1
|
El-Shiekh RA, Mohamed AF, Mandour AA, Adel IM, Atwa AM, Elgindy AM, Esmail MM, Senna MM, Ebid N, Mustafa AM. Hesperidin in Chronic Fatigue Syndrome: An Integrated Analysis of Traditional Pharmacology and Machine Learning-Based Therapeutic Predictions. Chem Biodivers 2025:e202403506. [PMID: 40234200 DOI: 10.1002/cbdv.202403506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Hesperidin, a bioflavonoid abundantly found in citrus fruits, offers a myriad of health benefits. With the food industry extensively utilizing citrus fruits, particularly for juice production, substantial quantities of by-products such as peels, seeds, cells, and membrane residues accumulate. Remarkably, these by-products serve as a valuable source of hesperidin. Consequently, the extraction of hesperidin from these by-products has garnered significant scientific interest, aiming to harness its potential as a natural antioxidant. By shedding light on these aspects, this review provides a comprehensive review of hesperidin's role in enhancing human well-being, particularly in the context of chronic fatigue syndrome (CFS). By synthesizing current research, we elucidate the compound's antioxidant, anti-inflammatory, and neuroprotective effects, which may mitigate symptoms associated with CFS. Furthermore, we introduce machine learning methodologies to predict hesperidin's efficacy in clinical settings, offering a novel perspective on personalized nutrition strategies. Our findings underscore the need for further empirical studies to validate these predictions and explore hesperidin's mechanisms of action. This review not only bridges the gap between nutrition science and pharmacology but also highlights the promising future of hesperidin as a nutraceutical in combating chronic health conditions.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Asmaa A Mandour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| | - Islam M Adel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed M Atwa
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ali M Elgindy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Manar M Esmail
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Magdy Senna
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Nouran Ebid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Aya M Mustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
2
|
Ayyadurai GK, Jayaprakash R, Shajahan A, Rathika S. Studies on 2-((2, 4-dihydroxybenzylidene) amino)-3-phenylpropanoic acid include antimicrobial, antidiabetic, antioxidant, anticancer, hemolysis, and theoretical QSAR. J Biomol Struct Dyn 2025; 43:2864-2876. [PMID: 38099326 DOI: 10.1080/07391102.2023.2294383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 02/19/2025]
Abstract
Studies show that microorganisms resistant to numerous antibiotics spread infections, lengthen hospital stays, and increase fatalities. Amplification factors increase the demand for innovative drug-resistant disease-fighting chemicals. This research synthesised the chiral L-phenyl alanine condensed with a 2, 4-dihydroxy benzaldehyde Schiff base for biological efficacy investigations such as antimicrobial, antidiabetic, DPPH free radical, MTT assay against HeLa cells and hemolysis studies after the characterization. Derived Schiff base showed good inhibition against K. pneumoniae (G-ve), Staphylococcus aureus (G + ve), and Candida albicans (Fungus) at a 50 μg/mL concentration. Minimum inhibitory concentration report exists in between 35 ppm and 45 ppm. It also exhibited IC50 concentrations between 138 and 265 μg/mL in the remaining biological studies. This study uses molecular docking with the help of mcule, the CLC drug discovery work bench and visual studio applications to justify the derived compound biological activity and used work related proteins such as 1HSK, 1XCW, 3K0K, 3FDN and 3GEY for docking study. The compound showed a good binding affinity score against the targets with negative values. This study covers drug-likeness using Spartan-14 HOMO-LUMO energy levels and Swiss ADME to determine the molecular properties of the chemical structure. Theoretical outcomes are compared with commercial drugs and observed nearby results. Both theoretical outcomes supported the experimental biological activities and were good coincidence.
Collapse
Affiliation(s)
- G K Ayyadurai
- Department of Chemistry, Sri Sairam Engineering College, Chennai, TN, India
| | - R Jayaprakash
- Department of Chemistry, School of Arts and Science, Vinayaka Mission's Chennai Campus, Vinayaka Mission's Research Foundation (Deemed University), Chennai, TN, India
| | - A Shajahan
- Department of Chemistry, School of Physical and Chemical Sciences, B.S.Abdur Rahman Crescent Institute of Science and Technology (DU), Chennai, TN, India
| | - S Rathika
- Department of Chemistry, Sri Sairam Institute of Technology, Chennai, TN, India
| |
Collapse
|
3
|
Artanti AN, Jenie RI, Rumiyati R, Meiyanto E. Hesperidin and Diosmin Increased Cytotoxic Activity Cisplatin on Hepatocellular Carcinoma and Protect Kidney Cells Senescence. Asian Pac J Cancer Prev 2024; 25:4247-4255. [PMID: 39733416 PMCID: PMC12008348 DOI: 10.31557/apjcp.2024.25.12.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024] Open
Abstract
OBJECTIVE Cisplatin (Cisp) is a chemotherapy drug for treating liver cancer. Hesperidin (HSD), a flavanone, is known for its anticancer, and anti-inflammatory properties. Diosmin (DSM), a flavone glycoside, is known for its anti-oxidant effect. This research investigated the synergism cytotoxic effect and senescence selectivity effect of HSD or DSM co-treatment with Cisp on HepG2 cells and Vero cells. METHODS The cytotoxicity and cell viability of HSD or DSM combined with Cisp on HepG2 and Vero cells were assessed using the MTT assay with IC50 parameters, selectivity index (SI), and Combination Index (CI), while the antiproliferative profile was determined by colony-forming assay. Cellular senescence on HepG2 and Vero cell lines was determined using senescence-associated β-galactosidase (SA-β-gal) staining. Furthermore, the impact of apoptosis was evaluated using flowcitometry. RESULT In the MTT assay, HSD, DSM, and cisplatin exhibited cytotoxic effects on HepG2 cells, with IC50 values of 321 µM, 148 µM, and 5 µM, respectively. Co-treatment with HSD and DSM with cisplatin enhanced cell sensitivity, resulting in a combination index of < 1. HSD and DSM exhibited minimal cytotoxicity against Vero cells, with IC50 values exceeding 500 µM. Both HSD and DSM reduced cellular senescence in Vero cells caused by cisplatin exposure. These findings suggest that co-treatment with HSD and DSM alongside cisplatin can synergistically lessen the viability of HepG2 cells. The Annexin V-FITC/PI apoptosis assay also showed more cells undergoing apoptosis in the co-treatment group. Both co-treatment HSD and DSM with Cisp independently induced the senescence of HepG2 cells and reduced the cellular senescence of normal kidney cells. CONCLUSION Consequently, both HSD and DSM show potential for development as co-treatment agents in combination with Cisp for hepatocellular carcinoma, and they may also be useful for reducing senescence in normal kidney cells.
Collapse
Affiliation(s)
- Anif Nur Artanti
- Doctoral Programme in Pharmaceutical Science, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Department of Pharmacy, Vocational College, Universitas Sebelas Maret (UNS), Surakarta 57126, Indonesia.
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Rumiyati Rumiyati
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
- Laboratory of Macromolecule Engineering, Department of Pharmaceutical Chemistry Faculty of Pharmacy, Universitas Gadjah Mada (UGM), Sekip Utara, Yogyakarta 55281, Indonesia.
| |
Collapse
|
4
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Ali M, Kamel HFM, Hamid MSAEL, ELsawi HA, Habib EK, Youssef I. Integrating molecular, biochemical, and immunohistochemical features as predictors of hepatocellular carcinoma drug response using machine-learning algorithms. Front Mol Biosci 2024; 11:1430794. [PMID: 39479501 PMCID: PMC11521808 DOI: 10.3389/fmolb.2024.1430794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management. Method In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC). Results and Discussion Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Oral and Dental Medicine, Misr International University (MIU), Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala F. M. Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Le S, Wu X, Dou Y, Song T, Fu H, Luo H, Zhang F, Cao Y. Promising strategies in natural products treatments of psoriasis-update. Front Med (Lausanne) 2024; 11:1386783. [PMID: 39296901 PMCID: PMC11408484 DOI: 10.3389/fmed.2024.1386783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
Psoriasis is a chronic, relapsing, inflammatory skin disease and has been increasing year by year. It is linked to other serious illnesses, such as psoriatic arthritis, cardiometabolic syndrome, and depression, resulting in a notable decrease in the quality of life for patients. Existing therapies merely alleviate symptoms, rather than providing a cure. An in-depth under-standing of the pathogenesis of psoriasis is helpful to discover new therapeutic targets and develop effective novel therapeutic agents, so it has important clinical significance. This article reviews the new progress in the study of pathogenesis and natural products of psoriasis in recent years. These natural products were summarized, mainly classified as terpenoids, polyphenols and alkaloids. However, the translation of experimental results to the clinic takes a long way to go.
