1
|
Ma X, Zhang B, Yin X, Yang S, Lin Z, Yang Y, Zhou X. CPT1A/HIF-1α positive feedback loop induced fatty acid oxidation metabolic pathway contributes to the L-ascorbic acid-driven angiogenesis in breast cancer. Breast Cancer Res 2025; 27:74. [PMID: 40355947 DOI: 10.1186/s13058-025-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND In tumors rich in adipose tissue, angiogenesis is a critical factor in promoting cancer cell metastasis. However, the connection between angiogenesis and the mechanisms driving adipose metabolic remodeling in breast cancer (BC) remains insufficiently understood. This research seeks to explore whether and how CPT1A, a crucial rate-limiting enzyme in fatty acid oxidation (FAO), supports angiogenesis through metabolic pathways in BC. METHODS First, cell functional assays and animal models were employed to elucidate the pro-carcinogenic effects of CPT1A on BC and its role in metabolic alterations. Following this, the reciprocal regulatory relationship between CPT1A and HIF-1α was elucidated using transcriptomic studies, ubiquitination analysis, and dual-luciferase assays. Matrigel tube formation assays, vasculogenic mimicry assays, and chick chorioallantoic membrane (CAM) assays were utilized to evaluate the effect of CPT1A on the pro-angiogenic properties of BC. Subsequently, untargeted metabolomics was employed to identify specific metabolic changes in supernatants with and without CPT1A expression and verified by functional recovery experiments. Finally, the prognostic significance of CPT1A and the vascular marker VEGF in BC tissues was evaluated using tissue microarrays and public databases. RESULTS CPT1A overexpression significantly enhanced cell proliferation, motility, and angiogenesis via activating the FAO metabolic pathway, as demonstrated by both in vivo and in vitro experiments. Mechanistically, CPT1A regulates the ubiquitination level of hypoxia-inducible factor-1α (HIF-1α), which directly binds to the CPT1A promoter. Mutations at the 63-74 and 434-445 regions significantly reduced CPT1A promoter activity, indicating that these sites are critical for its transcriptional regulation. Ultimately, this interaction creates a reinforcing feedback loop between CPT1A and HIF-1α. Subsequently, this feedback loop alters changes in extracellular L-ascorbic acid (LAA) levels. Interestingly, LAA affects ROS homeostasis through the Nrf2/NQO1 pathway, specifically influencing angiogenesis in BC and HUVECs, while having no significant effect on their proliferation or EMT process. Moreover, increased expression levels of CPT1A and vascular endothelial growth factor (VEGF) were significantly associated with lymph node metastasis and adverse outcomes in BC patients. CONCLUSION The CPT1A/HIF-1α positive feedback loop critically regulates angiogenesis through activation of the Nrf2/NQO1 pathway, modulated by LAA. These findings highlight CPT1A and VEGF as promising therapeutic targets and prognostic biomarkers for angiogenesis in BC.
Collapse
Affiliation(s)
- Xiao Ma
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
- Key Laboratory of Tumor Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, 133000, PR China
| | - Baojian Zhang
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
| | - Xuezhe Yin
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
| | - ShiPeng Yang
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
| | - Zhenhua Lin
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China
- Key Laboratory of Tumor Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, 133000, PR China
| | - Yang Yang
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China.
- Key Laboratory of Tumor Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, 133000, PR China.
| | - Xianchun Zhou
- Central Laboratory, Yanbian University Hospital, Yanji, 133000, PR China.
| |
Collapse
|
2
|
Rezende BB, Vecchi ACT, Maróstica MR, Cagnon VHA, Montico F. Differential effects of jaboticaba peel extract administration on PCa progression in TRAMP mice depend on the androgenic status of the prostatic milieu and are driven by angiogenesis regulation. Food Res Int 2025; 208:116155. [PMID: 40263783 DOI: 10.1016/j.foodres.2025.116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 04/24/2025]
Abstract
Jaboticaba peel extract (JPE) has demonstrated chemopreventive effects on the development of prostatic lesions in experimental systems, including the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP). However, its influence over castration-resistant prostate cancer (CRPC) and the androgenic dependence of its actions in this model remain unknown. Therefore, we aimed to evaluate JPE effects on TRAMP mice tumorigenesis under different androgen reliance settings. Mice were submitted to short- or long-term JPE administration, associated or not with androgen deprivation therapy (ADT) by surgical and chemical castration. Prostate, periaortic lymph nodes and lung samples were harvested to determine the incidence of primary and metastatic lesions. Protein expression of proliferative, hormonal and angiogenesis markers was evaluated. Results showed that JPE administration in a hormone naive setting restricted poorly-differentiated tumors to the ventral prostate. Additionally, treatment extension improved the proportion of tumor-free individuals and the timeline for the development of palpable tumors. These results were paralleled by significant increment on VE-Cadherin expression. Furthermore, JPE-treated groups demonstrated significantly lower incidences of lymphatic metastasis. Conversely, JPE plus ADT resulted in poor outcomes, especially upon the extension of this association. In this setting, decreased survival, lower tumor-free mice proportion and increment of proliferative epithelial areas were registered. Altogether, such effects were attributed to a time-dependent up- (VEGF, latent TGF-β2 and TGFβ-RI) or downregulation (VEGFR-2 and VE-Cadherin) of angiogenic mediators expression. Therefore, we conclude that long-term ADT in TRAMP mice drives the prostatic microenvironment dynamics towards a proangiogenic state, which negatively impacts or even abolishes the otherwise beneficial effects of JPE.
Collapse
Affiliation(s)
- Bianca B Rezende
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-865, Campinas, São Paulo, Brazil
| | - Ana Clara T Vecchi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-865, Campinas, São Paulo, Brazil
| | - Mário R Maróstica
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), 13083-852, Campinas, São Paulo, Brazil
| | - Valéria H A Cagnon
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-865, Campinas, São Paulo, Brazil
| | - Fabio Montico
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-865, Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Zizzari IG, Gigli V, Gentili T, Tortolini C, Latini A, Rughetti A, di Gregorio MC, Isidori A, Nuti M, Antiochia R. An ecofriendly iron MOF-based immunosensor for sensitive detection of vascular endothelial growth factor in the serum of cancer patients. NANOSCALE 2025; 17:8790-8802. [PMID: 40091657 DOI: 10.1039/d5nr00471c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This work demonstrates the potential of an iron-based metal-organic framework, MIL-100(Fe), to effectively modify a multi-wall carbon nanotube (MWCNT) screen-printed electrode (SPE) for enhanced electrochemical immunosensing of vascular endothelial growth factor (VEGF), which has been recently considered a promising tumor biomarker. MIL-100(Fe) has been synthesized using an ecofriendly, sustainable, heatless water-based technique at various synthesis reaction times. The morphological, structural and electrochemical properties of the different samples of MIL-100(Fe) were evaluated using several physical and electrochemical techniques. MIL-100(Fe) after 48 h has a crystalline microporous-mesoporous structure, with superior properties, that is a larger BET surface area of 1082 ± 18 m2 g-1, a larger pore volume of 0.696 cm3 g-1 and better electroconductivity. After optimizing the experimental conditions, the MIL-100(Fe) 48 h/MWCNTs/SPE-based immunosensor showed a linear range between 100 and 480 pg mL-1, a LOD of 50 pg mL-1 (3σ/S), a sensitivity of 0.017 mA mL pg-1, good reproducibility and high selectivity. In addition, the developed immunosensor was used to satisfactorily detect VEGF in human serum samples of cancer patients, compared to the traditional ELISA method. Considering the sustainable and easy fabrication of the proposed platform, it may provide a promising application as a point-of-care (PoC) device for VEGF detection for diagnosis of cancer.
Collapse
Affiliation(s)
| | - Valeria Gigli
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | - Cristina Tortolini
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | | - Andrea Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, Italy
| |
Collapse
|
4
|
Kendra JA, Naman AG, Blatt RL, Jones-Hall Y, Zingariello CD, Brow RK, Segal SS, Morton AB. Time Release Ion Matrix Regenerates Dystrophic Skeletal Muscle. RESEARCH SQUARE 2025:rs.3.rs-5968078. [PMID: 40166018 PMCID: PMC11957216 DOI: 10.21203/rs.3.rs-5968078/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A time-release ion matrix (TRIM) restores damaged tissue following injury through local ion release to stimulate regenerative gene expression. Here we report the use of CoO-TRIM, an FDA designated Rare Pediatric Disease Drug, to restore muscle function and structure in the context of debilitating muscle disease. We demonstrate in an established animal model of Duchenne Muscular Dystrophy (DMD), the D2.mdx mouse, that tibialis anterior (TA) muscles receiving a single injection of CoO-TRIM exhibit greater active force, myofiber size and regeneration through 70 days post treatment compared to D2.mdx receiving vehicle alone. TRIM promoted upregulation of pro-angiogenic growth factor (vascular endothelial growth factor) and increased muscle microvasculature. These findings indicate that CoO-TRIM stimulates growth factors to promote the restoration of muscle structure and function of severely dystrophic mice in vivo without toxicity. We conclude that CoO-TRIM is a first-in-class therapeutic compound to combat soft tissue disease by restoring tissue integrity. Moreover, this novel treatment strategy could benefit both early and late stage DMD patients.
Collapse
Affiliation(s)
- Jacob A. Kendra
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - Alexandra G. Naman
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
| | - Rebekah L. Blatt
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, MO, 65409
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77845
| | | | - Richard K. Brow
- Department of Materials Science & Engineering, Missouri University of Science & Technology, Rolla, MO, 65409
| | - Steven S. Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
- Dalton Cardiovascular Research Center, Columbia, MO 65203
- Department of Biomedical Sciences, University of Missouri; Columbia, MO 65201
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri; Columbia, MO 65211
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| | - Aaron B. Morton
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, 77845
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212
| |
Collapse
|
5
|
Zhou J, Akrami N, Wang H, Fang L, Shen J, Yu C, Zhang B, Zhu D. Enhanced healing of critical-sized bone defects using degradable scaffolds with tailored composition through immunomodulation and angiogenesis. Bioact Mater 2025; 44:371-388. [PMID: 39539516 PMCID: PMC11559630 DOI: 10.1016/j.bioactmat.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The impact of orthopedic scaffolds on bone defect healing, particularly the late-stage bone remodeling process, is pivotal for the therapeutic outcome. This study applies fadditively manufactured scaffolds composed of hydroxyapatite-doped poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (HA-PELGA) with varying properties to treat rat calvarial defects, elucidating their significant role in bone remodeling by modulating physiological responses. We engineered two scaffolds with different polylactic acid (PLA) to polyglycolic acid (PGA) ratio (9/1 and 18/1) to vary in hydrophobicity, degradation rate, mechanical properties, and structural stability. These variations influenced physiological responses, including osteogenesis, angiogenesis, and immune reactions, thereby guiding bone remodeling. Our findings show that the HA-PELGA(18/1) scaffold, with a slower degradation rate, supported bulk bone formation due to a stable microenvironment. Conversely, the HA-PELGA(9/1) scaffold, with a faster degradation rate and more active interfaces, facilitated the formation of a thin bone layer and higher bone infiltration. This study demonstrates these degradable scaffolds help to promote bone healing and reveals how scaffold properties influence the bone remodeling process, offering a potential strategy to optimize scaffold design aiming at late-stage bone defect healing.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering, University of Stony Brook, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Negar Akrami
- Department of Biomedical Engineering, University of Stony Brook, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Hanbo Wang
- Department of Biomedical Engineering, University of Stony Brook, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Liang Fang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA
| | - Jie Shen
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, USA
| | - Cunjiang Yu
- Department of Electrical & Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ben Zhang
- Department of Biomedical Engineering, University of Stony Brook, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of Stony Brook, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| |
Collapse
|
6
|
Morais ANP, Souza SS, Aguiar FLN, Gastal GDA, Brandão FAS, Souza JA, Ñaupas LVS, Alves KA, Alves BG, Gastal MO, Rodrigues APR, Figueiredo JR, Teixeira DÍA, Gastal EL. Short-Term Bovine Ovarian Tissue Heterotopic Autotransplantation: VEGF Beneficial and Detrimental Effects. Mol Reprod Dev 2025; 92:e70009. [PMID: 39924986 DOI: 10.1002/mrd.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 02/11/2025]
Abstract
Ovarian tissue transplantation (OTT) has been suggested as an alternative to preserving female fertility in livestock species, as currently performed in women. The OTT technique has been tested as xenografting or autografting in different body sites and animal species. Currently, there are no reports available regarding the autotransplantation of ovarian tissue using the bovine model and also testing the effect of vascular endothelial growth factor (VEGF) on graft survival. This study evaluated the effects of ovarian tissue short-term exposure to VEGF before heterotopic autotransplantation into a subcutaneous site (flank region) for 7 days in cattle. The initial finding was that after OTT and without pre-exposure to VEGF, the ovarian grafts had 42% of normal preantral follicles, which indicates a substantial step forward for this technique in cattle. Furthermore, VEGF exposure actively facilitated the process of neoangiogenesis, the proliferation capability of the stromal cells for activation of the cell cycle, maintained the balance between types I and III collagen fibers, and reduced the total collagen of the grafted tissue. Moreover, ovarian fragments previously exposed to VEGF tended to have greater follicular density; however, a detrimental effect of VEGF on follicular morphology was noticed. In conclusion, this study marks a significant step forward in bovine OTT and provides a foundation for further investigations into the specific pathways, stages, and durations of VEGF exposure to unveil strategies for refining ovarian transplantation techniques in cattle and other species.
