously Muscadinia rotundifolia) interspecific cross, the MrRUN1/MrRPV1 locus (resistance to downy and powdery mildews) was introgressed in genotypes phenotypically close to V. vinifera varieties. To check the consequences of introgressing parts of the V. rotundifolia genome on gene expression during fruit development, we conducted a comparative RNA-seq study on single berries from different V. vinifera cultivars and V. vinifera × V. rotundifolia hybrids, including 'G5' and two derivative microvine lines, 'MV102' (resistant) and 'MV32' (susceptible) segregating for the MrRUN1/RPV1 locus. RNA-Seq profiles were analyzed on a comprehensive set of single berries from the end of the herbaceous plateau to the ripe stage. Pair-end reads were aligned both on V. vinifera PN40024.V4 reference genome, V. rotundifolia cv 'Trayshed' and cv 'Carlos', and to the few resistance genes from the original V. rotundifolia cv '52' parent available at NCBI. Weighted Gene Co-expression Network Analysis (WGCNA) led to classifying the differentially expressed genes into 15 modules either preferentially correlated with resistance or berry phenology and composition. Resistance positively correlated transcripts predominantly mapped on the 4-5 Mb distal region of V. rotundifolia chromosome 12 beginning with the MrRUN1/MrRPV1 locus, while the negatively correlated ones mapped on the orthologous V. vinifera region, showing this large extremity of LG12 remained recalcitrant to internal recombination during the successive backcrosses. Some constitutively expressed V. rotundifolia genes were also observed at lower densities outside this region. Genes overexpressed in developing berries from resistant accessions, either introgressed from V. rotundifolia or triggered by these in the vinifera genome, spanned various functional groups, encompassing calcium signal transduction, hormone signaling, transcription factors, plant-pathogen-associated interactions, disease resistance proteins, ROS and phenylpropanoid biosynthesis. This transcriptomic insight provides a foundation for understanding the disease resistance inherent in these hybrid cultivars and suggests a constitutive expression of NIR NBS LRR triggering calcium signaling. Moreover, these results illustrate the magnitude of transcriptomic changes caused by the introgressed V. rotundifolia background in backcrossed hybrids, on a large number of functions largely exceeding the ones constitutively expressed in single resistant gene transformants.
Collapse
Affiliation(s)
- Mengyao Shi
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| | - Gautier Sarah
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
| | - Alexandre Soriano
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Audrey Weber
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Laurent Torregrosa
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
- LEPSE, University Montpellier, CIRAD, INRAE, Institute Agro, 34060 Montpellier, France
| | - Charles Romieu
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
| |
Collapse
|
17
|
Wilhelm De Almeida L, Ojeda H, Pellegrino A, Torregrosa L. Carbon trade-offs in the fruits of fungus-tolerant Muscadinia × Vitis hybrids exposed to water deficit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108774. [PMID: 38805757 DOI: 10.1016/j.plaphy.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Adopting disease-tolerant grapevines is an efficient option to implement a smarter management strategy limiting the environmental impacts linked to pesticide use. However, little is known on their production of fruit metabolites regarding expected future climate fluctuations, such as increased water shortage. Moreover, previous studies about how water deficit impacts grape composition, lack accuracy due to imprecise timing of fruit sampling. In this study, we phenotyped six new fungus-tolerant genotypes exposed to varying water status in field-grown conditions. The accumulation of water, main cations, primary and secondary metabolites were precisely monitored at the arrest of phloem unloading in fruits, which was targeted at the whole cluster level. The goal was to decipher the effects of both genotype and water deficit on the allocation of carbon into soluble sugars, organic acids, amino acids and anthocyanins. The results revealed that the effect of decreased water availability was specific to each berry component. While fruit sugar concentration remained relatively unaffected, the malic/tartaric acid balance varied based on differences among genotypes. Despite showing contrasted strategies on carbon allocation into berry metabolites, all genotypes reduced fruit yield and the amount of compounds of interest per plant under water deficit, with the extent of reduction being genotype-dependent and correlated with the response of berry volume to plant water status. This first set of data provides information to help reasoning the adaptation of these varieties according to the expected risks of drought and the possibilities of mitigating them through irrigation.
Collapse
Affiliation(s)
- Luciana Wilhelm De Almeida
- UE Pech Rouge, INRAE, 11430, Gruissan, France; UMR LEPSE, Univ. Montpellier, INRAE, CIRAD, Institut Agro, 2, Place P. Viala, 34060, Montpellier, Cedex, France
| | | | - Anne Pellegrino
- UMR LEPSE, Univ. Montpellier, INRAE, CIRAD, Institut Agro, 2, Place P. Viala, 34060, Montpellier, Cedex, France
| | - Laurent Torregrosa
- UE Pech Rouge, INRAE, 11430, Gruissan, France; UMR LEPSE, Univ. Montpellier, INRAE, CIRAD, Institut Agro, 2, Place P. Viala, 34060, Montpellier, Cedex, France.
| |
Collapse
|
18
|
Belfiore N, Amato A, Gardiman M, Gaiotti F, Zenoni S, Tornielli GB, Fasoli M, Bavaresco L. The Role of Terroir on the Ripening Traits of V. vinifera cv 'Glera' in the Prosecco Area. PLANTS (BASEL, SWITZERLAND) 2024; 13:816. [PMID: 38592837 PMCID: PMC10975336 DOI: 10.3390/plants13060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
The grapevine (Vitis vinifera L.) is widely cultivated worldwide owing to the substantial commercial value of the grapes and other products derived from their processing, wines in particular. The grapevine is characterized by a remarkable phenotypic plasticity within the same variety, which shapes the final berry quality attributes hence reflecting the complex interactions between the plant and the environment leading to the expression of wine typicity. In this study, we explored the metabolomic and transcriptomic basis of the plasticity of Glera, a white berry grapevine variety particularly renowned for the production of wine Prosecco. The two selected vineyards varied for site altitude and pedoclimatic conditions. We highlighted that these environments determined different berry ripening dynamics at the level of both technological parameters and the total abundance and intrafamily distribution of phenolic compounds. Moreover, a clear impact on the grape aroma profile was observed. The genome-wide gene expression analysis of the berries revealed remarkable differences in the ripening transcriptomic program, reflecting the differences in water status, light exposure, and temperature experienced by the plants while growing at the two sites. Overall, this survey portrayed how the quality attributes of the cv 'Glera' grape berries may be affected by different environmental conditions within the typical area of Prosecco wine production.
Collapse
Affiliation(s)
- Nicola Belfiore
- CREA, Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, 31015 Conegliano, Italy; (M.G.); (F.G.)
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.A.); (S.Z.); (G.B.T.)
| | - Massimo Gardiman
- CREA, Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, 31015 Conegliano, Italy; (M.G.); (F.G.)
| | - Federica Gaiotti
- CREA, Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology, 31015 Conegliano, Italy; (M.G.); (F.G.)
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.A.); (S.Z.); (G.B.T.)
| | | | - Marianna Fasoli
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.A.); (S.Z.); (G.B.T.)
| | - Luigi Bavaresco
- Department of Sustainable Crop Production–Viticulture and Pomology Section, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy;
| |
Collapse
|
19
|
Shu J, Zhang L, Liu G, Wang X, Liu F, Zhang Y, Chen Y. Transcriptome Analysis and Metabolic Profiling Reveal the Key Regulatory Pathways in Drought Stress Responses and Recovery in Tomatoes. Int J Mol Sci 2024; 25:2187. [PMID: 38396864 PMCID: PMC10889177 DOI: 10.3390/ijms25042187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024] Open
Abstract
Drought stress is a major abiotic factor affecting tomato production and fruit quality. However, the genes and metabolites associated with tomato responses to water deficiency and rehydration are poorly characterized. To identify the functional genes and key metabolic pathways underlying tomato responses to drought stress and recovery, drought-susceptible and drought-tolerant inbred lines underwent transcriptomic and metabolomic analyses. A total of 332 drought-responsive and 491 rehydration-responsive core genes were robustly differentially expressed in both genotypes. The drought-responsive and rehydration-responsive genes were mainly related to photosynthesis-antenna proteins, nitrogen metabolism, plant-pathogen interactions, and the MAPK signaling pathway. Various transcription factors, including homeobox-leucine zipper protein ATHB-12, NAC transcription factor 29, and heat stress transcription factor A-6b-like, may be vital for tomato responses to water status. Moreover, 24,30-dihydroxy-12(13)-enolupinol, caffeoyl hawthorn acid, adenosine 5'-monophosphate, and guanosine were the key metabolites identified in both genotypes under drought and recovery conditions. The combined transcriptomic and metabolomic analysis highlighted the importance of 38 genes involved in metabolic pathways, the biosynthesis of secondary metabolites, the biosynthesis of amino acids, and ABC transporters for tomato responses to water stress. Our results provide valuable clues regarding the molecular basis of drought tolerance and rehydration. The data presented herein may be relevant for genetically improving tomatoes to enhance drought tolerance.
