1
|
Sun L, Zhu Y, Yuan Y. NLRs in tumor chemotherapy resistance: A double-edged sword. Chem Biol Interact 2025; 414:111499. [PMID: 40180110 DOI: 10.1016/j.cbi.2025.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/16/2025] [Accepted: 04/01/2025] [Indexed: 04/05/2025]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a numerous family of cytoplasmic proteins. Members of this family not only function as innate immune sensors, but also serve as transcriptional regulators of major histocompatibility complex class II (MHC II) and major histocompatibility complex class I (MHC I) genes to activate adaptive immunity. Furthermore, NLRs are involved in mediating various signaling pathways, including the inflammasome. To date, extensive research has been conducted on the contradictory roles and mechanisms of NLRs in the occurrence, development, invasion, and metastasis of tumors within the tumor microenvironment (TME). The double-edged sword effect (either positive or negative role) of NLRs in the treatment of malignant tumors has attracted increasing attention in recent years, making these a promising bidirectional therapeutic target for such tumors. Rational utilization of the double-edged sword nature of NLRs can provide a feasible solution for improving the efficacy of malignant tumor treatment and overcoming chemotherapy resistance. This article provides a systematic review of the influence of the NLR family on chemosensitivity in different malignant tumors and the regulatory mechanisms of their upstream and downstream signaling pathways. In doing do, we aim to elucidate the dual role of NLRs in promoting and combating tumor chemotherapy resistance, and elucidate their application value in tumor chemotherapy resistance.
Collapse
Affiliation(s)
- Lili Sun
- Department of Pathology, Cancer Hospital of China Medical University (Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute), Shenyang, 110042, China; Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yanmei Zhu
- Department of Pathology, Cancer Hospital of China Medical University (Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute), Shenyang, 110042, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China; Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Agrawal S, Narang S, Shahi Y, Mukherjee S. Inhibitors of inflammasome (NLRP3) signaling pathway as promising therapeutic candidates for oral cancer. Biochim Biophys Acta Gen Subj 2025; 1869:130800. [PMID: 40180112 DOI: 10.1016/j.bbagen.2025.130800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/18/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Inflammasomes are complex protein assemblies responsible for regulating the development and release of proinflammatory cytokines like interleukin-1beta (IL-1β) and interleukin-18 (IL-18) against the intracellular triggers. Among these, the Nod-like receptor protein 3 (NLRP3) inflammasome stands out as the most extensively studied and well-characterized member, implicated in numerous pathological conditions. A systematic literature search was conducted on the PubMed such as PubMed, Scopus, Google Scholar database to identify peer-reviewed publications pertaining to the role of NLRP3 in oral cancer pathogenesis and its inhibitors for targeted therapy. Recent research highlights the emerging significance of the NLRP3 inflammasome in tumorigenesis, garnering attention as a potential target for anticancer therapies. This review delves into the involvement of NLRP3 in cancer development and progression, providing an in-depth overview of its activation (and inhibition) and its impact on oral cancer pathogenesis. The manuscript provides a detailed review of the natural and synthetic compounds inhibiting the NLRP3 signaling pathway, which might act as therapeutic lead molecules in oral cancer. This holds promise to overcome targeted and effective treatment options the development of novel drugs targeting the NLRP3 inflammasome-mediated mechanisms in oral cancer.
Collapse
Affiliation(s)
- Shreya Agrawal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Shatakshi Narang
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India
| | - Yadvendra Shahi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India; Ram Manohar Lohia Institute of Medical Sciences (RMLIMS), Lucknow, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Uttar Pradesh, India.
