1
|
Abdelhameed RE, Abdalla H, Hegazy HS, Adarosy MH. Interpreting the potential of biogenic TiO 2 nanoparticles on enhancing soybean resilience to salinity via maintaining ion homeostasis and minimizing malondialdehyde. Sci Rep 2025; 15:12904. [PMID: 40234514 PMCID: PMC12000301 DOI: 10.1038/s41598-025-94421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
The use of nanoparticles has emerged as a popular amendment and promising approach to enhance plant resilience to environmental stressors, including salinity. Salinity stress is a critical issue in global agriculture, requiring strategies such as salt-tolerant crop varieties, soil amendments, and nanotechnology-based solutions to mitigate its effects. Therefore, this paper explores the role of plant-based titanium dioxide nanoparticles (nTiO2) in mitigating the effects of salinity stress on soybean phenotypic variation, water content, non-enzymatic antioxidants, malondialdehyde (MDA) and mineral contents. Both 0 and 30 ppm nTiO2 treatments were applied to the soybean plants, along with six salt concentrations (0, 25, 50, 100, 150, and 200 mM NaCl) and the combined effect of nTiO2 and salinity. Salinity decreased water content, chlorophyll and carotenoids which results in a significant decrement in the total fresh and dry weights. Treatment of control and NaCl treated plants by nTiO2 showed improvements in the vegetative growth of soybean plants by increasing its chlorophyll, water content and carbohydrates. Additionally, nTiO2 application boosted the accumulation of non-enzymatic antioxidants, contributing to reduced oxidative damage (less MDA). Notably, it also mitigated Na+ accumulation while promoting K+ and Mg++ uptake in both leaves and roots, essential for maintaining ion homeostasis and metabolic function. These results suggest that nTiO2 has the potential to improve salinity tolerance in soybean by maintaining proper ion balance and reducing MDA level, offering a promising strategy for crop management in saline-prone areas.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hegazy S Hegazy
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Marwa H Adarosy
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
Soliman ERS, Abdelhameed RE, Metwally RA. Role of arbuscular mycorrhizal fungi in drought-resilient soybeans (Glycine max L.): unraveling the morphological, physio-biochemical traits, and expression of polyamine biosynthesis genes. BOTANICAL STUDIES 2025; 66:9. [PMID: 40095139 PMCID: PMC11914442 DOI: 10.1186/s40529-025-00455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/16/2025] [Indexed: 03/19/2025]
Abstract
BACKGROUND Drought stress is a catastrophic abiotic stressor that impedes the worldwide output of commodities and the development of plants. The Utilizing biological antioxidant stimulators, Arbuscular mycorrhizal fungi (AMF) are one example increased the plants' ability to withstand the effects of drought. The symbiotic response of soybean (Glycine max L.) to AMF inoculation was assessed in the experiment presented herewith at different watering regimes (field capacity of 25, 50, and 90%). The vegetative, physio-biochemical traits, and regulation of genes involved in polyamine synthesis in G. max plants were evaluated. RESULTS The results obtained suggested that AMF inoculation has an advantage over plants that were non-inoculated in terms of their growth and all assessed criteria, which responded to drought stress by showing slower development. It is evident that the gas exchange parameters of the soybean plant were substantially reduced by 36.79 (photosynthetic rate; A), 60.59 (transpiration rate; E), and 53.50% (stomatal conductance gs), respectively, under severe stress of drought in comparison to control; non-stressed treatment. However, the AMF inoculation resulted in a 40.87, 29.89, and 33.65% increase in A, E, and gs levels, respectively, in extremely drought-stressful circumstances, when in contrast to non-AMF one that was grown under well-watered conditions. The drought level was inversely proportional to mycorrhizal colonization. The total antioxidant capacity, protein, and proline contents were all enhanced by AMF inoculation, while the malondialdehyde and hydrogen peroxide contents were decreased. Polyamine biosynthesis genes expression; Ornithine decarboxylase (ODC2), Spermidine synthase (SPDS) and Spermine synthase (SpS) were upregulated in drought and to even higher level in AMF's mild drought inoculated plants' shoots. This implies that AMF plays apart in the enhanced survival of soybean plants stressed by drought and reduced plant membranes damage by limiting the excessive production of oxidative stress generators; ROS. CONCLUSIONS In summary, the present investigation demonstrates that inoculation of AMF may be a supportable and environmentally advantageous method for improving the physio-biochemical traits, plant growth, and polyamine biosynthesis genes of soybean plants in the incident of limited water availability.
Collapse
Affiliation(s)
- Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
3
|
Saleem S, Mushtaq NU, Tahir I, Seth CS, Rehman RU. Positive influence of selenium on the modulation of ascorbate-glutathione cycle in salt stressed Setaria italica L. JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154448. [PMID: 39954308 DOI: 10.1016/j.jplph.2025.154448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Soil salinity is a significant abiotic factor affecting crop yield and global distribution, hence selecting salt-tolerant crop species is crucial for food security. Foxtail millet is a resilient crop suitable for hilly, salinity, and drought-prone areas due to its ability to withstand environmental stressors. In this study, foxtail millet was subjected to high NaCl concentrations (150 mM and 200 mM) and selenium (1 μM, 5 μM, and 10 μM) as a stress mitigator. Increased salinity in foxtail plants hampered the growth with decreased pigment levels, increased H₂O₂ levels (153.6%), lipid peroxidation (32.1%), and electrolyte leakage (155.5%). The application of 1 μM Se positively influenced the root-to-shoot ratio (R) (59.2%), photosynthetic pigments, phenolic content (25.1%), flavonoid content (7%) and hence the antioxidant potential of the salt stressed plants there by decreasing the H₂O₂ levels (26.8%) and suggesting a greater ability to scavenge radicals. Both NaCl and Se induced the AsA-GSH pathway. Se supplementation significantly improved AsA-GSH pathway components such as AsA/DHA (40.8%) and GSH/GSSG ratios (39.6%) in salt-stressed foxtail millet, reducing oxidative stress and efficiently neutralizing H₂O₂. Gene expression validation confirmed that SiAPX, SiDHAR, SiMDHAR, and SiGR showed significant upregulation with 1 μM Se application in salt-stressed foxtail millet plants. However, higher Se concentrations (5 μM and 10 μM) led to a reduced fresh weight along with R, increased the MDA and H₂O₂ levels, and did not positively contribute to osmolyte accumulation or improve the AsA/DHA and GSH/GSSG ratios. Elevated Se levels also led to a decreased antioxidant potential. Among the enzymes of the AsA-GSH cycle, higher Se concentrations negatively affected APX, DHAR, MDHAR, and GR activities, indicating stress aggravation rather than mitigation at elevated doses.