Collapse
Affiliation(s)
- Jinshuai Shu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Lili Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.Z.); (G.L.)
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.Z.); (G.L.)
| | - Xiaoxuan Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Fuzhong Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Ying Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| | - Yuhui Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12 Zhongguancun Nandajie Street, Beijing 100081, China; (X.W.); (F.L.); (Y.Z.); (Y.C.)
| |
Collapse
|
20
|
Kumar S, Chakraborty S, Chakraborty N. Dehydration-responsive cytoskeleton proteome of rice reveals reprograming of key molecular pathways to mediate metabolic adaptation and cell survival. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108359. [PMID: 38237420 DOI: 10.1016/j.plaphy.2024.108359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
The plant cytoskeletal proteins play a key role that control cytoskeleton dynamics, contributing to crucial biological processes such as cell wall morphogenesis, stomatal conductance and abscisic acid accumulation in repercussion to water-deficit stress or dehydration. Yet, it is still completely unknown which specific biochemical processes and regulatory mechanisms the cytoskeleton uses to drive dehydration tolerance. To better understand the role of cytoskeleton, we developed the dehydration-responsive cytoskeletal proteome map of a resilient rice cultivar. Initially, four-week-old rice plants were exposed to progressive dehydration, and the magnitude of dehydration-induced compensatory physiological responses was monitored in terms of physicochemical indices. The organelle fractionation in conjunction with label-free quantitative proteome analysis led to the identification of 955 dehydration-responsive cytoskeletal proteins (DRCPs). To our knowledge, this is the first report of a stress-responsive plant cytoskeletal proteome, representing the largest inventory of cytoskeleton and cytoskeleton-associated proteins. The DRCPs were apparently involved in a wide array of intra-cellular molecules transportation, organelles positioning, cytoskeleton organization followed by different metabolic processes including amino acid metabolism. These findings presented open a unique view on global regulation of plant cytoskeletal proteome is intimately linked to cellular metabolic rewiring of adaptive responses, and potentially confer dehydration tolerance, especially in rice, and other crop species, in general.
Collapse
Affiliation(s)
- Sunil Kumar
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University Campus, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
21
|
de Almeida LW, Torregrosa L, Dournes G, Pellegrino A, Ojeda H, Roland A. New Fungus-Resistant Grapevine Vitis and V. vinifera L. × M. rotundifolia Derivative Hybrids Display a Drought-Independent Response in Thiol Precursor Levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1855-1863. [PMID: 36943233 DOI: 10.1021/acs.jafc.2c08595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The use of new disease-resistant grapevine varieties is a long-term but promising solution to reduce chemical inputs in viticulture. However, little is known about water deficit effects on these varieties, notably regarding berry composition. The aim of this study was to characterize the primary metabolites and thiol precursors levels of 6 fungi-resistant varieties and Syrah. Vines were grown under field conditions and under different water supply levels, and harvested at the phloem unloading arrest. A great variability among varieties regarding the levels of thiol precursors was observed, with the highest concentration, of 539 μg/kg, being observed in 3176-N, a hybrid displaying red fruits. Water deficit negatively and equally impacted the accumulation of sugars, organic acids, and thiol precursors per berry and per plant, with minor effects on their concentration. The observed losses of metabolites per cultivation area suggest that water deficits can lead to significant economic losses for the producer.
Collapse
Affiliation(s)
- Luciana Wilhelm de Almeida
- Unité Expérimentale de Pech Rouge (UE 0999), INRAE, 11430 Gruissan, France
- UMR LEPSE, Université de Montpellier, INRAE, CIRAD, Institut Agro Montpellier, 2, place P. Viala, 34060 Montpellier Cedex, France
| | - Laurent Torregrosa
- Unité Expérimentale de Pech Rouge (UE 0999), INRAE, 11430 Gruissan, France
- UMR LEPSE, Université de Montpellier, INRAE, CIRAD, Institut Agro Montpellier, 2, place P. Viala, 34060 Montpellier Cedex, France
| | - Gabriel Dournes
- UMR SPO, INRAE, Institut Agro, University Montpellier, 34060 Montpellier, France
| | - Anne Pellegrino
- UMR LEPSE, Université de Montpellier, INRAE, CIRAD, Institut Agro Montpellier, 2, place P. Viala, 34060 Montpellier Cedex, France
| | - Hernán Ojeda
- Unité Expérimentale de Pech Rouge (UE 0999), INRAE, 11430 Gruissan, France
| | - Aurelie Roland
- UMR SPO, INRAE, Institut Agro, University Montpellier, 34060 Montpellier, France
| |
Collapse
|
22
|
Pérez-Álvarez EP, Rubio-Bretón P, Intrigliolo DS, Parra-Torrejón B, Ramírez-Rodríguez GB, Delgado-López JM, Garde-Cerdán T. Nanoparticles doped with methyl jasmonate: foliar application to Monastrell vines under two watering regimes. An alternative to improve grape volatile composition? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:598-610. [PMID: 37615514 DOI: 10.1002/jsfa.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/02/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Elicitors induce defense mechanisms, triggering the synthesis of secondary metabolites. Irrigation has implications for a more sustainable viticulture and for grape composition. The aim was to investigate the influence on grape aroma composition during 2019 and 2020 of the foliar application of amorphous calcium phosphate (ACP) nanoparticles and ACP doped with methyl jasmonate (ACP-MeJ), as an elicitor, with rainfed or regulated deficit irrigation (RDI) grapevines. RESULTS In both growing seasons, nearly all terpenoids, C13 norisoprenoids, benzenoid compounds and alcohols increased with ACP-MeJ under the RDI regimen. In 2019, under the rainfed regime, ACP treatment increased limonene, p-cymene, α-terpineol, 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN), 2-ethyl-1-hexanol, (E,E)-2,4-heptadienal, and MeJ concentration in comparison with control grapes. In 2020, the rainfed regime treated with ACP-MeJ only increased the nonanoic acid content. Grape volatile compounds were most influenced by season and watering status whereas the foliar application mainly affected the terpenoids. CONCLUSION A RDI regime combined with the elicitor ACP-MeJ application could improve the synthesis of certain important volatile compounds, such as p-cymene, linalool, α-terpineol, geranyl acetone, β-ionone, 2-phenylethanol, benzyl alcohol, and nonanoic acid in Monastrell grapes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Eva P Pérez-Álvarez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Murcia, Spain
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, Logroño, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, Logroño, Spain
| | - Diego S Intrigliolo
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Campus Universitario de Espinardo, Murcia, Spain
- Departamento de Ecología, Centro de Investigaciones sobre Desertificación (CIDE, CSIC-UV-GV), Moncada, Spain
| | - Belén Parra-Torrejón
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | | - José M Delgado-López
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Ctra. de Burgos, Logroño, Spain
| |
Collapse
|
23
|
Wang K, Nan LL, Xia J, Wu SW, Yang LL. Metabolomics reveal root differential metabolites of different root-type alfalfa under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1341826. [PMID: 38332768 PMCID: PMC10850343 DOI: 10.3389/fpls.2024.1341826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
Introduction Alfalfa (Medicago sativa L.) is the favored premium feed ingredient in animal husbandry production which is in serious jeopardy due to soil moisture shortages. It is largely unknown how different root types of alfalfa respond to arid-induced stress in terms of metabolites and phytohormones. Methods Therefore, rhizomatous rooted M. sativa 'Qingshui' (or QS), tap-rooted M. sativa 'Longdong' (or LD), and creeping rooted M. varia 'Gannong No. 4' (or GN) were investigated to identify metabolites and phytohormones responses to drought conditions. Results We found 164, 270, and 68 significantly upregulated differential metabolites were categorized into 35, 38, and 34 metabolic pathways in QS, LD, and GN within aridity stress, respectively. Amino acids, organic acids, sugars, and alkaloids were the four categories of primary differential metabolites detected, which include 6-gingerol, salicylic acid (SA), indole-3-acetic acid (IAA), gibberellin A4 (GA4), abscisic acid (ABA), trans-cinnamic acid, sucrose, L-phenylalanine, L-tyrosine, succinic acid, and nicotinic acid and so on, turns out these metabolites are essential for the resistance of three root-type alfalfa to aridity coercing. Discussion The plant hormone signal transduction (PST) pathway was dramatically enriched after drought stress. IAA and ABA were significantly accumulated in the metabolites, indicating that they play vital roles in the response of three root types of alfalfa to water stress, and QS and LD exhibit stronger tolerance than GN under drought stress.