| |
Collapse
|
3
|
Shi R, Zhuang X, Liu T, Yao SN, Xue FS. The Role of NLRP3 Inflammasome in Oral Squamous Cell Carcinoma. J Inflamm Res 2025; 18:5601-5609. [PMID: 40303006 PMCID: PMC12039833 DOI: 10.2147/jir.s512770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck. More and more evidence emphasizes the importance of inflammation in the progression of OSCC. The main signaling pathway of acute and chronic inflammation consists of the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Objective This review focuses on the role of NLRP3 immune kinase body and giving a contribution to the development of new treatment strategies against OSCC. Conclusion The NLRP3 inflammasome plays a vital role in the pathogenesis and development of OSCC and may serve as a promising therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Rui Shi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University 266600, Qingdao, 266555, People’s Republic of China
- School of Stomatology of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Xuan Zhuang
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Tong Liu
- The Affiliated Tai’an City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Song-nan Yao
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Feng-shan Xue
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| |
Collapse
|
4
|
Arias AM, Reinartz DM, Sairs C, Kumar SS, Wilson JE. Streptococcus anginosus Activates the NLRP3 Inflammasome to Promote Inflammatory Responses from Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642696. [PMID: 40161672 PMCID: PMC11952393 DOI: 10.1101/2025.03.12.642696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chronic inflammation and oral dysbiosis are common features of oral squamous cell carcinoma (OSCC). The commensal streptococci, S. anginosus, is increased in oral diseases including OSCC. Our previous work revealed that S. anginosus promotes inflammatory responses from macrophage cell lines, however the molecular mechanism by which S. anginosus interacts with macrophages to instigate this response remains to be investigated. Here, we expand on our previous findings by investigating the effects of S. anginosus infection of primary bone marrow derived macrophages (BMMs) and during in vivo infection. We found S. anginosus activated primary BMMs, which presented an enlarged cellular area, increased NF-κB activation and downstream inflammatory cytokines TNF⍰, IL-6 and IL-1β at 24 hours post infection. S. anginosus viability was dispensable for NF-κB activation, but essential for the induction of downstream inflammatory proteins and cytokines. S. anginosus persisted intracellularly within BMMs and induced the expression of inflammasome sensors AIM2, NLRC4 and NLRP3. Further, BMMs lacking the inflammasome adapter protein ASC ( Asc -/- ) had significantly diminished IL-1β production compared to wild type BMMs, indicating that S. anginosus activated the inflammasome. S. anginosus primarily triggered the inflammasome through NLRP3 as S. anginosus -infected Nlrp3 -/- BMMs and NLRP3 inhibitor (MCC950)-treated wild type BMMs displayed diminished IL-1β production compared to wild type controls. Lastly, S. anginosus -infected Asc -/- and Nlrp3 -/- mice displayed reduced weight loss compared to C57BL/6 mice. These overall findings indicate that S. anginosus replicates within macrophages and promotes a proinflammatory response in part through activation of the NLRP3 inflammasome. brief summary sentence: S. anginosus replicates intracellularly within macrophages and is sensed by the NLRP3 inflammasome to promote proinflammatory response.
Collapse
|
5
|
Miyauchi T, Narita S, Saiki Y, Kudo-Asabe Y, Horii A, Fukushige S, Habuchi T, Nanjo H, Goto A. Association between NLRP3 Inflammasome and Tumor-Node-Metastasis Staging in Prostate Cancer: Immunohistochemical Studies of Prostate Needle Biopsy and Radical Prostatectomy Specimens. TOHOKU J EXP MED 2025; 264:203-213. [PMID: 39085121 DOI: 10.1620/tjem.2024.j074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The pathological role of NLRP3 inflammasome in prostate cancer (PCa) remains unclear. This study aimed to elucidate the expression of its major components in PCa by immunohistochemistry and its clinicopathological significance. An immunohistochemical analysis of 184 prostate needle biopsy and 38 radical prostatectomy specimens from PCa revealed the expression status of NLRP3, PYCARD, and caspase-1, which form NLRP3 inflammasome. Furthermore, the association between the expression of these 3 proteins and the clinical parameters at diagnosis and operation was analyzed. In biopsy specimens, the Cochran-Armitage test demonstrated that the proportion of the high expression of NLRP3 (P < 0.001) and PYCARD (P < 0.001) in cancerous tissue tended to increase as the value of the Gleason Grade Group increased, and immunohistochemistry of NLRP3 and PYCARD helped to distinguish cancerous tissue from adjacent noncancerous tissue in some cases. Furthermore, a univariable logistic regression analysis revealed the high expression of NLRP3 to be associated with clinical T3-4 (P = 0.0056) and distant metastasis at diagnosis (P = 0.011), while the high expression of PYCARD was associated with clinical T3-4 (P < 0.001), regional lymph node metastasis (P < 0.001), and distant metastasis at diagnosis (P < 0.001). However, a multivariable logistic regression analysis showed no significant association. In prostatectomy specimens, no significant association existed between the expression of NLRP3 inflammasome and the clinical parameters at operation, partly due to the influence of neoadjuvant chemohormonal or hormone therapy. In conclusion, these results suggest that NLRP3 inflammasome may promote disease progression and metastasis in PCa, therefore immunohistochemistry of NLRP3 and PYCARD could be useful for diagnosing PCa accurately.