Collapse
Affiliation(s)
- Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | | | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
4
|
Abdelhameed RE, Hegazy HS, Abdalla H, Adarosy MH. Efficacy of green synthesized titanium dioxide nanoparticles in attenuation salt stress in Glycine max plants: modulations in metabolic constituents and cell ultrastructure. BMC PLANT BIOLOGY 2025; 25:221. [PMID: 39966699 PMCID: PMC11834211 DOI: 10.1186/s12870-025-06194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Salinity is among the major abiotic stresses faced by different countries; limiting plant growth, development and yield. This research work was carried out to evaluate the influence of green prepared titanium dioxide nanoparticles (TiO2 NPs) on the growth, metabolic constituents and ultrastructural alterations of soybean (Glycine max L.) plants exposed to salt stress. TiO2 NPs were green synthesized using an aqueous solution of Aloe vera leaf extract and the obtained NPs were identified using several techniques. An in vivo pot experiment was carried out to evaluate the role of foliar sprayed TiO2 NPs (30 ppm) on soybean plants irrigated by six NaCl concentrations (0, 25, 50, 100, 150 and 200 mM). After 15 and 30 days from salt application, growth parameters, photosynthetic pigments, total soluble protein, enzymatic antioxidants and ultrastructural changes were tested for potential tolerance of soybean plants growing under salt stress. Results revealed that increasing salt concentrations induced a significant decrease in shoot length, fresh and dry weights as well as the photosynthetic pigments, these decreases were due to increasing electrolyte leakage of soybean plants. However, application of TiO2 NPs showed improvements in the vegetative growth by increasing its pigments and protein contents. There was a marked increase in the contents of enzymatic antioxidants in salt stressed soybean plants and further accumulation of their contents with TiO2 NPs application. Salt stressed soybean plants showed structural and ultrastructural deformation which was lessened by TiO2 NPs application. Finally, our research demonstrates the role of TiO2 NPs in alleviating salt stress in soybean plants via restoring the antioxidants and cell ultrastructure, highlighting their potential role as a sustainable and eco-friendly strategy.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig, University, Zagazig, 44519, Egypt.
| | - Hegazy S Hegazy
- Botany and Microbiology Department, Faculty of Science, Zagazig, University, Zagazig, 44519, Egypt
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig, University, Zagazig, 44519, Egypt
| | - Marwa H Adarosy
- Botany and Microbiology Department, Faculty of Science, Zagazig, University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
Chen M, Wang X, Zhou X, Huang B, Zhao Y, Liu H, He Q. Abiotic stress-induced changes in Tetrastigma hemsleyanum: insights from secondary metabolite biosynthesis and enhancement of plant defense mechanisms. BMC PLANT BIOLOGY 2024; 24:1260. [PMID: 39725878 DOI: 10.1186/s12870-024-05975-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Tetrastigma hemsleyanum, a traditional Chinese medicinal plant with anti-inflammatory, anti-cancer, and anti-tumor properties, faces increasing abiotic stress due to climate change, agricultural chemicals, and industrialization. This study investigated how three abiotic stress factors influence antioxidant enzyme activity, MDA levels, DPPH free radical scavenging capacity, chlorophyll, carotenoids, active compounds, and gene expression in different T. hemsleyanum strains. The comprehensive evaluation indicates that the ZJWZ strain holds potential as a preferred parental material for future resistance breeding. Furthermore, PAL gene expression was strongly positively correlated with flavonoid and phenol contents, highlighting its role in the stress response through the phenylpropanoid-flavonoid pathway. This study contributes to the standardization of the production and breeding of superior strains of T. hemsleyanum. It also lays the foundation for investigating how plants react to environmental stressors.
Collapse
Affiliation(s)
- Minmin Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
- Hainan Institute, Yazhou Bay Science and Technology City, Zhejiang University, Hangzhou, 572025, China
| | - Xiaoqun Wang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiawen Zhou
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Baiyu Huang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yujie Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haiying Liu
- School of Agriculture, Yunnan University, Kunming, 650504, China
| | - Qiuling He
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Shelar A, Singh AV, Chaure N, Jagtap P, Chaudhari P, Shinde M, Nile SH, Chaskar M, Patil R. Nanoprimers in sustainable seed treatment: Molecular insights into abiotic-biotic stress tolerance mechanisms for enhancing germination and improved crop productivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175118. [PMID: 39097019 DOI: 10.1016/j.scitotenv.2024.175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/18/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Abiotic and biotic stresses during seed germination are typically managed with conventional agrochemicals, known to harm the environment and reduce crop yields. Seeking sustainable alternatives, nanotechnology-based agrochemicals leverage unique physical and chemical properties to boost seed health and alleviate stress during germination. Nanoprimers in seed priming treatment are advanced nanoscale materials designed to enhance seed germination, growth, and stress tolerance by delivering bioactive compounds and nutrients directly to seeds. Present review aims to explores the revolutionary potential of nanoprimers in sustainable seed treatment, focusing on their ability to enhance crop productivity by improving tolerance to abiotic and biotic stresses. Key objectives include understanding the mechanisms by which nanoprimers confer resistance to stresses such as drought, salinity, pests, and diseases, and assessing their impact on plant physiological and biochemical pathways. Key findings reveal that nanoprimers significantly enhance seedling vigor and stress resilience, leading to improved crop yields. These advancements are attributed to the precise delivery of nanomaterials that optimize plant growth conditions and activate stress tolerance mechanisms. However, the study also highlights the importance of comprehensive toxicity and risk assessments. Current review presents a novel contribution, highlighting both the advantages and potential risks of nanoprimers by offering a comprehensive overview of advancements in seed priming with metal and metal oxide nanomaterials, addressing a significant gap in the existing literature. By delivering advanced molecular insights, the study underscores the transformative potential of nanoprimers in fostering sustainable agricultural practices and responsibly meeting global food demands.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589 Berlin, Germany
| | - Nandu Chaure
- Department of Physics, Savitribai Phule Pune University, Pune 411007, MH, India
| | - Pramod Jagtap
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Pramod Chaudhari
- Zonal Agricultural Research Station, Mahatma Phule Krishi Vidyapeeth, Ganeshkhind, Pune 411007, MH, India
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET), Panchawati, Pune 411008, MH, India
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, Mohali 140306, PB, India.
| | - Manohar Chaskar
- Swami Ramanand Teerth Marathwada University, Nanded 431606 (MS) India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MH, India.
| |
Collapse
|
7
|
Chandoliya R, Sharma S, Sharma V, Joshi R, Sivanesan I. Titanium Dioxide Nanoparticle: A Comprehensive Review on Synthesis, Applications and Toxicity. PLANTS (BASEL, SWITZERLAND) 2024; 13:2964. [PMID: 39519883 PMCID: PMC11547906 DOI: 10.3390/plants13212964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Nanotechnology has garnered significant interest worldwide due to its wide-ranging applications across various industries. Titanium dioxide nanoparticles are one type of nanoparticle that is commonly utilised in everyday use and can be synthesized by different techniques using physical, chemical and biological extracts. Green synthesis is an economical, environmentally benign and non-toxic method of synthesising nanoparticles. Titanium dioxide nanoparticles have a positive impact on plant physiology, particularly in response to biotic and abiotic stresses, depending on various factors like size, concentration, exposure of the nanoparticles and other variables. Further, titanium dioxide nanoparticles have many applications, such as being used as nano-fertilizers, adsorption of heavy metal from industrial wastewater and antimicrobial activity, as discussed in this review paper. Previous studies investigated whether titanium dioxide nanoparticles also induce genotoxicity may be due to mishandling procedure, exposure time, size, concentration and other variables. This is still contradictory and requires more research. The present review is a pragmatic approach to summarize the synthesis, application, nanotoxicity, genotoxicity and eco-friendly method of nanoparticle synthesis and disposable.
Collapse
Affiliation(s)
- Rakhi Chandoliya
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (S.S.); (V.S.)
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Arora PK, Tripathi S, Omar RA, Chauhan P, Sinhal VK, Singh A, Srivastava A, Garg SK, Singh VP. Next-generation fertilizers: the impact of bionanofertilizers on sustainable agriculture. Microb Cell Fact 2024; 23:254. [PMID: 39304847 DOI: 10.1186/s12934-024-02528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Bionanofertilizers are promising eco-friendly alternative to chemical fertilizers, leveraging nanotechnology and biotechnology to enhance nutrient uptake by plants and improve soil health. They consist of nanoscale materials and beneficial microorganisms, offering benefits such as enhanced seed germination, improved soil quality, increased nutrient use efficiency, and pesticide residue degradation, ultimately leading to improved crop productivity. Bionanofertilizers are designed for targeted delivery of nutrients, controlled release, and minimizing environmental pollutants, making them a sustainable option for agriculture. These fertilizers also have the potential to enhance plant growth, provide disease resistance, and contribute to sustainable farming practices. The development of bionanofertilizers addresses the adverse environmental impact of chemical fertilizers, offering a safer and productive means of fertilization for agricultural practices. This review provides substantial evidence supporting the potential of bionanofertilizers in revolutionizing agricultural practices, offering eco-friendly and sustainable solutions for crop management and soil health.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Shivam Tripathi
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Rishabh Anand Omar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Prerna Chauhan
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Kumar Sinhal
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Amit Singh
- Department of Law, MJP Rohilkhand University, Bareilly, India
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
9
|
Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, Chen B, Xu Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108895. [PMID: 38976940 DOI: 10.1016/j.plaphy.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Nanopriming, an advanced seed priming technology, is highly praised for its environmental friendliness, safety, and effectiveness in promoting sustainable agriculture. Studies have shown that nanopriming can enhance seed germination by stimulating the expression of aquaporins and increasing amylase production. By applying an appropriate concentration of nanoparticles, seeds can generate reactive oxygen species (ROS), enhance their antioxidant capacity, improve their response to oxidative stress, and enhance their tolerance to both biotic and abiotic stresses. This positive impact extends beyond the seed germination and seedling growth stages, persisting throughout the entire life cycle. This review offers a comprehensive overview of recent research progress in seed priming using various nanoparticles, while also addressing current challenges and future opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Le Yang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Laitong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinpeng Wei
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueming Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zian Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhenjiang Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
10
|
Nafchi MA, Kachoie MA, Ghodrati L. Co-application of titanium dioxide and hydroxyapatite nanoparticles modulated chromium and salinity stress via modifying physio-biochemical attributes in Solidago canadensis L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50464-50477. [PMID: 39093394 DOI: 10.1007/s11356-024-34454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Climate change and human activity have led to an increase in salinity levels and the toxicity of chromium (Cr). One promising approach to modifying these stressors in plants is to use effective nanoparticles (NPs). While titanium dioxide nanoparticles (TiO2 NPs) and hydroxyapatite (HAP NPs) have been demonstrated to increase plant tolerance to abiotic stress by enhancing antioxidant capacity, lipid peroxidation, and secondary metabolites, it is unknown how these two compounds can work together in situations when salt and Cr toxicity are present. The objective of the current study was to determine the effects of foliar-applied TiO2 NPs (15 mg L-1) and HAP NPs (250 mg L-1) separately and in combination on growth, chlorophyll (Chl), water content, lipid peroxidation, antioxidant capacity, phenolic content, and essential oils (EOs) of Solidago canadensis L. under salinity (100 mM NaCl) and Cr toxicity (100 mg kg-1 soil). Salinity was more deleterious than Cr by decreasing plant weight, Chl a + b, relative water content (RWC), EO yield, and increasing malondialdehyde (MDA), electrolyte leakage (EL), superoxide dismutase (SOD) activity, and catalase (CAT) activity. The co-application of TiO2 and HAP NPs proved to be more successful. This was evidenced by the increased shoot weight (36%), root weight (29%), Chl a + b (23%), RWC (15%), total phenolic content (TPC, 34%), total flavonoid content (TFC, 28%), and EO yield (56%), but decreased MDA (21%), EL (11%), SOD (22%) and CAT activity (38%) in salt-exposed plants. The study demonstrated the effective strategy of co-applying these NPs to modify abiotic stress by enhancing phenolic compounds and EO yield as key results.
Collapse
Affiliation(s)
| | - Mehrdad Ataie Kachoie
- Medicinal Plants Research and Processing Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Ghodrati
- Medicinal Plants Research and Processing Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
11
|
Tietel Z, Melamed S, Galilov I, Ben-Gal A, Dag A, Yermiyahu U. Elevated nitrogen fertilization differentially affects jojoba wax phytochemicals, fatty acids and fatty alcohols. FRONTIERS IN PLANT SCIENCE 2024; 15:1425733. [PMID: 39129760 PMCID: PMC11310937 DOI: 10.3389/fpls.2024.1425733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024]
Abstract
Jojoba wax is gaining popularity among cosmetics consumers for its skin wound healing and rejuvenation bioactivities, attributed to collagen and hyaluronic acid synthesis. However, information regarding wax phytochemical composition and quality parameters, as well as effect of cultivation practices, and fertilization in particular, on wax quality is limited. The aim of the current work was to study the effect of nitrogen (N) availability to jojoba plants on wax phytochemical composition and beneficial skin-related contents. For this, wax quality from a six-year fertilization experiment with five N application levels was evaluated. The chemical parameters included antioxidant activity, free fatty acid, total tocopherol, total phytosterol and oxidative stability, as well as fatty acid and fatty alcohol profile. Our results reveal that the majority of wax quality traits were affected by N fertilization level, either positively or negatively. Interestingly, while fatty acids were unaffected, fatty alcohol composition was significantly altered by N level. Additionally, fruit load also largely affected wax quality, and, due to jojoba's biennial alternate bearing cycles, harvest year significantly affected all measured parameters. Results shed light on the effects of N application on various biochemical constituents of jojoba wax, and imply that N availability should be considered part of the entire agricultural management plan to enhance wax quality. Some traits are also suggested as possible chemical quality parameters for jojoba wax.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
| | - Sarit Melamed
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Izabella Galilov
- Department of Food Science, Gilat research Center, Agricultural Research Organization, Volcani Institute, Gilat, Israel
| | - Alon Ben-Gal
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| | - Arnon Dag
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| | - Uri Yermiyahu
- Gilat Research Center, Agricultural Research Organization, Volcani Institute, Rishon LeTsiyon, Israel
| |
Collapse
|
12
|
Abdelhameed RE, Soliman ERS, Gahin H, Metwally RA. Enhancing drought tolerance in Malva parviflora plants through metabolic and genetic modulation using Beauveria bassiana inoculation. BMC PLANT BIOLOGY 2024; 24:662. [PMID: 38987668 PMCID: PMC11238386 DOI: 10.1186/s12870-024-05340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hanan Gahin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
13
|
Gao W, Wu D, Zhang D, Geng Z, Tong M, Duan Y, Xia W, Chu J, Yao X. Comparative analysis of the effects of microplastics and nitrogen on maize and wheat: Growth, redox homeostasis, photosynthesis, and AsA-GSH cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172555. [PMID: 38677420 DOI: 10.1016/j.scitotenv.2024.172555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Microplastics (MPs) pose a significant threat to the function of agro-ecosystems. At present, research on MPs has mainly focused on the effects of different concentrations or types of MPs on a crop, while ignoring other environmental factors. In agricultural production, the application of nitrogen (N) fertilizer is an important means to maintain the high yield of crops. The effects of MPs and N on growth parameters, photosynthetic system, active oxygen metabolism, nutrient content, and ascorbate-glutathione (AsA-GSH) cycle of maize and wheat were studied in order to explicit whether N addition could effectively alleviate the effects of MPs on maize and wheat. The results showed that MPs inhibited the plant height of both maize and wheat, and MPs effects on physiological traits of maize were more severe than those of wheat, reflecting in reactive oxygen metabolism and restriction of photosynthetic capacity. Under the condition of N supply, AsA-GSH cycle of two plants has different response strategies to MPs: Maize promoted enzyme activity and co-accumulation of AsA and GSH, while wheat tended to consume AsA and accumulate GSH. N application induced slight oxidative stress on maize, which was manifested as an increase in hydrogen peroxide and malonaldehyde contents, and activities of polyphenol oxidase and peroxidase. The antioxidant capacity of maize treated with the combination of MPs + N was better than that treated with N or MPs alone. N could effectively alleviate the adverse effects of MPs on wheat by improving the antioxidant capacity.
Collapse
Affiliation(s)
- Wang Gao
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dengyun Wu
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Dan Zhang
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Zixin Geng
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Mengting Tong
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Yusui Duan
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Wansheng Xia
- School of Life Sciences, Hebei University, Baoding 071002, China
| | - Jianzhou Chu
- School of Life Sciences, Hebei University, Baoding 071002, China.
| | - Xiaoqin Yao
- School of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding 071002, China.
| |
Collapse
|
14
|
Abdelhameed RE, Abdalla H, Abdel-Haleem M. Offsetting pb induced oxidative stress in Vicia faba plants by foliar spray of chitosan through adjustment of morpho-biochemical and molecular indices. BMC PLANT BIOLOGY 2024; 24:557. [PMID: 38877427 PMCID: PMC11177494 DOI: 10.1186/s12870-024-05227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
In the course of their life, plants face a multitude of environmental anomaly that affects their growth and production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the genetic distance created among treatments, the dendrogram was constructed and the results of the similarity index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant protection.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Abdel-Haleem
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
15
|
Shaikhaldein HO, Al-Qurainy F, Nadeem M, Khan S, Tarroum M, Salih AM, Al-Hashimi A. Biosynthesis of copper nanoparticles using Solenostemma argel and their effect on enhancing salt tolerance in barley plants. Sci Rep 2024; 14:12701. [PMID: 38831069 PMCID: PMC11148141 DOI: 10.1038/s41598-024-63641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
The distinctive characteristics of nanoparticles and their potential applications have been given considerable attention by scientists across different fields, particularly agriculture. However, there has been limited effort to assess the impact of copper nanoparticles (CuNPs) in modulating physiological and biochemical processes in response to salt-induced stress. This study aimed to synthesize CuNPs biologically using Solenostemma argel extract and determine their effects on morphophysiological parameters and antioxidant defense system of barley (Hordeum vulgare) under salt stress. The biosynthesized CuNPs were characterized by (UV-vis spectroscopy with Surface Plasmon Resonance at 320 nm, the crystalline nature of the formed NPs was verified via XRD, the FTIR recorded the presence of the functional groups, while TEM was confirmed the shape (spherical) and the sizes (9 to 18 nm) of biosynthesized CuNPs. Seeds of barley plants were grown in plastic pots and exposed to different levels of salt (0, 100 and 200 mM NaCl). Our findings revealed that the supplementation of CuNPs (0, 25 and 50 mg/L) to salinized barley significantly mitigate the negative impacts of salt stress and enhanced the plant growth-related parameters. High salinity level enhanced the oxidative damage by raising the concentrations of osmolytes (soluble protein, soluble sugar, and proline), malondialdehyde (MDA) and hydrogen peroxide (H2O2). In addition, increasing the activities of enzymatic antioxidants, total phenol, and flavonoids. Interestingly, exposing CuNPs on salt-stressed plants enhanced the plant-growth characteristics, photosynthetic pigments, and gas exchange parameters. Furthermore, CuNPs counteracted oxidative damage by lowering the accumulation of osmolytes, H2O2, MDA, total phenol, and flavonoids, while simultaneously enhancing the activities of antioxidant enzymes. In conclusion, the application of biosynthesized CuNPs presents a promising approach and sustainable strategy to enhance plant resistance to salinity stress, surpassing conventional methods in terms of environmental balance.
Collapse
Affiliation(s)
- Hassan O Shaikhaldein
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Fahad Al-Qurainy
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Nadeem
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Salim Khan
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdalrhaman M Salih
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Abdulrahman Al-Hashimi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Kulus D, Tymoszuk A, Kulpińska A, Wojnarowicz J, Szałaj U. Nanoparticle-mediated enhancement of plant cryopreservation: Cultivar-specific insights into morphogenesis and biochemical responses in Lamprocapnos spectabilis (L.) Fukuhara 'Gold Heart' and 'Valentine'. PLoS One 2024; 19:e0304586. [PMID: 38820507 PMCID: PMC11142695 DOI: 10.1371/journal.pone.0304586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
The integration of nanoparticles (NPs) holds promising potential to bring substantial advancements to plant cryopreservation, a crucial technique in biodiversity conservation. To date, little attention has been focused on using nanoparticles in cryobiology research. This study aimed to assess the effectiveness of NPs in enhancing the efficiency of plant cryopreservation. In-vitro-derived shoot tips of bleeding heart (Lamprocapnos spectabilis (L.) Fukuhara) 'Gold Heart' and 'Valentine' were used as the plant material. The encapsulation-vitrification cryopreservation protocol included preculture, encapsulation, dehydration, storage in liquid nitrogen, rewarming, and recovery steps. Gold (AuNPs), silver (AgNPs), or zinc oxide (ZnONPs) nanoparticles were added at various concentrations either into the preculture medium or the protective bead matrix during encapsulation. The explant survival and further morphogenic and biochemical events were studied. Results showed that the impact of NPs on cryopreservation outcomes was cultivar-specific. In the 'Valentine' cultivar, incorporating 5 ppm AgNPs within the alginate bead matrix significantly improved cryopreservation efficiency by up to 12%. On the other hand, the 'Gold Heart' cultivar benefited from alginate supplementation with 5 ppm AgNPs and 5-15 ppm ZnONPs, leading to an over 28% increase in the survival rate of shoot tips. Interestingly, adding NPs to the preculture medium was less effective and sometimes counterproductive, despite promoting greater shoot proliferation and elongation in 'Valentine' explants compared to the control. Moreover, nanoparticles often induced oxidative stress (and enhanced the activity of APX, GPOX, and SOD enzymes), which in turn affected the biosynthesis of plant primary and secondary metabolites. It was found that supplementation of preculture medium with higher concentration (15 ppm) of gold, silver and zinc oxide nanoparticles stimulated the production of plant pigments, but in a cultivar-dependent matter. Our study confirmed the beneficial action of nanoparticles during cryopreservation of plant tissues.
Collapse
Affiliation(s)
- Dariusz Kulus
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Kulpińska
- Laboratory of Horticulture, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Jacek Wojnarowicz
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Warsaw, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Science, Warsaw, Poland
| |
Collapse
|
17
|
Metwally RA, Soliman SA, Abdalla H, Abdelhameed RE. Trichoderma cf. asperellum and plant-based titanium dioxide nanoparticles initiate morphological and biochemical modifications in Hordeum vulgare L. against Bipolaris sorokiniana. BMC PLANT BIOLOGY 2024; 24:118. [PMID: 38368386 PMCID: PMC10873961 DOI: 10.1186/s12870-024-04785-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Spot blotch is a serious foliar disease of barley (Hordeum vulgare L.) plants caused by Bipolaris sorokiniana, which is a hemibiotrophic ascomycete that has a global impact on productivity. Some Trichoderma spp. is a promising candidate as a biocontrol agent as well as a plant growth stimulant. Also, the application of nanomaterials in agriculture limits the use of harmful agrochemicals and helps improve the yield of different crops. The current study was carried out to evaluate the effectiveness of Trichoderma. cf. asperellum and the biosynthesized titanium dioxide nanoparticles (TiO2 NPs) to manage the spot blotch disease of barley caused by B. sorokiniana and to assess the plant's innate defense response. RESULTS Aloe vera L. aqueous leaf extract was used to biosynthesize TiO2 NPs by reducing TiCl4 salt into TiO2 NPs and the biosynthesized NPs were detected using SEM and TEM. It was confirmed that the NPs are anatase-crystalline phases and exist in sizes ranging from 10 to 25 nm. The T. cf. asperellum fungus was detected using morphological traits and rDNA ITS analysis. This fungus showed strong antagonistic activity against B. sorokiniana (57.07%). Additionally, T. cf. asperellum cultures that were 5 days old demonstrated the best antagonistic activity against the pathogen in cell-free culture filtrate. Also, B. sorokiniana was unable to grow on PDA supplemented with 25 and 50 mg/L of TiO2 NPs, and the diameter of the inhibitory zone increased with increasing TiO2 NPs concentration. In an in vivo assay, barley plants treated with T. cf. asperellum or TiO2 NPs were used to evaluate their biocontrol efficiency against B. sorokiniana, in which T. cf. asperellum and TiO2 NPs enhanced the growth of the plant without displaying disease symptoms. Furthermore, the physiological and biochemical parameters of barley plants treated with T. cf. asperellum or TiO2 NPs in response to B. sorokiniana treatment were quantitively estimated. Hence, T. cf. asperellum and TiO2 NPs improve the plant's tolerance and reduce the growth inhibitory effect of B. sorokiniana. CONCLUSION Subsequently, T. cf. asperellum and TiO2 NPs were able to protect barley plants against B. sorokiniana via enhancement of chlorophyll content, improvement of plant health, and induction of the barley innate defense system. The present work emphasizes the major contribution of T. cf. asperellum and the biosynthesized TiO2 NPs to the management of spot blotch disease in barley plants, and ultimately to the enhancement of barley plant quality and productivity.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
18
|
Abdelhameed RE, Abdalla H, Ibrahim MA. Unique properties of titanium dioxide quantum dots assisted regulation of growth and biochemical parameters of Hibiscus sabdariffa plants. BMC PLANT BIOLOGY 2024; 24:112. [PMID: 38365586 PMCID: PMC10870679 DOI: 10.1186/s12870-024-04794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Owing to the uniqueness of quantum dots (QDs) as a potential nanomaterial for agricultural application, hence in the present study, titanium dioxide quantum dots (TiO2 QDs) were successfully synthesized via sol-gel technique and the physico-chemical properties of the prepared TiO2 QDs were analyzed. Based on the results, the TiO2 QDs showed the presence of anatase phase of TiO2. TEM examination revealed spherical QDs morphology with an average size of 7.69 ± 1.22 nm. The large zeta potential value (-20.9 ± 2.3 mV) indicate greater stability of the prepared TiO2 QDs in aqueous solutions. Moreover, in this work, the application of TiO2 QDs on Hibiscus sabdariffa plants was conducted, where H. sabdariffa plants were foliar sprayed twice a week in the early morning with different concentrations of TiO2 QDs (0, 2, 5, 10, 15 and 30 ppm) to evaluate their influence on these plants in terms of morphological indexes and biochemical parameters. The results exhibited an increasing impact of the different used concentrations of TiO2 QDs on morphological indexes, such as fresh weight, dry weight, shoot length, root length, and leaf number, and physio-biochemical parameters like chlorophyll a, chlorophyll b, carotenoid contents, total pigments and total phenolic contents. Remarkably, the most prominent result was recorded at 15 ppm TiO2 QDs where plant height, total protein and enzymatic antioxidants like catalase and peroxidase were noted to increase by 47.6, 20.5, 29.5 and 38.3%, respectively compared to control. Therefore, foliar spraying with TiO2 QDs positively serves as an effective strategy for inducing optimistic effects in H. sabdariffa plants.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Sharqia, 44519, Egypt.
| | - Hanan Abdalla
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Sharqia, 44519, Egypt
| | - Manar A Ibrahim
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Sharqia, 44519, Egypt
| |
Collapse
|
19
|
Shabib Akhtar M, Chandrasekaran K, Saminathan S, Rajalingam SR, Mohsin N, Awad Alkarem Ahmed KA, Alhazmi Y, Walbi IA, Abdel-Wahab BA, Gholap AD, Faiyazuddin M, Sundaram G. Nanoengineered chitosan functionalized titanium dioxide biohybrids for bacterial infections and cancer therapy. Sci Rep 2024; 14:3705. [PMID: 38355697 PMCID: PMC10867112 DOI: 10.1038/s41598-024-52847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Nanoengineered chitosan functionalized titanium dioxide biohybrids (CTiO2@NPs) were prepared with Amomum subulatum Roxb extract via one-pot green method and assessed by UV-Vis spectroscopy, XRD, SEM and EDAX analyses. As revealed by XRD pattern, the nanohybrids exhibits a rutile TiO2 crystallites around 45 nm in size. The emergence of the Ti-O-Ti bond is identified by observing a peak between 400 and 800 cm-1. A wide bandgap (4.8 eV) has been observed in CTiO2@NPs, due to the quantum confinement effects and the oxygen vacancies reveal the intriguing potential of developed nanohybrids for various applications. Surface flaws were identified by observing an emission band at 382, 437, 482, 517, and 556 nm. They also exhibit better antibacterial performances using well diffusion method against Staphylococcus aureus, Bacillus substilis, Klebsiella pneumonia, and Escherichia coli. CTiO2@NPs were discovered to have free radical scavenging activity on DPPH analysis and exhibit IC50 value as 95.80 μg/mL and standard (Vitamin C) IC50 is 87.62 μg/mL. CTiO2@NPs exhibited better anticancer properties against the osteosarcoma (MG-63) cell line. All these findings suggest that there is a forum for further useful therapeutic applications. Therefore, we claim that nano-engineered carbohydrated TiO2 phytohybrid is a promising solution for bacterial infections and bone cancer.
Collapse
Affiliation(s)
- Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | | | - Sharmila Saminathan
- Department of Physics, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - Siva Ranjani Rajalingam
- PG & Research Department of Physics, Cauvery College for Women, Tiruchchirappalli, Tamil Nadu, India
| | - Nehal Mohsin
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | | | - Yasir Alhazmi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Ismail A Walbi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 11001, Kingdom of Saudi Arabia
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar, 401404, Maharashtra, India
| | - Md Faiyazuddin
- School of Pharmacy, Al-Karim University, Katihar, Bihar, India
| | - Gowri Sundaram
- PG & Research Department of Physics, Cauvery College for Women, Tiruchchirappalli, Tamil Nadu, India.
| |
Collapse
|
20
|
Metwally RA, Taha MA, El-Moaty NMA, Abdelhameed RE. Attenuation of Zucchini mosaic virus disease in cucumber plants by mycorrhizal symbiosis. PLANT CELL REPORTS 2024; 43:54. [PMID: 38315215 PMCID: PMC10844420 DOI: 10.1007/s00299-023-03138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE Arbuscular mycorrhizal fungi generated systemic acquired resistance in cucumber to Zucchini yellow mosaic virus, indicating their prospective application in the soil as a sustainable, environmentally friendly approach to inhibit the spread of pathogens. The wide spread of plant pathogens affects the whole world, causing several plant diseases and threatening national food security as it disrupts the quantity and quality of economically important crops. Recently, environmentally acceptable mitigating practices have been required for sustainable agriculture, restricting the use of chemical fertilizers in agricultural areas. Herein, the biological control of Zucchini yellow mosaic virus (ZYMV) in cucumber (Cucumis sativus L.) plants using arbuscular mycorrhizal (AM) fungi was investigated. Compared to control plants, ZYMV-infected plants displayed high disease incidence (DI) and severity (DS) with various symptoms, including severe yellow mosaic, mottling and green blisters of leaves. However, AM fungal inoculation exhibited 50% inhibition for these symptoms and limited DS to 26% as compared to non-colonized ones. The detection of ZYMV by the Enzyme-Linked Immunosorbent Assay technique exhibited a significant reduction in AM-inoculated plants (5.23-fold) compared with non-colonized ones. Besides, mycorrhizal root colonization (F%) was slightly reduced by ZYMV infection. ZYMV infection decreased all growth parameters and pigment fractions and increased the malondialdehyde (MDA) content, however, these parameters were significantly enhanced and the MDA content was decreased by AM fungal colonization. Also, the protein, proline and antioxidant enzymes (POX and CAT) were increased with ZYMV infection with more enhancements due to AM root colonization. Remarkably, defence pathogenesis-related (PR) genes such as PR-a, PR-b, and PR-10 were quickly expressed in response to AM treatment. Our findings demonstrated the beneficial function of AM fungi in triggering the plant defence against ZYMV as they caused systemic acquired resistance in cucumber plants and supported their potential use in the soil as an environment-friendly method of hindering the spread of pathogenic microorganisms sustainably.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Taha
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Nada M Abd El-Moaty
- Microbiology Department, Soil, Water and Environment Research Institute (SWERI), Agricultural Research Center, Giza, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
21
|
A S S, Biju TS, Francis AP, R G, Veeraraghavan VP, Sankaran K. Fabrication of Biogenic Titanium Nanoparticles and Investigating Their Biological Properties for Dental Applications. Cureus 2023; 15:e44209. [PMID: 37767269 PMCID: PMC10521939 DOI: 10.7759/cureus.44209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION Oral inflammation, often triggered by infections, injuries, or immune responses, can compromise treatment outcomes, delay healing, and contribute to patient discomfort. The development of green nanoparticle synthesis methods is receiving attention due to their potential advantages over existing approaches. These procedures use commonly available, affordable, and environmentally friendly natural plant extracts. Due to their numerous uses in various industries, titanium oxide nanoparticles (TiO2NPs) have attracted the most attention among the nanoparticles. In this study, we present the green synthesis of Myristica fragrans (mace) extract as a reductant and stabilizer for the production of curcumin-functionalized TiO2NPs (CTN). We additionally evaluated the effectiveness of these nanoparticles as anti-inflammatory agents. OBJECTIVE In this study, we aim to develop biogenic TiO2NPs using Myristica fragrans as a natural capping agent and functionalized with curcumin for effectively managing oral inflammation in dental applications. METHODS The nanoparticles were synthesized using the green synthesis method and characterized using various characterization techniques. Biocompatibility was evaluated using hemolytic assays, and the bioactivity of the nanoparticles was assessed using anti-inflammatory assays. RESULTS Curcumin-coated M-TiO2NPs (MCTN) were successfully synthesized and characterized by various techniques, confirming their morphology, crystallinity, functionalization, elemental composition, size, and stability. In vitro bioactivity studies revealed that MCTN exhibited significant anti-inflammatory activity, as evidenced by the inhibition of protein denaturation with minimal hemolytic potential. These findings highlight the potential of MCTN as a promising candidate for anti-inflammatory applications. CONCLUSION Our results suggest that MCTN exhibits promising anti-inflammatory and anti-hemolytic properties. However, further in-depth in vivo analysis is required to fully understand their efficacy and toxicity.
Collapse
Affiliation(s)
- Shubhasri A S
- Centre of Molecular Medicine and Diagnostics (COMMAND) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Tina Sara Biju
- Centre of Molecular Medicine and Diagnostics (COMMAND) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMMAND) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Gayathri R
- Centre of Molecular Medicine and Diagnostics (COMMAND) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMMAND) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Kavitha Sankaran
- Centre of Molecular Medicine and Diagnostics (COMMAND) Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
22
|
Soliman SA, Abdelhameed RE, Metwally RA. In vivo and In vitro evaluation of the antifungal activity of the PGPR Bacillus amyloliquefaciens RaSh1 (MZ945930) against Alternaria alternata with growth promotion influences on Capsicum annuum L. plants. Microb Cell Fact 2023; 22:70. [PMID: 37055827 PMCID: PMC10103514 DOI: 10.1186/s12934-023-02080-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023] Open
Abstract
Alternaria alternata that threatens pepper production and causes major economic harm is responsible for the leaf spot/blight disease. Chemical fungicides have been widely employed; unfortunately, fungicidal resistance is a current concern. Therefore, finding new environmentally friendly biocontrol agents is a future challenge. One of these friendly solutions is the use of bacterial endophytes that have been identified as a source of bioactive compounds. The current study investigates the in vivo and in vitro fungicidal potential of Bacillus amyloliquefaciens RaSh1 (MZ945930) against pathogenic A. alternata. In vitro, the results revealed that RaSh1 exhibited strong antagonistic activity against A. alternata. In addition to this, we inoculated pepper (Capsicum annuum L.) plants with B. amyloliquefaciens RaSh1 and infected them with A. alternata. As a result of A. alternata infection, which generated the highest leaf spot disease incidence (DI), the plant's growth indices and physio-biochemical characteristics significantly decreased, according to our findings. Our results also showed the abnormal and deformed cell structure using light and electron microscopy of A. alternata-infected leaves compared with other treatments. However, DI was greatly reduced with B. amyloliquefaciens RaSh1 application (40%) compared to pepper plants infected with A. alternata (80%), and this led to the largest increases in all identified physio-biochemical parameters, including the activity of the defense-related enzymes. Moreover, inoculation of pepper plants with B. amyloliquefaciens RaSh1 decreased electrolyte leakage by 19.53% and MDA content by 38.60% as compared to A. alternata infected ones. Our results show that the endophyte B. amyloliquefaciens RaSh1 has excellent potential as a biocontrol agent and positively affects pepper plant growth.
Collapse
Affiliation(s)
- Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
23
|
Metwally RA, Soliman SA. Alleviation of the adverse effects of NaCl stress on tomato seedlings (Solanum lycopersicum L.) by Trichoderma viride through the antioxidative defense system. BOTANICAL STUDIES 2023; 64:4. [PMID: 36754898 PMCID: PMC9908811 DOI: 10.1186/s40529-023-00368-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Trichoderma viride are well known for their biocontrol capabilities, but little is known about how they stimulate plant development and increase their resistance to salt stress. One of the main abiotic factors limiting crop development and yield is salt stress. Therefore, the purpose of this work was to ascertain how NaCl effects on T. viride growth as well as on the seedlings morphological and physio-biochemical parameters of tomato (Solanum lycopersicum L.) under plate culture conditions. Additionally, a pot experiment was conducted to determine how T. viride affected the development characteristics of tomato plants subjected to various salt concentrations (50 and 100 mM NaCl). T. viride's contribution to tomato seedling stress tolerance was also closely examined. RESULTS Results showed that 100 mM NaCl decreased the colony diameter of T. viride by 13.4% compared to the control. Under plate and greenhouse conditions, tomato seedlings exposed to salt exposure exhibited an overall decline in growth. Also, a reduction in relative water content (RWC) and protein contents occurred under salt stress. At the same time, increases were found in proline, total phenolics, flavonoids, H2O2 content, malondialdehyde, likewise the activities of peroxidase (POD), catalase (CAT), polyphenol oxidase (PPO), and ascorbate peroxidase (APX) enzymes. Even though, with T. viride application, the salt negative effects on both morphological and physio-biochemical parameters were mitigated to a greater extent. T. viride increased proline and total antioxidant capacity (TAC) in tomato seedlings at 100 mM NaCl by an average of 20.66 and 43.82% compared to their comparable control. T. viride increased the activities of CAT, PPO, and APX enzymes by 74.6, 58.48, and 61.61% at 50 mM NaCl compared to non-saline control seedlings. As well, T. viride decreased MDA and H2O2 contents by an average of 14 and 24.8% in tomato seedlings at 50 mM NaCl compared to their comparable control. Also, under 100 mM NaCl, the T. viride-treated tomato seedlings showed increased total phenolics (17.85%) and flavonoids (33.17%) compared to non- treated one. CONCLUSION Hence, our research sheds new insight on the pathways by which T. viride can boost tomato seedling tolerance to salt stress at morphological and physio-biochemical levels by activating both enzymatic and non-enzymatic antioxidant defense systems.
Collapse
Affiliation(s)
- Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Shereen A Soliman
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|