Collapse
|
24
|
Yang X, Liu D, Liu C, Li M, Yan Z, Zhang Y, Feng G. Possible melatonin-induced salt stress tolerance pathway in Phaseolus vulgaris L. using transcriptomic and metabolomic analyses. BMC PLANT BIOLOGY 2024; 24:72. [PMID: 38267871 PMCID: PMC10809447 DOI: 10.1186/s12870-023-04705-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
Melatonin plays important roles in multiple stress responses; however, the downstream signaling pathway and molecular mechanism remain unclear. This study aimed to elucidate the transcriptional regulation of melatonin-induced salt stress tolerance in Phaseolus vulgaris L. and identify the key downstream transcription factors of melatonin through transcriptomic and metabolomic analyses. The melatonin-induced transcriptional network of hormones, transcription factors, and functional genes was established under both control and stress conditions. Among these, eight candidate transcription factors were identified via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, one gene related to transmembrane transport of salts (Phvul.004G177300). These genes may play a role in maintaining the cell structure and excreting sodium ions outside the cell or transporting them to the vacuoles for storage. Melatonin regulates the Phvul.009G210332 gene and metabolites C05642 (N-acetyl-N-2-formyl-5-methoxycanurine), C05643 (6-hydroxymelatonin), C05660 (5-methoxyindoleacetic acid) involved in tryptophan metabolism. The metabolites C05642 and C05643 were identified as decomposition products of tryptophan, indicating that exogenous melatonin entered the P. vulgaris tissue and was metabolized. Melatonin promotes the synthesis and metabolism of tryptophan, which is crucial to plant metabolism, growth, maintenance, and repair.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, Shandong, 272400, China
| | - Dajun Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Chang Liu
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, Shandong, 272400, China
| | - Mengdi Li
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Zhishan Yan
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000, China
| | - Yu Zhang
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000, China
- Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining, Shandong, 272400, China
| | - Guojun Feng
- Horticulture Department, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, Heilongjiang, 150000, China.
| |
Collapse
|
25
|
Zhang C, Dai Z, Ferrier T, Orduña L, Santiago A, Peris A, Wong DCJ, Kappel C, Savoi S, Loyola R, Amato A, Kozak B, Li M, Liang A, Carrasco D, Meyer-Regueiro C, Espinoza C, Hilbert G, Figueroa-Balderas R, Cantu D, Arroyo-Garcia R, Arce-Johnson P, Claudel P, Errandonea D, Rodríguez-Concepción M, Duchêne E, Huang SSC, Castellarin SD, Tornielli GB, Barrieu F, Matus JT. MYB24 orchestrates terpene and flavonol metabolism as light responses to anthocyanin depletion in variegated grape berries. THE PLANT CELL 2023; 35:4238-4265. [PMID: 37648264 PMCID: PMC10689149 DOI: 10.1093/plcell/koad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.
Collapse
Affiliation(s)
- Chen Zhang
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Thilia Ferrier
- EGFV, Bordeaux Sciences Agro, University of Bordeaux, INRAE, ISVV, 210 Chemin de Leysotte, 33140 Villenave d'Ornon, France
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| | - Arnau Peris
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam-Golm 14476, Germany
| | - Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin 10124, Italy
| | - Rodrigo Loyola
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Bartosz Kozak
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia V1V 1V7, Canada
| | - Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Akun Liang
- Departamento de Física Aplicada-ICMUV-MALTA Consolider Team, Universitat de València, Burjassot 46100, Valencia, Spain
| | - David Carrasco
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid-INIA, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Carlos Meyer-Regueiro
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Carmen Espinoza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8380453, Chile
| | - Ghislaine Hilbert
- EGFV, Bordeaux Sciences Agro, University of Bordeaux, INRAE, ISVV, 210 Chemin de Leysotte, 33140 Villenave d'Ornon, France
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, CA 95616, USA
| | - Rosa Arroyo-Garcia
- Centre for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de Madrid-INIA, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Patricio Arce-Johnson
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería Universidad Autónoma deChile
| | | | - Daniel Errandonea
- Departamento de Física Aplicada-ICMUV-MALTA Consolider Team, Universitat de València, Burjassot 46100, Valencia, Spain
| | - Manuel Rodríguez-Concepción
- Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, Valencia 46022, Spain
| | - Eric Duchêne
- SVQV, University of Strasbourg, INRAE, Colmar 68000, France
| | - Shao-shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Simone Diego Castellarin
- Wine Research Centre, University of British Columbia, Vancouver, British Columbia V1V 1V7, Canada
| | | | - Francois Barrieu
- EGFV, Bordeaux Sciences Agro, University of Bordeaux, INRAE, ISVV, 210 Chemin de Leysotte, 33140 Villenave d'Ornon, France
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna 46980, Valencia, Spain
| |
Collapse
|
26
|
Kishor PBK, Guddimalli R, Kulkarni J, Singam P, Somanaboina AK, Nandimandalam T, Patil S, Polavarapu R, Suravajhala P, Sreenivasulu N, Penna S. Impact of Climate Change on Altered Fruit Quality with Organoleptic, Health Benefit, and Nutritional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17510-17527. [PMID: 37943146 DOI: 10.1021/acs.jafc.3c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
As a consequence of global climate change, acute water deficit conditions, soil salinity, and high temperature have been on the rise in their magnitude and frequency, which have been found to impact plant growth and development negatively. However, recent evidence suggests that many fruit plants that face moderate abiotic stresses can result in beneficial effects on the postharvest storage characters of the fruits. Salinity, drought, and high temperature conditions stimulate the synthesis of abscisic acid (ABA), and secondary metabolites, which are vital for fruit quality. The secondary metabolites like phenolic acids and anthocyanins that accumulate under abiotic stress conditions have antioxidant activity, and therefore, such fruits have health benefits too. It has been noticed that fruits accumulate more sugar and anthocyanins owing to upregulation of phenylpropanoid pathway enzymes. The novel information that has been generated thus far indicates that the growth environment during fruit development influences the quality components of the fruits. But the quality depends on the trade-offs between productivity, plant defense, and the frequency, duration, and intensity of stress. In this review, we capture the current knowledge of the irrigation practices for optimizing fruit production in arid and semiarid regions and enhancement in the quality of fruit with the application of exogenous ABA and identify gaps that exist in our understanding of fruit quality under abiotic stress conditions.
Collapse
Affiliation(s)
- P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | | | - Jayant Kulkarni
- Department of Botany, Savithribai Phule Pune University, Pune 411 007, India
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Tejaswi Nandimandalam
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Swaroopa Patil
- Department of Botany, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Rathnagiri Polavarapu
- Genomix Molecular Diagnostics Pvt. Ltd., Pragathi Nagar, Kukatapally, Hyderabad 500 072, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwavidyapeetham, Clappana, 690 525, Amritapuri, Vallikavu, Kerala, India & Bioclues.org, Hyderabad, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, DAPO Box 7777, Metro Manil 1301, Philippines
| | - Suprasanna Penna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University of Maharashtra, Mumbai 410 206, India
| |
Collapse
|
27
|
Wang C, Wu D, Jiang L, Liu X, Xie T. Multi-Omics Elucidates Difference in Accumulation of Bioactive Constituents in Licorice ( Glycyrrhiza uralensis) under Drought Stress. Molecules 2023; 28:7042. [PMID: 37894521 PMCID: PMC10609028 DOI: 10.3390/molecules28207042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Licorice is a frequently applied herb with potential edible and medicinal value based on various flavonoids and triterpenes. However, studies on detailed flavonoid and triterpene metabolism and the molecular basis of their biosynthesis in licorice are very limited, especially under drought conditions. In the present study, we carried out transcriptome, proteome, and metabolome experiments. To ultimately combine three omics for analysis, we performed a bioinformatics comparison, integrating transcriptome data and proteome data through a Cloud platform, along with a simplified biosynthesis of primary flavonoids and triterpenoids in the KEGG pathway based on metabolomic results. The biosynthesis pathways of triterpenes and flavonoids are enriched at both gene and protein levels. Key flavonoid-related genes (PAL, 4CL, CHS, CHI, CYP93C, HIDH, HI4OMT, and CYP81E1_7) and representative proteins (HIDH, CYP81E1_7, CYP93C, and VR) were obtained, which all showed high levels after drought treatment. Notably, one R2R3-MYB transcription factor (Glyur000237s00014382.1), a critical regulator of flavonoid biosynthesis, achieved a significant upregulated expression as well. In the biosynthesis of glycyrrhizin, both gene and protein levels of bAS and CYP88D6 have been found with upregulated expression under drought conditions. Most of the differentially expressed genes (DEGs) and proteins (DEPs) showed similar expression patterns and positively related to metabolic profiles of flavonoid and saponin. We believe that suitable drought stress may contribute to the accumulation of bioactive constituents in licorice, and our research provides an insight into the genetic study and quality breeding in this plant.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Dawei Wu
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Liying Jiang
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| | - Xunhong Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tiantian Xie
- School of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, China; (D.W.); (L.J.); (T.X.)