Collapse
Affiliation(s)
- Ana N P Morais
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Samara S Souza
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco L N Aguiar
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Gustavo D A Gastal
- Instituto Nacional de Investigación Agropecuaria, Estación Experimental INIA La Estanzuela, Colonia, Uruguay
| | - Fabiana A S Brandão
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Juliany A Souza
- Department of Veterinary Medicine, Sousa Campus, Federal Institute of Education, Science and Technology of Paraíba, Sousa, Paraíba, Brazil
| | - Lucy V S Ñaupas
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Kele A Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Benner G Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Ana P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - José R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Dárcio Í A Teixeira
- Laboratory of Diagnostic Imaging Applied to Animal Reproduction, Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
7
|
Zhao Y, Xue J. Bibliometric analysis of laryngeal cancer treatment literature (2003-2023). Heliyon 2025; 11:e40832. [PMID: 39811326 PMCID: PMC11730226 DOI: 10.1016/j.heliyon.2024.e40832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Background Despite advancements in medical science, the 5-year survival rate for laryngeal squamous cell carcinoma remains low, posing significant challenges in clinical management. This study explores the evolution of key topics and trends in laryngeal cancer research. Bibliometric and knowledge graph analysis are utilized to assess contributions in treating this carcinoma and to forecast emerging research hotspots that may enhance future clinical outcomes. The findings aim to guide researchers by identifying new areas, providing valuable insights and innovative perspectives. Methods Data were extracted from the Web of Science Core Collection database on December 1, 2023. Bibliometric and knowledge mapping analyses were conducted using software tools such as R-Studio 4.1.3, CiteSpace 6.1.R6, VOSviewer 1.6.18, and http://bibliometre.com.(Both CiteSpace 6.1.R6 and VOSviewer 1.6.18 are widely used bibliometric analysis software tools, each with distinct features and applications. CiteSpace primarily focuses on analyzing literature citation relationships and generating knowledge graphs to visualize research hotspots, trends, and knowledge structures. Its data sources include platforms such as Web of Science. While CiteSpace excels in presenting knowledge structures through its advanced visualization capabilities, it is relatively complex to operate and less efficient in processing large-scale datasets. As a result, it is frequently employed in exploring research trends across multiple disciplines. On the other hand, VOSviewer is designed to construct various types of bibliometric networks and is characterized by its intuitive and user-friendly interface. It supports a wide range of data sources and produces visually appealing and clear visualizations, making it particularly suitable for multi-disciplinary bibliometric research. Additionally, VOSviewer provides valuable insights that can inform scientific research decision-making. Overall, the two tools differ in terms of functionality, data sources, visualization effects, and operational complexity, offering researchers complementary options for bibliometric analysis based on their specific needs.) From this database, 800 papers were extracted using specific criteria. After narrowing the scope to English-language publications, this number was reduced to 775. To ensure data quality, conference papers, letters, and editorial materials were excluded, focusing only on original research papers and review articles. Results The analysis showed that 760 theoretical works and review papers were published in 96 academic journals by 4210 authors from 1148 institutions across 60 countries/regions. The United States emerged as the most significant contributor to laryngeal cancer research. The Croatian Rudjer Boskovic Institute was notable for having the highest publication and citation counts. Among individual researchers, Osmak, M was identified as the most prolific and cited. Predominant international collaborations occurred between European and American countries. The Head and Neck Science Journal was the most frequently co-cited publication. Major research themes encompassed morphological aspects, chemotherapy, and molecular pathway mechanisms in laryngeal cancer treatment. Current research hotspots include disease prognosis, models, clinical trials, tumor recurrence, and surveillance. Notably, targeted therapy and immunotherapy are rapidly advancing fields. Conclusions There is an urgent need to enhance global scholarly communication as the pursuit of effective laryngeal cancer treatment progresses. Focused research on targeting indicators for this type of cancer remains vital. An impending surge in research is driven by investigations into biomarkers, microenvironmental genetic mechanisms, alternatives to systemic chemotherapy, minimally invasive surgery, and herbal medicine explorations.
Collapse
Affiliation(s)
- Yan Zhao
- Medical Oncology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning Province, 110000, China
| | - Jiancheng Xue
- Department of Otolaryngology Head and Neck Surgery, the Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518035, China
- Shenzhen Medical Clinical Research Center for Otolaryngology Diseases, the Second People's Hospital of Shenzhen, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, 518035, China
| |
Collapse
|
8
|
Wesson T, Zhang L, Morrison RA, Brookes S, Calcagno H, Finnegan P, Voytik-Harbin S, Halum S. Tissue-Engineered Implant for Hemilaryngectomy Reconstruction with Recurrent Laryngeal Nerve Injury. Laryngoscope 2024; 134:4604-4613. [PMID: 38989732 PMCID: PMC11529076 DOI: 10.1002/lary.31616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE Laryngeal cancer resections often require excision of portions of the larynx along with sacrifice of the ipsilateral recurrent laryngeal nerve (RLN). In such cases, there are no reconstructive options that reliably restore laryngeal function, rendering patients with severe functional impairment. To address this unmet clinical need, we extend our evaluation of a 3-implant mucosal, muscle, cartilage reconstruction approach aimed at promoting functional laryngeal restoration in a porcine hemilaryngectomy model with ipsilateral RLN transection. METHODS Six Yucatan mini-pigs underwent full-thickness hemilaryngectomies with RLN transection followed by transmural reconstruction using fabricated collagen polymeric mucosal, muscle, and cartilage replacements. To determine the effect of adding therapeutic cell populations, subsets of animals received collagen muscle implants containing motor-endplate-expressing muscle progenitor cells (MEEs) and/or collagen cartilage implants containing adipose stem cell (ASC)-derived chondrocyte-like cells. Acoustic vocalization and laryngeal electromyography (L-EMG) provided functional assessments and histopathological analysis with immunostaining was used to characterize the tissue response. RESULTS Five of six animals survived the 4-week postoperative period with weight gain, airway maintenance, and audible phonation. No tracheostomy or feeding tube was required. Gross and histological assessments of all animals revealed implant integration and regenerative remodeling of airway mucosa epithelium, muscle, and cartilage in the absence of a material-mediated foreign body reaction or biodegradation. Early voice and L-EMG data were suggestive of positive functional outcomes. CONCLUSION Laryngeal reconstruction with collagen polymeric mucosa, muscle, and cartilage replacements may provide effective restoration of function after hemilaryngectomy with RLN transection. Future preclinical studies should focus on long-term functional outcomes. LEVEL OF EVIDENCE NA Laryngoscope, 134:4604-4613, 2024.
Collapse
Affiliation(s)
- Troy Wesson
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine
| | - Lujuan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine
| | | | - Sarah Brookes
- Weldon School of Biomedical Engineering, Purdue University
| | - Haley Calcagno
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine
| | - Patrick Finnegan
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine
| | | | - Stacey Halum
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine
- Department of Speech, Language, and Hearing Sciences, Purdue University
| |
Collapse
|
9
|
Goodin DA, Chau E, Zheng J, O’Connell C, Tiwari A, Xu Y, Niravath P, Chen SH, Godin B, Frieboes HB. Characterization of the Breast Cancer Liver Metastasis Microenvironment via Machine Learning Analysis of the Primary Tumor Microenvironment. CANCER RESEARCH COMMUNICATIONS 2024; 4:2846-2857. [PMID: 39373616 PMCID: PMC11525956 DOI: 10.1158/2767-9764.crc-24-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Breast cancer liver metastases (BCLM) are hypovascular lesions that resist intravenously administered therapies and have grim prognosis. Immunotherapeutic strategies targeting BCLM critically depend on the tumor microenvironment (TME), including tumor-associated macrophages. However, a priori characterization of the BCLM TME to optimize therapy is challenging because BCLM tissue is rarely collected. In contrast to primary breast tumors for which tissue is usually obtained and histologic analysis performed, biopsies or resections of BCLM are generally discouraged due to potential complications. This study tested the novel hypothesis that BCLM TME characteristics could be inferred from the primary tumor tissue. Matched primary and metastatic human breast cancer samples were analyzed by imaging mass cytometry, identifying 20 shared marker clusters denoting macrophages (CD68, CD163, and CD206), monocytes (CD14), immune response (CD56, CD4, and CD8a), programmed cell death protein 1, PD-L1, tumor tissue (Ki-67 and phosphorylated ERK), cell adhesion (E-cadherin), hypoxia (hypoxia-inducible factor-1α), vascularity (CD31), and extracellular matrix (alpha smooth muscle actin, collagen, and matrix metalloproteinase 9). A machine learning workflow was implemented and trained on primary tumor clusters to classify each metastatic cluster density as being either above or below median values. The proposed approach achieved robust classification of BCLM marker data from matched primary tumor samples (AUROC ≥ 0.75, 95% confidence interval ≥ 0.7, on the validation subsets). Top clusters for prediction included CD68+, E-cad+, CD8a+PD1+, CD206+, and CD163+MMP9+. We conclude that the proposed workflow using primary breast tumor marker data offers the potential to predict BCLM TME characteristics, with the longer term goal to inform personalized immunotherapeutic strategies targeting BCLM. SIGNIFICANCE BCLM tissue characterization to optimize immunotherapy is difficult because biopsies or resections are rarely performed. This study shows that a machine learning approach offers the potential to infer BCLM characteristics from the primary tumor tissue.
Collapse
Affiliation(s)
- Dylan A. Goodin
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Eric Chau
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Junjun Zheng
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, Texas
| | - Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Anjana Tiwari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Yitian Xu
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, Texas
| | - Polly Niravath
- Breast Medical Oncology Faculty, Houston Methodist Cancer Center, Houston, Texas
| | - Shu-Hsia Chen
- Immunomonitoring Core, Center for Immunotherapy Research, Houston Methodist Research Institute, Houston, Texas
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, New York
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas
| | - Hermann B. Frieboes
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
- UofL Health – Brown Cancer Center, University of Louisville, Louisville, Kentucky
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
10
|
Shirima CA, Bleotu C, Spandidos DA, El-Naggar AK, Pircalabioru GG, Michalopoulos I. Epithelial‑derived head and neck squamous tumourigenesis (Review). Oncol Rep 2024; 52:141. [PMID: 39219259 PMCID: PMC11358675 DOI: 10.3892/or.2024.8800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs), a heterogeneous group of cancers that arise from the mucosal epithelia cells in the head and neck areas, present great challenges in diagnosis, treatment and prognosis due to their complex aetiology and various clinical manifestations. Several factors, including smoking, alcohol consumption, oncogenic genes, growth factors, Epstein‑Barr virus and human papillomavirus infections can contribute to HNSCC development. The unpredictable tumour microenvironment adds to the complexity of managing HNSCC. Despite significant advances in therapies, the prediction of outcome after treatment for patients with HNSCC remains poor, and the 5‑year overall survival rate is low due to late diagnosis. Early detection greatly increases the chances of successful treatment. The present review aimed to bring together the latest findings related to the molecular mechanisms of HNSCC carcinogenesis and progression. Comprehensive genomic, transcriptomic, metabolomic, microbiome and proteomic analyses allow researchers to identify important biological markers such as genetic alterations, gene expression signatures and protein markers that drive HNSCC tumours. These biomarkers associated with the stages of initiation, progression and metastasis of cancer are useful in the management of patients with cancer in order to improve their life expectancy and quality of life.
Collapse
Affiliation(s)
- Charles Adolfu Shirima
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, University of Bucharest, 050663 Bucharest, Romania
| | - Coralia Bleotu
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Adel K. El-Naggar
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | | | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Campolo M, Scuderi SA, Filippone A, Bova V, Lombardo SP, Colarossi L, Sava S, Capra AP, De Gaetano F, Portelli M, Militi A, Esposito E, Paterniti I. EZH2 Inhibition to Counteract Oral Cancer Progression through Wnt/β-Catenin Pathway Modulation. Pharmaceuticals (Basel) 2024; 17:1102. [PMID: 39204206 PMCID: PMC11357505 DOI: 10.3390/ph17081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common human malignancies worldwide. The molecular mechanisms of OSCC pathogenesis are still unknown; however, in recent years, several reports have focused on the role of enhancer of zeste homolog 2 (EZH2) in OSCC. Therefore, in this study we aimed to investigate the effects of GSK343, a selective EZH2 inhibitor, and its impact on the signaling pathways in OSCC, using an in vitro and in vivo orthotopic model. In the in vitro model, GSK343 (1, 10, and 25 μM) significantly decreased OSCC cell viability and cell migration through EZH2 inhibition, modulating NF-κB/IκBα pathway activation and eNOS, VEGF, and TGFβ expression, important markers of angiogenesis. In the in vivo model, GSK343 (5 mg/kg and 10 mg/kg) restored tongue tissue architecture and reduced tumor progression through EZH2 inhibition and Wnt/β-catenin signaling pathway modulation. Moreover, GSK343 reduced the expression of inflammatory mediators; eNOS and TGFβ, markers of angiogenesis; and CD31 and CD34, markers of micro vessel density, respectively. In conclusion, our data demonstrate that GSK343 counteracts oral cancer progression through EZH2/Wnt/β-catenin pathway modulation, suggesting that it could be a promising therapeutic approach for OSCC management.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Sofia Paola Lombardo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Serena Sava
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, CT, Italy; (S.P.L.); (L.C.); (S.S.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Marco Portelli
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, ME, Italy; (M.P.); (A.M.)
| | - Angela Militi
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, ME, Italy; (M.P.); (A.M.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, ME, Italy; (M.C.); (S.A.S.); (A.F.); (V.B.); (A.P.C.); (F.D.G.); (I.P.)
| |
Collapse
|
12
|
Schwertner B, Dahdal G, Jagla W, Grossmann L, Drexler K, Krahn MP, Evert K, Berneburg M, Haferkamp S, Ziegler C, Parkinson EK, Zahn G, Mycielska ME, Gaumann A. Expression of the plasma membrane citrate carrier (pmCiC) in human cancerous tissues-correlation with tumour aggressiveness. Front Cell Dev Biol 2024; 12:1308135. [PMID: 39022761 PMCID: PMC11251970 DOI: 10.3389/fcell.2024.1308135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
We have recently shown that cancer cells of various origins take up extracellular citrate through the plasma membrane citrate carrier (pmCiC), a specific plasma membrane citrate transporter. Extracellular citrate is required to support cancer cell metabolism, in particular fatty acid synthesis, mitochondrial activity, protein synthesis and histone acetylation. In addition, cancer cells tend to acquire a metastatic phenotype in the presence of extracellular citrate. Our recent study also showed that cancer-associated stromal cells synthesise and release citrate and that this process is controlled by cancer cells. In the present study, we evaluated the expression of pmCiC, fibroblast activation protein-α (FAP) and the angiogenesis marker cluster of differentiation 31 (CD31) in human cancer tissues of different origins. In the cohort studied, we found no correlation between disease stage and the expression of FAP or CD31. However, we have identified a clear correlation between pmCiC expression in cancer cells and cancer-associated stroma with tumour stage. It can be concluded that pmCiC is increased in cancer cells and in cancer-supporting cells in the tumour microenvironment at the later stages of cancer development, particularly at the metastatic sites. Therefore, pmCiC expression has the potential to serve as a prognostic marker, although further studies are needed.
Collapse
Affiliation(s)
- Barbara Schwertner
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - George Dahdal
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Wolfgang Jagla
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Luis Grossmann
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Konstantin Drexler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Michael P. Krahn
- Medical Cell Biology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Eric K. Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | - Maria E. Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Andreas Gaumann
- Institute of Pathology Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| |
Collapse
|
13
|
Fan C, Xiong F, Zhang S, Gong Z, Liao Q, Li G, Guo C, Xiong W, Huang H, Zeng Z. Role of adhesion molecules in cancer and targeted therapy. SCIENCE CHINA. LIFE SCIENCES 2024; 67:940-957. [PMID: 38212458 DOI: 10.1007/s11427-023-2417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/17/2023] [Indexed: 01/13/2024]
Abstract
Adhesion molecules mediate cell-to-cell and cell-to-extracellular matrix interactions and transmit mechanical and chemical signals among them. Various mechanisms deregulate adhesion molecules in cancer, enabling tumor cells to proliferate without restraint, invade through tissue boundaries, escape from immune surveillance, and survive in the tumor microenvironment. Recent studies have revealed that adhesion molecules also drive angiogenesis, reshape metabolism, and are involved in stem cell self-renewal. In this review, we summarize the functions and mechanisms of adhesion molecules in cancer and the tumor microenvironment, as well as the therapeutic strategies targeting adhesion molecules. These studies have implications for furthering our understanding of adhesion molecules in cancer and providing a paradigm for exploring novel therapeutic approaches.
Collapse
Affiliation(s)
- Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Fang Xiong
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410000, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
| |
Collapse
|
14
|
de Abreu PM, Sol M, Bianchi Molini PR, Daniel CB, Camisasca DR, von Zeidler SV. Immunoexpression of CD44, p16 and VEGF in oral cancer. J Oral Maxillofac Pathol 2024; 28:253-260. [PMID: 39157839 PMCID: PMC11329094 DOI: 10.4103/jomfp.jomfp_195_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/19/2023] [Indexed: 08/20/2024] Open
Abstract
Objectives The aim of the present study was to examine the immunoexpression of CD44, p16 and VEGF in oral squamous cell carcinoma (OSCC) and correlate them to clinicopathological parameters and survival outcomes in order to clarify their prognostic impact. Material and Methods A total of 68 individuals with OSCC recruited between 2011 and 2015 from two referral centres were enrolled in the study. The samples were placed on silanized glass slides and subjected to immunohistochemistry using anti-p16, anti-CD44 and anti-VEGF antibodies. The H Score was used for p16 and VEGF, while CD44 was scored according to the percentage of stained cells. Chi-square tests and Fisher's exact probability tests were used to compare clinicopathological characteristics according to the immunohistochemical expression, while overall survival and disease-free survival were estimated and compared using the Kaplan-Meier method and log-rank test, respectively. For all hypothesis tests, the level of significance was set at P ≤ 0.05. Results No correlation was observed between the expression of tumour VEGF, p16 and CD44, and the clinicopathological characteristics analysed. Patients with high stromal VEGF expression had better disease-free survival than patients with low VEGF expression (P = 0.023). Conclusion In summary, P16, CD44 and tumour VEGF did not prove to be good prognostic biomarkers. Stromal VEGF expression is suggested to be a good candidate prognostic biomarker, although additional studies are needed.
Collapse
Affiliation(s)
| | - Marcella Sol
- Department of Pathology, Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brazil
| | | | - Camila Batista Daniel
- Biotechnology Program, Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brazil
| | | | | |
Collapse
|
15
|
Li C, Zhu Y, Shi S. Effective prognostic risk model with cuproptosis-related genes in laryngeal cancer. Braz J Otorhinolaryngol 2024; 90:101384. [PMID: 38228050 PMCID: PMC10823110 DOI: 10.1016/j.bjorl.2023.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE Laryngeal cancer, characterized by high recurrence rates and a lack of effective biomarkers, has been associated with cuproptosis, a regulated cell death process linked to cancer progression. In this study, we aimed to explore the roles of cuproptosis-related genes in laryngeal cancer and their potential as prognostic markers and therapeutic targets. METHODS We collected comprehensive data from The Cancer Genome Atlas and Gene Expression Omnibus databases, including gene expression profiles and clinical data of laryngeal cancer patients. Using clustering and gene analysis, we identified cuproptosis-related genes with prognostic significance. A risk model was constructed based on these genes, categorizing patients into high- and low-risk groups for outcome comparison. Univariate and multivariate analyses were conducted to identify independent prognostic factors, which were then incorporated into a nomogram. Gene Set Enrichment Analysis was employed to explore pathways distinguishing high- and low-risk groups. RESULTS Our risk model, based on four genes, including transmembrane 2, dishevelled binding antagonist of β-catenin 1, stathmin 2, and G protein-coupled receptor 173, revealed significant differences in patient outcomes between high- and low-risk groups. Independent prognostic factors were identified and integrated into a nomogram, providing a valuable tool for prognostic prediction. Gene Set Enrichment Analysis uncovered up-regulated pathways specifically associated with high-risk patient samples. CONCLUSION This study highlights the potential of cuproptosis-related genes as valuable prognostic markers and promising therapeutic targets in the context of laryngeal cancer. This research sheds light on new avenues for understanding and managing this challenging disease. LEVEL OF EVIDENCE Level 4.
Collapse
Affiliation(s)
- Cong Li
- Shanghai Jiao Tong University School of Medicine, Tongren Hospital, Department of Otorhinolaryngology, Shanghai, China
| | - Yongzhi Zhu
- Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Song Shi
- Shanghai Jiao Tong University School of Medicine, Tongren Hospital, Department of Otorhinolaryngology, Shanghai, China.
| |
Collapse
|
16
|
Heidari F, Saadatmand M, Simorgh S. Directly coaxial bioprinting of 3D vascularized tissue using novel bioink based on decellularized human amniotic membrane. Int J Biol Macromol 2023; 253:127041. [PMID: 37742904 DOI: 10.1016/j.ijbiomac.2023.127041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Despite several progressions in the biofabrication of large-scale engineered tissues, direct biopri nting of perfusable three-dimensional (3D) vasculature remained unaddressed. Developing a feasible method to generate cell-laden thick tissue with an effective vasculature network to deliver oxygen and nutrient is crucial for preventing the formation of necrotic spots and tissue death. In this study, we developed a novel technique to directly bioprint 3D cell-laden prevascularized construct. We developed a novel bioink by mixing decellularized human amniotic membrane (dHAM) and alginate (Alg) in various ratios. The bioink with encapsulated human vein endothelial cells (HUVECs) and a crosslinker, CaCl2, were extruded via sheath and core nozzle respectively to directly bioprint a perfusable 3D vasculature construct. The various concentration of bioink was assessed from several aspects like biocompatibility, porosity, swelling, degradation, and mechanical characteristics, and accordingly, optimized concentration was selected (Alg 4 %w/v - dHAM 0.6 %w/v). Then, the crosslinked bioink without microchannel and the 3D bioprinted construct with various microchannel distances (0, 1.5 mm, 3 mm) were compared. The 3D bioprinted construct with a 1.5 mm microchannels distance demonstrated superiority owing to its 492 ± 18.8 % cell viability within 14 days, excellent tubulogenesis, remarkable expression of VEGFR-2 which play a crucial role in endothelial cell proliferation, migration, and more importantly angiogenesis, and neovascularization. This perfusable bioprinted construct also possess appropriate mechanical stability (32.35 ± 5 kPa Young's modulus) for soft tissue. Taking these advantages into the account, our new bioprinting method possesses a prominent potential for the fabrication of large-scale prevascularized tissue to serve for regenerative medicine applications like implantation, drug-screening platform, and the study of mutation disease.
Collapse
Affiliation(s)
- Faranak Heidari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sara Simorgh
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Mirhaj M, Varshosaz J, Labbaf S, Emadi R, Seifalian AM, Sharifianjazi F, Tavakoli M. Mupirocin loaded core-shell pluronic-pectin-keratin nanofibers improve human keratinocytes behavior, angiogenic activity and wound healing. Int J Biol Macromol 2023; 253:126700. [PMID: 37673152 DOI: 10.1016/j.ijbiomac.2023.126700] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/11/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
In the current study, a core-shell nanofibrous wound dressing based on Pluronic-F127 (F127) containing 2 wt% mupirocin (Mup) core and pectin (Pec)-keratin (Kr) shell was fabricated through coaxial electrospinning technique, and the blended nanofibers were also fabricated from the same materials. The fiber diameter and specific surface area of the blended nanofibers were about 101.56 nm and 20.16 m2/g, while for core-shell nanofibers they were about 97.32 nm and 25.26 m2/g, respectively. The resultant blended and core-shell nanofibers experienced a degradation of 27.65 % and 32.28 % during 7 days, respectively. The drug release profile of core-shell nanofibers revealed a sustained release of Mup over 7 days (87.66 %), while the blended F127-Pec-Kr-Mup nanofibers had a burst release within the first few hours (89.38 % up to 48 h) and a cumulative release of 91.36 % after 7 days. Due to the controlled release of Mup, the core-shell structure significantly improved the human keratinocytes behavior, angiogenic potential and wound healing in a rat model compared to the blended structure. In conclusion, the F127-Mup/Pec-Kr core-shell nanofibrous wound dressing appears to be a promising candidate for the prevention of infection, and can potentially accelerate the recovery and healing of chronic and ischemic wounds.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd, Liberum Health Ltd), London BioScience Innovation Centre, London, United Kingdom
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
18
|
Kim SM, Yoo JY, Hong YH, Lee J, Kim JH, Lee JR. The effect of growth hormone on ovarian function recovery in a mouse model of ovarian insufficiency. Front Endocrinol (Lausanne) 2023; 14:1184977. [PMID: 37854196 PMCID: PMC10579899 DOI: 10.3389/fendo.2023.1184977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023] Open
Abstract
Objectives To evaluate the effects and mechanisms of action of growth hormone (GH) in the recovery of ovarian function in ovarian insufficiency induced by cyclophosphamide (CP) in a mouse model. Materials and methods After inducing ovarian insufficiency by administering 400 mg/kg of CP intraperitoneally to 6-week-old ICR mice, the mice were divided into four groups (control, CP, 1 mg/kg GH, and 2 mg/kg GH) with 10 mice in each group. GH was administered a week later for 7 days. Five mice from each group were sacrificed the next day, and their ovaries were collected for histological examination. The remaining mice were superovulated for in vitro fertilization (IVF). The terminal deoxynucleotidyl transferase dUTP-nick end labeling assay was performed to detect apoptosis. Masson's trichrome staining was used to analyze the degree of fibrosis. To quantify angiogenesis, CD31 immunohistochemistry was performed. Angiogenesis-related gene expression profiles were assessed using quantitative reverse transcription polymerase chain reaction. Results CP induced the loss of non-growing (primordial and primary) follicles while GH significantly protected primordial follicles and increased follicular quality. The CP group showed a decrease in fertilization and blastocyst formation rates in IVF. In contrast, the GH treatment group showed dose-dependent enhanced IVF outcomes. Furthermore, GH treatment decreased apoptosis and stromal fibrosis and increased angiogenesis. Many genes involved in angiogenesis, especially Leptin (Lep), platelet endothelial cell adhesion molecule 1 (Pecam-1), and angiogenin (Ang) were up-regulated in the GH treatment groups. Conclusion GH treatment may promote the recovery of ovarian function in ovarian insufficiency induced by the administration of CP via decreasing apoptosis and stromal fibrosis and upregulating Lep, Pecam-1, and Ang genes.
Collapse
Affiliation(s)
- Su Mi Kim
- Department of Obstetrics and Gynecology, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jung Young Yoo
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Yeon Hee Hong
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Ji Hyang Kim
- Department of Obstetrics and Gynecology, Fertility Center of CHA Bundang Medical Center, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Jung Ryeol Lee
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
19
|
Shi C, Jian C, Wang L, Gao C, Yang T, Fu Z, Wu T. Dendritic cell hybrid nanovaccine for mild heat inspired cancer immunotherapy. J Nanobiotechnology 2023; 21:347. [PMID: 37752555 PMCID: PMC10521411 DOI: 10.1186/s12951-023-02106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer therapeutic vaccine can induce antigen-specific immune response, which has shown great potential in cancer immunotherapy. As the key factor of vaccine, antigen plays a central role in eliciting antitumor immunity. However, the insufficient antigen delivery and low efficiency of antigen presentation by dendritic cells (DCs) have greatly restricted the therapeutic efficiency of vaccine. Here we developed a kind of DC hybrid zinc phosphate nanoparticles to co-deliver antigenic peptide and photosensitive melanin. Owing to the chelating ability of Zn2+, the nanoparticles can co-encapsulate antigenic peptide and melanin with high efficiency. The nanovaccine showed good physiological stability with the hydration particle size was approximately 30 nm, and zeta potential was around - 10 mV. The nanovaccine showed homologous targeting effect to DCs in vivo and in vitro, efficiently delivering antigen to DCs. Meanwhile, the nanovaccine could effectively reflux to the tumor-draining lymph nodes. When combined with near-infrared irradiation, the nanovaccine induced effective mild heat in vitro and in vivo to promote antigen presentation. After administrating to MC38 tumor-bearing mice, the hybrid nanovaccine effectively promoted the maturation of DCs, the expansion of cytotoxic T lymphocytes and helper T cells, and the secretion of immunostimulatory cytokines, thereby significantly inhibiting tumor growth.
Collapse
Affiliation(s)
- Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Yang
- Affiliated Hospital of Yunnan University, Kunming, 650000, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| |
Collapse
|
20
|
Zhou J, Georgas E, Su Y, Zhou J, Kröger N, Benn F, Kopp A, Qin Y, Zhu D. Evolution from Bioinert to Bioresorbable: In Vivo Comparative Study of Additively Manufactured Metal Bone Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302702. [PMID: 37424385 PMCID: PMC10502659 DOI: 10.1002/advs.202302702] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 07/11/2023]
Abstract
Additively manufactured scaffolds offer significant potential for treating bone defects, owing to their porous, customizable architecture and functionalization capabilities. Although various biomaterials have been investigated, metals - the most successful orthopedic material - have yet to yield satisfactory results. Conventional bio-inert metals, such as titanium (Ti) and its alloys, are widely used for fixation devices and reconstructive implants, but their non-bioresorbable nature and the mechanical property mismatch with human bones limit their application as porous scaffolds for bone regeneration. Advancements in additive manufacturing have facilitated the use of bioresorbable metals, including magnesium (Mg), zinc (Zn), and their alloys, as porous scaffolds via Laser Powder Bed Fusion (L-PBF) technology. This in vivo study presents a comprehensive, side-by-side comparative analysis of the interactions between bone regeneration and additively manufactured bio-inert/bioresorbable metal scaffolds, as well as their therapeutic outcomes. The research offers an in-depth understanding of the metal scaffold-assisted bone healing process, illustrating that Mg and Zn scaffolds contribute to the bone healing process in distinct ways, but ultimately deliver superior therapeutic outcomes compared to Ti scaffolds. These findings suggest that bioresorbable metal scaffolds hold considerable promise for the clinical treatment of bone defects in the near future.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Elias Georgas
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Jiayi Zhou
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Nadja Kröger
- Division of Plastic‐Reconstructive‐ and Aesthetic SurgeryUniversity Hospital Cologne50937CologneGermany
| | | | | | - Yi‐Xian Qin
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| | - Donghui Zhu
- Department of Biomedical EngineeringUniversity of Stony BrookStony BrookNY11794USA
| |
Collapse
|
21
|
Sorour OA, Nassar E, Sarhan N, El-Anwar N, ElKholy RA, Tahoon DM, Sweilam A, Tadros D. Chronic sildenafil citrate use decreases retinal vascular endothelial growth factor expression in diabetic rats: a pilot study. Int J Retina Vitreous 2023; 9:42. [PMID: 37460929 PMCID: PMC10351124 DOI: 10.1186/s40942-023-00480-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Sildenafil citrate (SC) attenuates endothelial dysfunction. However, its effects on diabetic retinopathy (DR), which is mainly a microvascular disease, remain unclear. Vascular endothelial growth factor (VEGF) is known to be a critical mediator of DR. Therefore, we investigated the effects of SC on diabetic retina by measuring VEGF levels. METHODS In this study, twenty-eight rats were divided into the following groups: group I, the control group; group II, rats with streptozotocin-induced diabetes; group III, rats with streptozotocin-induced diabetes receiving daily oral sildenafil at 1 mg/kg; and group IV, rats with streptozotocin-induced diabetes receiving high-dose daily sildenafil at 2.5 mg/kg. After 3 months, VEGF was measured in the retina specimen in one eye and the vitreous body in the other eye by immunohistochemistry and enzyme-linked immunosorbent assay, respectively. RESULTS We found that VEGF expression in the retina was low in all rats from groups I and IV and in 30% of rats from group III; 80% of rats in group II demonstrated high VEGF expression in the retinae (P < 0.001). VEGF concentrations in the vitreous body samples were 32 ± 2, 61 ± 4, 44 ± 5, and 36 ± 3 pg/l in groups I-IV, respectively (P < 0.001). CONCLUSION VEGF decreased significantly in the eyes of diabetic rats after chronic oral sildenafil citrate treatment. SC may have a modifying/attenuating effect on DR. However, further studies are needed to evaluate its use as an adjunctive treatment.
Collapse
Affiliation(s)
- Osama A Sorour
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Elsayed Nassar
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Naglaa Sarhan
- Department of Histology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Noha El-Anwar
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Pathology, Armed Forces College of Medicine, Heliopolis, Egypt
| | - Reem A ElKholy
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Pharmacology, School of medicine, Badr University, Badr, Egypt
| | - Dina M Tahoon
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Aalaa Sweilam
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina Tadros
- Department of Ophthalmology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Nalli M, Di Magno L, Wen Y, Liu X, D’Ambrosio M, Puxeddu M, Parisi A, Sebastiani J, Sorato A, Coluccia A, Ripa S, Di Pastena F, Capelli D, Montanari R, Masci D, Urbani A, Naro C, Sette C, Orlando V, D’Angelo S, Biagioni S, Bigogno C, Dondio G, Pastore A, Stornaiuolo M, Canettieri G, Liu T, Silvestri R, La Regina G. Novel N-(Heterocyclylphenyl)benzensulfonamide Sharing an Unreported Binding Site with T-Cell Factor 4 at the β-Catenin Armadillo Repeats Domain as an Anticancer Agent. ACS Pharmacol Transl Sci 2023; 6:1087-1103. [PMID: 37470018 PMCID: PMC10353061 DOI: 10.1021/acsptsci.3c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 07/21/2023]
Abstract
Despite intensive efforts, no inhibitors of the Wnt/β-catenin signaling pathway have been approved so far for the clinical treatment of cancer. We synthesized novel N-(heterocyclylphenyl)benzenesulfonamides as β-catenin inhibitors. Compounds 5-10 showed strong inhibition of the luciferase activity. Compounds 5 and 6 inhibited the MDA-MB-231, HCC1806, and HCC1937 TNBC cells. Compound 9 induced in vitro cell death in SW480 and HCT116 cells and in vivo tumorigenicity of a human colorectal cancer line HCT116. In a co-immunoprecipitation study in HCT116 cells transfected with Myc-tagged T-cell factor 4 (Tcf-4), compound 9 abrogated the association between β-catenin and Tcf-4. The crystallographic analysis of the β-catenin Armadillo repeats domain revealed that compound 9 and Tcf-4 share a common binding site within the hotspot binding region close to Lys508. To our knowledge, compound 9 is the first small molecule ligand of this region to be reported. These results highlight the potential of this novel class of β-catenin inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Marianna Nalli
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Laura Di Magno
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine Sapienza, University of Rome, Viale Regina Elena 291, I-00161 Rome, Italy
| | - Yichao Wen
- Shanghai
Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031 Shanghai, China
| | - Xin Liu
- Department
of Dermatology, Yueyang Hospital of Integrated Traditional Chinese
and Western Medicine, Shanghai University
of Traditional Chinese Medicine, 200437 Shanghai, China
| | - Michele D’Ambrosio
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Michela Puxeddu
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Anastasia Parisi
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Jessica Sebastiani
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Andrea Sorato
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Antonio Coluccia
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Silvia Ripa
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine Sapienza, University of Rome, Viale Regina Elena 291, I-00161 Rome, Italy
| | - Fiorella Di Pastena
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine Sapienza, University of Rome, Viale Regina Elena 291, I-00161 Rome, Italy
| | - Davide Capelli
- CNR—Institute
of Crystallography, Via
Salaria—km 29.300, Monterotondo, 00015 Rome, Italy
| | - Roberta Montanari
- CNR—Institute
of Crystallography, Via
Salaria—km 29.300, Monterotondo, 00015 Rome, Italy
| | - Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168 Rome, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168 Rome, Italy
| | - Chiara Naro
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168 Rome, Italy
- GSTeP-Organoids
Research Core Facility, Fondazione Policlinico
Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Claudio Sette
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168 Rome, Italy
- GSTeP-Organoids
Research Core Facility, Fondazione Policlinico
Universitario A. Gemelli, IRCCS, 00168 Rome, Italy
| | - Viviana Orlando
- Department
of Biology and Biotechnologies “Charles Darwin”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Sara D’Angelo
- Department
of Biology and Biotechnologies “Charles Darwin”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Stefano Biagioni
- Department
of Biology and Biotechnologies “Charles Darwin”, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Chiara Bigogno
- Aphad
SrL, Via della Resistenza
65, 20090 Buccinasco, Italy
| | - Giulio Dondio
- Aphad
SrL, Via della Resistenza
65, 20090 Buccinasco, Italy
| | - Arianna Pastore
- Department
of Pharmacy, University of Naples “Federico
II”, Via Domenico
Montesano, 49, 80131 Naples, Italy
| | - Mariano Stornaiuolo
- Department
of Pharmacy, University of Naples “Federico
II”, Via Domenico
Montesano, 49, 80131 Naples, Italy
| | - Gianluca Canettieri
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Molecular Medicine Sapienza, University of Rome, Viale Regina Elena 291, I-00161 Rome, Italy
| | - Te Liu
- Shanghai
Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031 Shanghai, China
| | - Romano Silvestri
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giuseppe La Regina
- Laboratory
affiliated to Istituto Pasteur Italia—Fondazione Cenci Bolognetti,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| |
Collapse
|
23
|
Moghaddam SJK, Roushandeh AM, Roudkenar MH, Nemati S, Najafi-Ghalehlou N, Pakzad T, Hamidi M. Study of Three Potential Diagnostic Biomarkers in Nasopharyngeal Carcinoma Samples from Guilan, North of Iran. Int Arch Otorhinolaryngol 2023; 27:e461-e470. [PMID: 37564471 PMCID: PMC10411240 DOI: 10.1055/s-0042-1749371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/17/2022] [Indexed: 10/17/2022] Open
Abstract
Introduction Finding biomarkers for highly lethal cancers is a priority. Objective The current study was designed to understand the clinical significance of vascular endothelial growth factor (VEGF), latent membrane protein 1 (LMP1), and tumor necrosis factor-α (TNF-α) expression as the biomarkers, and evaluate their correlation with each other, in nasopharyngeal carcinoma (NPC) in the province of Guilan, North of Iran. Methods Gene expression was evaluated in 25 formalin-fixed paraffin-embedded (FFPE) blocks from cases of confirmed NPC and 20 FFPE samples of non-NPC by quantifying messenger ribonucleic acid (mRNA) and protein levels, using real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) methods, respectively. Furthermore, the correlations among the protein levels of different genes, along with the patients' demographic characteristics were assessed. Results Our findings on mRNA and protein levels demonstrated that the expression of the LMP1 gene in the NPC group was significantly elevated compared with that of the non-NPC group. In addition, the protein levels in the NPC group indicated a positive and significant correlation between LMP1 and VEGF expression. It was noted that both protein and mRNA levels showed no significant differences in the expression of TNF-α and VEGF genes between the NPC and control groups. Furthermore, there was no significant relationship between the expression of these proteins and the demographic characteristics of NPC patients. Conclusion Overall, a significant increase in LMP1 expression was observed in NPC patients, which may serve as a diagnostic biomarker for NPC. Also, LMP1 might be involved in NPC progression by inducing VEGF gene expression.
Collapse
Affiliation(s)
- Saghi Jani Kargar Moghaddam
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadman Nemati
- Otorhinolaryngology Research Center, Faculty of Medicine, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Toofan Pakzad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
24
|
Alessandrini L, Astolfi L, Daloiso A, Sbaraglia M, Mondello T, Zanoletti E, Franz L, Marioni G. Diagnostic, Prognostic, and Therapeutic Role for Angiogenesis Markers in Head and Neck Squamous Cell Carcinoma: A Narrative Review. Int J Mol Sci 2023; 24:10733. [PMID: 37445908 DOI: 10.3390/ijms241310733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Despite refinements to diagnostic and therapeutic approaches over the last two decades, the outcome of patients with head and neck squamous cell carcinoma (HNSCC) has not shown substantial improvements, especially regarding those with advanced-stage disease. Angiogenesis is believed to be a turning point in the development of solid tumors, being a premise for mass growth and potential distant dissemination. Cancer-induced angiogenesis is a result of increased expression of angiogenic factors, decreased expression of anti-angiogenic factors, or a combination of both. The assessment of angiogenesis has also emerged as a potentially useful biological prognostic and predictive factor in HNSCC. The aim of this review is to assess the level of current knowledge on the neo-angiogenesis markers involved in the biology, behavior, and prognosis of HNSCC. A search (between 1 January 2012 and 10 October 2022) was run in PubMed, Scopus, and Web of Science electronic databases. After full-text screening and application of inclusion/exclusion criteria, 84 articles are included. The current knowledge and debate on angiogenesis in HNSCC presented in the eligible articles are stratified as follows: (i) diagnostic markers; (ii) prognostic markers; (iii) predictive markers; and (iv) markers with a potential therapeutic role. Angiogenesis is a biological and pathological indicator of malignancies progression and has negative implications in prognosis of some solid tumors; several signals capable of tripping the "angiogenic switch" have also been identified in HNSCC. Although several studies suggested that antiangiogenic agents might be a valuable adjunct to conventional chemo-radiation of HNSCC, their long-term therapeutic value remains uncertain. Further investigations are required on combinations of antiangiogenic agents with conventional chemotherapeutic ones, immunotherapeutic and molecularly targeted agents in HNSCC. Additional data are necessary to pinpoint which patients could benefit most from these treatments.
Collapse
Affiliation(s)
- Lara Alessandrini
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Laura Astolfi
- Bioacustic Research Laboratory, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Antonio Daloiso
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine (DIMED), University of Padova, 35100 Padova, Italy
| | - Tiziana Mondello
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Elisabetta Zanoletti
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
| | - Leonardo Franz
- Otolaryngology Section, Department of Neuroscience (DNS), University of Padova, 35100 Padova, Italy
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, 25100 Brescia, Italy
| | - Gino Marioni
- Phoniatrics and Audiology Unit, Department of Neuroscience (DNS), University of Padova, 31100 Treviso, Italy
| |
Collapse
|
25
|
Tavakoli M, Mirhaj M, Varshosaz J, Salehi S, Mohanna SM, Salehi S, Haghighi V, Kazemi N, Mehrjoo M, Shahriari-Khalaji M. Asymmetric tri-layer sponge-nanofiber wound dressing containing insulin-like growth factor-1 and multi-walled carbon nanotubes for acceleration of full-thickness wound healing. BIOMATERIALS ADVANCES 2023; 151:213468. [PMID: 37220673 DOI: 10.1016/j.bioadv.2023.213468] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/15/2023] [Accepted: 05/06/2023] [Indexed: 05/25/2023]
Abstract
To more closely resemble the structure of natural skin, multi-layered wound dressings have been developed. Herein, a tri-layer wound dressing was prepared containing a polyacrylamide (PAAm)-Aloe vera (Alo) sponge that had been incorporated with insulin-like growth factor-1 (IGF1) to provide a porous absorbent layer, which was able to promote angiogenesis. Alo nanofibers with multi-walled carbon nanotubes (MWCNT) were electrospun into the bottom layer to increase cell behavior, and a small film of stearic acid was put as a top layer to avoid germy penetration. In comparison to bilayer dressing, the tensile strength increased by 17.0 % (from 0.200 ± 0.010 MPa to 0.234 ± 0.022 MPa) and the elastic modulus by 45.6 % (from 0.217 ± 0.003 MPa to 0.316 ± 0.012 MPa) in the presence of Alo nanofibers containing 0.5 wt% of MWCNT at the bottom layer of Trilayer0.5 dressing. The release profile of IGF1, the antibacterial activity and the degradability of different wound dressings were investigated. Trilayer0.5 indicated the highest cell viability, cell adhesion and angiogenic potential among the prepared dressing materials. In-vivo rat model revealed that the Trilayer0.5 dressing treated group had the highest rate of wound closure and wound healing within 10 days compared to other groups.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Seyedhosein Mirjalili Mohanna
- Department of Mechanical Engineering, Faculty of Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Sepideh Salehi
- Department of Medicine, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Vida Haghighi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Morteza Mehrjoo
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iran National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
26
|
do Valle IB, Oliveira SR, da Silva JM, Peterle GT, Có ACG, Sousa-Neto SS, Mendonça EF, de Arruda JAA, Gomes NA, da Silva G, Leopoldino AM, Macari S, Birbrair A, von Zeidler SV, Diniz IMA, Silva TA. The participation of tumor residing pericytes in oral squamous cell carcinoma. Sci Rep 2023; 13:5460. [PMID: 37015965 PMCID: PMC10073133 DOI: 10.1038/s41598-023-32528-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Pericytes are perivascular cells related to vessel structure and angiogenesis that can interact with neoplastic cells, interfering with cancer progression and outcomes. This study focused on the characterization of pericytes in oral squamous cell carcinoma (OSCC) using clinical samples and a transgenic mouse model of oral carcinogenesis. Nestin-/NG2+ (type-1) and nestin+/NG2+ (type-2) pericytes were analyzed by direct fluorescence after induction of oral carcinogenesis (4-nitroquinoline-1-oxide). Gene expression of neuron glial antigen-2 (NG2), platelet-derived growth factor receptor beta (PDGFR-β), and cluster of differentiation 31 (CD31) was examined in human OSCC tissues. The protein expression of von Willebrand factor and NG2 was assessed in oral leukoplakia (i.e., oral potentially malignant disorders) and OSCC samples. Additionally, clinicopathological aspects and survival data were correlated and validated by bioinformatics using The Cancer Genome Atlas (TCGA). Induction of carcinogenesis in mice produced an increase in both NG2+ pericyte subsets. In human OSCC, advanced-stage tumors showed a significant reduction in CD31 mRNA and von Willebrand factor-positive vessels. Low PDGFR-β expression was related to a shorter disease-free survival time, while NG2 mRNA overexpression was associated with a reduction in overall survival, consistent with the TCGA data. Herein, oral carcinogenesis resulted in an increase in NG2+ pericytes, which negatively affected survival outcomes.
Collapse
Affiliation(s)
- Isabella Bittencourt do Valle
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Sicília Rezende Oliveira
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Janine Mayra da Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Gabriela Tonini Peterle
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Anna Clara Gregório Có
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Sebastião Silvério Sousa-Neto
- Department of Stomatology (Oral Pathology), School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Elismauro Francisco Mendonça
- Department of Stomatology (Oral Pathology), School of Dentistry, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil
| | - Natália Aparecida Gomes
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel da Silva
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alexander Birbrair
- Department of Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Ventorin von Zeidler
- Biotechnology Post-graduation Program, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, room 3105, Belo Horizonte, Minas Gerais, CEP: 31.270-901, Brazil.
| |
Collapse
|
27
|
PDGF and VEGF-releasing bi-layer wound dressing made of sodium tripolyphosphate crosslinked gelatin-sponge layer and a carrageenan nanofiber layer. Int J Biol Macromol 2023; 233:123491. [PMID: 36736985 DOI: 10.1016/j.ijbiomac.2023.123491] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The use of dressings is one of the most common methods for wound treatment. Since most single-layer dressings cannot mimic the hierarchical structure of the skin well, multi-layer dressings have been considered. In this study, a bilayer dressing was fabricated using a gelatin sponge layer cross-linked with sodium tripolyphosphate (Gel-STPP) and a layer of carrageenan nanofibers containing platelet-rich fibrin (Carr-PRF). Chemical interactions between the two layers were characterized by FTIR, and the microstructure was visualized by SEM. It was found that the presence of Carr-PRF nanofiber layer increased tensile strength by 12.96 % (from 0.216 ± 0.015 to 0.268 ± 0.036 MPa) and elastic modulus by 56.70 % (from 0.388 ± 0.072 to 0.608 ± 0.029 MPa) compared to Gel-STPP sponge. Gel-STPP/Carr-PRF wound dressing had a 45.76 ± 4.18 % degradability after 7 days of immersion in phosphate buffered saline (PBS). PRF-containing bilayer wound dressing was able to sustainably release growth factors over 7 days. The Carr-PRF nanofiber layer coated on Gel-STPP sponge was an ideal environment for adhesion and proliferation of L929 cells. Gel-STPP/Carr-PRF bilayer dressing outperformed the other tested samples in terms of angiogenic potential. Average wound closure was 94.21 ± 2.06 % in Gel-STPP/Carr-PRF dressing treated rats after 14 days, and based on the histopathological and immunohistochemical examinations, the Gel-STPP/Carr-PRF dressing group augmented full-thickness wound healing, keratin layer and skin appendages formation after 14 days.
Collapse
|
28
|
Franco PIR, Pereira JX, Ferreira HH, de Menezes LB, Miguel MP. Low-grade mammary gland tumours in dogs have greater VEGF-A and BMP2 immunostaining and higher CD31 blood vessel density. Top Companion Anim Med 2023; 53-54:100778. [PMID: 37011834 DOI: 10.1016/j.tcam.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Tumor angiogenesis is an important process in tumor growth, and different molecules are involved in its regulation including VEGF-A, BMP2, and CD31, which can be considered possible prognostic markers. The aim of this study was to verify whether the VEGF-A and BMP2 immunostaining area, and microvascular density (MVD) might be associated with the degree of malignancy in malignant mammary neoplasms of dogs. For this purpose, samples of mammary malignancies from female dogs embedded in wax were used and separated into four main histomorphological types: tubulopapillary carcinomas, solid, complex, and carcinosarcoma, which were separated based on high and low degrees of malignancy. Immunohistochemical analysis was performed on tissue microarray blocks using anti-CD31 antibodies for evaluation of MVD and vascular lumen area, and with anti-VEGF-A and anti-BMP2 to determine the immunostaining area using the DAKO EnVision™ FLEX+ kit. MVD and vascular lumen area were higher in tubulopapillary carcinomas as were the areas stained by VEGF-A and BMP2. Immunostaining for CD31 was higher in low-grade carcinomas as well as in areas immunostained by VEGF-A and BMP2. There was a positive correlation between VEGF and BMP2 in high (r = 0.556, p < 0.0001) and low-grade (r = 0.287, p<0.0001) carcinomas and between MVD and VEGF-A in low-grade carcinomas (r = 0.267, p = 0.0064). Thus, the markers evaluated showed greater immunostaining in canine mammary tumors with a lower degree of malignancy.
Collapse
|
29
|
Elseweidy MM, Ali SI, Shaheen MA, Abdelghafour AM, Hammad SK. Vanillin and pentoxifylline ameliorate isoproterenol-induced myocardial injury in rats via the Akt/HIF-1α/VEGF signaling pathway. Food Funct 2023; 14:3067-3082. [PMID: 36917190 DOI: 10.1039/d2fo03570g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Myocardial infarction (MI) is a major health problem associated with high morbidity and mortality. Recently, angiogenesis has emerged as a novel therapeutic approach against ischemic diseases including MI. Therefore, we aimed to investigate the potential angiogenic effects of vanillin (Van) both alone and in combination with pentoxifylline (PTX), and to examine the molecular mechanisms through which Van and PTX may ameliorate cardiac injury induced in rats including their effects on oxidative stress, inflammation and apoptosis which play a key role in MI pathogenesis. MI was induced in rats using isoproterenol (ISO) (150 mg kg-1, SC, twice at a 24 h interval). Then, rats were treated orally with Van (150 mg kg-1 day-1), PTX (50 mg kg-1 day-1) or Van + PTX combination. ISO-induced cardiac injury was characterized by cardiac hypertrophy, ST-segment elevation and elevated serum levels of troponin-I, creatine kinase-MB and lactate dehydrogenase. Cardiac levels of the antioxidant markers GSH and SOD and the antiapoptotic protein Bcl-2 were decreased. On the other hand, cardiac levels of the oxidative stress marker malonaldehyde, the inflammatory cytokines TNF-α, IL-6 and IL-1β, the proapoptotic protein Bax, and caspase-3 were increased. Moreover, the cardiac levels of p-Akt and HIF-1α and the mRNA expression levels of the angiogenic genes VEGF, FGF-2 and ANGPT-1 were increased. Treatment with either Van or PTX ameliorated ISO-induced changes and further upregulated Akt/HIF-1α/VEGF signaling. Furthermore, Van + PTX combination was more effective than monotherapy. These findings suggest a novel therapeutic potential of Van and PTX in ameliorating MI through enhancing cardiac angiogenesis and modulating oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa M Abdelghafour
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sally K Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
30
|
Pamuk AE, Gedik ME, Sutay Suslu N, Gunaydin G. Candidate Angiogenesis-Related Biomarkers in Patients with Laryngeal Carcinoma (AngLaC): A Prospective Cohort Study. Otolaryngol Head Neck Surg 2023; 168:1433-1442. [PMID: 36939422 DOI: 10.1002/ohn.219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/02/2022] [Accepted: 11/19/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Angiogenesis is indeed a vital process in the progression of carcinomas, including that of larynx. Therefore, this study (AngLaC) aimed to identify candidate angiogenesis-related biomarkers in laryngeal carcinoma patients. STUDY DESIGN Prospective controlled cohort study. SETTING Tertiary referral center. METHODS In silico analyses of angiogenesis-related genes in laryngeal carcinoma were performed to determine candidate biomarkers. Serum levels of candidate biomarkers were determined via enzyme-linked immunosorbent assay in laryngeal carcinoma patients as well as in an age and gender-matched control group. The associations of the biomarkers with clinical parameters were investigated. RESULTS The study included 60 laryngeal carcinoma patients and 20 healthy controls. The serum levels of osteopontin, IGFBP-3, VEGF, sVEGFR-1, and VEGFR-2 were significantly higher in the patient group (p < .001, p ≤ .001, p < .001, p < .01, p < .01, respectively). High osteopontin and sVEGFR-1 levels were associated with locoregional-recurrence (p = .024, p = .016, respectively). IGFBP-3 had the highest diagnostic sensitivity (81.4%) and specificity (80%) among the molecules that were investigated (p < .001). High sVEGFR-1 and low VEGFR-2 levels were associated with poor overall-survival (p = .037, p = .027, respectively). High osteopontin and sVEGFR-1 levels were associated with poor disease-specific survival rates (p = .035, p = .018, respectively). CONCLUSION High serum levels of sVEGFR-1 and osteopontin as well as low serum levels of VEGFR-2 proved to be poor prognostic in terms of survival in laryngeal carcinoma. VEGF, sVEGFR1, VEGFR2, IGFBP-3, and osteopontin levels were found to be significantly increased in larynx cancer patients compared to the normal population. Further studies on osteopontin and sVEGFR-1 are required in order to determine their associations with recurrence.
Collapse
Affiliation(s)
- A Erim Pamuk
- Department of Otorhinolaryngology, Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey
| | - M Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| | - Nilda Sutay Suslu
- Department of Otorhinolaryngology, Hacettepe University School of Medicine, Sihhiye, Ankara, Turkey
| | - Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Sihhiye, Ankara, Turkey
| |
Collapse
|
31
|
Lin YY, Lee SY, Cheng YJ. Low-Level Laser Therapy Induces Melanoma Tumor Growth by Promoting Angiogenesis. Life (Basel) 2023; 13:life13020320. [PMID: 36836677 PMCID: PMC9962383 DOI: 10.3390/life13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
The effects of low-level laser therapy (LLLT) on tumor growth are inconsistent. In this study, we investigated the effects of LLLT on melanoma tumor growth and angiogenesis. C57/BL6 mice were challenged with B16F10 melanoma cells and treated with LLLT for 5 consecutive days; untreated mice were used as controls. Tumor weight, angiogenesis, immunohistochemistry, and protein levels were compared between the treated and untreated mice. In an in vitro experiment, B16F10 cells were treated with LLLT. Proteins were extracted and subjected to Western blot analysis for analyzing signaling pathways. Compared with the findings in the untreated mice, tumor weight substantially increased in the treated mice. Both immunohistochemical and Western blot analyses revealed markedly increased levels of CD31, a biomarker of vascular differentiation, in the LLLT group. In B16F10 cells, LLLT considerably induced the phosphorylation of extracellular signal-regulated kinase (ERK), which, in turn, phosphorylated p38 mitogen-activated protein kinase (MAPK). Furthermore, LLLT induced the expression of vascular endothelial growth factor, but not hypoxia-inducible factor-1α, through the ERK/p38 MAKP signaling pathways. Our findings indicate that LLLT induces melanoma tumor growth by promoting angiogenesis. Therefore, it should be avoided in patients with melanoma.
Collapse
Affiliation(s)
- Yi-Yuan Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
| | - Shin-Yi Lee
- General Education Center, China Medical University, Taichung 406, Taiwan
- Foreign Language Center, Feng Chia University, Taichung 407, Taiwan
| | - Yu-Jung Cheng
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung 406, Taiwan
- Department of Rehabilitation, China Medical University Hospital, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-422053366 (ext. 7308)
| |
Collapse
|
32
|
Mao N, Wu X, Wang C, Mao H, Wei J. Effect of Moxibustion Combined With Cisplatin on Tumor Microenvironment Hypoxia and Vascular Normalization in Lewis Lung Cancer Mice. Integr Cancer Ther 2023; 22:15347354231198195. [PMID: 37694878 PMCID: PMC10498697 DOI: 10.1177/15347354231198195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023] Open
Abstract
PURPOSE This study was developed to evaluate the effects of moxibustion on tumor microenvironmental hypoxia in a murine model of Lewis lung carcinoma (LLC). METHODS Twenty-four tumor-bearing mice were randomized into tumor group (T), tumor + cisplatin group (TC), tumor + moxibustion group (TM), and tumor + cisplatin + moxibustion group (TMC) (n = 6/group). Six age-matched C57BL/6 mice were employed as control group (Ctrl). A tumor model was established by implanting LLC cells into the right flank of each mouse. Animals in the TM group received moxibustion treatment at the ST36 (bilateral) and GV4 acupoints on the day of visible tumor formation. Moxibustion treatment was performed every other day for a total of 7 sessions. Animals in the TC group were intraperitoneally injected with cisplatin (3 mg/kg) on day 3 after visible tumor formation, and this treatment was performed every 3 days for 4 times. Animals in the TMC group underwent combined moxibustion and chemotherapy treatment, following the same conditions as outlined above. Following treatment, the concentrations of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), CD31, and Ki67 were measured using ELISA, Western blot, and immunohistochemical staining. RESULTS Compared to the tumor group, treatment in the TM, TC, and TCM groups resulted in varying reductions in tumor growth (P < .001 or P < .05), while tumor microenvironmental hypoxia was alleviated as evidenced by the downregulation of HIF-1α, VEGFA, and CD31(P < .001-P < .05). CONCLUSION Our results suggest that a combined approach of moxibustion and cisplatin can alleviate intratumoral hypoxia, promote vascular normalization, and slow the growth of LLC tumors in mice.
Collapse
Affiliation(s)
- Ni Mao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaofeng Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huijuan Mao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianzi Wei
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
33
|
Puxeddu M, Wu J, Bai R, D’Ambrosio M, Nalli M, Coluccia A, Manetto S, Ciogli A, Masci D, Urbani A, Fionda C, Coni S, Bordone R, Canettieri G, Bigogno C, Dondio G, Hamel E, Liu T, Silvestri R, La Regina G. Induction of Ferroptosis in Glioblastoma and Ovarian Cancers by a New Pyrrole Tubulin Assembly Inhibitor. J Med Chem 2022; 65:15805-15818. [PMID: 36395526 PMCID: PMC9743090 DOI: 10.1021/acs.jmedchem.2c01457] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We synthesized new aroyl diheterocyclic pyrrole (ARDHEP) 15 that exhibited the hallmarks of ferroptosis. Compound 15 strongly inhibited U-87 MG, OVCAR-3, and MCF-7 cancer cells, induced an increase of cleaved PARP, but was not toxic for normal human primary T lymphocytes at 0.1 μM. Analysis of the levels of lactoperoxidase, malondialdehyde, lactic acid, total glutathione, and ATP suggested that the in vivo inhibition of cancer cell proliferation by 15 went through stimulation of oxidative stress injury and Fe2+ accumulation. Quantitative polymerase chain reaction analysis of the mRNA expression in U-87 MG and SKOV-3 tumor tissues from 15-treated mice showed the presence of Ptgs2/Nfe2l2/Sat1/Akr1c1/Gpx4 genes correlated with ferroptosis in both groups. Immunofluorescence staining revealed significantly lower expressions of proteins Ki67, CD31, and ferroptosis negative regulation proteins glutathione peroxidase 4 (GPX4) and FTH1. Compound 15 was found to be metabolically stable when incubated with human liver microsomes.
Collapse
Affiliation(s)
- Michela Puxeddu
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Jianchao Wu
- Shanghai
Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031Shanghai, China
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland21702, United States
| | - Michele D’Ambrosio
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Marianna Nalli
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Antonio Coluccia
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Simone Manetto
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Alessia Ciogli
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy
| | - Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168Rome, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of the Sacred
Heart, Largo Francesco
Vito 1, 00168Rome, Italy
| | - Cinzia Fionda
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Molecular Medicine, Sapienza
University of Rome, Viale Regina Elena 291, 00161Rome, Italy
| | - Sonia Coni
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Molecular Medicine, Sapienza
University of Rome, Viale Regina Elena 291, 00161Rome, Italy
| | - Rosa Bordone
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Molecular Medicine, Sapienza
University of Rome, Viale Regina Elena 291, 00161Rome, Italy
| | - Gianluca Canettieri
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Molecular Medicine, Sapienza
University of Rome, Viale Regina Elena 291, 00161Rome, Italy
| | - Chiara Bigogno
- Aphad
SrL, Via della Resistenza
65, 20090Buccinasco, Italy
| | - Giulio Dondio
- Aphad
SrL, Via della Resistenza
65, 20090Buccinasco, Italy
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Treatment and Diagnosis, Frederick National Laboratory for
Cancer Research, National Cancer Institute,
National Institutes of Health, Frederick, Maryland21702, United States
| | - Te Liu
- Shanghai
Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, 200031Shanghai, China,
| | - Romano Silvestri
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy,
| | - Giuseppe La Regina
- Laboratory
Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation,
Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Rome, Italy,
| |
Collapse
|
34
|
Folic MM, Banko AV, Todorovic VN, Puskas NS, Milovanovic JP, Krejovic SB, Dragicevic-Babic NZ, Bukumiric ZM, Milicic BR, Jotic AD, Djukic VB. The Expression of Hypoxia-Related Biomarkers: A Significance of HIF-1α C1772T Polymorphism as Predictor of Laryngeal Carcinoma Relapse. Cancer Control 2022; 29:10732748221144457. [PMID: 36469955 PMCID: PMC9730002 DOI: 10.1177/10732748221144457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The association between the expression of HIF-1α in the laryngeal carcinoma and the prognosis of disease is quite well documented, but the significance of HIF-1α C1772T polymorphism and its relation to disease phenotype have to be clarified. The aim of this study was to investigate the influence of C1772T polymorphism on the clinical-pathological characteristics and disease-free survival after initial surgical treatment of patients with laryngeal carcinoma. MATERIALS AND METHODS The prospective cohort study included 65 patients with laryngeal carcinoma. Two representative tumor tissue specimens were taken in each patient during surgery; 1 specimen was used to asses HIF-1α C1772T polymorphism and the other 1 to determine the immunohistochemical expression of HIF-1α, VEGF, as well as CD 34 proteins. The comparison of polymorphism frequency between study and control population was conducted by collecting a 5 mL of peripheral venous blood samples in each subject. RESULTS Clinicopathological characteristics of laryngeal carcinoma didn't affect the expression of hypoxia-related biomarkers, such as HIF-1α, VEGF or MVD. The statistically significant association between HIF-1α and VEGF expression was found (P = .034), but not between HIF-1α expression and MVD value (P = .696). The expression of HIF-1α was significantly higher among CT heterozygotes (P = .029). We found a significantly more recurrence among CT heterozygotes compared with patients with CC homozygous alleles (57.10% and 24.30%, respectively; P = .007). Patients with C1772T polymorphic variants had significantly worse disease-free survival compared with patients without polymorphism (Log-rank test, P = .007). CONCLUSION HIF-1α C1772T polymorphism was significantly associated with worse disease-free survival which nominates it as a predictor of laryngeal carcinoma relapse. The preoperative assessment of hypoxia-related biomarkers should be used in everyday practice in order to determine the treatment modalities for laryngeal carcinoma.
Collapse
Affiliation(s)
- Miljan M. Folic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Centre of Serbia, Belgrade, Serbia,Miljan M. Folic, MD, PhD, Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Centre of Serbia, 2 Pasterova Street, Belgrade 11000, Serbia.
| | - Ana V. Banko
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Institute of Microbiology and Immunology, Belgrade, Serbia
| | - Vera N. Todorovic
- Department of Histology and Embryology, School of Medicine of University of Zenica, Zenica, Bosnia and Herzegovina
| | - Nela S. Puskas
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Institute of Histology and Embryology “Prof. Dr Aleksandar Dj. Kostic”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovica P. Milovanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Sanja B. Krejovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Neda Z. Dragicevic-Babic
- Center for Rare Diseases – Reference Center Northern Bavaria (ZESE), University Hospital Wuerzburg, Wurzburg, Germany
| | - Zoran M. Bukumiric
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Department of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana R. Milicic
- Statistics and Informatics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | - Ana D. Jotic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Vojko B. Djukic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia,Clinic for Otorhinolaryngology and Maxillofacial Surgery, University Clinical Centre of Serbia, Belgrade, Serbia
| |
Collapse
|
35
|
Cyclic Hypoxia Induces Transcriptomic Changes in Mast Cells Leading to a Hyperresponsive Phenotype after FcεRI Cross-Linking. Cells 2022; 11:cells11142239. [PMID: 35883682 PMCID: PMC9319477 DOI: 10.3390/cells11142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Mast cells (MCs) play important roles in tumor development, executing pro- or antitumoral functions depending on tumor type and tumor microenvironment (TME) conditions. Cyclic hypoxia (cyH) is a common feature of TME since tumor blood vessels fail to provide a continuous supply of oxygen to the tumor mass. Here, we hypothesized that the localization of MCs in cyH regions within solid tumors could modify their transcriptional profile and activation parameters. Using confocal microscopy, we found an important number of MCs in cyH zones of murine melanoma B16-F1 tumors. Applying microarray analysis to examine the transcriptome of murine bone-marrow-derived MCs (BMMCs) exposed to interleaved cycles of hypoxia and re-oxygenation, we identified altered expression of 2512 genes. Functional enrichment analysis revealed that the transcriptional signature of MCs exposed to cyH is associated with oxidative phosphorylation and the FcεRI signaling pathway. Interestingly, FcεRI-dependent degranulation, calcium mobilization, and PLC-γ activity, as well as Tnf-α, Il-4, and Il-2 gene expression after IgE/antigen challenge were increased in BMMCs exposed to cyH compared with those maintained in normoxia. Taken together, our findings indicate that cyH causes an important phenotypic change in MCs that should be considered in the design of inflammation-targeted therapies to control tumor growth.
Collapse
|
36
|
Ruiter LN, van Dijk BAC, Bruggink AH, Doornaert PAH, Philippens MEP, de Bree R, van Gils CH, Willems SM. Association of histological features with laryngeal squamous cell carcinoma recurrences: a population-based study of 1502 patients in the Netherlands. BMC Cancer 2022; 22:444. [PMID: 35459142 PMCID: PMC9034596 DOI: 10.1186/s12885-022-09533-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022] Open
Abstract
Background Recurrences remain an important problem in laryngeal squamous cell carcinoma. Little has been described about histological characteristics of the primary laryngeal tumor that may be associated with recurrences. Identifying risk factors for recurrences might help in adapting treatment or follow-up. Using real-life population-based data, we aimed to identify histological features of the primary tumor associated with recurrences and overall survival. Material and methods Demographic, clinical and treatment information on all first primary invasive laryngeal tumors diagnosed in 2010–2014 (N = 3705) were extracted from the population-based nationwide Netherlands cancer registry (NCR) and linked to PALGA, the nationwide Dutch pathology registry, to obtain data on histological factors and recurrences. For a random 1502 patients histological information i.e., keratinization, perineural invasion (PNI+), vascular invasion (VI+), growth pattern, degree of differentiation, extracapsular spread (ECS+), cartilage- and bone invasion and extralaryngeal extension, was manually extracted from narrative pathology reports and analyzed for locoregional recurrence and overall survival using cox regression analysis. Results In total, 299 patients developed a locoregional recurrence and 555 patients died. Keratinization (HR = 0.96 (95%CI: 0.68–1.34) p = 0.79), two or three adverse characteristics (PNI+, VI+, non-cohesive growth) (HR = 1.38 (95% CI: 0.63–3.01) p = 0.42), and ECS+ (HR = 1.38 (95% CI: 0.48–4.02) p = 0.55) were not associated to recurrence. For death, also no significant association was found. Conclusion In this population-based real-life dataset on laryngeal carcinoma in the Netherlands, histological factors were not associated with locoregional recurrences or overall survival, but future studies should investigate the role of these features in treatment decisions. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09533-0.
Collapse
Affiliation(s)
- Lilian N Ruiter
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.
| | - Boukje A C van Dijk
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht, the Netherlands.,Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annette H Bruggink
- Nationwide Network and Registry of Histo- and Cytopathology in the Netherlands (PALGA Foundation), De Bouw 123, Houten, 3991 SZ, the Netherlands
| | - Patricia A H Doornaert
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Marielle E P Philippens
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Carla H van Gils
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands
| | - Stefan M Willems
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, the Netherlands.,Present address: Department of Pathology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, 9713 GZ, the Netherlands
| |
Collapse
|
37
|
Ren P, Niu X, Zhao R, Liu J, Ren W, Dai H, Chen J, Yan J, Li B, Shao Y, Bai Y, Han P. Long non-coding RNA AGAP2-AS1 promotes cell proliferation and invasion through regulating miR-193a-3p/LOXL4 axis in laryngeal squamous cell carcinoma. Cell Cycle 2022; 21:697-707. [PMID: 35113007 PMCID: PMC8973330 DOI: 10.1080/15384101.2021.2016197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is an aggressive malignancy with highly mortality rate. Long non-coding RNA (lncRNA) AGAP2-AS1 is an identified oncogene in several types of cancers. However, the role of AGAP2-AS1 in LSCC remains unclear. The expression levels of AGAP2-AS1 in LSCC tissues and cell lines were measured using qRT-PCR. AGAP2-AS1 was knocked down in LSCC cells through transfection with siRNA-AGAP2-AS1. Cell proliferation and invasion were detected using MTT and transwell assays. Dual-luciferase reporter gene assay was performed to confirm the interaction with AGAP2-AS1 and downstream genes. Our results showed that AGAP2-AS1 expression was remarkably increased in human LSCC tissues and cell lines. Knockdown of AGAP2-AS1 significantly inhibited the proliferation and invasion of LSCC cells. In addition, AGAP2-AS1 sponged miR-193a-3p and regulated its expression in LSCC cells. Inhibition of miR-193a-3p reversed the effects of AGAP2-AS1 knockdown on LSCC cells. Furthermore, Lysyl oxidase-like 4 (LOXL4) was a target gene of miR-193a-3p and the role of miR-193a-3p was mediated by LOXL4. In conclusion, these findings suggest that knockdown of AGAP2-AS1 inhibited the proliferation and invasion of LSCC cells through regulating the miR-193a-3p/LOXL4 axis.
Collapse
Affiliation(s)
- Pengyu Ren
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China,Department of Neurosurgery, Second Affiliated Hospital of Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Xiaorong Niu
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Ruimin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Junsong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Wanli Ren
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Hao Dai
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Jiayu Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Jinfeng Yan
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Baiya Li
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Yuan Shao
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China
| | - Yanxia Bai
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China,CONTACT Yanxia Bai
| | - Peng Han
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi, China,Peng Han Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an, Shaanxi710061, China
| |
Collapse
|
38
|
Rodoplu D, Matahum JS, Hsu CH. A microfluidic hanging drop-based spheroid co-culture platform for probing tumor angiogenesis. LAB ON A CHIP 2022; 22:1275-1285. [PMID: 35191460 DOI: 10.1039/d1lc01177d] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-culturing of embryoid bodies (EBs) and tumor spheroids (TSs) allows mimicking tumor angiogenesis in vitro. Here, we report a microfluidic hanging drop-based spheroid co-culture device (μ-CCD) that permits the generation and co-culturing of EBs and TSs using a simple manual operation procedure and setup. In brief, uniform-sized EBs and TSs can be generated on the device in eight pairs of hanging droplets from adjacent microfluidic channels, followed by the confrontation of EB and TS pairs by merging the droplet pairs to culture the EB-TS spheroids to investigate tumor-induced angiogenic sprouting. The physical parameters of the device were optimized to maintain the long-term stability of hanging droplets for up to ten days. The mouse embryonic stem cell line ES-D3 and breast cancer cell lines MDA-MB-231 and MCF-7 were used to generate EBs, invasive TSs, and non-invasive TSs respectively. Confocal imaging results showed that the vessel percentage area and total vessel length which are linked to tumor angiogenesis increased after 6 days of co-culturing. An anti-angiogenesis drug testing on the co-cultured EB-TS spheroids was also demonstrated in the device. The μ-CCD provides a simple yet high-efficiency method to generate and co-culture cell spheroids and may also be useful for other applications involving spheroid co-culturing.
Collapse
Affiliation(s)
- Didem Rodoplu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Jefunnie Sierra Matahum
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
| | - Chia-Hsien Hsu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Miaoli, 35053, Taiwan.
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan
- Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
39
|
Jayathilake AG, Kadife E, Kuol N, Luwor RB, Nurgali K, Su XQ. Krill oil supplementation reduces the growth of CT-26 orthotopic tumours in Balb/c mice. BMC Complement Med Ther 2022; 22:34. [PMID: 35120511 PMCID: PMC8817584 DOI: 10.1186/s12906-022-03521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/25/2022] [Indexed: 12/09/2022] Open
Abstract
Background We have previously reported that the free fatty acid extract (FFAE) of krill oil (KO) significantly inhibits the proliferation and migration, and induces apoptosis of colorectal cancer (CRC) cells. This study aimed to investigate the in vivo efficacy of various doses of KO supplementation on the inhibition of CRC tumour growth, molecular markers of proliferation, angiogenesis, apoptosis, the epidermal growth factor receptor (EGFR) and its downstream molecular signalling. Methods Male Balb/c mice were randomly divided into four groups with five in each group. The control (untreated) group received standard chow diet; and other three groups received KO supplementation at 5%, 10%, and 15% of their daily dietary intake respectively for three weeks before and after the orthotopic implantation of CT-26 CRC cells in their caecum. The expression of cell proliferation marker Ki-67 and angiogenesis marker CD-31 were assessed by immunohistochemistry. The expression of EGFR, phosphorylated EGFR (pEGFR), protein kinase B (AKT), pAKT, extracellular signal-regulated kinase (ERK1/2), pERK1/2, cleaved caspase-7, cleaved poly (ADP-ribose) polymerase (PARP), and DNA/RNA damage were determined by western blot. Results KO supplementation reduced the CRC tumour growth in a dose-dependent manner; with 15% of KO being the most effective in reduction of tumour weight and volume (68.5% and 68.3% respectively, P < 0.001), inhibition of cell proliferation by 69.9% (P < 0.001) and microvessel density by 72.7% (P < 0.001). The suppressive effects of KO on EGFR and its downstream signalling, ERK1/2 and AKT, were consistent with our previous in vitro observations. Furthermore, KO exhibited pro-apoptotic effects on tumour cells as indicated by an increase in the expression of cleaved PARP by 3.9-fold and caspase-7 by 8.9-fold. Conclusions This study has demonstrated that KO supplementation reduces CRC tumour growth by inhibiting cancer cell proliferation and blood vessel formation and inducing apoptosis of tumour cells. These anti-cancer effects are associated with the downregulation of the EGFR signalling pathway and activation of caspase-7, PARP cleavage, and DNA/RNA damage. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03521-4.
Collapse
Affiliation(s)
| | - Elif Kadife
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia
| | - Nyanbol Kuol
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia
| | - Rodney Brain Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia.,Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Sciences (AIMSS), Melbourne, Australia
| | - Xiao Qun Su
- Institute for Health and Sport, Victoria University, Melbourne, 8001, Australia.
| |
Collapse
|
40
|
Rios-Colon L, Kumar P, Kim S, Sharma M, Su Y, Kumar A, Singh S, Stocks N, Liu L, Joshi M, Schlaepfer IR, Kumar D, Deep G. Carnitine Palmitoyltransferase 1 Regulates Prostate Cancer Growth under Hypoxia. Cancers (Basel) 2021; 13:cancers13246302. [PMID: 34944922 PMCID: PMC8699124 DOI: 10.3390/cancers13246302] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Cancer cell survival in hypoxia areas, with low oxygen and food supply as well as abundant waste material, is critical to their aggressiveness and associated with disease relapse and mortality. Therefore, it is vital to understand the molecular regulators of cancer cell survival under these harsh physiological conditions. In the present study, we assessed the role of a mitochondrial protein carnitine palmitoyltransferase (CPT1A) in regulating prostate cancer (PCa) cell survival and proliferation under hypoxic conditions in both cell culture and animal models. The results showed that CPT1A expression in PCa cells is key to their survival and proliferation in the hypoxic tumor microenvironment. These results have high translational significance in improving cancer prognosis and therapy. Abstract Hypoxia and hypoxia-related biomarkers are the major determinants of prostate cancer (PCa) aggressiveness. Therefore, a better understanding of molecular players involved in PCa cell survival under hypoxia could offer novel therapeutic targets. We previously reported a central role of mitochondrial protein carnitine palmitoyltransferase (CPT1A) in PCa progression, but its role in regulating PCa survival under hypoxia remains unknown. Here, we employed PCa cells (22Rv1 and MDA-PCa-2b) with knockdown or overexpression of CPT1A and assessed their survival under hypoxia, both in cell culture and in vivo models. The results showed that CPT1A knockdown in PCa cells significantly reduced their viability, clonogenicity, and sphere formation under hypoxia, while its overexpression increased their proliferation, clonogenicity, and sphere formation. In nude mice, 22Rv1 xenografts with CPT1A knockdown grew significantly slower compared to vector control cells (~59% reduction in tumor volume at day 29). On the contrary, CPT1A-overexpressing 22Rv1 xenografts showed higher tumor growth compared to vector control cells (~58% higher tumor volume at day 40). Pathological analyses revealed lesser necrotic areas in CPT1A knockdown tumors and higher necrotic areas in CPT1A overexpressing tumors. Immunofluorescence analysis of tumors showed that CPT1A knockdown strongly compromised the hypoxic areas (pimonidazole+), while CPT1A overexpression resulted in more hypoxia areas with strong expression of proliferation biomarkers (Ki67 and cyclin D1). Finally, IHC analysis of tumors revealed a significant decrease in VEGF or VEGF-D expression but without significant changes in biomarkers associated with microvessel density. These results suggest that CPT1A regulates PCa survival in hypoxic conditions and might contribute to their aggressiveness.
Collapse
Affiliation(s)
- Leslimar Rios-Colon
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;
| | - Pawan Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
- Division of Pathology, ICAR—Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Susy Kim
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Mitu Sharma
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Yixin Su
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Ashish Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Nalexus Stocks
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
| | - Liang Liu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | - Molishree Joshi
- Functional Genomics Facility, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Isabel R. Schlaepfer
- Division of Medical Oncology, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA;
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA; (L.R.-C.); (P.K.); (S.K.); (M.S.); (Y.S.); (A.K.); (S.S.); (N.S.); (L.L.)
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
- Correspondence: ; Tel.: +336-716-9363
| |
Collapse
|
41
|
Lou P, Liu S, Wang Y, Pan C, Xu X, Zhao M, Liao G, Yang G, Yuan Y, Li L, Zhang J, Chen Y, Cheng J, Lu Y, Liu J. Injectable self-assembling peptide nanofiber hydrogel as a bioactive 3D platform to promote chronic wound tissue regeneration. Acta Biomater 2021; 135:100-112. [PMID: 34389483 DOI: 10.1016/j.actbio.2021.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Chronic wounds remain a worldwide clinical challenge, and bioactive materials that can promote skin regeneration are required. Self-assembling peptide (SAP) hydrogels have shown great potential in tissue repair, but their regenerative efficacy and possible mechanism in chronic wound healing are unclear. Here, we report an SAP (KGH) that enhances extracellular matrix (ECM) remodeling and angiogenesis, thereby promoting chronic wound healing in diabetic mice. In vivo, the KGH hydrogel was retained in wounds up to 7 days after injection, and it was effective in speeding up wound closure by ∼20% compared to the control groups and enhancing angiogenesis (e.g., VEGFA, CD31+ capillaries), cell proliferation (e.g., PCNA+ cells), formation of granulation tissue (e.g., α-SMA), and ECM deposition/remodeling (e.g., collagen I, fibronectin). In vitro, the KGH hydrogel created a 3D microenvironment for skin cells, maintained the sustained growth of cell spheroids, and increased the secretion of ECM proteins (e.g., laminin) and growth factors (e.g., PDGFB, VEGFA, and TGF-β) in skin keratinocytes compared to the conventional 2D culture. Mechanistically, the KGH hydrogel might promote wound tissue regeneration by activating the Rho/ROCK and TGF-β/MEK/MAPK pathways. As a type of designed material, SAP can be further re-engineered with biological motifs, therapeutic reagents, or stem cells to enhance skin regeneration. This study highlights that SAP hydrogels are a promising material platform for advanced chronic wound healing and might have translational potential in future clinical applications. STATEMENT OF SIGNIFICANCE: Chronic wounds are a common and serious health issue worldwide, and bioactive dressing materials are required to address this issue. SAP hydrogels have shown certain tissue repair potential, but their regenerative efficacy and underlying mechanism in chronic wound healing remain elusive. Herein, we report that SAP hydrogels create a native 3D microenvironment that can remarkably stimulate angiogenesis and ECM remodeling in diabetic wounds. Mechanistically, the SAP hydrogel promoted ECM proteins and GFs secretion in skin cells through the activation of the Rho/ROCK and TGF-ß/MEK/MAPK pathways. Additionally, SAP can be readily engineered with various bioactive motifs or therapeutic drugs/cells. This work highlights SAP hydrogels as a promising biomaterial platform for chronic wound healing and the regeneration of many other tissues.
Collapse
Affiliation(s)
- Peng Lou
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Yizhuo Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Cheng Pan
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Guangneng Liao
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Yang
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China.
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China.
| |
Collapse
|
42
|
Hasan N, Lee J, Kwak D, Kim H, Saparbayeva A, Ahn HJ, Yoon IS, Kim MS, Jung Y, Yoo JW. Diethylenetriamine/NONOate-doped alginate hydrogel with sustained nitric oxide release and minimal toxicity to accelerate healing of MRSA-infected wounds. Carbohydr Polym 2021; 270:118387. [PMID: 34364628 DOI: 10.1016/j.carbpol.2021.118387] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022]
Abstract
This study demonstrates the development of a nitric oxide (NO)-releasing hydrogel wound dressing and its efficacy at accelerating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound healing. A DETA/NONOate-doped alginate (Alg-DETA/NO) hydrogel was synthesized using alginate as a hydrogel-forming wound dressing material and diethylenetriamine/diazeniumdiolate (DETA/NONOate) as an NO donor. Alg-DETA/NO exhibited a prolonged NO release profile over a period of 4 days. The rheological properties of Alg-DETA/NO did not differ significantly from those of pure alginate. Importantly, Alg-DETA/NO showed potent antibacterial activity against MRSA, with minimal toxicity to mouse fibroblasts. The application of Alg-DETA/NO to MRSA-infected wounds in a mouse model showed a favorable wound healing with accelerated wound-size reduction and reduced skin bacterial infection. Additionally, histological examination revealed that Alg-DETA/NO reduced inflammation at the wound site and promoted re-epithelialization, angiogenesis, and collagen deposition. Thus, Alg-DETA/NO presented herein could serve as a safe and potent hydrogel dressing for the treatment of MRSA-infected wounds.
Collapse
Affiliation(s)
- Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Dongmin Kwak
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyunwoo Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | | | - Hye-Jin Ahn
- School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Soo Yoon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea..
| |
Collapse
|
43
|
Tekiki N, Fujita M, Okui T, Kawai H, Oo MW, Kawazu T, Hisatomi M, Okada S, Takeshita Y, Barham M, Nagatsuka H, Yanagi Y, Asaumi JI. Dynamic contrast-enhanced MRI as a predictor of programmed death ligand-1 expression in patients with oral squamous cell carcinoma. Oncol Lett 2021; 22:778. [PMID: 34594419 PMCID: PMC8456498 DOI: 10.3892/ol.2021.13039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/11/2021] [Indexed: 12/29/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting programmed death ligand-1 (PD-L1) are highly promising therapies for oral squamous cell carcinoma (OSCC). The assessment of PD-L1 expression may help predicting the therapeutic effect of ICIs and, thus, benefit patient selection. Contrast index (CI) parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been proven as efficient to assess microvessel density (MVD) in OSCC. The present study aimed to determine the correlation between DCE-MRI parameters and MVD and between DCE-MRI parameters and PD-L1 expression to determine whether DCE-MRI could be used non-invasively to evaluate PD-L1 expression in patients with OSCC. A total of 21 patients with primary OSCC who had undergone a 3T MRI scan, including DCE-MRI, were included in the present study, and CI curve-derived parameters were examined. The MVD and PD-L1 expression in the surgically resected specimens were analyzed using immunohistochemistry (IHC) staining for CD31 and IHC staining for PD-L1, respectively. The results demonstrated that the expression levels of these markers were correlated with DCE-MRI parameters. PD-L1 expression levels were found to be significantly correlated with the maximum CI (CI-max; P=0.007), peak CI (CI-peak; P=0.007), maximum CI gain (CI-gain; P=0.006) and MVD (P=0.001) values. The mean CI-max, CI-peak, CI-gain and MVD values were significantly higher in tumors with high PD-L1 expression (P<0.05). MVD levels were also significantly correlated with the time of CI-max (T-max; P=0.003) and CI-gain (P=0.037). The mean CI-gain was significantly increased, and the mean T-max was significantly shorter in high MVD tumors (P<0.05 and P<0.01, respectively). In summary, the findings from the present study confirmed the correlation between CI parameters, derived from DCE-MRI, and MVD, and suggested that these parameters may be correlated with PD-L1 expression in OSCC tumor cells.
Collapse
Affiliation(s)
- Nouha Tekiki
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Mariko Fujita
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,Department of Oral and Maxillofacial Surgery, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshiyuki Kawazu
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Miki Hisatomi
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shunsuke Okada
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yohei Takeshita
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Majd Barham
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshinobu Yanagi
- Department of Dental Informatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Jun-Ichi Asaumi
- Department of Oral and Maxillofacial Radiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Okayama 700-8558, Japan
| |
Collapse
|
44
|
Yin Y, Yang K, Li J, Da P, Zhang Z, Qiu X. Interferon-induced transmembrane protein 1 (IFITM1) is essential for progression of laryngeal squamous cell carcinoma in an Osteopontin/NF-κB-dependent manner. Cancer Biomark 2021; 29:521-529. [PMID: 32865181 DOI: 10.3233/cbm-201435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To assess the expression levels of IFITM1 in human tissue samples and laryngeal squamous cell carcinoma (LSCC) cells, and to explore the potential mechanisms of IFITM1 in LSCC progression. METHODS Quantitative PCR and immunohistochemical (IHC) assays were performed to detect IFITM1 expression in 62 LSCC tissues and corresponding normal tissues. We further detected the effects of IFITM1 on the proliferation, migration and invasion of LSCC cells and NF-κB signaling pathway through colony formation assay, wound healing assay and transwell assay, respectively. RESULTS We demonstrated the possible involvement of IFITM1 in the progression of LSCC. We found the upregulated expression of IFITM1 in human LSCC tissues and cells, and analyzed the correlations between IFITM1 expression and osteopontin. Our data further confirmed that IFITM1 affected cell proliferation, migration, and invasion of LSCC cells via the regulation of NF-κB signaling pathway. CONCLUSIONS We investigated the potential involvement of IFITM1 in the progression of LSCC, and therefore confirmed that IFITM1 was a potential therapeutic target for LSCC.
Collapse
|
45
|
Xie X, Liang J, Huang R, Luo C, Yang J, Xing H, Zhou L, Qiao H, Ergu E, Chen H. Molecular pathways underlying tissue injuries in the bladder with ketamine cystitis. FASEB J 2021; 35:e21703. [PMID: 34105799 DOI: 10.1096/fj.202100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022]
Abstract
Ketamine cystitis (KC) is a chronic bladder inflammation leading to urinary urgency, frequency, and pain. The pathogenesis of KC is complicated and involves multiple tissue injuries in the bladder. Recent studies indicated that urothelium disruption, lamina propria fibrosis and inflammation, microvascular injury, neuropathological alterations, and bladder smooth muscle (BSM) abnormalities all contribute to the pathogenesis of KC. Ketamine has been shown to induce these tissue injuries by regulating different signaling pathways. Ketamine can stimulate antiproliferative factor, adenosine triphosphate, and oxidative stress to disrupt urothelium. Lamina propria fibrosis and inflammation are associated with the activation of cyclooxygenase-2, nitric oxide synthase, immunoglobulin E, and transforming growth factor β1. Ketamine contributes to microvascular injury via the N-methyl-D aspartic receptor (NMDAR), and multiple inflammatory and angiogenic factors such as tumor necrosis factor α and vascular endothelial growth factor. For BSM abnormalities, ketamine can depress the protein kinase B, extracellular signal-regulated kinase, Cav1.2, and muscarinic receptor signaling. Elevated purinergic signaling also plays a role in BSM abnormalities. In addition, ketamine affects neuropathological alterations in the bladder by regulating NMDAR- and brain-derived neurotrophic factor-dependent signaling. Inflammatory cells also contribute to neuropathological changes via the secretion of chemical mediators. Clarifying the role and function of these signaling underlying tissue injuries in the bladder with KC can contribute to a better understanding of the pathophysiology of this disease and to the design of effective treatments for KC.
Collapse
Affiliation(s)
- Xiang Xie
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Run Huang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Chuang Luo
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hongming Xing
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Le Zhou
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Han Qiao
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Erti Ergu
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Huan Chen
- Public Center of Experimental Technology and The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Rabelo AC, Borghesi J, Carreira ACO, Hayashi RG, Bessa F, Barreto RDSN, da Costa RP, Cantanhede Filho AJ, Carneiro FJC, Miglino MA. Calotropis procera (Aiton) Dryand (Apocynaceae) as an anti-cancer agent against canine mammary tumor and osteosarcoma cells. Res Vet Sci 2021; 138:79-89. [PMID: 34119813 DOI: 10.1016/j.rvsc.2021.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022]
Abstract
Our goal was to evaluate phytochemical characterization and the antitumor potential of Calotropis procera. The phytochemical constitution of the crude extract (CE) revealed the presence of flavonoids, glycosides and cardenolide. The MTT assay was used to evaluate the cytotoxicity of CE, methanolic (MF) and ethyl acetate fractions (EAF) of C. procera in canine osteosarcoma cells (OST), canine mammary tumor (CMT), and canine skin fibroblasts (non-tumor cell). Doxorubicin was also used as a positive control. Results showed that CE, MF and EAF promoted a decrease in the viability of OST and CMT cells and did not alter the fibroblasts viability. C. procera also decreased the number of cells, corroborating to the decrease in proliferation and the cell cycle arrest in the G0/G1 phase. It was also evaluated the cell morphology by light and fluorescence microscopy, being demonstrated a reduction in cytoplasmic and cell rounding characteristic of programmed cell death. Moreover, flow cytometry data demonstrated that CE treatment promoted increase of caspase-3 and p53, showing that the cell death was activated in OST cells. In addition, there was a decrease in CD31, VEGF, osteopontin and TGF-β after CE treatment, suggesting that CE exerts its antitumor effect by reducing angiogenesis and tumor progression in OST cells. Moreover, CMT cells showed a reduction in PCNA after treatment with MF and CE. Analyzing the data together, C. procera, especially CE, showed an antitumor potential in both OST and CMT cells, encouraging us to continue investigating its use in cancer therapy.
Collapse
Affiliation(s)
- Ana CarolinaSilveira Rabelo
- Laboratory of Stem Cell, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508 270, Brazil.
| | - Jéssica Borghesi
- Laboratory of Stem Cell, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508 270, Brazil
| | - Ana Claudia O Carreira
- Laboratory of Stem Cell, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508 270, Brazil; Center for Cellular and Molecular Therapy (NUCEL), School of Medicine, University of São Paulo (USP), São Paulo 05360-130, Brazil
| | - Rafael Gonçalves Hayashi
- Laboratory of Stem Cell, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508 270, Brazil
| | - Fernanda Bessa
- Laboratory of Stem Cell, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508 270, Brazil
| | - Rodrigo da Silva Nunes Barreto
- Laboratory of Stem Cell, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508 270, Brazil
| | - Romário Pereira da Costa
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, Brazil
| | | | - Fernando José Costa Carneiro
- Department of Chemistry, Federal Institute of Education, Science and Technology of Maranhão, Campus São Luís, Monte Castelo, Maranhão 65030-005, Brazil
| | - Maria Angélica Miglino
- Laboratory of Stem Cell, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508 270, Brazil
| |
Collapse
|
47
|
Franz L, Alessandrini L, Calvanese L, Crosetta G, Frigo AC, Marioni G. Angiogenesis, programmed death ligand 1 (PD-L1) and immune microenvironment association in laryngeal carcinoma. Pathology 2021; 53:844-851. [PMID: 33994172 DOI: 10.1016/j.pathol.2021.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
In the specific field of laryngeal carcinoma (LSCC), evidence about the interaction between angiogenetic pathway and immune microenvironment has not yet been explored. Given the potential relevance of such an interaction for prognostic and therapeutic purposes, the main aim of this exploratory study was to investigate the existence of a correlation between angiogenesis (quantified through CD31 expression), programmed cell death ligand 1 (PD-L1) expression, and immune microenvironment. A secondary aim was to verify whether considering a combination of angiogenesis and immune microenvironment variables might improve prognostic accuracy compared to the traditional clinical-pathological prognostic tools. CD31-assessed micro-vessel density (MVD), PD-L1 in terms of combined positive score (CPS), and tumour infiltrating lymphocytes (TILs) were assessed on 45 consecutive cases of LSCC. Cox proportional hazards model revealed increasing CD31-assessed MVD values, PD-L1 CPS <1, and TILs count rate <30%, as predictive of reduced disease free survival (DFS). Multivariate analysis found that MVD (p<0.0001) and TILs (p=0.0420) retained their significant independent prognostic value. Spearman's correlation model disclosed a significant negative correlation between CD31-assessed MVD values and PD-L1 CPS (p=0.0040). PD-L1 CPS and TILs count rate were positively correlated (p<0.0001). DFS was significantly lower in the CD31-assessed MVD >7, PD-L1 CPS <1, TILs <30% group than in the MVD ≤7, PD-L1 CPS ≥1, TILs ≥30% group (p=0.0001). These data preliminarily support an integrated interpretation of the prognostic role or angiogenesis and immune microenvironment markers in LSCC. This is of potential clinical relevance suggesting a synergistic effect of the combination of anti-angiogenic drugs with programmed death-1/PD-L1 checkpoint inhibitors in advanced LSCC.
Collapse
Affiliation(s)
- Leonardo Franz
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | | | - Leonardo Calvanese
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Giulia Crosetta
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy
| | - Anna Chiara Frigo
- Department of Cardiac-Thoracic-Vascular Sciences and Public Health, Padova University, Padova, Italy
| | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, Padova, Italy.
| |
Collapse
|
48
|
Samandari M, Aghabaglou F, Nuutila K, Derakhshandeh H, Zhang Y, Endo Y, Harris S, Barnum L, Kreikemeier-Bower C, Arab-Tehrany E, Peppas NA, Sinha I, Tamayol A. Miniaturized Needle Array-Mediated Drug Delivery Accelerates Wound Healing. Adv Healthc Mater 2021; 10:e2001800. [PMID: 33586339 DOI: 10.1002/adhm.202001800] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/05/2021] [Indexed: 12/26/2022]
Abstract
A major impediment preventing normal wound healing is insufficient vascularization, which causes hypoxia, poor metabolic support, and dysregulated physiological responses to injury. To combat this, the delivery of angiogenic factors, such as vascular endothelial growth factor (VEGF), has been shown to provide modest improvement in wound healing. Here, the importance of specialty delivery systems is explored in controlling wound bed drug distribution and consequently improving healing rate and quality. Two intradermal drug delivery systems, miniaturized needle arrays (MNAs) and liquid jet injectors (LJIs), are evaluated to compare effective VEGF delivery into the wound bed. The administered drug's penetration depth and distribution in tissue are significantly different between the two technologies. These systems' capability for efficient drug delivery is first confirmed in vitro and then assessed in vivo. While topical administration of VEGF shows limited effectiveness, intradermal delivery of VEGF in a diabetic murine model accelerates wound healing. To evaluate the translational feasibility of the strategy, the benefits of VEGF delivery using MNAs are assessed in a porcine model. The results demonstrate enhanced angiogenesis, reduced wound contraction, and increased regeneration. These findings show the importance of both therapeutics and delivery strategy in wound healing.
Collapse
Affiliation(s)
- Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | - Fariba Aghabaglou
- Department of Biomedical Engineering and Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Kristo Nuutila
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hossein Derakhshandeh
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| | - Yuteng Zhang
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth Harris
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lindsay Barnum
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
| | | | | | - Nicholas A Peppas
- Department of Biomedical Engineering and Chemical Engineering, Department of Pediatrics and Surgery, Dell Medical School, Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, CT, 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68508, USA
| |
Collapse
|
49
|
Lin YA, Chu PY, Ma WL, Cheng WC, Chan ST, Yang JC, Wu YC. Enzyme-Digested Peptides Derived from Lates calcarifer Enhance Wound Healing after Surgical Incision in a Murine Model. Mar Drugs 2021; 19:md19030154. [PMID: 33809638 PMCID: PMC8002292 DOI: 10.3390/md19030154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Surgical wounds are common injuries of skin and tissues and usually become a clinical problem. Until now, various synthetic and natural peptides have been widely explored as potential drug candidates for wound healing. Inhibition of the TNF-α signaling pathway and promotion of angiogenesis are suggested to be involved in their effects. Angiogenesis at the wound site is one of the essential requisites for rapid healing. In the present study, a novel peptide extract derived from the natural source Lates calcarifer, commonly known as sea bass or barramundi, was evaluated for its wound healing property. The specific acidic and enzymatic approaches were employed for producing sea bass extract containing small size peptides (molecular weight ranging from 1 kD to 5 kD). The cytotoxicity of the extract was examined in HaCaT and NIH3T3. After this, the effects of enzyme digested peptide extracts of sea bass on wound healing in mice were investigated. The peptide extracts (660 and 1320 mg/kg/day) and control protein (1320 mg/kg/day) was orally given to the wounded mice, respectively, for 12 days. The surgical method was improved by implanting a silicone ring at the wound site. The ring avoided the contracting effect in murine wounds, making it more closely related to a clinical condition. The results showed promising improvement at the wound site in mice. Sea bass peptide extracts accelerated the wound healing process and enhanced the microvessel formation at the wound site. The remarkable effects of this novel sea bass peptide extract in healing traumatic injuries revealed a new option for developing wound management.
Collapse
Affiliation(s)
- Yen-An Lin
- Graduate Institute of Basic Medical Science, School of China Medical University, Taichung 40402, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (W.-L.M.); (W.-C.C.)
| | - Pei-Yi Chu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan;
| | - Wen-Lung Ma
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (W.-L.M.); (W.-C.C.)
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (W.-L.M.); (W.-C.C.)
- Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan
| | | | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan;
- Correspondence: (J.-C.Y.); (Y.-C.W.); Tel.: +886-422-052-121 (ext. 7832) (J.-C.Y.); +886-422-053-366 (ext. 3605) (Y.-C.W.)
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 40402, Taiwan;
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan
- Correspondence: (J.-C.Y.); (Y.-C.W.); Tel.: +886-422-052-121 (ext. 7832) (J.-C.Y.); +886-422-053-366 (ext. 3605) (Y.-C.W.)
| |
Collapse
|
50
|
Locatello LG, Bruno C, Gallo O. Early glottic cancer recurrence: A critical review on its current management. Crit Rev Oncol Hematol 2021; 160:103298. [PMID: 33716199 DOI: 10.1016/j.critrevonc.2021.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Recurrent early glottic cancer (rEGC) poses several issues in terms of timely diagnosis, correct re-staging, and treatment. We want to critically review the latest evidence about rEGC considering its epidemiology, biology, diagnostic challenges, and treatment strategies. METHODS A systematic search of the literature using PubMed from 1990 to October 31, 2020 was performed. RESULTS There are many different treatment options available (open surgery, transoral mini-invasive surgery, radiotherapy), and many factors related to the patient's status and previous treatments must be considered when planning the best management strategy for rEGC. While its overall prognosis remains satisfactory, it is of the utmost importance to appreciate all the clinical implications derived from the choice of the initial therapeutic modality, and from a correct primary and recurrent staging. CONCLUSION The balance between oncological and voice and swallowing functions represents the fundamental principle underlying rEGC management. Future studies should focus on molecular profiling of rEGC, and on the results of the emerging radiation delivery techniques and mini-invasive procedures.
Collapse
Affiliation(s)
- Luca Giovanni Locatello
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| | - Chiara Bruno
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Oreste Gallo
- Department of Otorhinolaryngology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|