Collapse
Affiliation(s)
- Sihua Le
- Ningbo Medical Center LiHuiLi Hosptial, Ningbo, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Dou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianhao Song
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyang Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Hongbin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Fan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
6
|
Almukainzi M, El-Masry TA, El Zahaby EI, El-Nagar MMF. Chitosan/Hesperidin Nanoparticles for Sufficient, Compatible, Antioxidant, and Antitumor Drug Delivery Systems. Pharmaceuticals (Basel) 2024; 17:999. [PMID: 39204104 PMCID: PMC11356969 DOI: 10.3390/ph17080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
One flavonoid glycoside with demonstrated therapeutic potential for several illnesses, including cancer, is hesperidin. However, because of its limited bioavailability and solubility, it is only marginally absorbed, necessitating a delivery mechanism to reach the intended therapeutic target. Additionally, the cytoskeleton of crustaceans yields chitosan, a naturally occurring biopolymer with mucoadhesive properties that has been used to improve the absorption of advantageous chemical substances like flavonoids. Chitosan/hesperidin nanoparticles (Hes-Nanoparticles) were made using the ion gelation technique. The synthesis of Hes-Nanoparticles was confirmed by several characterization methods, including the swelling test, zeta potential, particle size, FTIR, XRD, TEM, and SEM. DPPH and ABTS were used to demonstrate radical scavenging activity in antioxidant assays of chitosan, hesperidin, and the synthesized Hes-Nanoparticles. In addition, by a viability assay against MDA-MB-231, the anticancer efficacies of chitosan, hesperidin, and the synthesized Hes-Nanoparticles were assessed. Furthermore, annexin-V/PI double staining and the cycle of cell analysis were determined by flow cytometry. The results displayed that Hes-Nanoparticles have higher antioxidant activity than chitosan and hesperidin alone. Also, it has been demonstrated that Hes-Nanoparticles are more effective in early cell cycle arrest, suppressing the viability of cancer cells, and increasing cell apoptosis than chitosan and hesperidin alone. In conclusion, Hes-Nanoparticles demonstrated more antioxidant and antitumor activities than chitosan and hesperidin alone. Moreover, it has been established that Hes-Nanoparticles, in a highly soluble form, increase activity in contrast to the poorly soluble form of hesperidin alone.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Thanaa A. El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Enas I. El Zahaby
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 35712, Egypt;
| | - Maysa M. F. El-Nagar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
7
|
Yang M, He Y, Ni Q, Zhou M, Chen H, Li G, Yu J, Wu X, Zhang X. Polyphenolic Nanomedicine Regulating Mitochondria REDOX for Innovative Cancer Treatment. Pharmaceutics 2024; 16:972. [PMID: 39204317 PMCID: PMC11359087 DOI: 10.3390/pharmaceutics16080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer remains a highly lethal disease globally. The approach centered on REDOX-targeted mitochondrial therapy for cancer has displayed notable benefits. Plant polyphenols exhibit strong REDOX and anticancer properties, particularly by affecting mitochondrial function, yet their structural instability and low bioavailability hinder their utility. To overcome this challenge, researchers have utilized the inherent physical and chemical characteristics of polyphenols and their derivatives to develop innovative nanomedicines for targeting mitochondria. This review examines the construction strategies and anticancer properties of various types of polyphenol-based biological nanomedicine for regulating mitochondria in recent years, such as polyphenol self-assembly, metal-phenol network, polyphenol-protein, polyphenol-hydrogel, polyphenol-chitosan, and polyphenol-liposome. These polyphenolic nanomedicines incorporate enhanced features such as improved solubility, efficient photothermal conversion capability, regulation of mitochondrial homeostasis, and ion adsorption through diverse construction strategies. The focus is on how these polyphenol nanomedicines promote ROS production and their mechanism of targeting mitochondria to inhibit cancer. Furthermore, it delves into the benefits and applications of polyphenolic nanomedicine in cancer treatments, as well as the challenges for future research.
Collapse
Affiliation(s)
- Mingchuan Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Yufeng He
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Qingqing Ni
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China;
| | - Mengxue Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Guangyun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Jizhong Yu
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ximing Wu
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, School of Biological and Food Engineering, Hefei Normal University, Hefei 230601, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| |
Collapse
|
8
|
Abroon S, Nouri M, Mahdavi M. Hesperidin/Salinomycin Combination; a Natural Product for Deactivation of the PI3K/Akt Signaling Pathway and Anti-Apoptotic Factors in KG1a Cells. J Fluoresc 2024:10.1007/s10895-024-03808-4. [PMID: 38916633 DOI: 10.1007/s10895-024-03808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
AML is a highly aggressive malignant clonal disease of hematopoietic origin. Hesperidin as a polyphenol glycoside, Activates the apoptotic pathway and salinomycin as a k + selective ionophore. We examined how hesperidin and salinomycin induce pro-apoptotic effects in KG1a cells. Cells were divided into four groups; 1) control cells (CRTL), 2) cells treated with hesperidin 85 μM, 3) cells treated with 2 μM salinomycin, 4) cells treated with combination of salinomycin and hesperidin. The MTT assay was implemented to determine the IC50 of hesperidin and salinomycin in KG1a cell lines. Propidium iodide staining and flow cytometry were used to analyze the distribution of the cell cycle. The level of ROS was evaluated by fluorescent microscopy and spectrophotometry. Additionally, Akt, XIAP, Bad, and FOXO1 gene expression was analyzed by real-time PCR. Hesperidin/Salinomycin decreased the viability of KG1a leukemic cells more than Hesperidin and Salinomycin separately. Changes in the shape of apoptotic cells and rise in ROS levels were detected after Hesperidin/Salinomycin treatment. Our findings showed that following Hesperidin/Salinomycin treatment, the expression of PI3K/AKT signaling pathway related genes (AKT, PTEN and FOXO1), were in line with the destruction of KG-1a cells. Furthermore, XIAP and BAD mRNA were regulated to trigger apoptosis in cancer cells. The study discovered that hesperidin and salinomycin, could effectively hinder the PI3K/Akt signaling pathway in leukemia cancer cells. Also, the combination of hesperidin and salinomycin has the potential to be a treatment option for acute myeloid leukemia.
Collapse
Affiliation(s)
- Sina Abroon
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Department of biochemistry and clinical laboratories, Faculty of medicine, Tabriz University of medical sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of biochemistry and clinical laboratories, Faculty of medicine, Tabriz University of medical sciences, Tabriz, Iran
| | - Majid Mahdavi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Li Z, Sun Z. Fabrication of Nickel/Zinc Oxide Nanocomposites from Citrus sinensis Extract Prompts Apoptosis Through Impeding JAK/STAT3 Signaling in Gastric Cancer. Appl Biochem Biotechnol 2024; 196:3534-3552. [PMID: 37713061 DOI: 10.1007/s12010-023-04707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
In this study, we sought to fabricate nickel/zinc oxide nanocomposites utilizing Citrus sinensis (C. sinensis) peel extract (CS-Ni/ZnO NCs) and investigate their ability to impede the JAK/STAT3 signaling pathway in gastric cancer AGS cells. Different methods, including UV-Vis spectral analysis, FT-IR, XRD, FE-SEM, EDAX, DLS, and zeta potential, were used to characterize the fabricated CS-Ni/ZnO NCs. By measuring ROS, MMP, and apoptotic cell death using the appropriate fluorescence describing procedures, the anticancer potential of CS-Ni/ZnO NCs was examined against AGS cells. The synthesized CS-Ni/ZnO NCs displayed a rod structure with a diameter of 74.76 nm. The cytotoxicity assay showed that the CS-Ni/ZnO NCs diminished the viability of the AGS cells in a dosage-dependent manner. Results from the fluorescence probe assay showed that the CS-Ni/ZnO NCs caused apoptosis in AGS cells. JAK/STAT-3 over expressions thought to expand the transcriptional regulation of proliferation and anti-apoptosis. Hence, inhibition of JAK/STAT-3 expression is considered a crucial target for impeding the expansion of gastric cancer proliferation. The JAK/STAT3 signaling cascade was successfully blocked by CS-Ni/ZnO NCs treatment, which also started the apoptotic pathway in the AGS cells. The findings conclude that CS-Ni/ZnO NCs might serve as a promising chemo-preventive agent for treating GC.
Collapse
Affiliation(s)
- Zhifei Li
- Oncology Department, Jinan Municipal Hospital of Traditional Chinese Medicine, No. 76, Gongqingtuan Road, Shandong Province, Jinan, 250012, China
| | - Zhongwei Sun
- Department of Gastrointestinal Surgery, Central Hospital Affiliated to Shandong First Medical University, Shandong Province, Jinan, 250013, China.
| |
Collapse
|
10
|
Huang Q, Liu J, Peng C, Han X, Tan Z. Hesperidin ameliorates H 2O 2-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway. J Anim Sci Biotechnol 2024; 15:57. [PMID: 38589950 PMCID: PMC11003082 DOI: 10.1186/s40104-024-01012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/07/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells (bMECs) exposed to oxidative stress have not been elucidated. RESULTS In this study, we investigated the effects of hesperidin on H2O2-induced oxidative stress in bMECs and the underlying molecular mechanism. We found that hesperidin attenuated H2O2-induced cell damage by reducing reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increasing catalase (CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent. CONCLUSIONS Our results suggest that hesperidin could protect bMECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary.
Collapse
Affiliation(s)
- Qi Huang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiashuo Liu
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Can Peng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Xuefeng Han
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| |
Collapse
|
11
|
Ji Z, Deng W, Chen D, Liu Z, Shen Y, Dai J, Zhou H, Zhang M, Xu H, Dai B. Recent understanding of the mechanisms of the biological activities of hesperidin and hesperetin and their therapeutic effects on diseases. Heliyon 2024; 10:e26862. [PMID: 38486739 PMCID: PMC10937595 DOI: 10.1016/j.heliyon.2024.e26862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in lemon, sweet orange, bitter orange, clementine. Hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory, antioxidant, antitumor and antibacterial potential. Preclinical studies and clinical trials demonstrated therapeutical effects of hesperidin and its aglycone hesperetin in various diseases, such as bone diseases, cardiovascular diseases, neurological diseases, respiratory diseases, digestive diseases, urinary tract diseases. This review provides a comprehensive overview of the biological activities of hesperidin and hesperetin, their therapeutic potential in various diseases and their associated molecular mechanisms. This article also discusses future considerations for the clinical applications of hesperidin and hesperetin.
Collapse
Affiliation(s)
| | | | - Dong Chen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Zhidong Liu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Yucheng Shen
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Jiuming Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hai Zhou
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Miao Zhang
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Hucheng Xu
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| | - Bin Dai
- Binhai County People's Hospital, No.148, Middle Fudong Road, Dongkan Town, Binhai County, Yancheng City, 224500, China
| |
Collapse
|
12
|
Karuppaiya V, Annamalai A, Krishnamurthy S, Soundarapandian K. Dieckol prevents prostate cancer cell proliferation by transcriptionally attenuating JAK/STAT3 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:1187-1196. [PMID: 37886886 DOI: 10.1002/tox.24006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
This study delved at how the natural substance dieckol (DCL) prevents prostate cancerous cells from proliferating and migrating by blocking the JAK/STAT3 signaling pathway in PC-3 cells. For numerous tests, the cells were treated to DCL at a range of concentrations (0-20 μM) for 24 h. DCL mediated cytotoxicity was analyzed by MTT assay. To evaluate ROS, DCFH-DA staining was employed. Dual (AO/EtBr) staining was utilized to examine apoptotic changes, and MMP levels in PC-3 cells were examined using the appropriate fluorescent staining assays. By using flow cytometry and western blotting, the protein expressions of cell survival, cell cycle, proliferation, and apoptosis were assessed. The results showed that DCL significantly cytotoxically affects PC-3, and the IC50 was discovered to be 12 μM for 24 h exposure. Furthermore, after DCL treatment in PC-3, considerable ROS generation and increased apoptotic signals were detected. STAT3, JAK1, PCNA, and cyclins D1 and E1 are all suppressed by DCL in PC-3. In addition, DCL therapy in PC-3 dramatically increased pro-apoptotic proteins such Bax, caspase-3, and cytochrome C. Therefore, DCL has been regarded as a chemotherapeutic agent because to its ability to decrease the expression of proteins that control cell proliferation, including STAT3, JAK1, PCNA, and cyclins D1 and E1.
Collapse
Affiliation(s)
- Vimala Karuppaiya
- Division of Cancer Nanomedicine, Department of Zoology, Periyar University, Salem, India
| | - Asaikkutti Annamalai
- Department of Biotechnology, School of Lifesciences, Pondicherry University, Puducherry, India
| | - Shanthi Krishnamurthy
- Department of Biochemistry, Prof. Dhanapalan College of Science and Management, Chennai, India
| | - Kannan Soundarapandian
- Division of Cancer Nanomedicine, Department of Zoology, Periyar University, Salem, India
| |
Collapse
|
13
|
Aydemir E, Odabaş Köse E, Yavuz M, Kilit AC, Korkut A, Özkaya Gül S, Sarikurkcu C, Celep ME, Göktürk RS. Phenolic Compound Profiles, Cytotoxic, Antioxidant, Antimicrobial Potentials and Molecular Docking Studies of Astragalus gymnolobus Methanolic Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:658. [PMID: 38475504 DOI: 10.3390/plants13050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Since Astragalus is a genus with many important medicinal plant species, the present work aimed to investigate the phytochemical composition and some biological activities of Astragalus gymnolobus. The methanolic fractions of four organs (stems, flowers, leaves, root and whole plant) were quantified and identified by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS) analysis. Hesperidin, hyperoside, p-hydroxybenzoic acid, protocatechuic acid and p-coumaric acid were identified as main compounds among the extracts. Among all cells, leaf methanol (Lm) extract had the highest cytotoxic effect on HeLa cells (IC50 = 0.069 μg/mL). Hesperidin, the most abundant compound in A. gymnolobus extract, was found to show a strong negative correlation with the cytotoxic effect observed in HeLa cells according to Pearson correlation test results and to have the best binding affinity to targeted proteins by docking studies. The antimicrobial activity results indicated that the most susceptible bacterium against all extracts was identified as Streptococcus pyogenes with 9-11 mm inhibition zone and 8192 mg/mL MIC value. As a result of the research, it was suggested that A. gymnolobus could be considered as a promising source that contributes to the fight against cancer.
Collapse
Affiliation(s)
- Esra Aydemir
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Elif Odabaş Köse
- Medical Laboratory Program, Vocational School of Health Services, Akdeniz University, Antalya TR-07058, Turkey
| | - Mustafa Yavuz
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - A Cansu Kilit
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Alaaddin Korkut
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Serap Özkaya Gül
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Cengiz Sarikurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar TR-03100, Turkey
| | - Mehmet Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Atasehir, Istanbul TR-34755, Turkey
| | - R Süleyman Göktürk
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| |
Collapse
|
14
|
Khamis AA, Ali EMM, Salim EI, El-Moneim MAA. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats. Sci Rep 2024; 14:1510. [PMID: 38233443 PMCID: PMC10794414 DOI: 10.1038/s41598-023-50729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Breast cancer ranks as the second leading most significant of mortality for women. Studies have demonstrated the potential benefits of natural compounds in cancer treatment and prevention, either in isolation or in conjunction with chemotherapy. In order to improve Tamoxifen's therapeutic efficacy in in-vivo studies, our research sought to determine the effects of hesperidin, piperine, and bee venom as natural compounds, as well as their combination effect with or without Tamoxifen. First, 132 female albino rats were equally divided into six groups and five subgroups, and breast cancer was induced in the selected groups by xenografting of MCF7 cells. Second, the effect of single and best ratio combinations treatment from previous in vitro studies were selected. Next, tumorous mammary glands were collected for apoptotic and antiapoptotic biomarkers and cell cycle analysis. Single or combined natural products with or without Tamoxifen revealed a significant up-regulation in apoptotic genes Bax and Casp3 and a downregulation of antiapoptotic and angiogenesis genes Bcl-2 and VEGF genes. We found that cell cycle arrest in the G0/G1 phase was exclusively caused by Tamoxifen and/ or hesperidin. However, the cell cycle arrest in the G2/M phase is a result of the combination of piperine and bee venom, with or without Tamoxifen by using the flow cytometric technique. Our research concludes that bee venom, hesperidin, and piperine can synergistically enhance to increase Tamoxifen's efficiency in the management of breast cancer.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed I Salim
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed A Abd El-Moneim
- Biochemistry Department, Faculty of Dentistry, Sinai University, Al-Arish, North Sinai, Egypt
| |
Collapse
|
15
|
Jayakumar R, Dash MK, Kumar P, Sharma S, Gulati S, Pandey A, Cholke K, Fatima Z, Trigun SK, Joshi N. Pharmaceutical characterization and exploration of Arkeshwara rasa in MDA-MB-231 cells. J Ayurveda Integr Med 2024; 15:100823. [PMID: 38160612 PMCID: PMC10792653 DOI: 10.1016/j.jaim.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The diverse specificity mode of cancer treatment targets and chemo resistance demands the necessity of drug entities which can address the devastating dynamicity of the disease. OBJECTIVES To check the anti-tumour potential of traditional medicine rich in polyherbal components and metal nanoparticle namely Arkeshwara rasa (AR). MATERIAL METHODS The AR was prepared in a modified version with reference from Rasaratna Samuchaya and characterized using sophisticated instrumental analysis including XRD, SEM-EDAX, TEM, TGA-DSC, and LC-MS and tested against the MDA-MB-231 cell line to screen cell viability and the cytotoxicity with MTT, SRB and the AO assay. RESULTS XRD pattern shows cubic tetrahedrite structure with Sb, Cu, S peaks and trace elements like Fe, Mg, etc. The particle size of AR ranges between 20 and 30 nm. The TGA points thermal decomposition at 210 °C and the metal sulphide peaks in DSC. LC-MS analysis reveals the components of the formulation more on the flavonoid portion. The IC50 value of MTT and SRB are 25.28 μg/mL and 31.7 μg/mL respectively. The AO colorimeter substantiated the cell viability and the apoptosis figures of the same cell line. The AR exhibits cytotoxicity and reaffirms the apoptosis fraction with SRB assay. CONCLUSIONS The Hesperidine, Neohesperidin, Rutin components in the phytochemical pool can synergize the anti-tumour potential with either influencing cellular pathways or decreasing chemo resistance to conventional treatment. AR need to be further experimented with reverse transcription, flow cytometry, western blotting, etc.
Collapse
Affiliation(s)
- Remya Jayakumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Kumar Dash
- Department of Rasashastra and Bhaishajya Kalpana, Government Ayurveda College, Raipur, India.
| | - Pankaj Kumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Shiwakshi Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Gulati
- Dept of Rasashastra and Bhaishjya Kalpana, Babu Yugraj Singh Ayurvedic Medical College and Hospital, Gomtinagar Extension, Sector 6 Lucknow, Uttar Pradesh, 226010, India
| | - Akanksha Pandey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kaushavi Cholke
- Amity Lipidomics Research Facility (ALRF), Amity University, Haryana, Manesar, Gurugram, 122413, India; Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Switzerland
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia; Amity Institute of Biotechnology, Amity University, Haryana, Manesar, Gurugram, 122413, India
| | - S K Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Namrata Joshi
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
16
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Bai Y, Wang W, Cheng Y, Yang Y. Research progress on the GRP78 gene in the diagnosis, treatment and immunity of cervical cancer. Eur J Med Res 2023; 28:447. [PMID: 37858217 PMCID: PMC10588224 DOI: 10.1186/s40001-023-01241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/22/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND GRP78 is a molecular chaperone protein in the endoplasmic reticulum that is involved in protein assembly and quality control, and it participates in ER stress regulation of endoplasmic reticulum stress pathways. Studies have confirmed that GRP78 gene is highly expressed in a variety of tumors and is involved in different biological functions. PURPOSE The present review highlights the involvement of the GRP78 gene in regulating the development of cervical cancer by promoting the proliferation and invasion of cervical cancer cells as well as by inhibiting apoptosis and promoting the Warburg effect. High expression of GRP78 is positively correlated with chemotherapy resistance in cervical cancer. GRP78 plays an anticancer role in cervical cancer by regulating autophagy and apoptosis. Mediated immune CD8 + T cells regulate tumor cell immunity and play a role in the application of the HPV vaccine. CONCLUSIONS GRP78 plays a multifunctional role in cervical cancer and has important therapeutic and diagnostic value.
Collapse
Affiliation(s)
- Yingying Bai
- Department of Gynecology and obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038 China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yongxiu Yang
- Department of Gynecology and obstetrics, Tangdu Hospital, Air Force Medical University, 569Xinsi Road, Baqiao District, Xian, 710038 China
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, Gansu People’s Republic of China
- No.1, Dong gang West Road, Cheng guan District, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
18
|
Li G, Song Z, Ru Y, Zhang J, Luo L, Yang W, Wu H, Jin H, Bao X, Wei D, Yan Z, Qu H, Zhu Z, Xue X, Zhou G. Small-molecule nanoprodrug with high drug loading and EGFR, PI3K/AKT dual-inhibiting properties for bladder cancer treatment. EXPLORATION (BEIJING, CHINA) 2023; 3:20220141. [PMID: 37933289 PMCID: PMC10582605 DOI: 10.1002/exp.20220141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/30/2023] [Indexed: 11/08/2023]
Abstract
Bladder cancer (BCa) is one of the most common malignancies worldwide. Although multiple efforts have been made, the 5-year survival rate of patients with BCa remains unchanged in recent years. Overexpression of the epidermal growth factor receptor (EGFR) is found in ≈74% of BCa tissue specimens; however, current EGFR-based targeted therapies show little benefit for BCa patients, as the EGFR downstream pathways appear to be circumvented by other receptor tyrosine kinases (RTKs). In this study, two natural products are identified, namely triptolide (TPL) and hesperidin (HSP), that target and inhibit the EGFR and its downstream PI3K/AKT pathway in BCa. To synergistically combine triptolide and hesperidin, a succinic acid linker was employed to conjugate them and formed an amphiphilic TPL-HSP EGFR-targeting prodrug (THE), which further self-assembled to generate nanoparticles (THE NPs). These NPs allowed the EGFR-targeted delivery of the triptolide and hesperidin, and simultaneous inhibition of the EGFR and PI3K/AKT both in vitro and in vivo. This study provides a promising EGFR-targeted delivery approach with the dual inhibition of the EGFR and PI3K/AKT, while also exhibiting a high drug loading and low toxicity. Our formulation may be a suitable option to deliver natural products for BCa treatment by EGFR-targeted therapy.
Collapse
Affiliation(s)
- Guoyin Li
- College of Life Science and AgronomyZhoukou Normal UniversityZhoukouHenanChina
- Department of Biochemistry and Molecular BiologyState Key Laboratory of Cancer BiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Zewen Song
- Department of OncologyCentral South University Third Xiangya HospitalChangshaHunanChina
| | - Yi Ru
- Department of Biochemistry and Molecular BiologyState Key Laboratory of Cancer BiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Jing Zhang
- Department of PathologyXijing HospitalState Key Laboratory of Cancer BiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Lianxiang Luo
- The Marine Biomedical Research InstituteGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Wei Yang
- Warshel Institute for Computational BiologySchool of Science and EngineeringThe Chinese University of Hong KongShenzhenChina
| | - Hao Wu
- School of Basic Medical SciencesXi'an Key Laboratory of Immune Related DiseasesXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Haibao Jin
- Shanghai Key Laboratory of Advanced Polymeric MaterialsSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Xuanwen Bao
- Department of Medical OncologyThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Di Wei
- Graduate SchoolDepartment of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Zhao Yan
- Graduate SchoolDepartment of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Haijing Qu
- School of PharmacyShanghai Jiao Tong UniversityXi'anShanghaiChina
| | - Zheng Zhu
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Xiangdong Xue
- School of PharmacyShanghai Jiao Tong UniversityXi'anShanghaiChina
| | - Gang Zhou
- National Translational Science Center for Molecular MedicineDepartment of Cell BiologyState Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
19
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
20
|
Samandari-Bahraseman MR, Khorsand B, Zareei S, Amanlou M, Rostamabadi H. Various concentrations of hesperetin induce different types of programmed cell death in human breast cancerous and normal cell lines in a ROS-dependent manner. Chem Biol Interact 2023; 382:110642. [PMID: 37487865 DOI: 10.1016/j.cbi.2023.110642] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
The polyphenolic component of citrus fruits, hesperetin (Hst), is a metabolite of hesperidin. In this study, we examined the effect of varying doses and exposure times of hesperetin on MCF-7 and MDA-MB-231 cancer cells, as well as MCF-10A normal cells. By using MTT assay, real-time PCR, western blot, and flow cytometry, we determined the effects of Hst on cell viability, ROS levels, and markers of cell death. Furthermore, molecular docking was used to identify Hst targets that might be involved in ROS-dependent cell death. According to the results, different concentrations of Hst induced different modes of cell death at specific ROS levels. Paraptosis occurred in all cell lines at concentration ranges of IC35 to IC60, and apoptosis occurred at concentrations greater than IC65. In addition, MDA-MB-231 cells were subjected to senescence at sub-toxic doses when treated for a long period of time. When Hst levels were higher, N-acetylcysteine (NAC)'s effect on neutralizing ROS was more pronounced. According to the docking results, Hst may interact with several proteins involved in the regulation of ROS. As an example, the interaction of CCS (Copper chaperone for superoxide dismutase) with Hst might interfere with its chaperone function in folding SOD-1 (superoxide dismutase enzyme), contributing to an increase in cytoplasmic ROS levels. Finally, depending on the ROS level, Hst induces various modes of cell death.
Collapse
Affiliation(s)
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran; Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sara Zareei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Rostamabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
21
|
Poomipark N, Chaisin T, Kaulpiboon J. Anti-proliferative, anti-migration, and anti-invasion activity of novel hesperidin glycosides in non-small cell lung cancer A549 cells. Res Pharm Sci 2023; 18:478-488. [PMID: 37842519 PMCID: PMC10568961 DOI: 10.4103/1735-5362.383704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 10/17/2023] Open
Abstract
Background and purpose Several attempts have been made to synthesize and investigate modified flavonoids to improve their potential anticancer efficacy. This study aimed to determine the in vitro anti-viability, anti-migration, and anti-invasive effects of two novel hesperidin glycosides, hesperidin glucoside (HG1) and hesperidin maltoside (HG2), compared to original hesperidin and diosmin. Experimental approach Inhibitory effects on normal (MRC5) and cancer (A549) cell viability of hesperidin glycosides were investigated by the trypan blue and MTS assays. A scratch assay determined the suppressive effects on cancer cell migration, and inhibition of cancer cell invasion was investigated through Matrigel™. The selectivity index (SI), a marker of cell toxicity, was also determined for A549 relative to MRC5 cells. Findings/Results The cell viability trypan blue and MTS assays showed similar results of the inhibition of A549 cancer cells; HG1 and HG2 had lower IC50 than original hesperidin and diosmin. The SI of HG1 and HG2 was > 2 after 72-h culture. Investigation of cell migration showed that HG1 and HG2 inhibited the ability of gap closure in a time- and dose-dependent manner. The infiltration of the Matrigel™-coated filter by A549 cells was suppressed in the presence of HG1 and HG2. This result implied that HG1 and HG2 could inhibit cancer cell invasion. Conclusion and implication Our results suggest the inhibition of cancer cell migration and invasion in a time- and concentration-related manner with a favorable toxic profile. Moreover, HG1 and HG2 appeared potentially better agents than the original hesperidin for future anticancer development.
Collapse
Affiliation(s)
- Natwadee Poomipark
- Protein Research Laboratory, Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Titaporn Chaisin
- Protein Research Laboratory, Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Jarunee Kaulpiboon
- Protein Research Laboratory, Division of Biochemistry, Department of Pre-Clinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
22
|
Hwang J, Moon H, Kim H, Kim KY. Identification of a Novel ERK5 (MAPK7) Inhibitor, MHJ-627, and Verification of Its Potent Anticancer Efficacy in Cervical Cancer HeLa Cells. Curr Issues Mol Biol 2023; 45:6154-6169. [PMID: 37504304 PMCID: PMC10377775 DOI: 10.3390/cimb45070388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase (MAPK) family, is involved in key cellular processes. However, overexpression and upregulation of ERK5 have been reported in various cancers, and ERK5 is associated with almost every biological characteristic of cancer cells. Accordingly, ERK5 has become a novel target for the development of anticancer drugs as inhibition of ERK5 shows suppressive effects of the deleterious properties of cancer cells. Herein, we report the synthesis and identification of a novel ERK5 inhibitor, MHJ-627, and verify its potent anticancer efficacy in a yeast model and the cervical cancer HeLa cell line. MHJ-627 successfully inhibited the kinase activity of ERK5 (IC50: 0.91 μM) and promoted the mRNA expression of tumor suppressors and anti-metastatic genes. Moreover, we observed significant cancer cell death, accompanied by a reduction in mRNA levels of the cell proliferation marker, proliferating cell nuclear antigen (PCNA), following ERK5 inhibition due to MHJ-627 treatment. We expect this finding to serve as a lead compound for further identification of inhibitors for ERK5-directed novel approaches for oncotherapy with increased specificity.
Collapse
Affiliation(s)
- Jeonghye Hwang
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyejin Moon
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hakwon Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ki-Young Kim
- Department of Genetics and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
23
|
Rahmani AH, Babiker AY, Anwar S. Hesperidin, a Bioflavonoid in Cancer Therapy: A Review for a Mechanism of Action through the Modulation of Cell Signaling Pathways. Molecules 2023; 28:5152. [PMID: 37446814 DOI: 10.3390/molecules28135152] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer represents one of the most frequent causes of death in the world. The current therapeutic options, including radiation therapy and chemotherapy, have various adverse effects on patients' health. In this vista, the bioactive ingredient of natural products plays a vital role in disease management via the inhibition and activation of biological processes such as oxidative stress, inflammation, and cell signaling molecules. Although natural products are not a substitute for medicine, they can be effective adjuvants or a type of supporting therapy. Hesperidin, a flavonoid commonly found in citrus fruits, with its potential antioxidant, anti-inflammatory, and hepatoprotective properties, and cardio-preventive factor for disease prevention, is well-known. Furthermore, its anticancer potential has been suggested to be a promising alternative in cancer treatment or management through the modulation of signal transduction pathways, which includes apoptosis, cell cycle, angiogenesis, ERK/MAPK, signal transducer, and the activator of transcription and other cell signaling molecules. Moreover, its role in the synergistic effects with anticancer drugs and other natural compounds has been described properly. The present article describes how hesperidin affects various cancers by modulating the various cell signaling pathways.
Collapse
Affiliation(s)
- Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Ali Yousif Babiker
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51542, Saudi Arabia
| |
Collapse
|
24
|
Amalina ND, Salsabila IA, Zulfin UM, Jenie RI, Meiyanto E. In vitro synergistic effect of hesperidin and doxorubicin downregulates epithelial-mesenchymal transition in highly metastatic breast cancer cells. J Egypt Natl Canc Inst 2023; 35:6. [PMID: 36967442 DOI: 10.1186/s43046-023-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Abstract
Background
We previously reported that in highly metastatic breast cancer cells, doxorubicin (DOX) at non-toxic concentrations promoted cell migration and invasion. Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavonoid glycoside isolated from citrus/lemon plant that possesses a cytotoxic effect in several cancer cells. In this study, we investigate whether DOX efficacy is enhanced by hesperidin (Hsd) and the molecular pathway involved in highly metastatic breast cancer, 4T1.
Methods
Combined cytotoxicity of Hsd and DOX was evaluated with MTT assay and was analyzed using Chou-Talalay’s method. To better understand the underlying mechanism, several factors, including apoptosis and cell cycle arrest were analyzed by flow cytometry. In addition, antimigration activity was evaluated by scratch wound healing assay, MMP-9 expression by ELISA and gelatin zymography, and Rac-1 protein level using western blot. The data on survival rate and expression level of MMP-9 and Rac-1 were obtained from Gene Expression OMNIBUS (GEO).
Results
Under MTT assay, Hsd showed a cytotoxic effect in a concentration-dependent manner with an IC50 value of 284 µM on 4T1 cells. Hsd synergistically enhanced the cytotoxic effect of DOX which seemed to correlate with an increase in apoptotic cell death, G2/M cell cycle arrest and blocked the migration of 4T1 cells. At 10 nM, doxorubicin induced lamellipodia formation, and increased the level of Rac-1 and metalloproteinase-9 (MMP-9) expression. Interestingly, combined treatment of DOX and Hsd dramatically downregulated the expression of MMP-9 and Rac-1. These results indicated that Hsd block the cell migration induced by DOX under in vitro studies.
Conclusion
These findings strongly suggest that Hsd possesses a potential synergistic effect that can be developed to enhance the anticancer efficacy of DOX and reduce the risks of chemotherapy use in highly metastatic breast cancer.
Collapse
|
25
|
Duan N, Hu X, Zhou R, Li Y, Wu W, Liu N. A Review on Dietary Flavonoids as Modulators of the Tumor Microenvironment. Mol Nutr Food Res 2023; 67:e2200435. [PMID: 36698331 DOI: 10.1002/mnfr.202200435] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tumor microenvironment (TME) is the local environment where malignant cells strive and survive, composed of cancer cells and their surroundings, regulating essential tumor survival, and promotion functions. Dietary flavonoids are abundantly present in common vegetables and fruits and exhibit good anti-cancer activities, which significantly inhibit tumorigenesis by targeting TME constituents and their interaction with cancer cells. This review aims to synthesize information concerning the modulation of TME by dietary flavonoids, as well as to provide insights into the molecular basis of its potential anti-tumor activities, with an emphasis on its ability to control intracellular signaling cascades that regulate the TME processes, involving cell proliferation, invasion and migration, continuous angiogenesis, and immune inflammation. This study will provide a theoretical basis for the development of the leading compound targeting TME for anti-cancer therapies from these dietary flavonoids.
Collapse
Affiliation(s)
- Namin Duan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaohui Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuru Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Wenhui Wu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ning Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.,National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, 201306, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, 201306, China.,Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
26
|
Preparation of Novel Composites of Polyvinyl Alcohol Containing Hesperidin Loaded ZnO Nanoparticles and Determination of Their Biological and Thermal Properties. J Inorg Organomet Polym Mater 2023; 33:731-746. [PMID: 36694851 PMCID: PMC9851736 DOI: 10.1007/s10904-023-02532-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Hesperidin (HSP) is considered to be the most effective antimicrobial agent against SARS-CoV2 virus. The HSP was loaded onto ZnO nanoparticles that were successfully incorporated, via the hydrothermal method, into polyvinyl alcohol (PVA) for use as food packaging material. The hydrothermal method enabled the bioactive ZnO-HSP to be homogeneously dispersed in the PVA, which significantly increased the thermal stability of the matrix, while decreasing the softening temperature. The water holding capacity and water solubility of the obtained nanocomposites was reduced compared to the PVA. Finally, the ZnO-HSP antimicrobial agent contributed important antibacterial properties to the PVA and increased its antioxidant capacity against Staphylococcus aureus and Escherichia coli pathogens. In addition, the nanocomposites had no cytotoxic/proliferative effects on cancer cells. All results showed promise that the PVA/ZnO-HSP nanocomposites would be an excellent alternative for food packaging applications.
Collapse
|
27
|
Eltamany EE, Goda MS, Nafie MS, Abu-Elsaoud AM, Hareeri RH, Aldurdunji MM, Elhady SS, Badr JM, Eltahawy NA. Comparative Assessment of the Antioxidant and Anticancer Activities of Plicosepalus acacia and Plicosepalus curviflorus: Metabolomic Profiling and In Silico Studies. Antioxidants (Basel) 2022; 11:antiox11071249. [PMID: 35883740 PMCID: PMC9311546 DOI: 10.3390/antiox11071249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
This study presents a comparison between two mistletoe plants—P. acacia and P. curviflorus—regarding their total phenolic contents and antioxidant and anticancer activities. P. curviflorus exhibited a higher total phenolics content (340.62 ± 19.46 mg GAE/g extract), and demonstrated higher DPPH free radical scavenging activity (IC50 = 48.28 ± 3.41µg/mL), stronger reducing power (1.43 ± 0.54 mMol Fe+2/g) for ferric ions, and a greater total antioxidant capacity (41.89 ± 3.15 mg GAE/g) compared to P. acacia. The cytotoxic effects of P. acacia and P. curviflorus methanol extracts were examined on lung (A549), prostate (PC-3), ovarian (A2780) and breast (MDA-MB-231) cancer cells. The highest anticancer potential for the two extracts was observed on PC-3 prostate cancer cells, where P. curviflorus exhibited more pronounced antiproliferative activity (IC50 = 25.83 μg/mL) than P. acacia (IC50 = 34.12 μg/mL). In addition, both of the tested extracts arrested the cell cycle at the Pre-G1 and G1 phases, and induced apoptosis. However, P. curviflorus extract possessed the highest apoptotic effect, mediated by the upregulation of p53, Bax, and caspase-3, 8 and 9, and the downregulation of Bcl-2 expression. In the pursuit to link the chemical diversity of P. curviflorus with the exhibited bioactivities, its metabolomic profiling was achieved by the LC-ESI-TOF-MS/MS technique. This permitted the tentative identification of several phenolics—chiefly flavonoid derivatives, beside some triterpenes and sterols—in the P. curviflorus extract. Furthermore, all of the metabolites in P. curviflorus and P. acacia were inspected for their binding modes towards both CDK-2 and EGFR proteins using molecular docking studies in an attempt to understand the superiority of P. curviflorus over P. acacia regarding their antiproliferative effect on PC-3 cancer cells. Docking studies supported our experimental results; with all of this taken together, P. curviflorus could be regarded as a potential prospect for the development of chemotherapeutics for prostate cancer.
Collapse
Affiliation(s)
- Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| | - Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Abdelghafar M. Abu-Elsaoud
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
- Correspondence: (S.S.E.); (J.M.B.); Tel.: +966-544512552 (S.S.E.); +20-1091332451 (J.M.B.)
| | - Nermeen A. Eltahawy
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (E.E.E.); (M.S.G.); (N.A.E.)
| |
Collapse
|
28
|
Kim S, Leem J, Oh JS, Kim JS. Cytotoxicity of 9,10-Phenanthrenequinone Impairs Mitotic Progression and Spindle Assembly Independent of ROS Production in HeLa Cells. TOXICS 2022; 10:toxics10060327. [PMID: 35736935 PMCID: PMC9227850 DOI: 10.3390/toxics10060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
The polycyclic aromatic hydrocarbon quinone derivative 9,10-phenanthrenequinone (9,10-PQ) is one of the most abundant and toxic components found in diesel exhaust particles (DEPs). These DEPs are created during diesel fuel combustion and are considered the main source of urban air pollution. As 9,10-PQ can produce excessive reactive oxygen species (ROS) through redox cycling, it has been shown to exert potent cytotoxic effects against various cell types. However, the mechanisms underlying this cytotoxicity remain unclear. In this study, we showed that 9,10-PQ exerts cytotoxicity by impairing mitotic progression and spindle assembly in HeLa cells. Exposure to 9,10-PQ impaired spindle assembly and chromosome alignment, resulting in delayed mitotic entry and progression in HeLa cells. Furthermore, 9,10-PQ exposure decreased the CEP192 and p-Aurora A levels at the spindle poles. Notably, these mitotic defects induced by 9,10-PQ were not rescued by scavenging ROS, implying the ROS-independent activity of 9,10-PQ. Therefore, our results provide the first evidence that 9,10-PQ exerts its cytotoxicity through specific inhibition of mitotic progression and spindle assembly, independent of ROS.
Collapse
Affiliation(s)
- Seul Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
| | - Jiyeon Leem
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Jeong Su Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (J.S.O.); (J.-S.K.)
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea;
- Correspondence: (J.S.O.); (J.-S.K.)
| |
Collapse
|
29
|
He F, Wan J, Chu S, Li X, Zong W, Liu R. Toxic mechanism on phenanthrene-triggered cell apoptosis, genotoxicity, immunotoxicity and activity changes of immunity protein in Eisenia fetida: Combined analysis at cellular and molecular levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153167. [PMID: 35051481 DOI: 10.1016/j.scitotenv.2022.153167] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Phenanthrene (PHE) is a harmful organic contaminant and exists extensively in the soil environment. The accumulation of PHE would potentially threaten soil invertebrates, including earthworms, and the toxicity is also high. Currently, the possible mechanisms underlying apoptotic pathways induced by PHE and its immunotoxicity and genotoxicity in earthworms remain unclear. Thus, Eisenia fetida coelomocytes and immunity protein lysozyme (LYZ) were chosen as targeted receptors to reveal the apoptotic pathways, genotoxicity, and immunotoxicity triggered by PHE and its binding mechanism with LYZ, using cellular, biochemical, and molecular methods. Results indicated that PHE exposure can cause cell membrane damage, increase cell membrane permeability, and ultimately trigger mitochondria-mediated apoptosis. Increased 8-hydroxy-2-deoxyguanosine (8-OHdG) levels indicated PHE had triggered DNA oxidative damage in cells after PHE exposure. Occurrence of detrimental effects on the immune system in E. fetida coelomocytes due to decreased phagocytic efficacy and destroyed the lysosomal membrane. The LYZ activity in coelomocytes after PHE exposure was consistent with the molecular results, in which the LYZ activity was inhibited. After PHE binding, the protein structure (secondary structure and protein skeleton) and protein environment (the micro-environment of aromatic amino acids) of LYZ were destroyed, forming a larger particle size of the PHE-LYZ complex, and causing a significant sensitization effect on LYZ fluorescence. Molecular simulation indicated the key residues Glu 35, Asp 52, and Trp 62 for protein function located in the binding pocket, suggesting PHE preferentially binds to the active center of LYZ. Additionally, the primary driving forces for the binding interaction between PHE and LYZ molecule are hydrophobicity forces and hydrogen bonds. Taken together, PHE exposure can induce apoptosis by mitochondria-mediated pathway, destroy the normal immune system, and trigger DNA oxidative damage in earthworms. Besides, this study provides a comprehensive evaluation of phenanthrene toxicity to earthworms on molecular and cellular level.
Collapse
Affiliation(s)
- Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingqiang Wan
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, Shandong 250014, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
30
|
Shan J, Wang Z, Mo Q, Long J, Fan Y, Cheng L, Zhang T, Liu X, Wang X. Ribonucleotide reductase M2 subunit silencing suppresses tumorigenesis in pancreatic cancer via inactivation of PI3K/AKT/mTOR pathway. Pancreatology 2022; 22:401-413. [PMID: 35300916 DOI: 10.1016/j.pan.2022.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Ribonucleotide Reductase M2 subunit (RRM2) is elevated in pancreatic cancer and involved in DNA synthesis and cell proliferation. But its specific mechanism including genetic differences and upstream regulatory pathways remains unclear. METHODS We analyzed RRM2 expression of 178 pancreatic cancer patients in Gene Expression Profiling Interactive Analysis (GEPIA) database. Besides, more pancreatic cancer specimens were collected and detected RRM2 expression by immunohistochemistry. RRM2 knockdown by shRNA was applied for functional and mechanism analysis in vitro. Xenograft tumor growth was significantly slower by RRM2 silencing in vivo. RESULTS It showed that high RRM2 expression had a poorer overall survival and disease free survival. RRM2 expression was higher in tumor grade 2 and 3 than grade 1. Immunohistochemistry data validated that high RRM2 expression predicted worse survival. RRM2 knockdown significantly reduced cell proliferation, inhibited colony formation and suppressed cell cycle progress. Further mechanism assay showed silencing RRM2 lead to inactivation of PI3K/AKT/mTOR pathway and inhibition of mutant p53, which induce S phase arrest and/or apoptosis. In panc-1 cells, S-phase arrest mediated by mutant p53 inhibition, p21 increase and cell cycle related proteins change. While in miapaca-2 cells, induction of apoptosis and S-phase arrest mediated by CDK1 played a coordinated role. CONCLUSION Taken together, high RRM2 expression was associated with worse prognosis. Importantly, RRM2 knockdown deactivated PI3K/AKT/mTOR pathway, resulting in cell cycle arrest and/or apoptosis. This study shed light on the molecular mechanism of RRM2 in pancreatic tumor progression and is expected to provide a new theoretical basis for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jinlan Shan
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuping Mo
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Jingpei Long
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangfan Fan
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Cheng
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Zhang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiyong Liu
- Sino-America Cancer Foundation, California Cancer Institute, Temple City, CA91780, USA; Tumor Biomarker Development, California Cancer Institute, Temple City, CA,91780, USA
| | - Xiaochen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
31
|
Slika H, Mansour H, Wehbe N, Nasser SA, Iratni R, Nasrallah G, Shaito A, Ghaddar T, Kobeissy F, Eid AH. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed Pharmacother 2022; 146:112442. [PMID: 35062053 DOI: 10.1016/j.biopha.2021.112442] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a leading cause of morbidity and mortality around the globe. Reactive oxygen species (ROS) play contradicting roles in cancer incidence and progression. Antioxidants have attracted attention as emerging therapeutic agents. Among these are flavonoids, which are natural polyphenols with established anticancer and antioxidant capacities. Increasing evidence shows that flavonoids can inhibit carcinogenesis via suppressing ROS levels. Surprisingly, flavonoids can also trigger excessive oxidative stress, but this can also induce death of malignant cells. In this review, we explore the inherent characteristics that contribute to the antioxidant capacity of flavonoids, and we dissect the scenarios in which they play the contrasting role as pro-oxidants. Furthermore, we elaborate on the pathways that link flavonoid-mediated modulation of ROS to the prevention and treatment of cancer. Special attention is given to the ROS-mediated anticancer functions that (-)-epigallocatechin gallate (EGCG), hesperetin, naringenin, quercetin, luteolin, and apigenin evoke in various cancers. We also delve into the structure-function relations that make flavonoids potent antioxidants. This review provides a detailed perspective that can be utilized in future experiments or trials that aim at utilizing flavonoids or verifying their efficacy for developing new pharmacologic agents. We support the argument that flavonoids are attractive candidates for cancer therapy.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Hadi Mansour
- Department of Pharmacology and Toxicology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Nadine Wehbe
- Department of Biology, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Suzanne A Nasser
- Department of Pharmacology and Therapeutics, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| | - Gheyath Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Abdullah Shaito
- Biomedical Research Center, Qatar University, P.O. Box: 2713, Doha, Qatar.
| | - Tarek Ghaddar
- Department of Chemistry, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, P.O. Box: 11-0236, Beirut, Lebanon.
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
32
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Deng J, Liu L, Li L, Sun J, Yan F. Hesperidin delays cell cycle progression into the G0/G1 phase via suspension of MAPK signaling pathway in intrahepatic cholangiocarcinoma. J Biochem Mol Toxicol 2022; 36:e22981. [PMID: 34984768 DOI: 10.1002/jbt.22981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) derived from epithelial cells of bile ducts is highly aggressive tumor. Hesperidin extracted from citrus fruits is a promising antitumor compound. The purpose of this study is to explore molecular mechanism by which hesperidin affects cholangiocarcinoma progression. Cellular functional experiments were performed and subcutaneous transplant xenograft model was established. Our findings indicated that hesperidin suppressed iCCA cell proliferation in time- and concentration-dependent manners. Hesperidin treatment induced cell cycle arrest at G0/G1 phase, whereas it has no effect on cell apoptosis. Further, data revealed that hesperidin attenuated MEK5 and ERK5 phosphorylation and inhibited ERK5 nuclear localization by reducing MEKK2 activity in MAPK signaling pathway. It could cause alterations in expression of the downstream genes, including CDK4, CDK6 (cell cycle protein kinases), Cyclin D1 (a G1/S checkpoint), P21, and P27 (two G1-checkpoint CDK inhibitors), thereby arresting cell cycle distribution of iCCA cells in the G0/G1 phase. BIX02189 treatment, a specific inhibitor of MEK5, in combination with hesperidin displayed synergistic inhibitory effects on cell cycle arrest and gene expressions. Furthermore, hesperidin administration alone or in combination with MEK5 inhibitor BIX02189 restrained iCCA tumor growth in vivo. Taken together, these results confirmed that hesperidin regulated the expression of cell cycle-related genes by inhibiting the activation of MEKK2/MEK5/ERK5 signaling pathway, inducing iCCA cell cycle arrest at the G0/G1 phase. Our study provides a theoretical foundation and experimental basis for further development of hesperidin as a therapeutic agent for iCCA treatment.
Collapse
Affiliation(s)
- Jie Deng
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Li Liu
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Li Li
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jianhai Sun
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| | - Fei Yan
- Department of Oncology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
34
|
Potential Mechanisms of Plant-Derived Natural Products in the Treatment of Cervical Cancer. Biomolecules 2021; 11:biom11101539. [PMID: 34680171 PMCID: PMC8533981 DOI: 10.3390/biom11101539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the second most common gynecological malignancy globally; it seriously endangers women’s health because of its high morbidity and mortality. Conventional treatments are prone to drug resistance, recurrence and metastasis. Therefore, there is an urgent need to develop new drugs with high efficacy and low side effects to prevent and treat cervical cancer. In recent years, plant-derived natural products have been evaluated as potential anticancer drugs that preferentially kill tumor cells without severe adverse effects. A growing number of studies have shown that natural products can achieve practical anti-cervical-cancer effects through multiple mechanisms, including inhibition of tumor-cell proliferation, induction of apoptosis, suppression of angiogenesis and telomerase activity, enhancement of immunity and reversal of multidrug resistance. This paper reviews the therapeutic effects and mechanisms of plant-derived natural products on cervical cancer and provides references for developing anti-cervical-cancer drugs with high efficacy and low side effects.
Collapse
|
35
|
The Involvement of Natural Polyphenols in the Chemoprevention of Cervical Cancer. Int J Mol Sci 2021; 22:ijms22168812. [PMID: 34445518 PMCID: PMC8396230 DOI: 10.3390/ijms22168812] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
From all types of cancer, cervical cancer manages to be in top four most frequent types, with a 6.5% rate of occurrence. The infectious vector that induces the disease, the high-risk Human papillomavirus (HPV), which is a sexually transmitted virus, is capable of transforming the host cell by modulating some of the principal signaling pathways responsible for cell cycle arrest, proliferation, and survival. Fortunately, like other cancer types, cervical cancer can be treated by chirurgical interventions or chemoradiotherapy, but these methods are not exactly the lucky clover of modern medicine because of the adverse effects they have. That is the reason why in the last years the emphasis has been on alternative medicine, more specifically on phytochemicals, as a substantial number of studies showed that diet contributes to cancer prevention and treatment. All these studies are trying to find new chemopreventive agents with less toxicity but high effectiveness both in vitro and in vivo. The aim of this review is to evaluate the literature in order to underline the advantages and disadvantages of polyphenols, a class of dietary compounds, as chemopreventive and chemotherapeutic agents. This review also aims to present polyphenols from different perspectives, starting with mechanisms of action and ending with their toxicity. The bigger picture illustrates that polyphenols have great potential in cervical cancer prevention, with strong effects on gene modulation.
Collapse
|
36
|
Enzymatic Synthesis, Structural Analysis, and Evaluation of Antibacterial Activity and α-Glucosidase Inhibition of Hesperidin Glycosides. Catalysts 2021. [DOI: 10.3390/catal11050532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study was designed to investigate the structure of synthesized hesperidin glycosides (HGs) and evaluate their antibacterial and α-glucosidase inhibitory activities. The preliminary structure of HGs was confirmed by glucoamylase treatment and analyzed on thin layer chromatography (TLC). The LC-MS/MS profiles of HGs showed the important fragments at m/z ratios of 345.21 (added glucose to glucose of rutinose in HG1) and 687.28 (added maltose to glucose of rutinose in HG2), confirming that the structures of HG1 and HG2 were α-glucosyl hesperidin and α-maltosyl hesperidin, respectively. In addition, 1H and 13C-NMR of hesperidin derivatives were performed to identify their α-1,4-glycosidic bonds. The MIC and MBC studies showed that transglycosylated HG1 and HG2 had better antibacterial and bactericidal activities than hesperidin and diosmin, and were more active against Staphylococcus aureus than Escherichia coli. Hesperidin, HG1, HG2, and diosmin inhibited α-glucosidase with IC50 values of 2.75 ± 1.57, 2.48 ± 1.61, 2.36 ± 1.48, and 2.99 ± 1.23 mg/mL, respectively. The inhibition kinetics of HG2 shown by a Lineweaver–Burk plot confirmed HG2 was an α-glucosidase competitive inhibitor with an inhibitor constant, Ki, of 2.20 ± 0.10 mM. Thus, HGs have the potential to be developed into antibacterial drugs and treatments for treating α-glucosidase-associated type 2 diabetes.
Collapse
|
37
|
Ahmad A, Tiwari RK, Saeed M, Ahmad I, Ansari IA. Glycyrrhizin Mediates Downregulation of Notch Pathway Resulting in Initiation of Apoptosis and Disruption in the Cell Cycle Progression in Cervical Cancer Cells. Nutr Cancer 2021; 74:622-639. [PMID: 33691557 DOI: 10.1080/01635581.2021.1895234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing emphasis on exploring the antiproliferative potential of natural compounds has gathered momentum for the formulation of anticancer drugs. In the present study, the anticancer and apoptotic potential of glycyrrhizin (GLY) was studied on HPV- C33A cervical cancer (CCa) cells. Our results indicated that GLY exerted antiproliferative effects in the C33A cells by inducing significant cytotoxicity. Treatment with GLY substantially increases the apoptosis in a dose-dependent manner via disrupting the mitochondrial membrane potential. GLY induced apoptosis in C33A cells via activation of capsase-9 (intrinsic pathway) and caspase-8 (extrinsic pathway) along with the modulation of pro- and antiapoptotic protein expression. Moreover, GLY also exerted cell cycle arrest in C33A cells at G0/G1 phase which was associated with the decreased expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) along with the increased expression of CDK inhibitor p21Cip1. Furthermore, GLY treated CCa cells exhibited significant downregulation of Notch signaling pathway which may be associated with increased apoptosis as well as cell cycle arrest in C33A CCa cells. Thus, GLY could be an appendage in the prevention and management of CCa.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Rohit Kumar Tiwari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia.,Research Centre for Advanced Materials Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Irfan Ahmad Ansari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
38
|
Flavonoids Induce Migration Arrest and Apoptosis in Detroit 562 Oropharynx Squamous Cell Carcinoma Cells. Processes (Basel) 2021. [DOI: 10.3390/pr9030426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite advances in the treatment of head and neck squamous cell carcinoma (HNSCC), the morbidity remains at a high level due to the resistance of SCC cells to chemotherapeutics. This study aimed to determine and compare the magnitude of the flavonoids’ effectiveness in activating apoptosis and migration arrest in HNSCC cells in vitro. Methods: Head and neck SCC cells of the Detroit 562 line were exposed to a range of concentrations (5–100 μM) of quercetin (Que), hesperidin (Hes) and rutin (Rut) for 24 and 48 h. The SCC cell viability and migration rate were investigated using cytotoxicity and migration inhibition assays. Muse Cell Analyzer flow cytometry was utilized to quantitatively assess the apoptosis rate of Detroit 562 cells exposed to Que, Hes and Rut. The morphology of the SCC cells was evaluated via hematoxylin-eosin staining. Results: The viability diminishment of the Detroit 562-line cells treated with Que, Hes and Rut for 48 h revealed a significant dose-dependent trend, relatively equal for three substances, whereas the most noticeable cytotoxic effect observed for Hes. Exposure to Hes and Rut exhibited a dose-dependent increased proportion of apoptotic SCC cells, at either necrosis or late apoptosis stage. Detroit 562 SCC migration rate and cells motility were halted for the 100 µM dose of Hes and Que. The comparative results elucidated that Hesperidin and Quercetin achieved a more potent reduction of Detroit 562 migration at 24 h. Conclusions: Hesperidin, rutin and quercetin are capable of inducing apoptosis and migration arrest in the Detroit 562 cell line to various extents, resulting in proapoptotic attenuating effects at different magnitudes.
Collapse
|
39
|
Woźniak M, Krajewski R, Makuch S, Agrawal S. Phytochemicals in Gynecological Cancer Prevention. Int J Mol Sci 2021; 22:1219. [PMID: 33530651 PMCID: PMC7865323 DOI: 10.3390/ijms22031219] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Gynecological cancer confers an enormous burden among women worldwide. Accumulating evidence points to the role of phytochemicals in preventing cervical, endometrial, and ovarian cancer. Experimental studies emphasize the chemopreventive and therapeutic potential of plant-derived substances by inhibiting the early stages of carcinogenesis or improving the efficacy of traditional chemotherapeutic agents. Moreover, a number of epidemiological studies have investigated associations between a plant-based diet and cancer risk. This literature review summarizes the current knowledge on the phytochemicals with proven antitumor activity, emphasizing their effectiveness and mechanism of action in gynecological cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Rafał Krajewski
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
40
|
Srinivas BK, Shivamadhu MC, Jayarama S. Musa acuminata lectin exerts anti-cancer effects on HeLa and EAC cells via activation of caspase and inhibitions of Akt, Erk, and Jnk pathway expression and suppresses the neoangiogenesis in in-vivo models. Int J Biol Macromol 2021; 166:1173-1187. [PMID: 33159939 DOI: 10.1016/j.ijbiomac.2020.10.272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/25/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
In the present study aimed to purify the lectin from the sap of Musa acuminata pseudostem and elucidate the apoptotic and angiogenic molecular mechanism in both in-vitro and in-vivo model. Mannose specific lectin was purified by using mannose affinity column chromatography and analyzed by RP-HPLC, SDS-PAGE, and PAS staining method. Furthermore, the protein was identified by MALDI-MS/MS. MAL effectively agglutinates trypsinized RBCs and showed effective cytotoxicity against various human cancer cell lines. MAL mitigates the cell proliferation, colony formation, cell migration, arrest the cell cycle in the G2/M phase, and induce apoptosis by altering the expression of apoptotic proteins/mRNA level (Bax and Bcl-2) via caspase 8/9, 3 dependent pathway in both in-vitro and in-vivo. Supporting this, in-vivo EAC tumor mice models prove the efficacy of MAL by inducing cell death and inhibiting the neovessel formation by targeting the MVD, inhibition of VEGF secretion, suppressing the expression of MMPs, HIF-1α, Flt-1, Akt, Jnk, and Erk1/2. More importantly, the MAL treatment leads to effective inhibition of tumor growth and an increase in the survivability of EAC mice. Our study summarizes that the MAL having a significant anticancer potential expressively degenerates the tumor development by inducing apoptosis and suppressing neoangiogenesis.
Collapse
Affiliation(s)
| | - Madhu Chakkere Shivamadhu
- Department of Biochemistry, Yuvaraja's College, University of Mysore, Mysuru, Karnataka 570005, India
| | - Shankar Jayarama
- Post-Graduation Department of Biotechnology, Teresian College, Siddhartha Nagara, Mysore, Karnataka 570011, India; Post-Graduation Department of Studies and Research in Food Technology, Davanagere University, Tholahunase, Davanagere, Karnataka 577002, India.
| |
Collapse
|
41
|
Wang J, Li A, Zhang L, Veeraraghavan V, Mohan S. Dieckol attenuates cell proliferation in Molt-4 leukemia cells via modulation of JAK/STAT3 signaling pathway. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_2_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Hermawan A, Khumaira A, Ikawati M, Putri H, Jenie RI, Angraini SM, Muflikhasari HA. Identification of key genes of hesperidin in inhibition of breast cancer stem cells by functional network analysis. Comput Biol Chem 2020; 90:107427. [PMID: 33360419 DOI: 10.1016/j.compbiolchem.2020.107427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/08/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
Breast cancer therapy with classical chemotherapy is unable to eradicate breast cancer stem cells (BCSCs). Loss of p53 function causes growth and differentiation in cancer stem cells (CSCs); therefore, p53-targeted compounds can be developed for BCSCs-targeted drugs. Previously, hesperidin (HES), a citrus flavonoid, showed anticancer activities and increased efficacy of chemotherapy in several types of cancer in vitro and in vivo. This study was aimed to explore the key protein and molecular mechanism of hesperidin in the inhibition of BCSCs using bioinformatics and in vitro study. Bioinformatics analysis revealed about 75 potential therapeutic target proteins of HES in BCSCs (TH), in which TP53 was the only direct target protein (DTP) with a high degree score. Furthermore, the results of GO enrichment analysis showed that TH was taken part in the biological process of regulation of apoptosis and cell cycle. The KEGG pathway enrichment analysis also showed that TH is involved in several pathways, including cell cycle, p53 signaling pathway. In vitro experiment results showed that HES inhibited cell proliferation, mammosphere, and a colony formation, and migration in on MCF-7 3D cells (mammospheres). HES induced G0/G1 cell cycle arrest and apoptosis in MCF-7 cells 3D. In addition, HES treatment reduced the mRNA level of p21 but increased the mRNA level of cyclin D1 and p53 in the mammosphere. HES inhibits BCSCs in mammospheres. More importantly, this study highlighted p53 as a key protein in inhibition of BCSCs by HES. Future studies on the molecular mechanism are needed to validate the results of this study.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia.
| | - Annisa Khumaira
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia; Study Program of Biotechnology, Faculty of Sciences and Technology, Universitas Aisyiah Yogyakarta, Jalan Ringroad Barat No.63, Mlangi Nogotirto, Gamping, Nogotirto, Sleman, Yogyakarta, 55592, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Riris Istighfari Jenie
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Sonia Meta Angraini
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| | - Haruma Anggraini Muflikhasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, Yogyakarta, 55281, Indonesia
| |
Collapse
|
43
|
Kwon EY, Choi MS. Eriocitrin Improves Adiposity and Related Metabolic Disorders in High-Fat Diet-Induced Obese Mice. J Med Food 2020; 23:233-241. [PMID: 32191577 DOI: 10.1089/jmf.2019.4638] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eriocitrin (EC) is an abundant flavonoid in lemons, which is known as a strong antioxidant agent. This study investigated the biological and molecular mechanisms underlying the anti-obesity effect of EC in high-fat diet (HFD)-fed obese mice. C57BL/6N mice were fed an HFD (40 kcal% fat) with or without 0.005% (w/w) EC for 16 weeks. Dietary EC improved adiposity by increasing adipocyte fatty acid (FA) oxidation, energy expenditure, and mRNA expression of thermogenesis-related genes in brown adipose tissue (BAT) and skeletal muscle, whereas it also decreased lipogenesis-related gene expression in white adipose tissue. In addition to adiposity, EC prevented hepatic steatosis by diminishing lipogenesis while enhancing FA oxidation in the liver and fecal lipid excretion, which was linked to attenuation of hyperlipidemia. Moreover, EC improved insulin sensitivity by decreasing hepatic gluconeogenesis and proinflammatory responses. These findings indicate that EC may protect against diet-induced adiposity and related metabolic disorders by controlling thermogenesis of BAT and skeletal muscle, FA oxidation, lipogenesis, fecal lipid excretion, glucose utilization, and gluconeogenesis.
Collapse
Affiliation(s)
- Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea.,Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| | - Myung-Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu, Korea.,Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu, Korea
| |
Collapse
|
44
|
Magura J, Moodley R, Mackraj I. The effect of hesperidin and luteolin isolated from Eriocephalus africanus on apoptosis, cell cycle and miRNA expression in MCF-7. J Biomol Struct Dyn 2020; 40:1791-1800. [DOI: 10.1080/07391102.2020.1833757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Judie Magura
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
| | - Roshila Moodley
- School of Chemistry and Physics, University of KwaZulu–Natal, Durban, South Africa
| | - Irene Mackraj
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu–Natal, Durban, South Africa
| |
Collapse
|
45
|
Kottaiswamy A, Kizhakeyil A, Padmanaban AM, Mirza FB, Vijay VR, Lee PS, Verma NK, Kalaiselvan P, Samuel S. The Citrus Flavanone Hesperetin Induces Apoptosis in CTCL Cells via STAT3/Notch1/NFκB-Mediated Signaling Axis. Anticancer Agents Med Chem 2020; 20:1459-1468. [DOI: 10.2174/1871521409666200324110031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/20/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022]
Abstract
Background:
Hesperetin is a natural compound known for its cholesterol-lowering effect and a wide
range of pharmacological activities.
Objectives:
Investigating the potential anticancer activities of Hesperetin in malignant hematolymphoid cell
lines HuT78 and MJ, derived from patients with Cutaneous T-Cell Lymphomas (CTCL).
Methods:
The cytotoxic effect of Hesperetin on two different CTCL cell lines, HuT78 and MJ, was assessed by
MTS-based colorimetric assay. Apoptosis, cell cycle, ROS (Reactive Oxygen Species) and molecular analysis
were performed using flow-cytometry and immunoblotting.
Results:
Hesperetin-treated CTCL cells were arrested at the sub-G1 phase of cell cycle with the concomitant
decrease in the expression of the cell cycle regulator protein cyclin B. In addition, the study found that the cellular
treatment with Hesperetin caused an induction of apoptosis, which was independent of ROS generation. Hesperetin
caused a significant decrease in the expression level of anti-apoptotic protein Bcl-xL and an increase in cleaved
caspase-3 and PARP proteins in CTCL cells. Furthermore, Hesperetin treatment in CTCL cells down-regulated
the expression of Notch1 and phosphorylation of STAT3 (Tyr705) and inhibited NFκBp65.
Conclusion:
This study highlights the anticancer properties of Hesperetin. Which induces apoptosis in CTCL
cells via STAT3/Notch1/NFκB mediated signaling pathway, suggesting that further development of this novel
class of flavonoid may contribute to new drug discovery for certain hematolymphoid malignancies.
Collapse
Affiliation(s)
| | - Atish Kizhakeyil
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | | | - Fathima B. Mirza
- VRR Institute of Biomedical Science, University of Madras, Chennai, India
| | - Venkatesh R. Vijay
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | - Pin S. Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | - Navin K. Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Nanyang Ave, Singapore
| | | | - Shila Samuel
- VRR Institute of Biomedical Science, University of Madras, Chennai, India
| |
Collapse
|
46
|
Xia N, Wan W, Zhu S, Liu Q. Synthesis of Hydrophobic Propionyl Neohesperidin Ester Using an Immobilied Enzyme and Description of Its Anti-proliferative and Pro-apoptotic Effects on MCF-7 Human Breast Cancer Cells. Front Bioeng Biotechnol 2020; 8:1025. [PMID: 32984288 PMCID: PMC7487361 DOI: 10.3389/fbioe.2020.01025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 08/05/2020] [Indexed: 01/06/2023] Open
Abstract
Neohesperidin (NH) is a natural flavonoid glycoside compound with considerable physiological and pharmacological activities. However, its bioavailability is limited due to poor solubility, and few studies have so far attempted improve the solubility and bioavailability of NH. In this study, we structurally modified NH using an immobilized lipase to improve lipophilicity and therefore expand its applicability in lipophilic media as well as enhance its bioavailability in vivo. In addition, we aimed investigated the pro-apoptoptotic activity of this new compound (propionyl neohesperidin ester, PNHE) in MCF-7 breast cancer cells using a variety of cellular assays, including the MTT (3-(4, 5-dimethyl- 2-thiazolyl)-2, 5-diphenyl-2-h-tetrazolium bromide assay, assessment of intracellular reactive oxygen species (ROS) levels, and flow cytometry. We successfully synthesized PNHE using immobilized lipases, and the esterification of NH was confirmed by Fourier transform-infrared spectroscopy (FT-IR). Compared to NH, HNPE showed higher anti-proliferative and pro-apoptotic in MCF-7 breast cancer cells, which may be explained by its increased lipophilicity compared to neohesperidin, benefiting to the action of NH on the cancer cell wall. The IC50 of PNHE for inducing apoptosis of MCF-7 cells was 185.52 μg/mL. PNHE increased both the proportion of cells in Sub-G1 phase and the cellular ROS content, indicating a certain therapeutic effect of HNPE on breast cancer.
Collapse
Affiliation(s)
- Na Xia
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Wenjing Wan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Siming Zhu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China.,Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Qiang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
47
|
Ferreira de Oliveira JMP, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 73:152887. [PMID: 30975541 DOI: 10.1016/j.phymed.2019.152887] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The ability of cancer cells to divide without restriction and to escape programmed cell death is a feature of the proliferative state. Citrus flavanones are flavonoids with potential multiple anticancer actions, from antioxidant and chemopreventive, to anti-inflammatory, anti-angiogenic, cytostatic and cytotoxic in different cancer models. PURPOSE This review aims to summarize the current knowledge on the antiproliferative actions of the citrus flavanones hesperidin (HSD) and hesperetin (HST), with emphasis on cell cycle arrest and apoptosis. METHODS Cochrane Library, Scopus, Pubmed and Web of Science collection databases were queried for publications reporting antiproliferative effects of HSD and HST in cancer models. RESULTS HSD and HST have been proven to delay cell proliferation in several cancer models. Depending on the compound, dose and cell line studied, different effects have been reported. Cell cycle arrest associated with cytostatic effects has been reported in cells with increased levels of p53 and also cyclin-dependent kinase inhibitors, as well as decreased levels of specific cyclins and cyclin-dependent kinases. Moreover, apoptotic effects have been found to be associated with altered ratios of pro-/antiapoptotic proteins, caspase activation, c-Jun N-terminal kinase (JNK) pathway activation and caspase-independent pathways. CONCLUSION Available scientific literature data indicate complex effects, dependent on cell lines and exposure conditions, suggesting that HSD and HST doses need to be optimized according to the cellular and organismal context. The establishment of the main antiproliferative mechanisms is of utmost importance for a possible therapeutic benefit of citrus flavanones in the context of cancer.
Collapse
Affiliation(s)
- José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| | - Conceição Santos
- Integrated Biology and Biotechnology Laboratory, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal; LAQV, REQUIMTE, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
48
|
|
49
|
Hamed MA, Aboul Naser AF, Aziz WM, Ibrahim FM, Ali SA, El-Rigal NS, Khalil WK. Natural sources, dopaminergic and non-dopaminergic agents for therapeutic assessment of Parkinsonism in rats model. PHARMANUTRITION 2020; 11:100171. [DOI: 10.1016/j.phanu.2019.100171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Aggarwal V, Tuli HS, Thakral F, Singhal P, Aggarwal D, Srivastava S, Pandey A, Sak K, Varol M, Khan MA, Sethi G. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp Biol Med (Maywood) 2020; 245:486-497. [PMID: 32050794 PMCID: PMC7082885 DOI: 10.1177/1535370220903671] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Hesperidin belongs to flavanones class of flavonoids and is known to possess broad-spectrum applicability to prevent dreadful diseases such as cardiovascular disease, neurodegeneration, and cancer. The reported anticancer effects of hesperidin have been found to be associated with its anti-oxidant and anti-inflammatory activities. Hesperidin interacts with numerous recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, evidence has suggested its promising role in inhibiting tumor cell metastasis, angiogenesis, and chemoresistance. The present mini-review highlights the ongoing development to identify hesperidin targets in cancer. Furthermore, the potential of nano technology-based hesperidin combinations and delivery systems will also be discussed. Overall, this review highlights all the possible molecular targets affected by hesperidin in tumor cells on a single platform. IMPACT STATEMENT Experimental findings from numerous studies have demonstrated the anticancer effects of hesperidin (Hesp) to be associated with anti-oxidant and anti-inflammatory activities along with its potential role in inhibiting the tumor cell metastasis and angiogenesis. Additionally, Hesp can also reverse drug resistance of cancer cells, which make it a promising candidate to be used in combination with existing anti-cancer drugs. This review will be helpful for upcoming researchers and scientific community to find out complete capsular package about cancer drug targets of Hesp and its role in modulating various important hallmarks of cancer.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Hardeep S Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Falak Thakral
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Paavan Singhal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala 133207, India
| | - Saumya Srivastava
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | - Anjana Pandey
- Department of Biotechnology, MNNIT Allahabad, Prayagraj 211004, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | - Md. Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|