| |
Collapse
|
28
|
Sun R, Liu S, Gao J, Zhao L. Integration of the metabolome and transcriptome reveals the molecular mechanism of drought tolerance in Plumeria rubra. Front Genet 2023; 14:1274732. [PMID: 37790703 PMCID: PMC10544913 DOI: 10.3389/fgene.2023.1274732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Plumeria rubra L. cv. Acutifolia is an ornamental tree that displays a good drought-tolerance level. However, the molecular mechanisms of P. rubra adaptation to drought stress remains unclear. Here, drought-simulating pot experiments were conducted to explore drought stress response mechanism of P. rubra. Transcriptome analysis revealed 10,967 differentially expressed genes (DEGs), 6,498 of which were increased and 4,469 decreased. Gene Ontology (GO) analysis revealed that the DEGs were enriched in binding category, in metabolic process category, and in catalytic activities category. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 9 pathways were significantly enriched, including biosynthesis of secondary metabolites (ko01110), plant hormone signal transduction (ko04075) and so on. In addition, the transcription factor families of AP2/ERFs, bZIP, and C2H2 were significantly upregulated while the families of bHLH, MYB-related, and NAC were significantly downregulated. Moreover, the results of metabolomics analysis indicated that some compounds were accumulated under drought stress, especially flavonoids. Overall, it was speculated that under drought stress, P. rubra first activates the plant hormone signal transduction pathway to regulate hormone contents. Then osmotic regulating substances such as organic acids and amino acids are accumulated to maintain osmotic balance. Finally, flavonoid levels are increased to scavenge reactive oxygen species. These results preliminarily revealed the molecular mechanisms adopted by P. rubra in response to drought stress.
Collapse
Affiliation(s)
- Rong Sun
- Department of Biological Engineering, College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | | | | | | |
Collapse
|
29
|
Cao L, Zou J, Qin B, Bei S, Ma W, Yan B, Jin X, Zhang Y. Response of exogenous melatonin on transcription and metabolism of soybean under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14038. [PMID: 37882298 DOI: 10.1111/ppl.14038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023]
Abstract
Amino acid metabolism is an important factor in regulating nitrogen source assimilation and source/sink transport in soybean. Melatonin can improve plant stress resistance, but whether it affects amino acid metabolism is not known. Therefore, this study investigated whether exogenous melatonin had an effect on amino acid metabolism of soybean under drought conditions and explored its relationship with yield. The treatments were normal water supply treatment (WW), drought stress treatment (D), drought stress and melatonin treatment group (D + M), sprayed with 100 μmol/L melatonin. The effects of melatonin on amino acid metabolism and grain filling were studied by physiological and omics experiments using Kangxian 9 (drought-sensitive variety) and Suinong 26 (drought-resistant variety) soybean cultivars. The results showed that drought stress decreased the activity of carbon and nitrogen metabolizing enzymes, which inhibited the accumulation of dry matter and protein, and decreased the yield. In the drought-sensitive soybean variety, glycoenzymes and amino acid synthetases synthetic genes were upregulated in melatonin-treated soybeans, hence carbon and nitrogen metabolism enzyme activity increased, increasing the carbohydrate and amino acid contents simultaneously. This resulted in higher dry matter and yield than drought-stressed soybean not treated with melatonin. In the drought-resistant variety, the grain weight per plant increased by 7.98% and 6.57% in 2020 and 2021, respectively, while it increased by 23.20% and 14.07% in the drought-sensitive variety during the respective years. In conclusion, melatonin treatment can enhance the activity of nitrogen and carbon metabolism and amino acid content by upregulating the expression of soybean metabolic pathway and related genes, thus increasing the yield of soybean under drought stress.
Collapse
Affiliation(s)
- Liang Cao
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Jingnan Zou
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Bin Qin
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Shijun Bei
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Weiran Ma
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Bowei Yan
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xijun Jin
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
| | - Yuxian Zhang
- Heilongjiang Bayi Agricultural University, Key Laboratory of Soybean Mechanized Production, Ministry of Agriculture and Rural Affairs, Daqing, China
- National Coarse Cereals Engineering Technology Research Center, Daqing, China
| |
Collapse
|
30
|
Hou X, Jiang J, Luo C, Rehman L, Li X, Xie X. Advances in detecting fruit aroma compounds by combining chromatography and spectrometry. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4755-4766. [PMID: 36782102 DOI: 10.1002/jsfa.12498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 06/08/2023]
Abstract
Fruit aroma is produced by volatile compounds, which can significantly enhance fruit flavor. These compounds are highly complex and have remarkable pharmacological effects. The synthesis, concentration, type, and quantity of fruit aroma substances are affected by various factors, both abiotic and biotic. To fully understand the aroma substances of various fruits and their influencing factors, detection technology can be used. Many methods exist for detecting aroma compounds, and approaches combining multiple instruments are widely used. This review describes and compares each detection technology and discusses the potential use of combined technologies to provide a comprehensive understanding of fruit aroma compounds and the factors influencing their synthesis. These results can inform the development and utilization of fruit aroma substances. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolong Hou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, PR China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, PR China
| | - Changqing Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, PR China
| | - Latifur Rehman
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, PR China
- Department of Biotechnology, University of Swabi, Swabi, Pakistan
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, PR China
| |
Collapse
|
31
|
Mehravi S, Hanifei M, Gholizadeh A, Khodadadi M. Water deficit stress changes in physiological, biochemical and antioxidant characteristics of anise (Pimpinella anisum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107806. [PMID: 37379658 DOI: 10.1016/j.plaphy.2023.107806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/14/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
This study was designed to evaluate the impact of water deficit stress on the seed yield and its components, physiological functions, fatty acid content and compositions, essential oil (EO) content and compositions, phenolic acids and flavonoids amounts, and antioxidant activities of anise seeds. Plants evaluations were performed under well-watered (WW), moderate water deficit stressed (MWDS), and severe water deficit stressed (SWDS). The results revealed that SWDS significantly reduced seed yield, branch number per plant, seed number, umbel number, and thousand seed weight. Water deficit stress also caused a decrease in chlorophyll content, relative water content, quantum efficiency of photosystem II, and cell membrane stability, while increasing leaf temperature. The analysis of fatty acid composition indicated that petroselinic acid was the main fatty acid and its percentage increased by 8.75% and 14.60% under MWDS and SWDS, respectively. Furthermore, MWDS increased the EO content by 1.48 times, while it decreased by 41.32% under SWDS. The chemotype of EO was altered from t-anethole/estragole in WW seeds to t-anethole/β-bisabolene in treated seeds. Higher levels of total phenolics were detected in stressed seeds. Water deficit stress increased the amount of the major class, naringin, by 1.40 and 1.26 times under MWDS and SWDS. The evaluation of antioxidant activity through reducing power, DPPH, and chelating ability assays indicated that stressed seeds exhibited the highest activity. The study's findings suggest that the application of drought stress before harvesting can regulate the production of bioactive compounds, which can affect the industrial and nutritional values of anise seeds.