Collapse
Affiliation(s)
- Toshiya Miyauchi
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
- Department of Clinical Pathology, Akita University Hospital
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
| | - Shintaro Narita
- Department of Urology, Graduate School of Medicine, Akita University
| | - Yuriko Saiki
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
- Office of Medical Education, Graduate School of Medicine, Tohoku University
- Department of Investigative Pathology, Graduate School of Medicine, Tohoku University
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
| | - Akira Horii
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
| | - Shinichi Fukushige
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
- Department of Metabolism and Diabetes, Graduate School of Medicine, Tohoku University
| | - Tomonori Habuchi
- Department of Urology, Graduate School of Medicine, Akita University
| | - Hiroshi Nanjo
- Department of Clinical Pathology, Akita University Hospital
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
| |
Collapse
|
6
|
Arjsri P, Srisawad K, Umsumarng S, Thippraphan P, Anuchapreeda S, Dejkriengkraikul P. Anti-Inflammatory and Anti-Migratory Effects of Morin on Non-Small-Cell Lung Cancer Metastasis via Inhibition of NLRP3/MAPK Signaling Pathway. Biomolecules 2025; 15:103. [PMID: 39858497 PMCID: PMC11763329 DOI: 10.3390/biom15010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains the leading cause of cancer-related deaths globally, with a persistently low five-year survival rate of only 14-17%. High rates of metastasis contribute significantly to the poor prognosis of NSCLC, in which inflammation plays an important role by enhancing tumor growth, angiogenesis, and metastasis. Targeting inflammatory pathways within cancer cells may thus represent a promising strategy for inhibiting NSCLC metastasis. This study evaluated the anti-inflammatory and anti-metastatic properties of morin, a bioactive compound derived from a Thai medicinal herb, focusing on its effects on NLRP3 inflammasome-mediated pathways in an in vitro NSCLC model. The A549 and H1299 cell lines were stimulated with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) to activate the NLRP3 pathway. The inhibition effects exhibited by morin in reducing pro-inflammatory secretion in LPS- and ATP-stimulated NSCLC cells were assessed by ELISA, while wound healing and trans-well invasion assays evaluated its impact on cell migration and invasion. RT-qPCR measurement quantified the expression of inflammatory genes, and zymography and Western blotting were used to examine changes in invasive protein levels, epithelial-to-mesenchymal transition (EMT) markers, and underlying molecular mechanisms. Our findings demonstrated the significant ability of morin to decrease the production of IL-1β, IL-18, and IL-6 in a dose-dependent manner (p < 0.05), as well as suppress NSCLC cell migration and invasion. Morin downregulated invasive proteins (MMP-2, MMP-9, u-PAR, u-PA, MT1-MMP) and EMT markers (fibronectin, N-cadherin, vimentin) (p < 0.01) while also reducing the mRNA levels of NLRP3, IL-1β, IL-18, and IL-6. Mechanistic investigations revealed that morin suppressed NLRP3 inflammasome activity and inactivated MAPK pathways. Specifically, it decreased the expression of NLRP3 and ASC proteins and reduced caspase-1 activity, while reducing the phosphorylation of ERK, JNK, and p38 proteins. Collectively, these findings suggest that morin's inactivation of the NLRP3 inflammasome pathway could offer a novel therapeutic strategy for counteracting pro-tumorigenic inflammation and metastatic progression in NSCLC.
Collapse
Affiliation(s)
- Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sonthaya Umsumarng
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
| | - Songyot Anuchapreeda
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
7
|
Zhou X, Tao Y, Shi Y. Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy. Cancer Lett 2024; 605:217283. [PMID: 39366544 DOI: 10.1016/j.canlet.2024.217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xueqing Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
8
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
9
|
Jain T, Chandra A, Mishra SP, Khairnar M, Rajoria S, Maheswari R, Keerthika R, Tiwari S, Agrawal R. Unravelling the Significance of NLRP3 and IL-β1 in Oral Squamous Cell Carcinoma and Potentially Malignant Oral Disorders: A Diagnostic and Prognostic Exploration. Head Neck Pathol 2024; 18:77. [PMID: 39141262 PMCID: PMC11324625 DOI: 10.1007/s12105-024-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Nucleotide-binding domain-like receptor protein 3 (NLRP3), an inflammasome, is reported to be dysregulated or aberrantly expressed in chronic inflammation, leading to a myriad of inflammatory disorders, autoimmune diseases, and cancer. This study aimed to explore the expression and role of NLRP3 protein and the secreted cytokine IL-β1 in oral squamous cell carcinoma (OSCC) and potentially malignant oral disorders (PMOD). MATERIAL & METHODS Tissue NLRP3 expression was quantified using sandwich ELISA in 30 cases each of OSCC, PMOD, and normal oral mucosa. Serum IL-β1 level was also measured by ELISA to determine their correlation. In surgically treated OSCC cases, pathological parameters such as tumor size, depth of invasion (DOI), pTNM stage, and perineural & lymphovascular invasion were assessed and correlated with NLRP3 & IL-β1 levels to investigate their roles in tumor progression, invasion, and metastasis. RESULTS Tissue NLRP3 expression was markedly elevated in OSCC, with significant IL-β1 levels observed in the serum of both OSCC and PMOD cases. Both markers showed a pronounced increase with the severity of dysplasia, indicating a strong association (p = 0.003%). The expression levels of tissue NLRP3 and serum IL-β1 were positively correlated with DOI and tumor size. Furthermore, their elevated levels, alongside higher histological grades, indicate roles in the dedifferentiation and progression of tumor cells. CONCLUSION The findings indicated that increased expression of NLRP3 and IL-β1 in PMOD correlates with higher transformation rates, along with tumor progression and dedifferentiation in OSCC. Consequently, these markers hold promise as valuable targets for prognostic assessment, diagnostics, and therapeutic strategies in OSCC.
Collapse
Affiliation(s)
- Trupti Jain
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Akhilesh Chandra
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Surendra Pratap Mishra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Mahesh Khairnar
- Unit of Public Health Dentistry, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shivangni Rajoria
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - R Maheswari
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - R Keerthika
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shivam Tiwari
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rahul Agrawal
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
10
|
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, Xing F, Nie R, Han C, Xie HQ. Hydrogel-exosome system in tissue engineering: A promising therapeutic strategy. Bioact Mater 2024; 38:1-30. [PMID: 38699243 PMCID: PMC11061651 DOI: 10.1016/j.bioactmat.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Collapse
Affiliation(s)
- Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yan-Lin Jiang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiu-Zhen Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fei Xing
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Rong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chen Han
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, 610212, PR China
| |
Collapse
|
11
|
Zhou Y, Zhang Y, Jin S, Lv J, Li M, Feng N. The gut microbiota derived metabolite trimethylamine N-oxide: Its important role in cancer and other diseases. Biomed Pharmacother 2024; 177:117031. [PMID: 38925016 DOI: 10.1016/j.biopha.2024.117031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
An expanding body of research indicates a correlation between the gut microbiota and various diseases. Metabolites produced by the gut microbiota act as mediators between the gut microbiota and the host, interacting with multiple systems in the human body to regulate physiological or pathological functions. However, further investigation is still required to elucidate the underlying mechanisms. One such metabolite involved in choline metabolism by gut microbes is trimethylamine (TMA), which can traverse the intestinal epithelial barrier and enter the bloodstream, ultimately reaching the liver where it undergoes oxidation catalyzed by flavin-containing monooxygenase 3 (FMO3) to form trimethylamine N-oxide (TMAO). While some TMAO is eliminated through renal excretion, remaining amounts circulate in the bloodstream, leading to systemic inflammation, endoplasmic reticulum (ER) stress, mitochondrial stress, and disruption of normal physiological functions in humans. As a representative microbial metabolite originating from the gut, TMAO has significant potential both as a biomarker for monitoring disease occurrence and progression and for tailoring personalized treatment strategies for patients. This review provides an extensive overview of TMAO sources and its metabolism in human blood, as well as its impact on several major human diseases. Additionally, we explore the latest research areas related to TMAO along with future directions.
Collapse
Affiliation(s)
- Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, China
| | - Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; Nantong University Medical School, Nantong, China; Department of Urology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
12
|
Yang HL, Chang CW, Vadivalagan C, Pandey S, Chen SJ, Lee CC, Hseu JH, Hseu YC. Coenzyme Q 0 inhibited the NLRP3 inflammasome, metastasis/EMT, and Warburg effect by suppressing hypoxia-induced HIF-1α expression in HNSCC cells. Int J Biol Sci 2024; 20:2790-2813. [PMID: 38904007 PMCID: PMC11186366 DOI: 10.7150/ijbs.93943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
Coenzyme Q0 (CoQ0), a quinone derivative from Antrodia camphorata, has antitumor capabilities. This study investigated the antitumor effect of noncytotoxic CoQ0, which included NLRP3 inflammasome inhibition, anti-EMT/metastasis, and metabolic reprogramming via HIF-1α inhibition, in HNSCC cells under normoxia and hypoxia. CoQ0 suppressed hypoxia-induced ROS-mediated HIF-1α expression in OECM-1 and SAS cells. Under normoxia and hypoxia, the inflammatory NLRP3, ASC/caspase-1, NFκB, and IL-1β expression was reduced by CoQ0. CoQ0 reduced migration/invasion by enhancing epithelial marker E-cadherin and suppressing mesenchymal markers Twist, N-cadherin, Snail, and MMP-9, and MMP-2 expression. CoQ0 inhibited glucose uptake, lactate accumulation, GLUT1 levels, and HIF-1α-target gene (HK-2, PFK-1, and LDH-A) expressions that are involved in aerobic glycolysis. Notably, CoQ0 reduced ECAR as well as glycolysis, glycolytic capability, and glycolytic reserve and enhanced OCR, basal respiration, ATP generation, maximal respiration, and spare capacity in OECM-1 cells. Metabolomic analysis using LC-ESI-MS showed that CoQ0 treatment decreased the levels of glycolytic intermediates, including lactate, 2/3-phosphoglycerate, fructose 1,6-bisphosphate, and phosphoenolpyruvate, and increased the levels of TCA cycle metabolites, including citrate, isocitrate, and succinate. HIF-1α silencing reversed CoQ0-mediated anti-metastasis (N-Cadherin, Snail, and MMP-9) and metabolic reprogramming (GLUT1, HK-2, and PKM-2) under hypoxia. CoQ0 prevents cancer stem-like characteristics (upregulated CD24 expression and downregulated CD44, ALDH1, and OCT4) under normoxia and/or hypoxia. Further, in IL-6-treated SG cells, CoQ0 attenuated fibrosis by inhibiting TGF-β and Collagen I expression and suppressed EMT by downregulating Slug and upregulating E-cadherin expression. Interesting, CoQ0 inhibited the growth of OECM-1 tumors in xenografted mice. Our results advocate CoQ0 for the therapeutic application against HNSCC.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Che-Wei Chang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Jhih-Hsuan Hseu
- Department of Dermatology, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
13
|
Ng MY, Lin T, Chen SH, Liao YW, Liu CM, Yu CC. Er:YAG laser suppresses pro-inflammatory cytokines expression and inflammasome in human periodontal ligament fibroblasts with Porphyromonas gingivalis-lipopolysaccharide stimulation. J Dent Sci 2024; 19:1135-1142. [PMID: 38618083 PMCID: PMC11010707 DOI: 10.1016/j.jds.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/14/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose Periodontitis is an inflammatory condition of the tooth-supporting structures triggered by the host's immune response towards the bacterial deposits around the teeth. It is well acknowledged that pro-inflammatory interleukin (IL)-6, IL-8, MCP-1 as well as the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, are the key modulators in the activation of this response. Erbium-doped yttrium-aluminium-garnet (Er:YAG) laser, a solid-state crystal laser have been commonly used in the treatment of periodontal diseases. However, little is understood about the molecular mechanism of the Er:YAG laser, especially in targeting the host immune response brought on by periodontal pathogens. Hence, the current study focused on the protective effects of Er:YAG laser on periodontitis in-vitro in terms of pro-inflammatory cytokines, chemokines and NLRP3 inflammasome expressions. Materials and methods Human periodontal ligament fibroblast (PDLFs) were first stimulated with lipopolysaccharides (LPS) from P. gingivalis (Pg-LPS) to simulate periodontitis. Cells were then irradiated with Er:YAG laser of ascending energy densities (3.6-6.3 J/cm2), followed by cell proliferation and wound healing assay. Next, the effects of Er:YAG laser on the expressions of IL-6, IL-8, MCP-1, NLRP3, and cleaved GSDMD were examined. Results Pg-LPS was found to reduce cell's proliferation rate and wound healing ability in PDLFs and these were rescued by Er:YAG laser irradiation. In addition, LPS stimuli resulted in a marked upregulation in the secretion of IL-6, IL-8 and MCP-1 as well as the mRNA and protein expression of NLRP3 and cleaved-GSDMD protein whereas Er:YAG laser suppressed the elicited phenomena. Conclusion To our knowledge, this is the first study to look into the laser's implication on the NLRP3 inflammasome in periodontitis models. Our study reveals a crucial role of Er:YAG laser in ameliorating periodontitis in-vitro through the modulation of IL-6, IL-8, MCP-1 and the NLRP3 inflammasome and highlights that the control of the NLRP3 inflammasome may become a potential approach for periodontitis.
Collapse
Affiliation(s)
- Min Yee Ng
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
| | - Taichen Lin
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Szu-Han Chen
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Wen Liao
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Liu
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Cheng-Chia Yu
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
15
|
Chen Q, Sun Y, Wang S, Xu J. New prospects of cancer therapy based on pyroptosis and pyroptosis inducers. