1
|
Cui C, Yan A, Huang S, Chen Y, Zhao J, Li C, Wang X, Yang J. PCSK9 Manipulates Lipid Metabolism and the Immune Microenvironment in Cancer. Onco Targets Ther 2025; 18:411-427. [PMID: 40166624 PMCID: PMC11956896 DOI: 10.2147/ott.s504637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Cancer remains the foremost cause of mortality on a global scale. Immunotherapy has yielded remarkable outcomes in the fight against cancer and is regarded as one of the most crucial and promising therapeutic modalities. PCSK9, a critical target for plasma lipids control, has been extensively and deeply studied in multiple diseases. Currently, the functions of PCSK9 in cancer, particularly its immunomodulatory role, have been progressively revealed. PCSK9 is capable of modulating a variety of immune response throughout tumor progression by orchestrating lipid metabolism. Moreover, PCSK9 governs the cell fate of diverse immune cells, such as inflammatory factor signals, MHC signals, and TCR signals. This review comprehensively summarizes the current state of knowledge regarding the role and underlying mechanisms of PCSK9 in tumorigenesis, progression, immune escape, and drug resistance.
Collapse
Affiliation(s)
- Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Aiwei Yan
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Shengming Huang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- Rudong County Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, People’s Republic of China
| | - Yifan Chen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jinyu Zhao
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Cixia Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
| | - Jianbo Yang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China
- School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, People’s Republic of China
| |
Collapse
|
2
|
Li CY, Wang WT, Ma SH, Lo LW, Wu CY, Chang WC, Chen YJ, Chen TL. Association of proprotein convertase subtilisin/kexin type-9 inhibitors with risk of nonmelanoma skin cancer: a retrospective cohort study. Br J Dermatol 2025; 192:697-705. [PMID: 39585798 DOI: 10.1093/bjd/ljae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Growing evidence has shown that cholesterol metabolism abnormalities involve carcinogenesis. Proprotein convertase subtilisin/kexin type-9 (PCSK9) inhibitors have been reported to inhibit tumour progression and prevent ultraviolet-related skin damage. OBJECTIVES To investigate the association of PCSK9 inhibitors with the risk of nonmelanoma skin cancer (NMSC). METHODS This retrospective cohort study analysed data from the US Collaborative Network in the TriNetX database. Adults aged ≥ 40 years with atherosclerotic cardiovascular disease (ASCVD) under statin therapy between 2016 and 2022 were identified. A target trial design was used to compare the risk of NMSC, including basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC), in patients also treated with PCSK9 inhibitors or continuing statin treatment (the control group). Each head-to-head comparison involved propensity score matching. Hazard ratios (HRs) were estimated using Cox proportional hazard models. Stratified analyses based on age, sex, Fitzpatrick skin type and immune status were also performed. RESULTS A total of 73 636 patients with ASCVD were analysed. Compared with the control group, patients with ASCVD initiating PCSK9 inhibitors had lower risks of developing NMSC [HR 0.78, 95% confidence interval (CI) 0.71-0.87], BCC (HR 0.78, 95% CI 0.69-0.89) and cSCC (HR 0.79, 95% CI 0.67-0.93). Subanalyses revealed a reduced risk of NMSC with each PCSK9 inhibitor, namely evolocumab and alirocumab. Stratified analyses showed similar results in patients aged 65-79 years, those older than 80 years and in men. CONCLUSIONS Our study indicated that patients with ASCVD taking PCSK9 inhibitors have a lower risk of incident NMSC than those not taking PCSK9 inhibitors.
Collapse
Affiliation(s)
- Cheng-Yuan Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ting Wang
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan
| | - Sheng-Hsiang Ma
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Department of Public Health, Institute of Public Health, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Li-Wei Lo
- Cardiovascular Center, Department of Internal Medicine, Taipei Veterans General Hospital, Taiwan
- Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Yi Wu
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
- Department of Public Health, Institute of Public Health, National Yang Ming Chao Tung University, Taipei, Taiwan
| | - Wei-Chuan Chang
- Epidemiology and Biostatistics Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tai-Li Chen
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Wang Y, Fang X, Liu J, Lv X, Lu K, Lu Y, Jiang Y. PCSK9 in T-cell function and the immune response. Biomark Res 2024; 12:163. [PMID: 39736777 DOI: 10.1186/s40364-024-00712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) was first reported in 2003 and confirmed to be strongly associated with familial hypercholesterolemia. Small-molecule inhibitors targeting PCSK9 provide an effective and safe method for managing hypercholesterolemia and reducing the cardiovascular risk. In recent years, increasing evidence has indicated other important roles for PCSK9 in inflammation, tumors, and even immune regulation. PCSK9 might be an attractive regulator of T-cell activation and expansion. It might mediate inflammation and regulate other types of immune cells. In this review, we summarize the current advances in the field of PCSK9 and provide a narrative of the biological processes associated with PCSK9. The relationships between PCSK9 and different T cells were investigated in depth. Finally, the signaling pathways associated with PCSK9 and the immune response are also summarized in this review.
Collapse
Affiliation(s)
- Yuying Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Kang Lu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China
| | - Yingxue Lu
- Department of Nephrology, Shandong Second Provincial General Hospital, Jinan , Shandong, 250021, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, China.
| |
Collapse
|
4
|
Chen T, Xiang L, Zhang W, Xia Z, Chen W. AGXT2 Suppresses the Proliferation and Dissemination of Hepatocellular Carcinoma Cells by Modulating Intracellular Lipid Metabolism. J Hepatocell Carcinoma 2024; 11:1623-1639. [PMID: 39206420 PMCID: PMC11353308 DOI: 10.2147/jhc.s470250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Alanine glyoxylate aminotransferase (AGXT) family members are crucial in cancer processes, but their role in hepatocellular carcinoma (HCC) metabolism is unclear. This study investigates AGXT2's function in HCC. Patients and Methods AGTX2 expression was studied using bioinformatics, real-time reverse transcriptase-polymerase chain reaction (RT-qPCR), Western blot, and Enzyme-linked immunosorbent assay (ELISA). A lentivirus-induced AGTX2 overexpression cell model was analyzed with RNA sequencing (RNA-seq) and liquid chromatography-mass spectrometry (LC-MS). Cholesterol levels were confirmed by Oil Red O staining. AGTX2 effects were evaluated through cell cycle analysis, wound healing, and transwell migration assays.Tumorigenic effects were observed in NOD-SCID IL2Rγnull (NTG) mice in subcutaneous experiments. Protein interaction was examined through co-immunoprecipitation methods. Results We observed a significant reduction in AGXT2 mRNA and protein levels in both HCC tumor tissues and serum samples from patients with liver cancer, which was associated with a worse prognosis. The activation of AGXT2 has been shown to effectively decrease cholesterol levels in liver cancer cells, serving as an antagonist in the cholesterol metabolism pathway. An increase in low density lipoprotein receptor (LDLR) mRNA was noted in cells overexpressing AGXT2, accompanied by a decrease in LDLR protein and an elevation in proprotein convertase subtilisin/kexin type 9 (PCSK9) mRNA and protein levels. Molecular docking and co-immunoprecipitation experiments further elucidated the interaction between AGXT2 and LDLR proteins. AGXT2 was observed to suppress the migratory and invasive capabilities of HCC cells, inducing cell cycle arrest in the G2/M phase. AGXT2 activation inhibited subcutaneous liver cancer tumor growth in NTG mice. Conclusion AGXT2 was found to lower cholesterol levels in liver cancer cells, possibly through interactions with the LDLR protein and modulation of PCSK9-mediated LDLR degradation. This mechanism may impede cholesterol transport to liver cancer cells, thereby suppressing their growth and metastasis.
Collapse
Affiliation(s)
- Tian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lunjian Xiang
- Hepatobiliary Surgery, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Wenjin Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Zhenyi Xia
- Thoracic surgery, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
5
|
Modica R, La Salvia A, Liccardi A, Cozzolino A, Di Sarno A, Russo F, Colao A, Faggiano A. Dyslipidemia, lipid-lowering agents and neuroendocrine neoplasms: new horizons. Endocrine 2024; 85:520-531. [PMID: 38509261 PMCID: PMC11291585 DOI: 10.1007/s12020-024-03767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Neuroendocrine neoplasms (NENs) are a heterogeneous group of malignancies originating from cells with a neuroendocrine phenotype. The complex relationship between lipid metabolism and cancer is gaining interest and a potential anti-cancer effect of lipid lowering agents is being considered. This review aims to discuss the current understanding and treatment of dyslipidaemia in NENs, focusing on the role of lipid lowering agents, including new therapeutic approaches, and future perspectives as possible tool in cancer prevention and tumor-growth control. METHODS We performed an electronic-based search using PubMed updated until December 2023, summarizing the available evidence both in basic and clinical research about lipid lowering agents in NENs. RESULTS Dyslipidemia is an important aspect to be considered in NENs management, although randomized studies specifically addressing this topic are lacking, unlike other cancer types. Available data mainly regard statins, and in vitro studies have demonstrated direct antitumor effects, including antiproliferative effects in some cancers, supporting possible pleiotropic effects also in NENs, but data remain conflicting. Ezetimibe, omega 3-fatty acids, fibrates and inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9) may enhance the regulation of lipid homeostasis, as demonstrated in other cancers. CONCLUSIONS Targeting dyslipidemia in NENs should be part of the multidisciplinary management and an integrated approach may be the best option for both metabolic and tumor control. Whether lipid lowering agents may directly contribute to tumor control remains to be confirmed with specific studies, focusing on association with other metabolic risk, disease stage and primary site.
Collapse
Affiliation(s)
- Roberta Modica
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy.
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), 00161, Rome, Italy
| | - Alessia Liccardi
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Alessia Cozzolino
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Antonella Di Sarno
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
| | - Flaminia Russo
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189, Rome, Italy
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131, Naples, Italy
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, 80131, Naples, Italy
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, ENETS Center of Excellence, Sapienza University of Rome, 00189, Rome, Italy
| |
Collapse
|
6
|
Hsu CY, Abdulrahim MN, Mustafa MA, Omar TM, Balto F, Pineda I, Khudair TT, Ubaid M, Ali MS. The multifaceted role of PCSK9 in cancer pathogenesis, tumor immunity, and immunotherapy. Med Oncol 2024; 41:202. [PMID: 39008137 DOI: 10.1007/s12032-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a well-known regulator of cholesterol metabolism and cardiovascular diseases, has recently garnered attention for its emerging involvement in cancer biology. The multifunctional nature of PCSK9 extends beyond lipid regulation and encompasses a wide range of cellular processes that can influence cancer progression. Studies have revealed that PCSK9 can modulate signaling pathways, such as PI3K/Akt, MAPK, and Wnt/β-catenin, thereby influencing cellular proliferation, survival, and angiogenesis. Additionally, the interplay between PCSK9 and cholesterol homeostasis may impact membrane dynamics and cellular migration, further influencing tumor aggressiveness. The central role of the immune system in monitoring and controlling cancer is increasingly recognized. Recent research has demonstrated the ability of PCSK9 to modulate immune responses through interactions with immune cells and components of the tumor microenvironment. This includes effects on dendritic cell maturation, T cell activation, and cytokine production, suggesting a role in shaping antitumor immune responses. Moreover, the potential influence of PCSK9 on immune checkpoints such as PD1/PD-L1 lends an additional layer of complexity to its immunomodulatory functions. The growing interest in cancer immunotherapy has prompted exploration into the potential of targeting PCSK9 for therapeutic benefits. Preclinical studies have demonstrated synergistic effects between PCSK9 inhibitors and established immunotherapies, offering a novel avenue for combination treatments. The strategic manipulation of PCSK9 to enhance tumor immunity and improve therapeutic outcomes presents an exciting area for further investigations. Understanding the mechanisms by which PCSK9 influences cancer biology and immunity holds promise for the development of novel immunotherapeutic approaches. This review aims to provide a comprehensive analysis of the intricate connections between PCSK9, cancer pathogenesis, tumor immunity, and the potential implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan.
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA.
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Franklin Balto
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Indira Pineda
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Teeba Thamer Khudair
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
7
|
Ding W, Chen L, Xia J, Pei B, Song B, Li X. Causal association between lipid-lowering drugs and cancers: A drug target Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38010. [PMID: 38701318 PMCID: PMC11062692 DOI: 10.1097/md.0000000000038010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Accumulating evidences have indicated that lipid-lowering drugs have effect for the treatment of cancers. However, causal associations between lipid-lowering drugs and the risk of cancers are still unclear. In our study, we utilized single nucleotide polymorphisms of proprotein convertase subtilis kexin 9 (PCSK9) inhibitors and 3-hydroxy-3-methylglutaryl-assisted enzyme A reductase (HMGCR) inhibitors and performed a drug target Mendelian randomization to explore the causal association between lipid-lowering drugs and the risk of cancers. Five regression methods were carried out, including inverse variance weighted (IVW) method, MR Egger, weighted median, simple mode and weighted mode methods, of which IVW method was considered as the main analysis. Our outcome dataset contained the risk of breast cancer (BC), colorectal cancer, endometrial cancer, gastric cancer (GC), hepatocellular carcinoma (HCC), lung cancer, esophageal cancer, prostate cancer (PC), and skin cancer (SC). Our results demonstrated that PCSK9 inhibitors were significant associated with a decreased effect of GC [IVW: OR = 0.482, 95% CI: 0.264-0.879, P = .017]. Besides, genetic inhibitions of HMGCR were significant correlated with an increased effect of BC [IVW: OR = 1.421, 95% CI: 1.056-1.911, P = .020], PC [IVW: OR = 1.617, 95% CI: 1.234-2.120, P = .0005] and SC [IVW: OR = 1.266, 95% CI: 1.022-1.569, P = .031]. For GC [IVW: OR = 0.559, 95% CI: 0.382-0.820, P = .0029] and HCC [IVW: OR = 0.241, 95% CI: 0.085-0.686, P = .0077], HMGCR inhibitors had a protective risk. Our method suggested that PCSK9 inhibitors were significant associated with a protective effect of GC. Genetic inhibitions of HMGCR were significant correlated with an increased effect of BC, PC and SC. Meanwhile, HMGCR inhibitors had a protective risk of GC and HCC. Subsequent studies still needed to assess potential effects between lipid-lowering drugs and the risk of cancers with clinical trials.
Collapse
Affiliation(s)
- Wenjing Ding
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Liangliang Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jianguo Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Bei Pei
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Biao Song
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
8
|
Wang H, Zhang X, Zhang Y, Shi T, Zhang Y, Song X, Liu B, Wang Y, Wei J. Targeting PCSK9 to upregulate MHC-II on the surface of tumor cells in tumor immunotherapy. BMC Cancer 2024; 24:445. [PMID: 38600469 PMCID: PMC11007992 DOI: 10.1186/s12885-024-12148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9), the last member of the proprotein convertase family, functions as a classic regulator of low-density lipoprotein (LDL) by interacting with low-density lipoprotein receptor (LDLR). Recent studies have shown that PCSK9 can affect the occurrence and development of tumors and can be used as a novel therapeutic target. However, a comprehensive pan-cancer analysis of PCSK9 has yet to be conducted. METHODS The potential oncogenic effects of PCSK9 in 33 types of tumors were explored based on the datasets of The Cancer Genome Atlas (TCGA) dataset. In addition, the immune regulatory role of PCSK9 inhibition was evaluated via in vitro cell coculture and the tumor-bearing mouse model. Finally, the antitumor efficacy of targeted PCSK9 combined with OVA-II vaccines was verified. RESULTS Our results indicated that PCSK9 was highly expressed in most tumor types and was significantly correlated with late disease stage and poor prognosis. Additionally, PCSK9 may regulate the tumor immune matrix score, immune cell infiltration, immune checkpoint expression, and major histocompatibility complex expression. Notably, we first found that dendritic cell (DC) infiltration and major histocompatibility complex-II (MHC-II) expression could be upregulated by PCSK9 inhibition and improve CD8+ T cell activation in the tumor immune microenvironment, thereby achieving potent tumor control. Combining PCSK9 inhibitors could enhance the efficacies of OVA-II tumor vaccine monotherapy. CONCLUSIONS Conclusively, our pan-cancer analysis provided a more comprehensive understanding of the oncogenic and immunoregulatory roles of PCSK9 and demonstrated that targeting PCSK9 could increase the efficacy of long peptide vaccines by upregulating DC infiltration and MHC-II expression on the surface of tumor cells. This study reveals the critical oncogenic and immunoregulatory roles of PCSK9 in various tumors and shows the promise of PCSK9 as a potent immunotherapy target.
Collapse
Affiliation(s)
- Hanbing Wang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Xin Zhang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Yipeng Zhang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Tao Shi
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Yue Zhang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Xueru Song
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Baorui Liu
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China
| | - Yue Wang
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China.
| | - Jia Wei
- Department of Oncology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, No. 321, Zhongshan Road, 210008, Nanjing, China.
| |
Collapse
|
9
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
10
|
Bao X, Liang Y, Chang H, Cai T, Feng B, Gordon K, Zhu Y, Shi H, He Y, Xie L. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): from bench to bedside. Signal Transduct Target Ther 2024; 9:13. [PMID: 38185721 PMCID: PMC10772138 DOI: 10.1038/s41392-023-01690-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/27/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has evolved as a pivotal enzyme in lipid metabolism and a revolutionary therapeutic target for hypercholesterolemia and its related cardiovascular diseases (CVD). This comprehensive review delineates the intricate roles and wide-ranging implications of PCSK9, extending beyond CVD to emphasize its significance in diverse physiological and pathological states, including liver diseases, infectious diseases, autoimmune disorders, and notably, cancer. Our exploration offers insights into the interaction between PCSK9 and low-density lipoprotein receptors (LDLRs), elucidating its substantial impact on cholesterol homeostasis and cardiovascular health. It also details the evolution of PCSK9-targeted therapies, translating foundational bench discoveries into bedside applications for optimized patient care. The advent and clinical approval of innovative PCSK9 inhibitory therapies (PCSK9-iTs), including three monoclonal antibodies (Evolocumab, Alirocumab, and Tafolecimab) and one small interfering RNA (siRNA, Inclisiran), have marked a significant breakthrough in cardiovascular medicine. These therapies have demonstrated unparalleled efficacy in mitigating hypercholesterolemia, reducing cardiovascular risks, and have showcased profound value in clinical applications, offering novel therapeutic avenues and a promising future in personalized medicine for cardiovascular disorders. Furthermore, emerging research, inclusive of our findings, unveils PCSK9's potential role as a pivotal indicator for cancer prognosis and its prospective application as a transformative target for cancer treatment. This review also highlights PCSK9's aberrant expression in various cancer forms, its association with cancer prognosis, and its crucial roles in carcinogenesis and cancer immunity. In conclusion, this synthesized review integrates existing knowledge and novel insights on PCSK9, providing a holistic perspective on its transformative impact in reshaping therapeutic paradigms across various disorders. It emphasizes the clinical value and effect of PCSK9-iT, underscoring its potential in advancing the landscape of biomedical research and its capabilities in heralding new eras in personalized medicine.
Collapse
Affiliation(s)
- Xuhui Bao
- Institute of Therapeutic Cancer Vaccines, Fudan University Pudong Medical Center, Shanghai, China.
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China.
- Center for Clinical Research, Fudan University Pudong Medical Center, Shanghai, China.
- Clinical Research Center for Cell-based Immunotherapy, Fudan University, Shanghai, China.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Yongjun Liang
- Center for Medical Research and Innovation, Fudan University Pudong Medical Center, Shanghai, China
| | - Hanman Chang
- Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Tianji Cai
- Department of Sociology, University of Macau, Taipa, Macau, China
| | - Baijie Feng
- Department of Oncology, Fudan University Pudong Medical Center, Shanghai, China
| | - Konstantin Gordon
- Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia
- A. Tsyb Medical Radiological Research Center, Obninsk, Russia
| | - Yuekun Zhu
- Department of Colorectal Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Zhangjiang Hi-tech Park, Shanghai, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Liyi Xie
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Cao D, Liu H. Dysregulated cholesterol regulatory genes in hepatocellular carcinoma. Eur J Med Res 2023; 28:580. [PMID: 38071335 PMCID: PMC10710719 DOI: 10.1186/s40001-023-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Cholesterol is an indispensable component in mammalian cells, and cholesterol metabolism performs important roles in various biological activities. In addition to the Warburg effect, dysregulated cholesterol metabolism is one of the metabolic hallmarks of several cancers. It has reported that reprogrammed cholesterol metabolism facilitates carcinogenesis, metastasis, and drug-resistant in various tumors, including hepatocellular carcinoma (HCC). Some literatures have reported that increased cholesterol level leads to lipotoxicity, inflammation, and fibrosis, ultimately promoting the development and progression of HCC. Contrarily, other clinical investigations have demonstrated a link between higher cholesterol level and lower risk of HCC. These incongruent findings suggest that the connection between cholesterol and HCC is much complicated. In this report, we summarize the roles of key cholesterol regulatory genes including cholesterol biosynthesis, uptake, efflux, trafficking and esterification in HCC. In addition, we discuss promising related therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dan Cao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 the South of Maoyuan Road, Nanchong, 637000, Sichuan, People's Republic of China
| | - Huan Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
12
|
Ning L, Zou Y, Li S, Cao Y, Xu B, Zhang S, Cai Y. Anti-PCSK9 Treatment Attenuates Liver Fibrosis via Inhibiting Hypoxia-Induced Autophagy in Hepatocytes. Inflammation 2023; 46:2102-2119. [PMID: 37466835 PMCID: PMC10673768 DOI: 10.1007/s10753-023-01865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
Hypoxia and its induced autophagy are involved in the initiation and progression of liver fibrosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recognized as a potential regulator of autophagy. Our previously reported study found that PCSK9 expression increased in liver fibrosis and that anti-PCSK9 treatment alleviated liver injury. This study aimed to investigate the mechanism of anti-PCSK9 treatment on liver fibrosis by inhibiting hypoxia-induced autophagy. Carbon tetrachloride-induced mouse liver fibrosis and mouse hepatocyte line AML12, cultured under the hypoxic condition, were established to undergo PCSK9 inhibition. The degree of liver fibrosis was shown with histological staining. The reactive oxygen species (ROS) generation was detected by flow cytometry. The expression of PCSK9, hypoxia-inducible factor-1α (HIF-1α), and autophagy-related proteins was examined using Western blot. The autophagic flux was assessed under immunofluorescence and transmission electron microscope. The mouse liver samples were investigated via RNA-sequencing to explore the underlying signaling pathway. The results showed that PCSK9 expression was upregulated with the development of liver fibrosis, which was accompanied by enhanced autophagy. In vitro data verified that PCSK9 increased via hypoxia and inflammation, accompanied by the hypoxia-induced autophagy increased. Then, the validation was acquired of the bidirectional interaction of hypoxia-ROS and PCSK9. The hypoxia reversal attenuated PCSK9 expression and autophagy. Additionally, anti-PCSK9 treatment alleviated liver inflammation and fibrosis, reducing hypoxia and autophagy in vivo. In mechanism, the AMPK/mTOR/ULK1 signaling pathway was identified as a target for anti-PCSK9 therapy. In conclusion, anti-PCSK9 treatment could alleviate liver inflammation and fibrosis by regulating AMPK/mTOR/ULK1 signaling pathway to reduce hypoxia-induced autophagy in hepatocytes.
Collapse
Affiliation(s)
- Liuxin Ning
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Yanting Zou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Yue Cao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Beili Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China
| | - Yu Cai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Shanghai, 200032, China.
| |
Collapse
|
13
|
Oza PP, Kashfi K. The evolving landscape of PCSK9 inhibition in cancer. Eur J Pharmacol 2023; 949:175721. [PMID: 37059376 PMCID: PMC10229316 DOI: 10.1016/j.ejphar.2023.175721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Cancer is a disease with a significant global burden in terms of premature mortality, loss of productivity, healthcare expenditures, and impact on mental health. Recent decades have seen numerous advances in cancer research and treatment options. Recently, a new role of cholesterol-lowering PCSK9 inhibitor therapy has come to light in the context of cancer. PCSK9 is an enzyme that induces the degradation of low-density lipoprotein receptors (LDLRs), which are responsible for clearing cholesterol from the serum. Thus, PCSK9 inhibition is currently used to treat hypercholesterolemia, as it can upregulate LDLRs and enable cholesterol reduction through these receptors. The cholesterol-lowering effects of PCSK9 inhibitors have been suggested as a potential mechanism to combat cancer, as cancer cells have been found to increasingly rely on cholesterol for their growth needs. Additionally, PCSK9 inhibition has demonstrated the potential to induce cancer cell apoptosis through several pathways, increase the efficacy of a class of existing anticancer therapies, and boost the host immune response to cancer. A role in managing cancer- or cancer treatment-related development of dyslipidemia and life-threatening sepsis has also been suggested. This review examines the current evidence regarding the effects of PCSK9 inhibition in the context of different cancers and cancer-associated complications.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
14
|
Jin W, Yu J, Su Y, Lin H, Liu T, Chen J, Ge C, Zhao F, Geng Q, Mao L, Jiang S, Cui Y, Chen T, Jiang G, Li J, Miao C, Xiao X, Li H. Drug Repurposing Flubendazole to Suppress Tumorigenicity via PCSK9-dependent Inhibition and Potentiate Lenvatinib Therapy for Hepatocellular Carcinoma. Int J Biol Sci 2023; 19:2270-2288. [PMID: 37151886 PMCID: PMC10158015 DOI: 10.7150/ijbs.81415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignant cancers across the world. It has a poor prognosis and lacks effective therapies, especially for patients with advanced-stage cancer, indicating an urgent need for new therapies and novel therapeutic targets. Here, by screening the U.S. Food and Drug Administration drug library against HCC cell lines, we identified that flubendazole, a traditional anthelmintic drug, could prominently suppress HCC cells in vivo and in vitro. RNA sequence analysis and cellular thermal shift assays showed that flubendazole reduced the expression of PCSK9 protein by direct targeting. The increased expression of PCSK9 in HCC tissues was demonstrated to be correlated with poor prognosis, and the inhibitory ability of flubendazole was selectively dependent on PCSK9 expression. PCSK9 knockdown abolished the antitumor effects of flubendazole in HCC. Mechanistically, flubendazole inhibited the Hedgehog signaling pathway induced by PCSK9, resulting in the downregulation of smoothened (SMO) and GLI Family Zinc Finger 1 (Gli1). Moreover, combining flubendazole with lenvatinib was found more effective than administering lenvatinib only for HCC treatment in vivo and in vitro. These findings reveal the therapeutic potential of flubendazole against HCC and provide clues on new repurposed drugs and targets for cancer treatment.
Collapse
Affiliation(s)
- Wenjiao Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Junming Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Yang Su
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Hechun Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Tengfei Liu
- Department of Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Jing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chao Ge
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Fangyu Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Qin Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Lin Mao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Shuqing Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Ying Cui
- Cancer Institute of Guangxi, Nanning 530015, China
| | - Taoyang Chen
- Qidong Liver Cancer Institute, Qidong 226299, China
| | - Guoping Jiang
- Department of General Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jinjun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Chunxiao Miao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| | - Xiuying Xiao
- Department of Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Hong Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
15
|
Targeting PCSK9 in Liver Cancer Cells Triggers Metabolic Exhaustion and Cell Death by Ferroptosis. Cells 2022; 12:cells12010062. [PMID: 36611859 PMCID: PMC9818499 DOI: 10.3390/cells12010062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Deregulated lipid metabolism is a common feature of liver cancers needed to sustain tumor cell growth and survival. We aim at taking advantage of this vulnerability and rewiring the oncogenic metabolic hub by targeting the key metabolic player pro-protein convertase subtilisin/kexin type 9 (PCSK9). We assessed the effect of PCSK9 inhibition using the three hepatoma cell lines Huh6, Huh7 and HepG2 and validated the results using the zebrafish in vivo model. PCSK9 deficiency led to strong inhibition of cell proliferation in all cell lines. At the lipid metabolic level, PCSK9 inhibition was translated by an increase in intracellular neutral lipids, phospholipids and polyunsaturated fatty acids as well as a higher accumulation of lipid hydroperoxide. Molecular signaling analysis involved the disruption of the sequestome 1/Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (p62/Keap1/Nrf2) antioxidative axis, leading to ferroptosis, for which morphological features were confirmed by electron and confocal microscopies. The anti-tumoral effects of PCSK9 deficiency were validated using xenograft experiments in zebrafish. The inhibition of PCSK9 was effective in disrupting the oncometabolic process, inducing metabolic exhaustion and enhancing the vulnerability of cancer cells to iron-triggered lipid peroxidation. We provide strong evidence supporting the drug repositioning of anti-PCSK9 approaches to treat liver cancers.
Collapse
|
16
|
Rewiring Lipid Metabolism by Targeting PCSK9 and HMGCR to Treat Liver Cancer. Cancers (Basel) 2022; 15:cancers15010003. [PMID: 36612001 PMCID: PMC9817797 DOI: 10.3390/cancers15010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Alterations in lipid handling are an important hallmark in cancer. Our aim here is to target key metabolic enzymes to reshape the oncogenic lipid metabolism triggering irreversible cell breakdown. We targeted the key metabolic player proprotein convertase subtilisin/kexin type 9 (PCSK9) using a pharmacological inhibitor (R-IMPP) alone or in combination with 3-hydroxy 3-methylglutaryl-Coenzyme A reductase (HMGCR) inhibitor, simvastatin. We assessed the effect of these treatments using 3 hepatoma cell lines, Huh6, Huh7 and HepG2 and a tumor xenograft in chicken choriorallantoic membrane (CAM) model. PCSK9 deficiency led to dose-dependent inhibition of cell proliferation in all cell lines and a decrease in cell migration. Co-treatment with simvastatin presented synergetic anti-proliferative effects. At the metabolic level, mitochondrial respiration assays as well as the assessment of glucose and glutamine consumption showed higher metabolic adaptability and surge in the absence of PCSK9. Enhanced lipid uptake and biogenesis led to excessive accumulation of intracellular lipid droplets as revealed by electron microscopy and metabolic tracing. Using xenograft experiments in CAM model, we further demonstrated the effect of anti-PCSK9 treatment in reducing tumor aggressiveness. Targeting PCSK9 alone or in combination with statins deserves to be considered as a new therapeutic option in liver cancer clinical applications.
Collapse
|
17
|
Alannan M, Seidah NG, Merched AJ. PCSK9 in Liver Cancers at the Crossroads between Lipid Metabolism and Immunity. Cells 2022; 11:cells11244132. [PMID: 36552895 PMCID: PMC9777286 DOI: 10.3390/cells11244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolic rewiring and defective immune responses are considered to be the main driving forces sustaining cell growth and oncogenesis in many cancers. The atypical enzyme, proprotein convertase subtilisin/kexin type 9 (PCSK9), is produced by the liver in large amounts and plays a major role in lipid metabolism via the control of the low density lipoprotein receptor (LDLR) and other cell surface receptors. In this context, many clinical studies have clearly demonstrated the high efficacy of PCSK9 inhibitors in treating hyperlipidemia and cardiovascular diseases. Recent data implicated PCSK9 in the degradation of major histocompatibility complex I (MHC-I) receptors and the immune system as well as in other physiological activities. This review highlights the complex crosstalk between PCSK9, lipid metabolism and immunosuppression and underlines the latest advances in understanding the involvement of this convertase in other critical functions. We present a comprehensive assessment of the different strategies targeting PCSK9 and show how these approaches could be extended to future therapeutic options to treat cancers with a main focus on the liver.
Collapse
Affiliation(s)
- Malak Alannan
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute, IRCM, University of Montreal, Montreal, QC H2W 1R7, Canada
| | - Aksam J. Merched
- Bordeaux Institute of Oncology (BRIC), INSERM U1312, University of Bordeaux, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
18
|
Taravella Oill AM, Buetow KH, Wilson MA. The role of Neanderthal introgression in liver cancer. BMC Med Genomics 2022; 15:255. [PMID: 36503519 PMCID: PMC9743633 DOI: 10.1186/s12920-022-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neanderthal introgressed DNA has been linked to different normal and disease traits including immunity and metabolism-two important functions that are altered in liver cancer. However, there is limited understanding of the relationship between Neanderthal introgression and liver cancer risk. The aim of this study was to investigate the relationship between Neanderthal introgression and liver cancer risk. METHODS Using germline and somatic DNA and tumor RNA from liver cancer patients from The Cancer Genome Atlas, along with ancestry-match germline DNA from unaffected individuals from the 1000 Genomes Resource, and allele specific expression data from normal liver tissue from The Genotype-Tissue Expression project we investigated whether Neanderthal introgression impacts cancer etiology. Using a previously generated set of Neanderthal alleles, we identified Neanderthal introgressed haplotypes. We then tested whether somatic mutations are enriched or depleted on Neanderthal introgressed haplotypes compared to modern haplotypes. We also computationally assessed whether somatic mutations have a functional effect or show evidence of regulating expression of Neanderthal haplotypes. Finally, we compared patterns of Neanderthal introgression in liver cancer patients and the general population. RESULTS We find Neanderthal introgressed haplotypes exhibit an excess of somatic mutations compared to modern haplotypes. Variant Effect Predictor analysis revealed that most of the somatic mutations on these Neanderthal introgressed haplotypes are not functional. We did observe expression differences of Neanderthal alleles between tumor and normal for four genes that also showed a pattern of enrichment of somatic mutations on Neanderthal haplotypes. However, gene expression was similar between liver cancer patients with modern ancestry and liver cancer patients with Neanderthal ancestry at these genes. Provocatively, when analyzing all genes, we find evidence of Neanderthal introgression regulating expression in tumor from liver cancer patients in two genes, ARK1C4 and OAS1. Finally, we find that most genes do not show a difference in the proportion of Neanderthal introgression between liver cancer patients and the general population. CONCLUSION Our results suggest that Neanderthal introgression provides opportunity for somatic mutations to accumulate, and that some Neanderthal introgression may impact liver cancer risk.
Collapse
Affiliation(s)
- Angela M Taravella Oill
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Kenneth H Buetow
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
19
|
Gu J, Zhu N, Li HF, Zhao TJ, Zhang CJ, Liao DF, Qin L. Cholesterol homeostasis and cancer: a new perspective on the low-density lipoprotein receptor. Cell Oncol 2022; 45:709-728. [PMID: 35864437 DOI: 10.1007/s13402-022-00694-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disturbance of cholesterol homeostasis is considered as one of the manifestations of cancer. Cholesterol plays an essential role in the pleiotropic functions of cancer cells, including mediating membrane trafficking, intracellular signal transduction, and production of hormones and steroids. As a single transmembrane receptor, the low-density lipoprotein receptor (LDLR) can participate in intracellular cholesterol uptake and regulate cholesterol homeostasis. It has recently been found that LDLR is aberrantly expressed in a broad range of cancers, including colon cancer, prostate cancer, lung cancer, breast cancer and liver cancer. LDLR has also been found to be involved in various signaling pathways, such as the MAPK, NF-κB and PI3K/Akt signaling pathways, which affect cancer cells and their surrounding microenvironment. Moreover, LDLR may serve as an independent prognostic factor for lung cancer, breast cancer and pancreatic cancer, and is closely related to the survival of cancer patients. However, the role of LDLR in some cancers, such as prostate cancer, remains controversial. This may be due to the lack of normal feedback regulation of LDLR expression in cancer cells and the severe imbalance between LDLR-mediated cholesterol uptake and de novo biosynthesis of cholesterol. CONCLUSIONS The imbalance of cholesterol homeostasis caused by abnormal LDLR expression provides new therapeutic opportunities for cancer. LDLR interferes with the occurrence and development of cancer by modulating cholesterol homeostasis and may become a novel target for the development of anti-cancer drugs. Herein, we systematically review the contribution of LDLR to cancer progression, especially its dysregulation and underlying mechanism in various malignancies. Besides, potential targeting and immunotherapeutic options are proposed.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tan-Jun Zhao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duan-Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
20
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
21
|
Sun H, Meng W, Zhu J, Wang L. Antitumor activity and molecular mechanism of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:643-658. [PMID: 35307759 DOI: 10.1007/s00210-022-02200-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/01/2022] [Indexed: 12/12/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the proprotein convertase family of proteins that activate other proteins in cells. Functionally, PCSK9 binds to the receptor of low-density lipoprotein particles (LDL) to regulate cholesterol metabolism and lipoprotein homeostasis in human body. PCSK9 inhibition is a novel pharmacological strategy to control hypercholesterolemia and cardiovascular diseases. Recently accumulating evidence realizes that PCSK9 possesses other roles in cells, such as regulation of tissue inflammatory response, intratumoral immune cell infiltration, and tumor progression. This review discussed the advancement of PCSK9 research on its role and underlying mechanisms in tumor development and progression. For example, PCSK9 inhibition could attenuate progression of breast cancer, glioma, colon tumor, hepatocellular cancer, prostate cancer, and lung adenocarcinoma and promote apoptosis of glioma, prostate cancer, and hepatocellular cancer cells. PCSK9 deficiency could reduce liver metastasis of B16F1 melanoma cells by lowering the circulating cholesterol levels. PCSK9 gene knockdown substantially attenuated mouse tumor growth in vivo by activation of cytotoxic T cells, although PCSK9 knockdown had no effect on morphology and growth rate of different mouse cancer cell lines in vitro. PCSK9 inhibition thus can be used to control human cancers. Future preclinical and clinical studies are warranted to define anti-tumor activity of PCSK9 inhibition.
Collapse
Affiliation(s)
- Huimin Sun
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Wen Meng
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Jie Zhu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China
| | - Lu Wang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong First Medical University, Shandong, Jinan, China.
| |
Collapse
|
22
|
Jin Z, Kang J, Yu T. Feature selection and classification over the network with missing node observations. Stat Med 2022; 41:1242-1262. [PMID: 34816464 PMCID: PMC9773124 DOI: 10.1002/sim.9267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/14/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Jointly analyzing transcriptomic data and the existing biological networks can yield more robust and informative feature selection results, as well as better understanding of the biological mechanisms. Selecting and classifying node features over genome-scale networks has become increasingly important in genomic biology and genomic medicine. Existing methods have some critical drawbacks. The first is they do not allow flexible modeling of different subtypes of selected nodes. The second is they ignore nodes with missing values, very likely to increase bias in estimation. To address these limitations, we propose a general modeling framework for Bayesian node classification (BNC) with missing values. A new prior model is developed for the class indicators incorporating the network structure. For posterior computation, we resort to the Swendsen-Wang algorithm for efficiently updating class indicators. BNC can naturally handle missing values in the Bayesian modeling framework, which improves the node classification accuracy and reduces the bias in estimating gene effects. We demonstrate the advantages of our methods via extensive simulation studies and the analysis of the cutaneous melanoma dataset from The Cancer Genome Atlas.
Collapse
Affiliation(s)
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Tianwei Yu
- School of Data Science and Warshel Institute, The Chinese University of Hong Kong - Shenzhen, and Shenzhen Research Institute of Big Data, Shenzhen, China
| |
Collapse
|
23
|
Maligłówka M, Kosowski M, Hachuła M, Cyrnek M, Bułdak Ł, Basiak M, Bołdys A, Machnik G, Bułdak RJ, Okopień B. Insight into the Evolving Role of PCSK9. Metabolites 2022; 12:metabo12030256. [PMID: 35323699 PMCID: PMC8951079 DOI: 10.3390/metabo12030256] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the last discovered member of the family of proprotein convertases (PCs), mainly synthetized in hepatic cells. This serine protease plays a pivotal role in the reduction of the number of low-density lipoprotein receptors (LDLRs) on the surface of hepatocytes, which leads to an increase in the level of cholesterol in the blood. This mechanism and the fact that gain of function (GOF) mutations in PCSK9 are responsible for causing familial hypercholesterolemia whereas loss-of-function (LOF) mutations are associated with hypocholesterolemia, prompted the invention of drugs that block PCSK9 action. The high efficiency of PCSK9 inhibitors (e.g., alirocumab, evolocumab) in decreasing cardiovascular risk, pleiotropic effects of other lipid-lowering drugs (e.g., statins) and the multifunctional character of other proprotein convertases, were the cause for proceeding studies on functions of PCSK9 beyond cholesterol metabolism. In this article, we summarize the current knowledge on the roles that PCSK9 plays in different tissues and perspectives for its clinical use.
Collapse
Affiliation(s)
- Mateusz Maligłówka
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
- Correspondence:
| | - Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Cyrnek
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Rafał Jakub Bułdak
- Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland;
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| |
Collapse
|
24
|
Deng CF, Zhu N, Zhao TJ, Li HF, Gu J, Liao DF, Qin L. Involvement of LDL and ox-LDL in Cancer Development and Its Therapeutical Potential. Front Oncol 2022; 12:803473. [PMID: 35251975 PMCID: PMC8889620 DOI: 10.3389/fonc.2022.803473] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 01/17/2023] Open
Abstract
Lipid metabolism disorder is related to an increased risk of tumorigenesis and is involved in the rapid growth of cancer cells as well as the formation of metastatic lesions. Epidemiological studies have demonstrated that low-density lipoprotein (LDL) and oxidized low-density lipoprotein (ox-LDL) are closely associated with breast cancer, colorectal cancer, pancreatic cancer, and other malignancies, suggesting that LDL and ox-LDL play important roles during the occurrence and development of cancers. LDL can deliver cholesterol into cancer cells after binding to LDL receptor (LDLR). Activation of PI3K/Akt/mTOR signaling pathway induces transcription of the sterol regulatory element-binding proteins (SREBPs), which subsequently promotes cholesterol uptake and synthesis to meet the demand of cancer cells. Ox-LDL binds to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 36 (CD36) to induce mutations, resulting in inflammation, cell proliferation, and metastasis of cancer. Classic lipid-lowering drugs, statins, have been shown to reduce LDL levels in certain types of cancer. As LDL and ox-LDL play complicated roles in cancers, the potential therapeutic effect of targeting lipid metabolism in cancer therapy warrants more investigation.
Collapse
Affiliation(s)
- Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
25
|
Hu J, Zhang M, Gui L, Wan Q, Zhong J, Bai L, He M. PCSK9 Suppresses M2-Like Tumor-Associated Macrophage Polarization by Regulating the Secretion of OX40L from Hepatocellular Carcinoma Cells. Immunol Invest 2022; 51:1678-1693. [PMID: 35078374 DOI: 10.1080/08820139.2022.2027439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) participates in the development of various cancers, including hepatocellular carcinoma (HCC). Here, we attempted to reveal the underlying mechanism of PCSK9 in HCC. METHODS Tumor tissues and adjacent tissues were separated from HCC patients to detect PCSK9 expression. Then, PCSK9 was overexpressed or silenced in HCC cells (MHCC97H or Huh7), and then the cell supernatant was incubated with THP-1 macrophages. OX40L neutralizing antibody (nAb) was used to inhibit OX40L activity. The expression of macrophage markers was examined by immunohistochemical staining and flow cytometry. Finally, tumor-bearing mouse model was constructed by inoculation of LV-PCSK9 infected MHCC97H cells to verify the role of PCSK in HCC. RESULTS PCSK9 expression was decreased in tumor tissues of HCC patient specimens. HCC patients displayed M2 macrophage infiltration in tumor tissues. Moreover, PCSK9-silenced Huh7 cell supernatant promoted cell migration, and enhanced the proportion of CD206-positive cells and the expression of M2 macrophage markers IL-10 and ARG-1 in THP-1 macrophages. PCSK9-overexpressing MHCC97H cell supernatant inhibited THP-1 macrophage migration and M2-like tumor-associated macrophage (TAM) polarization, which was abolished by OX40L nAb treatment. PCSK9 overexpression enhanced the expression of OX40L in MHCC97H cells. In tumor-bearing mouse models, PCSK9 overexpression inhibited tumor growth and M2 polarization of TAMs in HCC by promoting OX40L expression. Conclusion: This work demonstrated that PCSK9 suppressed M2-like TAM polarization by regulating the secretion of OX40L from hepatocellular carcinoma cells. This study suggests that PCSK9 may be a potential target for HCC treatment.
Collapse
Affiliation(s)
- Jing Hu
- Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| | - Meixia Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ling Gui
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qinsi Wan
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiawei Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Liangliang Bai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyan He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Grewal T, Buechler C. Emerging Insights on the Diverse Roles of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Chronic Liver Diseases: Cholesterol Metabolism and Beyond. Int J Mol Sci 2022; 23:ijms23031070. [PMID: 35162992 PMCID: PMC8834914 DOI: 10.3390/ijms23031070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic liver diseases are commonly associated with dysregulated cholesterol metabolism. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease of the proprotein convertase family that is mainly synthetized and secreted by the liver, and represents one of the key regulators of circulating low-density lipoprotein (LDL) cholesterol levels. Its ability to bind and induce LDL-receptor degradation, in particular in the liver, increases circulating LDL-cholesterol levels in the blood. Hence, inhibition of PCSK9 has become a very potent tool for the treatment of hypercholesterolemia. Besides PCSK9 limiting entry of LDL-derived cholesterol, affecting multiple cholesterol-related functions in cells, more recent studies have associated PCSK9 with various other cellular processes, including inflammation, fatty acid metabolism, cancerogenesis and visceral adiposity. It is increasingly becoming evident that additional roles for PCSK9 beyond cholesterol homeostasis are crucial for liver physiology in health and disease, often contributing to pathophysiology. This review will summarize studies analyzing circulating and hepatic PCSK9 levels in patients with chronic liver diseases. The factors affecting PCSK9 levels in the circulation and in hepatocytes, clinically relevant studies and the pathophysiological role of PCSK9 in chronic liver injury are discussed.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
- Correspondence:
| |
Collapse
|
27
|
Abdulla N, Vincent CT, Kaur M. Mechanistic Insights Delineating the Role of Cholesterol in Epithelial Mesenchymal Transition and Drug Resistance in Cancer. Front Cell Dev Biol 2021; 9:728325. [PMID: 34869315 PMCID: PMC8640133 DOI: 10.3389/fcell.2021.728325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the significant advancements made in targeted anti-cancer therapy, drug resistance constitutes a multifaceted phenomenon leading to therapy failure and ultimately mortality. Emerging experimental evidence highlight a role of cholesterol metabolism in facilitating drug resistance in cancer. This review aims to describe the role of cholesterol in facilitating multi-drug resistance in cancer. We focus on specific signaling pathways that contribute to drug resistance and the link between these pathways and cholesterol. Additionally, we briefly discuss the molecular mechanisms related to the epithelial-mesenchymal transition (EMT), and the documented link between EMT, metastasis and drug resistance. We illustrate this by specifically focusing on hypoxia and the role it plays in influencing cellular cholesterol content following EMT induction. Finally, we provide a proposed model delineating the crucial role of cholesterol in EMT and discuss whether targeting cholesterol could serve as a novel means of combatting drug resistance in cancer progression and metastasis.
Collapse
Affiliation(s)
- Naaziyah Abdulla
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - C Theresa Vincent
- Department of Immunology, Genetics and Pathology, Uppsala, Sweden.,Department of Microbiology, New York University School of Medicine, New York, NY, United States
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
28
|
Alanazi SA, Harisa GI, Badran MM, Alanazi FK, Elzayat E, Alomrani AH, Al Meanazel OT, Al Meanazel AT. Crosstalk of low density lipoprotein and liposome as a paradigm for targeting of 5-fluorouracil into hepatic cells: cytotoxicity and liver deposition. Bioengineered 2021; 12:914-926. [PMID: 33678142 PMCID: PMC8806320 DOI: 10.1080/21655979.2021.1896202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/19/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to utilize cholesterol conjugation of 5-fluorouracil (5-FUC) and liposomal formulas to enhance the partitioning of 5-FU into low density lipoprotein (LDL) to target hepatocellular carcinoma (HCC). Thus, 5-FU and 5-FUCwere loaded into liposomes. Later, the direct loading and transfer of 5-FU, and 5-FUC from liposomes into LDL were attained. The preparations were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and cytotoxicity using the HepG2 cell line. Moreover, the drug deposition into the LDL and liver tissues was investigated. The present results revealed that liposomal preparations have a nanosize range (155 - 194 nm), negative zeta potential (- 0.82 to - 16 mV), entrapment efficiency of 69% for 5-FU, and 66% for 5-FUC. Moreover, LDL particles have a nanosize range (28-49 nm), negative zeta potential (- 17 to -27 mV), and the entrapment efficiency is 11% for 5-FU and 85% for 5-FUC. Furthermore, 5-FUC loaded liposomes displayed a sustained release profile (57%) at 24 h compared to fast release (92%) of 5-FU loaded liposomes. 5-FUC and liposomal formulas enhanced the transfer of 5-FUC into LDL compared to 5-FU. 5-FUC loaded liposomes and LDL have greater cytotoxicity against HepG2 cell lines compared to 5-FU and 5-FUC solutions. Moreover, the deposition of 5-FUC in LDL (26.87ng/mg) and liver tissues (534 ng/gm tissue) was significantly increased 5-FUC liposomes compared to 5-FU (11.7 ng/g tissue) liposomal formulation. In conclusion, 5-FUC is a promising strategy for hepatic targeting of 5-FU through LDL-mediated gateway.
Collapse
Affiliation(s)
- Saleh A. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Gamaleldin I. Harisa
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Al-Azhar University, Nasr City Cairo, Egypt
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab Elzayat
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osaid T. Al Meanazel
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Ahmed T. Al Meanazel
- Prince Naif for the Health Research Center, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Bonaventura A, Vecchié A, Ruscica M, Grossi F, Dentali F. PCSK9 as a new player in cancer: New opportunity or red herring? Curr Med Chem 2021; 29:960-969. [PMID: 34781861 DOI: 10.2174/0929867328666211115122324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
Initially described as a factor involved in liver regeneration and neuronal differentiation, proprotein convertase subtilisin/kexin type 9 (PCSK9) has become one of the key regulators of low-density lipoprotein cholesterol. Besides that, a number of studies have suggested PCSK9 may play a role in cancer biology. This is particularly true for gastroenteric (gastric and liver cancers) and lung cancers, where higher PCSK9 levels were associated with the increased ability of the tumor to develop and give metastasis as well as with reduced overall survival. Accordingly, monoclonal antibodies blocking PCSK9 were recently shown to synergize with immunotherapy in different types of cancers to achieve tumor growth suppression through an increased intratumoral infiltration of cytotoxic T cells. Anti-PCSK9 vaccines have been tested in animal models with encouraging results only in colon carcinoma. As most of this evidence is based on pre-clinical studies, this has led to some controversies and inconsistencies, thus suggesting that additional research is needed to clarify the topic. Finally, modulation of intracellular PCSK9 levels by silencing RNA (siRNA) may help understand the physiological and pathological mechanisms of PCSK9.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Department of Internal Medicine, ASST Sette Laghi, Varese. Italy
| | | | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan. Italy
| | - Francesco Grossi
- Medical Oncology Unit, Department of Medicine and Surgery, University of Insubria, ASST Sette Laghi, Varese. Italy
| | - Francesco Dentali
- Department of Medicine and Surgery, Insubria University, Varese. Italy
| |
Collapse
|
30
|
Haberl EM, Pohl R, Rein-Fischboeck L, Höring M, Krautbauer S, Liebisch G, Buechler C. Accumulation of cholesterol, triglycerides and ceramides in hepatocellular carcinomas of diethylnitrosamine injected mice. Lipids Health Dis 2021; 20:135. [PMID: 34629057 PMCID: PMC8502393 DOI: 10.1186/s12944-021-01567-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dysregulated lipid metabolism is critically involved in the development of hepatocellular carcinoma (HCC). The respective metabolic pathways affected in HCC can be identified using suitable experimental models. Mice injected with diethylnitrosamine (DEN) and fed a normal chow develop HCC. For the analysis of the pathophysiology of HCC in this model a comprehensive lipidomic analysis was performed. METHODS Lipids were measured in tumor and non-tumorous tissues by direct flow injection analysis. Proteins with a role in lipid metabolism were analysed by immunoblot. Mann-Whitney U-test or paired Student´s t-test were used for data analysis. RESULTS Intra-tumor lipid deposition is a characteristic of HCCs, and di- and triglycerides accumulated in the tumor tissues of the mice. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha, lipoprotein lipase and hepatic lipase protein were low in the tumors whereas proteins involved in de novo lipogenesis were not changed. Higher rates of de novo lipogenesis cause a shift towards saturated acyl chains, which did not occur in the murine HCC model. Besides, LDL-receptor protein and cholesteryl ester levels were higher in the murine HCC tissues. Ceramides are cytotoxic lipids and are low in human HCCs. Notably, ceramide levels increased in the murine tumors, and the simultaneous decline of sphingomyelins suggests that sphingomyelinases were involved herein. DEN is well described to induce the tumor suppressor protein p53 in the liver, and p53 was additionally upregulated in the tumors. CONCLUSIONS Ceramides mediate the anti-cancer effects of different chemotherapeutic drugs and restoration of ceramide levels was effective against HCC. High ceramide levels in the tumors makes the DEN injected mice an unsuitable model to study therapies targeting ceramide metabolism. This model is useful for investigating how tumors evade the cytotoxic effects of ceramides.
Collapse
Affiliation(s)
- Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| |
Collapse
|
31
|
Seidah NG. The PCSK9 discovery, an inactive protease with varied functions in hypercholesterolemia, viral infections, and cancer. J Lipid Res 2021; 62:100130. [PMID: 34606887 PMCID: PMC8551645 DOI: 10.1016/j.jlr.2021.100130] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/06/2023] Open
Abstract
In 2003, the sequences of mammalian proprotein convertase subtilisin/kexin type 9 (PCSK9) were reported. Radiolabeling pulse-chase analyses demonstrated that PCSK9 was synthesized as a precursor (proPCSK9) that undergoes autocatalytic cleavage in the endoplasmic reticulum into PCSK9, which is then secreted as an inactive enzyme in complex with its inhibitory prodomain. Its high mRNA expression in liver hepatocytes and its gene localization on chromosome 1p32, a third locus associated with familial hypercholesterolemia, other than LDLR or APOB, led us to identify three patient families expressing the PCSK9 variants S127R or F216L. Although Pcsk9 and Ldlr were downregulated in mice that were fed a cholesterol-rich diet, PCSK9 overexpression led to the degradation of the LDLR. This led to the demonstration that gain-of-function and loss-of-function variations in PCSK9 modulate its bioactivity, whereby PCSK9 binds the LDLR in a nonenzymatic fashion to induce its degradation in endosomes/lysosomes. PCSK9 was also shown to play major roles in targeting other receptors for degradation, thereby regulating various processes, including hypercholesterolemia and associated atherosclerosis, vascular inflammation, viral infections, and immune checkpoint regulation in cancer. Injectable PCSK9 monoclonal antibody or siRNA is currently used in clinics worldwide to treat hypercholesterolemia and could be combined with current therapies in cancer/metastasis. In this review, we present the critical information that led to the discovery of PCSK9 and its implication in LDL-C metabolism. We further analyze the underlying functional mechanism(s) in the regulation of LDL-C, as well as the evolving novel roles of PCSK9 in both health and disease states.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| |
Collapse
|
32
|
Mahboobnia K, Pirro M, Marini E, Grignani F, Bezsonov EE, Jamialahmadi T, Sahebkar A. PCSK9 and cancer: Rethinking the link. Biomed Pharmacother 2021; 140:111758. [PMID: 34058443 DOI: 10.1016/j.biopha.2021.111758] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer is emerging as a major problem globally, as it accounts for the second cause of death despite medical advances. According to epidemiological and basic studies, cholesterol is involved in cancer progression and there are abnormalities in cholesterol metabolism of cancer cells including prostate, breast, and colorectal carcinomas. However, the importance of cholesterol in carcinogenesis and thereby the role of cholesterol homeostasis as a therapeutic target is still a debated area in cancer therapy. Proprotein convertase subtilisin/kexin type-9 (PCSK9), a serine protease, modulates cholesterol metabolism by attachment to the LDL receptor (LDLR) and reducing its recycling by targeting the receptor for lysosomal destruction. Published research has shown that PCSK9 is also involved in degradation of other LDLR family members namely very-low-density-lipoprotein receptor (VLDLR), lipoprotein receptor-related protein 1 (LRP-1), and apolipoprotein E receptor 2 (ApoER2). As a result, this protein represents an interesting therapeutic target for the treatment of hypercholesterolemia. Interestingly, clinical trials on PCSK9-specific monoclonal antibodies have reported promising results with high efficacy in lowering LDL-C and in turn reducing cardiovascular complications. It is important to note that PCSK9 mediates several other pathways apart from its role in lipid homeostasis, including antiviral activity, hepatic regeneration, neuronal apoptosis, and modulation of various signaling pathways. Furthermore, recent literature has illustrated that PCSK9 is closely associated with incidence and progression of several cancers. In a number of studies, PCSK9 siRNA was shown to effectively suppress the proliferation and invasion of the several studied tumor cells. Hence, a novel application of PCSK9 inhibitors/silencers in cancer/metastasis could be considered. However, due to poor data on effectiveness and safety of PCSK9 inhibitors in cancer, the impact of PCSK9 inhibition in these pathological conditions is still unknown. SEARCH METHODS A vast literature search was conducted to find intended studies from 1956 up to 2020, and inclusion criteria were original peer-reviewed publications. PURPOSE OF REVIEW To date, PCSK9 has been scantly investigated in cancer. The question that needs to be discussed is "How does PCSK9 act in cancer pathophysiology and what are the risks or benefits associated to its inhibition?". We reviewed the available publications highlighting the contribution of this proprotein convertase in pathways related to cancer, with focus on the potential implications of its long-term pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ettore Marini
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesco Grignani
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Evgeny E Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia; Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Bhattacharya A, Chowdhury A, Chaudhury K, Shukla PC. Proprotein convertase subtilisin/kexin type 9 (PCSK9): A potential multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188581. [PMID: 34144130 DOI: 10.1016/j.bbcan.2021.188581] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a novel pharmacological target for hypercholesterolemia and associated cardiovascular diseases owing to its function to mediate the degradation of low-density lipoprotein receptor (LDLR). Findings over the past two decades have identified novel binding partners and cellular functions of PCSK9. Notably, PCSK9 is aberrantly expressed in a broad spectrum of cancers and apparently contributes to disease prognosis, indicating that PCSK9 could be a valuable cancer biomarker. Experimental studies demonstrate the contribution of PCSK9 in various aspects of cancer, including cell proliferation, apoptosis, invasion, metastasis, anti-tumor immunity and radioresistance, strengthening the idea that PCSK9 could be a promising therapeutic target. Here, we comprehensively review the involvement of PCSK9 in cancer, summarizing its aberrant expression, association with disease prognosis, biological functions and underlying mechanisms in various malignancies. Besides, we highlight the potential of PCSK9 as a future therapeutic target in personalized cancer medicine.
Collapse
Affiliation(s)
- Anindita Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Abhirup Chowdhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
34
|
He M, Hu J, Fang T, Tang W, Lv B, Yang B, Xia J. Protein convertase subtilisin/Kexin type 9 inhibits hepatocellular carcinoma growth by interacting with GSTP1 and suppressing the JNK signaling pathway. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0313. [PMID: 33893729 PMCID: PMC8763006 DOI: 10.20892/j.issn.2095-3941.2020.0313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 12/31/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Protein convertase subtilisin/Kexin type 9 (PCSK9) has been found to be closely associated with the occurrence and development of numerous tumors. However, the precise role of PCSK9 and its relationship to the development of hepatocellular carcinoma (HCC) remain largely unknown. This study aimed to clarify these issues. METHODS The expression levels of PCSK9 in HCC tissues and HCC cell lines were determined by the quantitative reverse transcription polymerase chain reaction, Western blot, and immunohistochemical analyses, and the effects of PCSK9 expression on HCC cell biological traits were investigated by overexpressing and downregulating PCSK9 expression in vivo and in vitro. Additionally, the mechanism by which PCSK9 mediated dissociation of glutathione S-transferase Pi 1 (GSTP1) dimers and phosphorylation of the Jun N-terminal kinase (JNK) pathway components were investigated. RESULTS PCSK9 expression levels were significantly lower in HCC tissues than in adjacent non-tumor samples. In vivo and in vitro experiments suggested that PCSK9 inhibited HCC cell proliferation and metastasis. Further analysis showed that PCSK9 interacted with GSTP1 and promoted GSTP1 dimer dissociation and JNK signaling pathway inactivation in HCC cells. Moreover, the relationships between PCSK9 protein expressions and clinical outcomes were investigated. The PCSK9-lo group displayed a significantly shorter overall survival (OS; median OS: 64.2 months vs. 83.2 months; log-rank statistic: 4.237; P = 0.04) and recurrence-free survival (RFS; median RFS: 26.5 months vs. 46.6 months; log-rank statistic: 10.498; P = 0.001) time than the PCSK9-hi group. CONCLUSIONS PCSK9 inhibited HCC cell proliferation, cell cycle progression, and apoptosis by interacting with GSTP1 and suppressing JNK signaling, suggesting that PCSK9 might act as a tumor suppressor and be a therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Mingyan He
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jing Hu
- Department of Cardiology, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang 330006, China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenqing Tang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bei Lv
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
35
|
Grimm J, Peschel G, Müller M, Schacherer D, Wiest R, Weigand K, Buechler C. Rapid Decline of Serum Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) in Non-Cirrhotic Patients with Chronic Hepatitis C Infection Receiving Direct-Acting Antiviral Therapy. J Clin Med 2021; 10:1621. [PMID: 33920491 PMCID: PMC8069657 DOI: 10.3390/jcm10081621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Direct-acting antivirals (DAAs) efficiently eradicate the hepatitis C virus (HCV). Low-density lipoprotein (LDL) levels increase rapidly upon DAA treatment. Proprotein convertase subtilisin/kexin 9 (PCSK9) induces degradation of the hepatic LDL receptor and thereby elevates serum LDL. The aim of this study was to determine serum PCSK9 concentrations during and after DAA therapy to identify associations with LDL levels. Serum PCSK9 was increased in 82 chronic HCV-infected patients compared to 55 patients not infected with HCV. Serum PCSK9 was low in HCV patients with liver cirrhosis, but patients with HCV-induced liver cirrhosis still exhibited higher serum PCSK9 than patients with non-viral liver cirrhosis. Serum PCSK9 correlated with measures of liver injury and inflammation in cirrhotic HCV patients. In patients without liver cirrhosis, a positive association of serum PCSK9 with viral load existed. Serum PCSK9 was not different between viral genotypes. Serum PCSK9 did not correlate with LDL levels in HCV patients irrespective of cirrhotic status. Serum PCSK9 was reduced, and LDL was increased at four weeks after DAA therapy start in non-cirrhotic HCV patients. Serum PCSK9 and LDL did not change upon DAA treatment in the cirrhotic group. The rapid decline of PCSK9 after the start of DAA therapy in conjunction with raised LDL levels in non-cirrhotic HCV patients shows that these changes are not functionally related.
Collapse
Affiliation(s)
- Jonathan Grimm
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Georg Peschel
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Doris Schacherer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010 Bern, Switzerland;
| | - Kilian Weigand
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (J.G.); (G.P.); (M.M.); (D.S.); (K.W.)
| |
Collapse
|
36
|
Gormley M, Yarmolinsky J, Dudding T, Burrows K, Martin RM, Thomas S, Tyrrell J, Brennan P, Pring M, Boccia S, Olshan AF, Diergaarde B, Hung RJ, Liu G, Legge D, Tajara EH, Severino P, Lacko M, Ness AR, Davey Smith G, Vincent EE, Richmond RC. Using genetic variants to evaluate the causal effect of cholesterol lowering on head and neck cancer risk: A Mendelian randomization study. PLoS Genet 2021; 17:e1009525. [PMID: 33886544 PMCID: PMC8096036 DOI: 10.1371/journal.pgen.1009525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/04/2021] [Accepted: 03/31/2021] [Indexed: 01/04/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), which includes cancers of the oral cavity and oropharynx, is a cause of substantial global morbidity and mortality. Strategies to reduce disease burden include discovery of novel therapies and repurposing of existing drugs. Statins are commonly prescribed for lowering circulating cholesterol by inhibiting HMG-CoA reductase (HMGCR). Results from some observational studies suggest that statin use may reduce HNSCC risk. We appraised the relationship of genetically-proxied cholesterol-lowering drug targets and other circulating lipid traits with oral (OC) and oropharyngeal (OPC) cancer risk using two-sample Mendelian randomization (MR). For the primary analysis, germline genetic variants in HMGCR, NPC1L1, CETP, PCSK9 and LDLR were used to proxy the effect of low-density lipoprotein cholesterol (LDL-C) lowering therapies. In secondary analyses, variants were used to proxy circulating levels of other lipid traits in a genome-wide association study (GWAS) meta-analysis of 188,578 individuals. Both primary and secondary analyses aimed to estimate the downstream causal effect of cholesterol lowering therapies on OC and OPC risk. The second sample for MR was taken from a GWAS of 6,034 OC and OPC cases and 6,585 controls (GAME-ON). Analyses were replicated in UK Biobank, using 839 OC and OPC cases and 372,016 controls and the results of the GAME-ON and UK Biobank analyses combined in a fixed-effects meta-analysis. We found limited evidence of a causal effect of genetically-proxied LDL-C lowering using HMGCR, NPC1L1, CETP or other circulating lipid traits on either OC or OPC risk. Genetically-proxied PCSK9 inhibition equivalent to a 1 mmol/L (38.7 mg/dL) reduction in LDL-C was associated with an increased risk of OC and OPC combined (OR 1.8 95%CI 1.2, 2.8, p = 9.31 x10-05), with good concordance between GAME-ON and UK Biobank (I2 = 22%). Effects for PCSK9 appeared stronger in relation to OPC (OR 2.6 95%CI 1.4, 4.9) than OC (OR 1.4 95%CI 0.8, 2.4). LDLR variants, resulting in genetically-proxied reduction in LDL-C equivalent to a 1 mmol/L (38.7 mg/dL), reduced the risk of OC and OPC combined (OR 0.7, 95%CI 0.5, 1.0, p = 0.006). A series of pleiotropy-robust and outlier detection methods showed that pleiotropy did not bias our findings. We found limited evidence for a role of cholesterol-lowering in OC and OPC risk, suggesting previous observational results may have been confounded. There was some evidence that genetically-proxied inhibition of PCSK9 increased risk, while lipid-lowering variants in LDLR, reduced risk of combined OC and OPC. This result suggests that the mechanisms of action of PCSK9 on OC and OPC risk may be independent of its cholesterol lowering effects; however, this was not supported uniformly across all sensitivity analyses and further replication of this finding is required.
Collapse
Affiliation(s)
- Mark Gormley
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Bristol Dental Hospital and School, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - James Yarmolinsky
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Tom Dudding
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Bristol Dental Hospital and School, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Bristol Biomedical Research Centre at the University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, United Kingdom
| | - Steven Thomas
- Bristol Dental Hospital and School, University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Bristol Biomedical Research Centre at the University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, United Kingdom
| | - Jessica Tyrrell
- University of Exeter Medical School, RILD Building, RD&E Hospital, Exeter, United Kingdom
| | - Paul Brennan
- Genetic Epidemiology Group, World Health Organization, International Agency for Research on Cancer, Lyon, France
| | - Miranda Pring
- Bristol Dental Hospital and School, University of Bristol, Bristol, United Kingdom
| | - Stefania Boccia
- Section of Hygiene, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italia
- Department of Woman and Child Health and Public Health, Public Health Area, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Brenda Diergaarde
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Geoffrey Liu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Danny Legge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Patricia Severino
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Martin Lacko
- Department of Otorhinolaryngology and Head and Neck Surgery, Research Institute GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Andrew R. Ness
- National Institute for Health Research Bristol Biomedical Research Centre at the University Hospitals Bristol and Weston NHS Foundation Trust, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Rebecca C. Richmond
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
37
|
Feder S, Wiest R, Weiss TS, Aslanidis C, Schacherer D, Krautbauer S, Liebisch G, Buechler C. Proprotein convertase subtilisin/kexin type 9 (PCSK9) levels are not associated with severity of liver disease and are inversely related to cholesterol in a cohort of thirty eight patients with liver cirrhosis. Lipids Health Dis 2021; 20:6. [PMID: 33461570 PMCID: PMC7814535 DOI: 10.1186/s12944-021-01431-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is of particular importance in cholesterol metabolism with high levels contributing to hypercholesterolemia. Cholesterol and sphingolipids are low in patients with liver cirrhosis. Purpose of this study was to find associations of plasma PCSK9 with circulating cholesterol and sphingolipid species and measures of liver disease severity in patients with liver cirrhosis. METHODS PCSK9 protein levels were determined by ELISA in systemic vein (SVP), hepatic vein (HVP) and portal vein plasma of patients with mostly alcoholic liver cirrhosis. PCSK9 and LDL-receptor protein expression were analysed in cirrhotic and non-cirrhotic liver tissues. RESULTS Serum PCSK9 was reduced in patients with liver cirrhosis in comparison to non-cirrhotic patients. In liver cirrhosis, plasma PCSK9 was not correlated with Child-Pugh score, Model for End-Stage Liver Disease score, bilirubin or aminotransferases. A negative association of SVP PCSK9 with albumin existed. PCSK9 protein in the liver did not change with fibrosis stage and was even positively correlated with LDL-receptor protein levels. Ascites volume and variceal size were not related to PCSK9 levels. Along the same line, transjugular intrahepatic shunt to lower portal pressure did not affect PCSK9 concentrations in the three blood compartments. Serum cholesterol, sphingomyelin and ceramide levels did not correlate with PCSK9. Stratifying patients by high versus low PCSK9 levels using the median as cut-off, several cholesteryl ester species were even low in the subgroup with high PCSK9 levels. A few sphingomyelin species were also reduced in the patients with PCSK9 levels above the median. PCSK9 is highly expressed in the liver but systemic, portal and hepatic vein levels were similar. PCSK9 was not correlated with the inflammatory proteins C-reactive protein, IL-6, galectin-3, resistin or pentraxin 3. Of note, HVP PCSK9 was positively associated with HVP chemerin and negatively with HVP adiponectin levels. CONCLUSIONS In the cohort of patients with liver cirrhosis mostly secondary to alcohol consumption high PCSK9 was associated with low levels of certain cholesteryl ester and sphingomyelin species. Positive correlations of PCSK9 and LDL-receptor protein in the liver of patients with chronic liver injury are consistent with these findings.
Collapse
Affiliation(s)
- Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, Bern, Switzerland
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Regensburg University Hospital, Regensburg, Germany
| | - Charalampos Aslanidis
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Doris Schacherer
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, D-93042, Regensburg, Germany.
| |
Collapse
|
38
|
Yang K, Zhu J, Luo HH, Yu SW, Wang L. Pro-protein convertase subtilisin/kexin type 9 promotes intestinal tumor development by activating Janus kinase 2/signal transducer and activator of transcription 3/SOCS3 signaling in Apc Min/+ mice. Int J Immunopathol Pharmacol 2021; 35:20587384211038345. [PMID: 34586888 PMCID: PMC8485261 DOI: 10.1177/20587384211038345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Pro-protein convertase subtilisin/kexin type 9 (PCSK9) regulates lipoprotein homeostasis in humans. Evolocumab is a selective PCSK9 inhibitor that can reduce low-density lipoprotein cholesterol (LDLC) level and decrease hypercholesterolemia. The current study aimed to explore whether PCSK9 increases the risk of colorectal cancer. METHODS First, we utilized the classic intestinal tumor ApcMin/+ mouse model and PCSK9 knock-in (KI) mice to establish ApcMin/+PCSK9(KI) mice. Then, we investigated the effect of PCSK9 overexpression in ApcMin/+PCSK9(KI) mice and PCSK9 inhibition using evolocumab on the progression of intestinal tumors in vivo by hematoxylin and eosin (HE) staining, Western blot, and immunohistochemistry (IHC) assay. RESULTS ApcMin/+PCSK9(KI) mice had higher numbers and larger sizes of adenomas, with 83.3% of these mice developing adenocarcinoma (vs. 16.7% of ApcMin/+ mice). However, treatment with evolocumab reduced the number and size of adenomas and prevented the development of adenocarcinomas in ApcMin/+ mice. PCSK9 overexpression reduced tumor cell apoptosis, the Bax/bcl-2 ratio, and the levels of cytokine signaling 3 protein (SOCS3) suppressors, but activated Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling in intestinal tumors. In contrast, evolocumab treatment had the opposite effect on ApcMin/+mice. CONCLUSION PCSK9 might act as an oncogene or have an oncogenic role in the development and progression of colorectal cancer in vivo via activation of JAK2/STAT3/SOCS3 signaling.
Collapse
Affiliation(s)
- Kai Yang
- Department of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Zhu
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huan-hua Luo
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shu-wen Yu
- Department of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, China
- Phase I Clinical Trial Center, Qilu Hospital of Shandong University; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, China
| | - Lu Wang
- Department of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
39
|
Zou Y, Li S, Xu B, Guo H, Zhang S, Cai Y. Inhibition of Proprotein Convertase Subtilisin/Kexin Type 9 Ameliorates Liver Fibrosis via Mitigation of Intestinal Endotoxemia. Inflammation 2020; 43:251-263. [PMID: 31776890 DOI: 10.1007/s10753-019-01114-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipopolysaccharide (LPS) is demonstrated to cause "two-hit" injury to liver. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in LPS clearance. Hepatocyte nuclear factor-1 alpha (HNF-1α) and sterol regulatory element-binding protein 2 (SREBP2) were reported to be responsible for PCSK9 gene transcription and regulation. We aim to clarify the expression status of PCSK9 during the process of liver fibrosis and to verify the effect on liver fibrosis via PCSK9 inhibition. In this study, we found that PCSK9 increased significantly in human and BDL mouse injured liver tissues, so did HNF-1α and SREBP2. No significant difference of plasma PCSK9 was observed. Inhibited PCSK9 using CRISPR-PCSK9 adeno-associated virus in BDL mice ameliorated liver inflammation and fibrosis, with LPS decrease in serum, without any change in intestinal wall integrity. PCSK9 expression of L02 hepatocytes can be induced by LPS; however, they lose the ability at high content of LPS. L02 cells increased LPS uptake after PCSK9 knockout. Taken together, these results suggest that, with PCSK9 increasing during liver fibrosis advancement, its inhibition can ameliorate liver injury by enhancing LPS uptake in hepatocytes; however, the enhancement is limited for destruction to hepatocytes by high LPS.
Collapse
Affiliation(s)
- Yanting Zou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, People's Republic of China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, People's Republic of China
| | - Beili Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, People's Republic of China
| | - Hongying Guo
- Department of Severe Hepatitis, Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, People's Republic of China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, People's Republic of China
| | - Yu Cai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, People's Republic of China.
| |
Collapse
|
40
|
Feder S, Bruckmann A, McMullen N, Sinal CJ, Buechler C. Chemerin Isoform-Specific Effects on Hepatocyte Migration and Immune Cell Inflammation. Int J Mol Sci 2020; 21:ijms21197205. [PMID: 33003572 PMCID: PMC7582997 DOI: 10.3390/ijms21197205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Murine chemerin is C-terminally processed to the bioactive isoforms, muChem-156 and muChem-155, among which the longer variant protects from hepatocellular carcinoma (HCC). However, the role of muChem-155 is mostly unknown. Here, we aimed to compare the effects of these isoforms on the proliferation, migration and the secretome of the human hepatocyte cell lines HepG2 and Huh7 and the murine Hepa1-6 cell line. Therefore, huChem-157 and -156 were overexpressed in the human cells, and the respective murine variants, muChem-156 and -155, in the murine hepatocytes. Both chemerin isoforms produced by HepG2 and Hepa1-6 cells activated the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). HuChem-157 was the active isoform in the Huh7 cell culture medium. The potencies of muChem-155 and muChem-156 to activate human GPR1 and mouse CMKLR1 were equivalent. Human CMKLR1 was most responsive to muChem-156. Chemerin variants showed no effect on cell viability and proliferation. Activation of the mitogen-activated protein kinases Erk1/2 and p38, and protein levels of the epithelial–mesenchymal transition marker, E-cadherin, were not regulated by the chemerin variants. Migration was reduced in HepG2 and Hepa1-6 cells by the longer isoform. Protective effects of chemerin in HCC include the modulation of cytokines but huChem-156 and huChem-157 overexpression did not change IL-8, CCL20 or osteopontin in the hepatocytes. The conditioned medium of the transfected hepatocytes failed to alter these soluble factors in the cell culture medium of peripheral blood mononuclear cells (PBMCs). Interestingly, the cell culture medium of Huh7 cells producing the inactive variant huChem-155 reduced CCL2 and IL-8 in PBMCs. To sum up, huChem-157 and muChem-156 inhibited hepatocyte migration and may protect from HCC metastasis. HuChem-155 was the only human isoform exerting anti-inflammatory effects on immune cells.
Collapse
Affiliation(s)
- Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany;
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93042 Regensburg, Germany;
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (N.M.); (C.J.S.)
| | - Christopher J. Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (N.M.); (C.J.S.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany;
- Correspondence: ; Tel.: +49-941-944-7009
| |
Collapse
|
41
|
Fasolato S, Pigozzo S, Pontisso P, Angeli P, Ruscica M, Savarino E, De Martin S, Lupo MG, Ferri N. PCSK9 Levels Are Raised in Chronic HCV Patients with Hepatocellular Carcinoma. J Clin Med 2020; 9:jcm9103134. [PMID: 32998342 PMCID: PMC7600304 DOI: 10.3390/jcm9103134] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Since emerging evidence suggests a protective role of proprotein convertase subtilisin/kexin type 9 (PCSK9) on hepatitis C virus (HCV) infection, the aim of the present study was to evaluate the correlation between PCSK9 and HCV infection in hepatocellular carcinoma (HCC) patients. Methods: In this retrospective study, PCSK9 levels were evaluated by ELISA, in plasma samples from control (n = 24) and 178 patients diagnosed for HCC, cirrhosis, or chronic hepatitis, either positive or negative for HCV. Results: HCV positive patients (HCV+) presented with higher PCSK9 levels compared to HCV negative individuals (HCV-), 325.2 ± 117.7 ng/mL and 256.7 ± 139.5 ng/mL, respectively. This difference was maintained in the presence of HCC, although this disease significantly reduced PCSK9 levels. By univariate analysis, a positive correlation between PCSK9 and HCV viral titer was found, being G2 genotype the most-potent inducer of PCSK9 among other genotypes. This induction was not associated with changes in total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG). A negative correlation was also found between PCSK9 levels and liver impairment, assessed by Model for End-Stage Liver Disease (MELD). Finally, a multivariate correlation analysis corrected for age, TC, LDL-C, and sex, demonstrated, in the whole cohort, a positive association between PCSK9 and HCV and a negative with HCC. Conclusions: taken together, our study reveals that HCV raised PCSK9 in both the presence and absence of HCC.
Collapse
Affiliation(s)
- Silvano Fasolato
- Department of Medicine, University of Padova, 35128 Padua, Italy; (S.F.); (S.P.); (P.P.); (P.A.)
| | - Sabrina Pigozzo
- Department of Medicine, University of Padova, 35128 Padua, Italy; (S.F.); (S.P.); (P.P.); (P.A.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35128 Padua, Italy; (S.F.); (S.P.); (P.P.); (P.A.)
| | - Paolo Angeli
- Department of Medicine, University of Padova, 35128 Padua, Italy; (S.F.); (S.P.); (P.P.); (P.A.)
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20122 Milan, Italy;
| | - Edoardo Savarino
- Division of Gastroenterology, Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padua, Italy;
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (S.D.M.); (M.G.L.)
| | - Maria Giovanna Lupo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (S.D.M.); (M.G.L.)
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padua, Italy; (S.D.M.); (M.G.L.)
- Correspondence: ; Tel.: +39-049-827-5080
| |
Collapse
|
42
|
Cesaro A, Bianconi V, Gragnano F, Moscarella E, Fimiani F, Monda E, Scudiero O, Limongelli G, Pirro M, Calabrò P. Beyond cholesterol metabolism: The pleiotropic effects of proprotein convertase subtilisin/kexin type 9 (PCSK9). Genetics, mutations, expression, and perspective for long-term inhibition. Biofactors 2020; 46:367-380. [PMID: 31999032 DOI: 10.1002/biof.1619] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has a crucial role in lipid metabolism, particularly due to its function in low-density lipoprotein receptor degradation. Gain-of-function genetic mutations of PCSK9 result in autosomal dominant familial hypercholesterolemia, characterized by high levels of low-density lipoprotein cholesterol (LDL-C) and clinical signs of early atherosclerosis. In recent years, PCSK9 has become an important therapeutic target for cholesterol-lowering therapy. Particularly, its inhibition with monoclonal antibodies has shown excellent efficacy in decreasing LDL-C and reducing cardiovascular events. However, PCSK9, first identified in the brain, seems to be a ubiquitous protein with different tissue-specific functions also independent of cholesterol metabolism. Accordingly, it appears to be involved in the immune response, haemostasis, glucose metabolism, neuronal survival, and several other biological functions. This review provides a comprehensive overview of the genetics, biochemical structure, expression, and function of PCSK9 and discusses the potential implications of its long-term pharmacological inhibition.
Collapse
Affiliation(s)
- Arturo Cesaro
- Division of Clinical Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Felice Gragnano
- Division of Clinical Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Elisabetta Moscarella
- Division of Clinical Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Fimiani
- Division of Clinical Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Division of Cardiology, Monaldi Hospital, Naples, Italy
| | - Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Naples "Federico II", Naples, Italy
- CEINGE-Biotecnologie Avanzate, Napoli, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Division of Cardiology, Monaldi Hospital, Naples, Italy
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, Perugia, Italy
| | - Paolo Calabrò
- Division of Clinical Cardiology, A.O.R.N. "Sant'Anna e San Sebastiano", Caserta, Italy
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
43
|
Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications-Phytochemical Analysis and In Vitro Bioassays. Molecules 2020; 25:molecules25071563. [PMID: 32235298 PMCID: PMC7180999 DOI: 10.3390/molecules25071563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Girardinia diversifolia, also known as Himalayan nettle, is a perennial herb used in Nepal to make fiber as well as in traditional medicine for the treatment of several diseases. To date, phytochemical studies and biological assays on this plant are scarce. Thus, in the present work, the G. diversifolia extracts have been evaluated for their potential pharmaceutical, cosmetic and nutraceutical uses. For this purpose, detailed phytochemical analyses were performed, evidencing the presence of phytosterols, fatty acids, carotenoids, polyphenols and saponins. The most abundant secondary metabolites were β- and γ-sitosterol (11 and 9% dw, respectively), and trans syringin (0.5 mg/g) was the most abundant phenolic. Fatty acids with an abundant portion of unsaturated derivatives (linoleic and linolenic acid at 22.0 and 9.7 mg/g respectively), vitamin C (2.9 mg/g) and vitamin B2 (0.12 mg/g) were also present. The antioxidant activity was moderate while a significant ability to inhibit acetylcholinesterase (AChE), butyrilcholinesterase (BuChE), tyrosinase, α-amylase and α-glucosidase was observed. A cytotoxic effect was observed on human ovarian, pancreatic and hepatic cancer cell lines. The effect in hepatocarcinoma cells was associated to a downregulation of the low-density lipoprotein receptor (LDLR), a pivotal regulator of cellular cholesterol homeostasis. These data show the potential usefulness of this species for possible applications in pharmaceuticals, nutraceuticals and cosmetics.
Collapse
|
44
|
Overexpression of Hepatocyte Chemerin-156 Lowers Tumor Burden in a Murine Model of Diethylnitrosamine-Induced Hepatocellular Carcinoma. Int J Mol Sci 2019; 21:ijms21010252. [PMID: 31905933 PMCID: PMC6982125 DOI: 10.3390/ijms21010252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
The tumor inhibitory potential of the highly active chemerin-156 isoform was described in orthotopic models of hepatocellular carcinoma (HCC). The majority of HCC arises in the fibrotic liver, which was not reproduced in these studies. Here, a potential therapeutic activity of chemerin-156 was evaluated in diethylnitrosamine (DEN)-induced liver cancer, which mimics fibrosis-associated HCC. Mice were infected with adeno-associated virus (AAV) six months after DEN injection to overexpress chemerin-156 in the liver, and animals injected with non-recombinant-AAV served as controls. Three months later, the animals were killed. Both groups were comparable with regard to liver steatosis and fibrosis. Of note, the number of very small tumors was reduced by chemerin-156. Anyhow, the expression of inflammatory and profibrotic genes was similar in larger tumors of control and chemerin-156-AAV-infected animals. Although genes with a role in lipid metabolism, like 3-hydroxy-3-methylglutaryl-coenzym-A--reductase, were overexpressed in tumors of animals with high chemerin-156, total hepatic cholesterol, diacylglycerol and triglyceride levels, and distribution of individual lipid species were normal. Chemerin-156-AAV-infected mice had elevated hepatic and systemic chemerin. Ex vivo activation of the chemerin receptor chemokine-like receptor 1 increased in parallel with serum chemerin, illustrating the biological activity of the recombinant protein. In the tumors, chemerin-155 was the most abundant variant. Chemerin-156 was not detected in tumors of the controls and was hardly found in chemerin-156-AAV infected animals. In conclusion, the present study showed that chemerin-156 overexpression caused a decline in the number of small lesions but did not prevent the growth of pre-existing neoplasms.
Collapse
|
45
|
Bonaventura A, Grossi F, Carbone F, Vecchié A, Minetti S, Bardi N, Elia E, Ansaldo AM, Ferrara D, Rijavec E, Dal Bello MG, Rossi G, Biello F, Tagliamento M, Alama A, Coco S, Spallarossa P, Dallegri F, Genova C, Montecucco F. Serum PCSK9 levels at the second nivolumab cycle predict overall survival in elderly patients with NSCLC: a pilot study. Cancer Immunol Immunother 2019; 68:1351-1358. [PMID: 31327024 PMCID: PMC11028217 DOI: 10.1007/s00262-019-02367-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/05/2019] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies targeting PD-1 are used for treating NSCLC. To date, proprotein convertase subtilisin/kexin type 9 (PCSK9) has been poorly investigated in the oncologic field. Here, we aimed at evaluating whether serum PCSK9 might represent a predictive factor for OS in older patients with advanced NSCLC under nivolumab treatment. Among 78 patients with advanced, pre-treated NSCLC previously enrolled in a prospective study at Ospedale Policlinico San Martino in Genoa (Italy), 44 patients have been included in this sub-analysis due to the availability of serum samples for the measurement of PCSK9. Before each nivolumab administration, clinical information and blood samples were collected. Median age was 71, with a prevalence of the male sex. The most represented histological type of lung cancer was adenocarcinoma. The majority of patients were former smokers (72.1%). Median PCSK9 levels were 123.59 (86.32-169.89) ng/mL and 117.17 (80.46-147.79) ng/mL at cycle 1 and 2, respectively. Based on a receiver operating characteristic curve analysis, a PCSK9 value at cycle 2 of 95 ng/mL was found as the best cutoff point for OS. Kaplan-Meier analysis demonstrated that patients below the PCSK9 cutoff (< 95 ng/mL) experienced a better OS, as confirmed by Cox proportional hazard regression analysis. In this pilot study, circulating levels of PCSK9 < 95 ng/mL at the time of the second cycle of nivolumab treatment could independently predict a better OS in elderly patients with advanced, pre-treated NSCLC. However, further studies are warranted to validate these preliminary results.
Collapse
Affiliation(s)
- Aldo Bonaventura
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy.
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1200 East Marshall Street, Richmond, VA, 23298, USA.
| | - Francesco Grossi
- Medical Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova, Italian Cardiovascular Network, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Alessandra Vecchié
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University, 1200 East Marshall Street, Richmond, VA, 23298, USA
| | - Silvia Minetti
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Nicholas Bardi
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Edoardo Elia
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Anna Maria Ansaldo
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Daniele Ferrara
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Erika Rijavec
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino Genova, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Maria Giovanna Dal Bello
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino Genova, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Giovanni Rossi
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino Genova, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Federica Biello
- Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Marco Tagliamento
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino Genova, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Angela Alama
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino Genova, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Simona Coco
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino Genova, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Paolo Spallarossa
- Cardiovascular Diseases Unit, IRCCS Ospedale Policlinico San Martino Genova, Italian Cardiovascular Network, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Franco Dallegri
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova, Italian Cardiovascular Network, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Carlo Genova
- UOS Tumori Polmonari, IRCCS Ospedale Policlinico San Martino Genova, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genova, Italian Cardiovascular Network, Largo R. Benzi 10, 16132, Genoa, Italy
- Department of Internal Medicine, First Clinic of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| |
Collapse
|
46
|
Kühl M, Binner C, Jozwiak J, Fischer J, Hahn J, Addas A, Dinov B, Garbade J, Hindricks G, Borger M. Treatment of hypercholesterolaemia with PCSK9 inhibitors in patients after cardiac transplantation. PLoS One 2019; 14:e0210373. [PMID: 30650126 PMCID: PMC6335020 DOI: 10.1371/journal.pone.0210373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023] Open
Abstract
Background Hypercholesterolaemia is common in patients after cardiac transplantation. Monoclonal antibodies that inhibit proprotein convertase subtilisin-kexin type 9 (PCSK9) reduce low-density lipoprotein (LDL) cholesterol levels and subsequently the risk of cardiovascular events in patients with dyslipidaemia. There are no published data on the effect of this medication class on cholesterol levels in patients after cardiac transplantation. Methods In this retrospective study we investigated patients who were treated with PCSK9 inhibitors either because of intolerance of statins or residual hypercholesterolaemia with evidence of cardiac allograft vasculopathy. We compared the data of patients prior to the start with these medications with their most recent dataset. Results Ten patients (nine men; mean age 58±6 years) underwent cardiac transplantation 8.3±4.5 (range 3–15) years ago. The treatment duration of Evolocumab or Alirocumab was on average 296±125 days and lead to a reduction of total Cholesterol (281±52 mg/dl to 197±36 mg/dl; p = 0.002) and LDL Cholesterol (170±22 mg/dl to 101±39 mg/dl; p = 0.001). No significant effects on HDL Cholesterol, BNP, Creatin Kinase or hepatic enzymes were noticed. There were no unplanned hospitalisations, episodes of rejections, change of ejection fraction or opportunistic infections. Both patients on Alirocumab developed liver pathologies: One patient died of hepatocellular carcinoma and the other developed hepatitis E. Conclusions Our study demonstrates that the PCSK9 inhibitors Evolocumab and Alirocumab lead to a significant reduction of LDL Cholesterol in heart transplantation recipients. No effect on cardiac function or episodes of rejections were noticed. Larger and long-term studies are needed to establish safety and efficacy of PCSK9 inhibitors after cardiac transplantation.
Collapse
Affiliation(s)
- Michael Kühl
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
- * E-mail:
| | - Christian Binner
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Joanna Jozwiak
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Julia Fischer
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Jochen Hahn
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Alaeldin Addas
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Boris Dinov
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Jens Garbade
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Michael Borger
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| |
Collapse
|
47
|
Abstract
Clinical trials have unequivocally shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) efficaciously and safely prevents cardiovascular events by lowering levels of LDL cholesterol. PCSK9 in the circulation is derived mainly from the liver, but the protein is also expressed in the pancreas, the kidney, the intestine and the central nervous system. Although PCSK9 modulates cholesterol metabolism by regulating LDL receptor expression in the liver, in vitro and in vivo studies have suggested that PCSK9 is involved in various other physiological processes. Although therapeutic PCSK9 inhibition could theoretically have undesired effects by interfering with these non-cholesterol-related processes, studies of individuals with genetically determined reduced PCSK9 function and clinical trials of PCSK9 inhibitors have not revealed clinically meaningful adverse consequences of almost completely eradicating PCSK9 from the circulation. The clinical implications of PCSK9 functions beyond lipid metabolism in terms of wanted or unwanted effects of therapeutic PCSK9 inhibition therefore appear to be limited. The objective of this Review is to describe the physiological role of PCSK9 beyond the LDL receptor to provide a rational basis for monitoring the effects of PCSK9 inhibition as these drugs gain traction in the clinic.
Collapse
Affiliation(s)
| | - Gilles Lambert
- Inserm UMR 1188 DéTROI, Université de La Réunion, Saint-Denis de La Réunion, France
| | - Bertrand Cariou
- L'institut du thorax, INSERM, CNRS, Université de Nantes, CHU Nantes, Nantes, France
| | - G Kees Hovingh
- Department of Vascular Medicine, Academisch Medisch Centrum, Amsterdam, Netherlands.
| |
Collapse
|
48
|
Hepatocellular carcinoma-associated hypercholesterolemia: involvement of proprotein-convertase-subtilisin-kexin type-9 (PCSK9). Cancer Metab 2018; 6:16. [PMID: 30386595 PMCID: PMC6201570 DOI: 10.1186/s40170-018-0187-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
Background PCSK9 regulates low-density lipoprotein cholesterol (LDLc) level and has been implicated in hypercholesterolemia. Aberrant plasma lipid profile is often associated with various cancers. Clinically, the relationship between altered serum lipid level and hepatocellular carcinoma (HCC) has been documented; however, the underlying cause and implications of such dyslipidemia remain unclear. Methods The present study includes the use of HepG2 tumor xenograft model to study the potential role of glucose (by providing 15% glucose via drinking water) in regulating PCSK9 expression and associated hypercholesterolemia. To support in vivo findings, in vitro approaches were used by incubating HCC cells in culture medium with different glucose concentrations or treating the cells with glucose uptake inhibitors. Impact of hypercholesterolemia on chemotherapy was demonstrated by exogenously providing LDLc followed by appropriate in vitro assays. Results We observed that serum and hepatic PCSK9 level is decreased in mice which were provided with glucose containing water. Interestingly, serum and tumor PCSK9 level was upregulated in HepG2-tumor-bearing mice having access to water containing glucose. Additionally, elevated LDLc is detected in sera of these mice. In vitro studies indicated that PCSK9 expression was increased by high glucose availability with potential involvement of reactive oxygen species (ROS) and sterol regulatory element binding protein-1 (SREBP-1). Furthermore, it is also demonstrated that pre-treatment of cells with LDLc diminishes cytotoxicity of sorafenib in HCC cells. Conclusion Taken together, these results suggest a regulation of PCSK9 by high glucose which could contribute, at least partly, towards understanding the cause of hypercholesterolemia in HCC and its accompanied upshots in terms of altered response of HCC cells towards cancer therapy. Electronic supplementary material The online version of this article (10.1186/s40170-018-0187-2) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Soran H, Ho JH, Durrington PN. Acquired low cholesterol: diagnosis and relevance to safety of low LDL therapeutic targets. Curr Opin Lipidol 2018; 29:318-326. [PMID: 29746303 DOI: 10.1097/mol.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Acquired hypocholesterolaemia occurs more commonly than inherited hypocholesterolaemia but has received little attention in the literature. In this review, we discuss the causes and underlying mechanisms of acquired hypocholesterolaemia and its relevance to safety of therapeutically induced decreased LDL cholesterol levels. RECENT FINDINGS Hypocholesterolaemia is increasingly identified as cholesterol testing becomes more widespread in the assessment of cardiovascular risk. Lower therapeutic targets for LDL cholesterol are also being achieved more regularly with the introduction of more intensive cholesterol-lowering regimens. Acquired hypocholesterolaemia may be the presenting feature of treatable diseases. Understanding its mechanisms may also provide new treatment approaches for neoplastic disease, such as breast cancer, and infections, such as tuberculosis. SUMMARY When hypocholesterolaemia is discovered, it is important to identify its cause. Further research into the pathogenesis of hypocholesterolaemia may provide new therapies for primary diseases underlying it.
Collapse
Affiliation(s)
- Handrean Soran
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- Department of Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jan Hoong Ho
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- Department of Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul N Durrington
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| |
Collapse
|
50
|
He M, Hou J, Wang L, Zheng M, Fang T, Wang X, Xia J. Actinidia chinensis Planch root extract inhibits cholesterol metabolism in hepatocellular carcinoma through upregulation of PCSK9. Oncotarget 2018; 8:42136-42148. [PMID: 28178673 PMCID: PMC5522055 DOI: 10.18632/oncotarget.15010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/16/2017] [Indexed: 01/13/2023] Open
Abstract
Actinidia chinensis Planch root extract (acRoots) is a traditional Chinese medicine with anti-tumor efficacy. To investigate the mechanisms responsible for this activity, we examined the effects of acRoots on cholesterol metabolism in hepatocellular carcinoma (HCC). mRNA chip analysis was used to identify the metabolic genes regulated by acRoots. The effects of acRoots on cholesterol synthesis and uptake were evaluated by measuring intracellular cholesterol levels and 3,3′-dioctadecylindocarbocyanine-labeled low-density lipoprotein (Dil-LDL) uptake. Expression of metabolic genes was analyzed using quantitative reverse transcription PCR, western blotting, and flow cytometry. acRoots reduced the viability of LM3 and HepG2 cells at 5 mg/mL and HL-7702 cells at 30 mg/mL. Gene expression profiling revealed that treatment with acRoots altered expression of genes involved in immune responses, inflammation, proliferation, cell cycle control, and metabolism. We also confirmed that acRoots enhances expression of PCSK9, which is important for cholesterol metabolism. This resulted in decreased LDL receptor expression, inhibition of LDL uptake by LM3 cells, decreased total intracellular cholesterol, and reduced proliferation. These effects were promoted by PCSK9 overexpression and rescued by PCSK9 knockdown. Our data demonstrate that acRoots is a novel anti-tumor agent that inhibits cholesterol metabolism though a PCSK9-mediated signaling pathway.
Collapse
Affiliation(s)
- Mingyan He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiayun Hou
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Wang
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minghuan Zheng
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Clinical Science Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|