Collapse
Affiliation(s)
- Shaghayegh Mehravi
- School of Biological Sciences, University of Western Australia, Perth WA 6009, Australia.
| | - Mehrdad Hanifei
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, C.P. 14115-336, Iran.
| | - Amir Gholizadeh
- Crop and Horticultural Science Research Department, Golestan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, C.P. 4915677555, Iran.
| | - Mostafa Khodadadi
- Seed and Plant Improvement Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, C.P. 33151-31359, Iran.
| |
Collapse
|
32
|
Beleggia R, Menga V, Fulvio F, Fares C, Trono D. Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp ( Cannabis sativa L.) Inflorescences. Int J Mol Sci 2023; 24:ijms24108969. [PMID: 37240314 DOI: 10.3390/ijms24108969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The phytochemical content and the antioxidant activity in the inflorescences of six industrial hemp (Cannabis sativa L.) genotypes, four monoecious (Codimono, Carmaleonte, Futura 75, and Santhica 27), and two dioecious (Fibrante and Carmagnola Selezionata), were assessed for three consecutive years from 2018 to 2020. The total phenolic content, total flavonoid content, and antioxidant activity were determined by spectrophotometric measurements, whereas HPLC and GC/MS were used to identify and quantify the phenolic compounds, terpenes, cannabinoids, tocopherols, and phytosterols. All the measured traits were significantly affected by genotype (G), cropping year (Y), and their interaction (G × Y), although the Y effect prevailed as a source of variation, ranging from 50.1% to 88.5% for all the metabolites except cannabinoids, which were equally affected by G, Y, and G × Y interaction (33.9%, 36.5%, and 21.4%, respectively). The dioecious genotypes presented a more constant performance over the three years compared to the monoecious genotypes, with the highest and most stable phytochemical content observed in the inflorescences of Fibrante, which was characterized by the highest levels of cannabidiol, α-humulene and β-caryophyllene, which may confer on the inflorescences of this genotype a great economic value due to the important pharmacological properties of these metabolites. Conversely, the inflorescences of Santhica 27 were characterized by the lowest accumulation of phytochemicals over the cropping years, with the notable exception of cannabigerol, a cannabinoid that exhibits a wide range of biological activities, which was found at its highest level in this genotype. Overall, these findings can be used by breeders in future programs aimed at the selection of new hemp genotypes with improved levels of phytochemicals in their inflorescences, which can provide better health and industrial benefits.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Valeria Menga
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Flavia Fulvio
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy
| | - Clara Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Daniela Trono
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| |
Collapse
|
33
|
Yuan J, Wu N, Cai Z, Chen C, Zhou Y, Chen H, Xue J, Liu X, Wang W, Cheng J, Li L. Metabolite Profiling and Transcriptome Analysis Explain the Difference in Accumulation of Bioactive Constituents in Taxilli Herba from Two Hosts. Genes (Basel) 2023; 14:genes14051040. [PMID: 37239400 DOI: 10.3390/genes14051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Taxilli Herba (TH) is a semi-parasitic herb and the host is a key factor affecting its quality. Flavonoids are the main bioactive constituents in TH. However, studies on the difference in accumulation of flavonoids in TH from different hosts are vacant. In this study, integrated transcriptomic and metabolomic analyses were performed on TH from Morus alba L. (SS) and Liquidambar formosana Hance (FXS) to investigate the relationship between the regulation of gene expression and the accumulation of bioactive constituents. The results showed that a total of 3319 differentially expressed genes (DEGs) were screened in transcriptomic analysis, including 1726 up-regulated genes and 1547 down-regulated genes. In addition, 81 compounds were identified using ultra-fast performance liquid chromatography coupled with triple quadrupole-time of flight ion trap tandem mass spectrometry (UFLC-Triple TOF-MS/MS) analysis, and the relative contents of flavonol aglycones and glycosides were higher in TH from SS group than those from the FXS group. A putative biosynthesis network of flavonoids was created, combined with structural genes, and the expression patterns of genes were mostly consistent with the variation of bioactive constituents. It was noteworthy that the UDP-glycosyltransferase genes might participate in downstream flavonoid glycosides synthesis. The findings of this work will provide a new way to understand the quality formation of TH from the aspects of metabolite changes and molecular mechanism.
Collapse
Affiliation(s)
- Jiahuan Yuan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nan Wu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuihua Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yongyi Zhou
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haijie Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jia Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Wenxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, China
| | - Li Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530220, China
| |
Collapse
|
34
|
Bosman RN, Vervalle JAM, November DL, Burger P, Lashbrooke JG. Grapevine genome analysis demonstrates the role of gene copy number variation in the formation of monoterpenes. FRONTIERS IN PLANT SCIENCE 2023; 14:1112214. [PMID: 37008487 PMCID: PMC10061021 DOI: 10.3389/fpls.2023.1112214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Volatile organic compounds such as terpenes influence the quality parameters of grapevine through their contribution to the flavour and aroma profile of berries. Biosynthesis of volatile organic compounds in grapevine is relatively complex and controlled by multiple genes, the majority of which are unknown or uncharacterised. To identify the genomic regions that associate with modulation of these compounds in grapevine berries, volatile metabolic data generated via GC-MS from a grapevine mapping population was used to identify quantitative trait loci (QTLs). Several significant QTLs were associated with terpenes, and candidate genes were proposed for sesquiterpene and monoterpene biosynthesis. For monoterpenes, loci on chromosomes 12 and 13 were shown to be associated with geraniol and cyclic monoterpene accumulation, respectively. The locus on chromosome 12 was shown to contain a geraniol synthase gene (VvGer), while the locus on chromosome 13 contained an α-terpineol synthase gene (VvTer). Molecular and genomic investigation of VvGer and VvTer revealed that these genes were found in tandemly duplicated clusters, displaying high levels of hemizygosity. Gene copy number analysis further showed that not only did VvTer and VvGer copy numbers vary within the mapping population, but also across recently sequenced Vitis cultivars. Significantly, VvTer copy number correlated with both VvTer gene expression and cyclic monoterpene accumulation in the mapping population. A hypothesis for a hyper-functional VvTer allele linked to increased gene copy number in the mapping population is presented and can potentially lead to selection of cultivars with modulated terpene profiles. The study highlights the impact of VvTPS gene duplication and copy number variation on terpene accumulation in grapevine.
Collapse
Affiliation(s)
- Robin Nicole Bosman
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | | | - Danielle Lisa November
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Phyllis Burger
- Department for Crop Development, Agricultural Research Council - Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Justin Graham Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
35
|
Miliordos DE, Alatzas A, Kontoudakis N, Unlubayir M, Hatzopoulos P, Lanoue A, Kotseridis Y. Benzothiadiazole Affects Grape Polyphenol Metabolism and Wine Quality in Two Greek Cultivars: Effects during Ripening Period over Two Years. PLANTS (BASEL, SWITZERLAND) 2023; 12:1179. [PMID: 36904039 PMCID: PMC10005230 DOI: 10.3390/plants12051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Grape berries are one of the most important sources of phenolic compounds, either consumed fresh or as wine. A pioneer practice aiming to enrich grape phenolic content has been developed based on the application of biostimulants such as agrochemicals initially designed to induce resistance against plant pathogens. A field experiment was conducted in two growing seasons (2019-2020) to investigate the effect of benzothiadiazole on polyphenol biosynthesis during grape ripening in Mouhtaro (red-colored) and Savvatiano (white-colored) varieties. Grapevines were treated at the stage of veraison with 0.3 mM and 0.6 mM benzothiadiazole. The phenolic content of grapes, as well as the expression level of genes involved in the phenylpropanoid pathway were evaluated and showed an induction of genes specifically engaged in anthocyanins and stilbenoids biosynthesis. Experimental wines deriving from benzothiadiazole-treated grapes exhibited increased amounts of phenolic compounds in both varietal wines, as well as an enhancement in anthocyanin content of Mouhtaro wines. Taken together, benzothiadiazole can be utilized to induce the biosynthesis of secondary metabolites with oenological interest and to improve the quality characteristics of grapes produced under organic conditions.
Collapse
Affiliation(s)
- Dimitrios-Evangelos Miliordos
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Anastasios Alatzas
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Nikolaos Kontoudakis
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
- Department of Agricultural Biotechnology and Oenology, International Hellenic University, 1st Km Drama-Mikrochori, 66100 Drama, Greece
| | - Marianne Unlubayir
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologie Végétales, UFR des Sciences Pharmaceutiques, Université de Tours, 31 Av. Monge, F37200 Tours, France
| | - Yorgos Kotseridis
- Laboratory of Oenology and Alcoholic Beverage Drinks, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
36
|
Wang X, Wang M, Yan G, Yang H, Wei G, Shen T, Wan Z, Zheng W, Fang S, Wu Z. Comparative analysis of drought stress-induced physiological and transcriptional changes of two black sesame cultivars during anthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1117507. [PMID: 36895884 PMCID: PMC9989188 DOI: 10.3389/fpls.2023.1117507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Sesame production is severely affected by unexpected drought stress during flowering stage. However, little is known about dynamic drought-responsive mechanisms during anthesis in sesame, and no particular attention was given to black sesame, the most common ingredient in East Asia traditional medicine. Herein, we investigated drought-responsive mechanisms of two contrasting black sesame cultivars (Jinhuangma, JHM, and Poyanghei, PYH) during anthesis. Compared to PYH, JHM plants showed higher tolerance to drought stress through the maintenance of biological membrane properties, high induction of osmoprotectants' biosynthesis and accumulation, and significant enhancement of the activities of antioxidant enzymes. For instance, the drought stress induced a significant increase in the content of soluble protein (SP), soluble sugar (SS), proline (PRO), glutathione (GSH), as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) in leaves and roots of JHM plants compared to PYH plants. RNA sequencing followed by differentially expressed genes (DEGs) analysis revealed that more genes were significantly induced under drought in JHM than in PYH plants. Functional enrichment analyses disclosed that several pathways related to drought stress tolerance, such as photosynthesis, amino acids and fatty acid metabolisms, peroxisome, ascorbate and aldarate metabolism, plant hormone signal transduction, biosynthesis of secondary metabolites, and glutathione metabolism, were highly stimulated in JHM than in PYH plants. Thirty-one (31) key highly induced DEGs, including transcription factors and glutathione reductase and ethylene biosynthetic genes, were identified as potential candidate genes for improving black sesame drought stress tolerance. Our findings show that a strong antioxidant system, biosynthesis and accumulation of osmoprotectants, TFs (mainly ERFs and NACs), and phytohormones are essential for black sesame drought tolerance. Moreover, they provide resources for functional genomic studies toward molecular breeding of drought-tolerant black sesame varieties.
Collapse
Affiliation(s)
- Xiaohui Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
- Institute of Garden Science and Technology, Nanchang City Gardening Service Center, Nanchang, China
| | - Min Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Gui Yan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Huiyi Yang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Guangwei Wei
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Tinghai Shen
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Zehua Wan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Wei Zheng
- Crop Cultivation Laboratory, Jiangxi Institute of Red Soil and Germplasm Resource, Nanchang, China
| | - Sheng Fang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
37
|
Palai G, Caruso G, Gucci R, D’Onofrio C. Water deficit before veraison is crucial in regulating berry VOCs concentration in Sangiovese grapevines. FRONTIERS IN PLANT SCIENCE 2023; 14:1117572. [PMID: 36890905 PMCID: PMC9986437 DOI: 10.3389/fpls.2023.1117572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The impact of water deficit on volatile organic compounds (VOCs) responsible for grape aroma remains quite unclear. The aim of this study was to evaluate the effect of different timing and intensity of water deficit on berry VOCs and on their biosynthetic pathways. Fully irrigated control vines were compared with the following treatments: i) two different levels of water deficit from berry pea-size through veraison, ii) one level of water deficit during the lag-phase, and iii) two different levels of water deficit from veraison through harvest. At harvest, total VOC concentrations were higher in berries of water stressed vines from berry pea size through veraison or during the lag phase, whereas post-veraison water deficit determined similar concentrations as control. This pattern was even more pronounced for the glycosylated fraction and was also observed for single compounds, mainly monoterpenes and C13-norisoprenoids. On the other hand, free VOCs were higher in berries from lag phase or post-veraison stressed vines. The significant glycosylated and free VOCs increment measured after the short water stress limited to the lag phase highlight the pivotal role played by this stage in berry aroma compound biosynthesis modulation. The severity of water stress before veraison was also important, since glycosylated VOCs showed a positive correlation with the pre-veraison daily water stress integral. The RNA-seq analysis showed a wide regulation induced by irrigation regimes on terpenes and carotenoids biosynthetic pathways. The terpene synthases and glycosyltransferases as well as genes of the network of transcription factors were upregulated, especially in berries from pre-veraison stressed vines. Since the timing and intensity of water deficit contribute to regulate berry VOCs, irrigation management can be used to achieve high-quality grapes while saving water.
Collapse
Affiliation(s)
| | | | | | - Claudio D’Onofrio
- Department of Agriculture Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
38
|
Fernandez O, Lemaître-Guillier C, Songy A, Robert-Siegwald G, Lebrun MH, Schmitt-Kopplin P, Larignon P, Adrian M, Fontaine F. The Combination of Both Heat and Water Stresses May Worsen Botryosphaeria Dieback Symptoms in Grapevine. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040753. [PMID: 36840101 PMCID: PMC9961737 DOI: 10.3390/plants12040753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in pathology and symptomatology challenging. Third, a consensus is raising to pinpoint combined abiotic stresses as a key factor contributing to disease symptom expression. (2) Methods: We analyzed the impact of combined abiotic stresses in grapevine cuttings artificially infected by two fungi involved in Botryosphaeria dieback (one of the major GTDs), Neofusicoccum parvum and Diplodia seriata. Fungal-infected and control plants were subjected to single or combined abiotic stresses (heat stress, drought stress or both). Disease intensity was monitored thanks to the measurement of necrosis area size. (3) Results and conclusions: Overall, our results suggest that combined stresses might have a stronger impact on disease intensity upon infection by the less virulent pathogen Diplodia seriata. This conclusion is discussed through the impact on plant physiology using metabolomic and transcriptomic analyses of leaves sampled for the different conditions.
Collapse
Affiliation(s)
- Olivier Fernandez
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Aurélie Songy
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Marc-Henri Lebrun
- Research Group Genomics of Plant-Pathogen Interactions, Research Unit Biologie et Gestion des Risques en Agriculture, UR 1290 BIOGER, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Marielle Adrian
- Agroécologie, Institut Agro Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Florence Fontaine
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
39
|
VanderWeide J, Harris C, Zandberg WF, Castellarin SD. Understanding the Sensitivity of Grape Terpenes to Jasmonates Using In Vitro Culture and In Vivo Vineyard Experiments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3141-3151. [PMID: 36602277 DOI: 10.1021/acs.jafc.2c06831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Terpene volatiles define the flavor of terpenic grape cultivars. However, grape terpene concentrations can vary 2- to 3-fold across seasons and vineyards, impacting vintage quality. The plant hormone methyl jasmonate (MeJA) stimulates grape terpene production but is expensive and can decrease berry weight and maturity. The synthetic jasmonate prohydrojasmon (PDJ) is cost-effective yet has not been evaluated on grape maturity and terpene production. Here, we performed in vitro (berry culture) and in vivo (vineyard) experiments using Gewürztraminer (Vitis vinifera L.) to evaluate the time- and concentration-dependent sensitivity of maturity parameters and terpene content to MeJA and PDJ. In vitro berry weight was reduced by high MeJA and PDJ concentration across timings. Terpenes were most sensitive to low MeJA concentration at veraison (increased 24-fold) in vitro. Moderate PDJ concentration applied at veraison doubled (increased twofold) terpene concentration in vivo without impacting berry weight or maturity. In conclusion, PDJ may provide a solution to mitigate seasonal variability in terpene production in terpenic grape cultivars.
Collapse
Affiliation(s)
- Joshua VanderWeide
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| | - Chelsea Harris
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| | - Wesley F Zandberg
- Wine Research Centre, Department of Chemistry, University of British Columbia-Okanagan, 3187 University Way, Kelowna, BCV1V 1V7, Canada
| | - Simone D Castellarin
- Wine Research Centre, University of British Columbia, 2205 East Mall, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
40
|
Li J, Quan Y, Wang L, Wang S. Brassinosteroid Promotes Grape Berry Quality-Focus on Physicochemical Qualities and Their Coordination with Enzymatic and Molecular Processes: A Review. Int J Mol Sci 2022; 24:ijms24010445. [PMID: 36613887 PMCID: PMC9820165 DOI: 10.3390/ijms24010445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Brassinosteroid (BR) is an important endogenous phytohormone that plays a significant role in fruit quality regulation. The regulation of BR biosynthesis and its physiological effects have been well-studied in various fruits. External quality (fruit longitudinal and transverse diameters, firmness, single berry weight, color) and internal quality (sugars, aroma, anthocyanin, stress-related metabolites) are important parameters that are modified during grape berry development and ripening. Grapevines are grown all over the world as a cash crop and utilized for fresh consumption, wine manufacture, and raisin production. In this paper, the biosynthesis and signaling transduction of BR in grapevine were summarized, as well as the recent developments in understanding the role of BR in regulating the external quality (fruit longitudinal and transverse diameters, firmness, single berry weight, and color) and internal quality (sugars, organic acids, aroma substances, anthocyanins, antioxidants) of grapes. Additionally, current advancements in exogenous BR strategies for improving grape berries quality were examined from the perspectives of enzymatic activity and transcriptional regulation. Furthermore, the interaction between BR and other phytohormones regulating the grape berry quality was also discussed, aiming to provide a reliable reference for better understanding the potential value of BR in the grape/wine industry.
Collapse
|
41
|
Zhang X, Jiang J, Ma Z, Yang Y, Meng L, Xie F, Cui G, Yin X. Cloning of TaeRF1 gene from Caucasian clover and its functional analysis responding to low-temperature stress. FRONTIERS IN PLANT SCIENCE 2022; 13:968965. [PMID: 36605954 PMCID: PMC9809470 DOI: 10.3389/fpls.2022.968965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Low temperature (LT) is an important threat to the normal growth of plants. In this study, based on the full-length transcriptome sequencing results, the cold resistance genes were cloned from Caucasian clover with strong cold resistance. We cloned the CDS of TaeRF1, which is 1311 bp in length and encodes 436 amino acids. The molecular weight of the protein is 48.97 kDa, which had no transmembrane structure, and its isoelectric point (pI) was 5.42. We predicted the structure of TaeRF1 and found 29 phosphorylation sites. Subcellular localization showed that TaeRF1 was localized and expressed in cell membrane and chloroplasts. The TaeRF1 gene was induced by stress due to cold, salt, alkali and drought and its expression level was higher in roots and it was more sensitive to LT. Analysis of transgenic A. thaliana plants before and after LT treatment showed that the TaeRF1 gene enhanced the removal of excess H2O2, and increased the activity of antioxidant enzymes, thus improving the plant's ability to resist stress. Additionally, the OE lines showed increased cold tolerance by upregulating the transcription level of cold-responsive genes (CBF1, CBF2, COR15B, COR47, ICE1, and RD29A). This study demonstrates that TaeRF1 is actively involved in the responses of plants to LT stress. We also provide a theoretical basis for breeding and a potential mechanism underlying the responses of Caucasian clover to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guowen Cui
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| | - Xiujie Yin
- *Correspondence: Guowen Cui, ; Xiujie Yin,
| |
Collapse
|
42
|
Botton A, Girardi F, Ruperti B, Brilli M, Tijero V, Eccher G, Populin F, Schievano E, Riello T, Munné-Bosch S, Canton M, Rasori A, Cardillo V, Meggio F. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3574. [PMID: 36559686 PMCID: PMC9788187 DOI: 10.3390/plants11243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Francesco Girardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Veronica Tijero
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Francesca Populin
- Unit of Fruit Crop Genetics and Breeding, Research and Innovation Centre—CRI, Edmund Mach Foundation—FEM, Via E. Mach 1, San Michele all’Adige, 38098 Trento, Italy
| | - Elisabetta Schievano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Tobia Riello
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08017 Barcelona, Spain
| | - Monica Canton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| |
Collapse
|
43
|
Palai G, Caruso G, Gucci R, D’Onofrio C. Berry flavonoids are differently modulated by timing and intensities of water deficit in Vitis vinifera L. cv. Sangiovese. FRONTIERS IN PLANT SCIENCE 2022; 13:1040899. [PMID: 36388597 PMCID: PMC9659973 DOI: 10.3389/fpls.2022.1040899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
In this work, we tested the effect of different regulated deficit irrigation (RDI) regimes on berry flavonoid content and its relative biosynthetic pathways. Vines were subjected to six irrigation regimes over two consecutive years: a) full irrigation during the entire irrigation period (FI); b) moderate (RDI-1M) or c) severe (RDI-1S) water deficit between berry pea-size and veraison; d) severe water deficit during the lag-phase (RDI-LS); and e) moderate (RDI-2M) or f) severe (RDI-2S) water deficit from veraison through harvest. Berries from both RDI-1 treatments showed the highest accumulation of anthocyanins, upregulating the expression of many genes of the flavonoid pathway since the beginning of veraison until harvest, far after the water deficit was released. Although to a lesser degree than RDI-1, both post-veraison water deficit treatments increased anthocyanin concentration, particularly those of the tri-substituted forms, overexpressing the F3'5'H hydroxylases. The moderate deficit irrigation treatments enhanced anthocyanin accumulation with respect to the severe ones regardless of the period when they were applied (pre- or post-veraison). The water deficit imposed during the lag-phase downregulated many genes throughout the flavonoid pathway, showing a slight reduction in anthocyanin accumulation. The measurements of cluster temperature and light exposure highlighted that under deficit irrigation conditions, the effects induced by water stress prevailed over that of light and temperature in regulating anthocyanin biosynthesis. Flavonol concentration was higher in RDI-1S berries due to the upregulation of the flavonol synthases and the flavonol-3-O-glycosyltransferases. In this case, the higher cluster light exposure induced by water deficit in RDI-1S berries had a major role in flavonol accumulation. We conclude that the timing and intensity of water stress strongly regulate the berry flavonoid accumulation and that proper management of deficit irrigation can modulate the phenylpropanoid and flavonoid pathways.
Collapse
|
44
|
Sreekumar S, Divya K, Joy N, Soniya EV. De novo transcriptome profiling unveils the regulation of phenylpropanoid biosynthesis in unripe Piper nigrum berries. BMC PLANT BIOLOGY 2022; 22:501. [PMID: 36284267 PMCID: PMC9597958 DOI: 10.1186/s12870-022-03878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Black pepper (Piper nigrum L.) is rich in bioactive compounds that make it an imperative constituent in traditional medicines. Although the unripe fruits have long been used in different Ayurvedic formulations, the mechanism of gene regulation resulting in the production of the bioactive compounds in black pepper is not much investigated. Exploring the regulatory factors favouring the production of bioactive compounds ultimately help to accumulate the medicinally important content of black pepper. The factors that enhance the biosynthesis of these compounds could be potential candidates for metabolic engineering strategies to obtain a high level production of significant biomolecules. RESULTS Being a non-model plant, de novo sequencing technology was used to unravel comprehensive information about the genes and transcription factors that are expressed in mature unripe green berries of P. nigrum from which commercially available black pepper is prepared. In this study, the key gene regulations involved in the synthesis of bioactive principles in black pepper was brought out with a focus on the highly expressed phenylpropanoid pathway genes. Quantitative real-time PCR analysis of critical genes and transcription factors in the different developmental stages from bud to the mature green berries provides important information useful for choosing the developmental stage that would be best for the production of a particular bioactive compound. Comparison with a previous study has also been included to understand the relative position of the results obtained from this study. CONCLUSIONS The current study uncovered significant information regarding the gene expression and regulation responsible for the bioactivity of black pepper. The key transcription factors and enzymes analyzed in this study are promising targets for achieving a high level production of significant biomolecules through metabolic engineering.
Collapse
Affiliation(s)
- Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kattupalli Divya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Nisha Joy
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - E V Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
45
|
Huan X, Li L, Liu Y, Kong Z, Liu Y, Wang Q, Liu J, Zhang P, Guo Y, Qin P. Integrating transcriptomics and metabolomics to analyze quinoa ( Chenopodium quinoa Willd.) responses to drought stress and rewatering. FRONTIERS IN PLANT SCIENCE 2022; 13:988861. [PMID: 36388589 PMCID: PMC9645111 DOI: 10.3389/fpls.2022.988861] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 06/01/2023]
Abstract
The crop production of quinoa (Chenopodium quinoa Willd.), the only plant meeting basic human nutritional requirements, is affected by drought stress. To better understand the drought tolerance mechanism of quinoa, we screened the drought-tolerant quinoa genotype "Dianli 129" and studied the seedling leaves of the drought-tolerant quinoa genotype after drought and rewatering treatments using transcriptomics and targeted metabolomics. Drought-treatment, drought control, rewatering-treated, and rewatered control were named as DR, DC, RW, and RC, respectively. Among four comparison groups, DC vs. DR, RC vs. RW, RW vs. DR, and RC vs. DC, we identified 10,292, 2,307, 12,368, and 3 differentially expressed genes (DEGs), and 215, 192, 132, and 19 differentially expressed metabolites (DEMs), respectively. A total of 38,670 genes and 142 pathways were annotated. The results of transcriptome and metabolome association analysis showed that gene-LOC110713661 and gene-LOC110738152 may be the key genes for drought tolerance in quinoa. Some metabolites accumulated in quinoa leaves in response to drought stress, and the plants recovered after rewatering. DEGs and DEMs participate in starch and sucrose metabolism and flavonoid biosynthesis, which are vital for improving drought tolerance in quinoa. Drought tolerance of quinoa was correlated with gene expression differences, metabolite accumulation and good recovery after rewatering. These findings improve our understanding of drought and rewatering responses in quinoa and have implications for the breeding of new drought-tolerance varieties while providing a theoretical basis for drought-tolerance varieties identification.
Collapse
Affiliation(s)
- Xiuju Huan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yongjiang Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Zhiyou Kong
- College of Resources and Environment, Baoshan College, Baoshan, China
| | - Yeju Liu
- Graduate Office, Yunnan Agricultural University, Kunming, China
| | - Qianchao Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yirui Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
46
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
47
|
Wang S, Qiang Q, Xiang L, Fernie AR, Yang J. Targeted approaches to improve tomato fruit taste. HORTICULTURE RESEARCH 2022; 10:uhac229. [PMID: 36643745 PMCID: PMC9832879 DOI: 10.1093/hr/uhac229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Tomato (Solanum lycopersicum) is the most valuable fruit and horticultural crop species worldwide. Compared with the fruits of their progenitors, those of modern tomato cultivars are, however, often described as having unsatisfactory taste or lacking flavor. The flavor of a tomato fruit arises from a complex mix of tastes and volatile metabolites, including sugars, acids, amino acids, and various volatiles. However, considerable differences in fruit flavor occur among tomato varieties, resulting in mixed consumer experiences. While tomato breeding has traditionally been driven by the desire for continual increases in yield and the introduction of traits that provide a long shelf-life, consumers are prepared to pay a reasonable premium for taste. Therefore, it is necessary to characterize preferences of tomato flavor and to define its underlying genetic basis. Here, we review recent conceptual and technological advances that have rendered this more feasible, including multi-omics-based QTL and association analyses, along with the use of trained testing panels, and machine learning approaches. This review proposes how the comprehensive datasets compiled to date could allow a precise rational design of tomato germplasm resources with improved organoleptic quality for the future.
Collapse
Affiliation(s)
- Shouchuang Wang
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| | | | - Lijun Xiang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Alisdair R Fernie
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| | - Jun Yang
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| |
Collapse
|
48
|
Koyama K, Kono A, Ban Y, Bahena-Garrido SM, Ohama T, Iwashita K, Fukuda H, Goto-Yamamoto N. Genetic architecture of berry aroma compounds in a QTL (quantitative trait loci) mapping population of interspecific hybrid grapes (Vitis labruscana × Vitis vinifera). BMC PLANT BIOLOGY 2022; 22:458. [PMID: 36151514 PMCID: PMC9503205 DOI: 10.1186/s12870-022-03842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although grapes accumulate diverse groups of volatile compounds, their genetic regulation in different cultivars remains unelucidated. Therefore, this study investigated the volatile composition in the berries of an interspecific hybrid population from a Vitis labruscana 'Campbell Early' (CE) × Vitis vinifera 'Muscat of Alexandria' (MA) cross to understand the relationship among volatile compounds and their genetic regulation. Then, a quantitative trait locus (QTL) analysis of its volatile compounds was conducted. RESULTS While MA contained higher concentrations of monoterpenes and norisoprenoids, CE contained higher concentrations of C6 compounds, lactones and shikimic acid derivatives, including volatiles characteristic to American hybrids, i.e., methyl anthranilate, o-aminoacetophenone and mesifurane. Furthermore, a cluster analysis of volatile profiles in the hybrid population discovered ten coordinately modulated free and bound volatile clusters. QTL analysis identified a major QTL on linkage group (LG) 5 in the MA map for 14 monoterpene concentrations, consistent with a previously reported locus. Additionally, several QTLs detected in the CE map affected the concentrations of specific monoterpenes, such as linalool, citronellol and 1,8-cineol, modifying the monoterpene composition in the berries. As for the concentrations of five norisoprenoids, a major common QTL on LG2 was discovered first in this study. Several QTLs with minor effects were also discovered in various volatile groups, such as lactones, alcohols and shikimic acid derivatives. CONCLUSIONS An overview of the profiles of aroma compounds and their underlying QTLs in a population of interspecific hybrid grapes in which muscat flavor compounds and many other aroma compounds were mixed variously were elucidated. Coordinate modulation of the volatile clusters in the hybrid population suggested an independent mechanism for controlling the volatiles of each group. Accordingly, specific QTLs with significant effects were observed for terpenoids, norisoprenoids and some volatiles highly contained in CE berries.
Collapse
Affiliation(s)
- Kazuya Koyama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan.
| | - Atsushi Kono
- Institute of Fruit Tree and Tea Science, NARO, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Yusuke Ban
- Western Region Agricultural Research Center (Kinki, Chugoku and Shikoku Regions), NARO, 6-12-1 Nishifukatsu, Fukuyama, Hiroshima, 721-8514, Japan
| | | | - Tomoko Ohama
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Kazuhiro Iwashita
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Hisashi Fukuda
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| | - Nami Goto-Yamamoto
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
49
|
Naoya Fukuda ME, Yoshida H, Kusano M. Effects of light quality, photoperiod, CO 2 concentration, and air temperature on chlorogenic acid and rutin accumulation in young lettuce plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:290-298. [PMID: 35932653 DOI: 10.1016/j.plaphy.2022.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Environmental stimuli modulate plant metabolite accumulation, facilitating adaptation to stressful conditions. In this study, the effects of blue and red light, photoperiod, CO2 concentration, and air temperature on the chlorogenic acid (CGA) and rutin contents of lettuce (Lactuca sativa L.) were evaluated. Under continuous blue light and a high CO2 concentration (1000 ppm), the CGA level increased. The increased expression of phenylalanine ammonia-lyase (PAL) and activity of its product were correlated with high expression of cinnamate 4-hydroxylase (C4H) and coumarate 3-hydroxylase (C3H). Furthermore, changes in PAL activity altered the CGA content in lettuce exposed to the three environmental factors, blue light, continuous lighting and high CO2 concentration. In addition, the expression levels of genes related to flavonoid biosynthesis increased in accordance with the promotion of CGA accumulation by the environmental factors. Under continuous blue light, 400 ppm CO2 promoted rutin accumulation to a greater degree compared to 1000 ppm CO2, by downregulating DFR expression. Low air temperature induced CGA accumulation in lettuce grown under continuous blue light and 1000 ppm CO2. Therefore, light quality, photoperiod, CO2 concentration, and air temperature exert synergistic effects on the CGA and rutin contents of lettuce by modulating activity in the corresponding biosynthesis pathways.
Collapse
Affiliation(s)
- Mirai Endo Naoya Fukuda
- Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Hideo Yoshida
- Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Miyako Kusano
- Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
50
|
Savoi S, Supapvanich S, Hildebrand H, Stralis-Pavese N, Forneck A, Kreil DP, Griesser M. Expression Analyses in the Rachis Hint towards Major Cell Wall Modifications in Grape Clusters Showing Berry Shrivel Symptoms. PLANTS (BASEL, SWITZERLAND) 2022; 11:2159. [PMID: 36015462 PMCID: PMC9413262 DOI: 10.3390/plants11162159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Berry shrivel (BS) is one of the prominent and still unresolved ripening physiological disorders in grapevine. The causes of BS are unclear, and previous studies focused on the berry metabolism or histological studies, including cell viability staining in the rachis and berries of BS clusters. Herein, we studied the transcriptional modulation induced by BS in the rachis of pre-symptomatic and symptomatic clusters with a custom-made microarray qPCR in relation to a previous RNASeq study of BS berries. Gene set analysis of transcript expression in symptomatic rachis tissue determined suppression of cell wall biosynthesis, which could also be confirmed already in pre-symptomatic BS rachis by CESA8 qPCR analyses, while in BS berries, a high number of SWITCH genes were suppressed at veraison. Additionally, genes associated with the cell wall were differently affected by BS in berries. A high percentage of hydrolytic enzymes were induced in BS grapes in rachis and berries, while other groups such as, e.g., xyloglucan endotransglucosylase/hydrolase, were suppressed in BS rachis. In conclusion, we propose that modulated cell wall biosynthesis and cell wall assembly in pre-symptomatic BS rachis have potential consequences for cell wall strength and lead to a forced degradation of cell walls in symptomatic grape clusters. The similarity to sugar starvation transcriptional profiles provides a link to BS berries, which are low in sugar accumulation. However, further studies remain necessary to investigate the temporal and spatial coordination in both tissues.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Suriyan Supapvanich
- Department of Agricultural Education, School of Industrial Education and Technology, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Heinrich Hildebrand
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln an der Donau, Austria
| | - Nancy Stralis-Pavese
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Astrid Forneck
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln an der Donau, Austria
| | - David P. Kreil
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Michaela Griesser
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln an der Donau, Austria
| |
Collapse
|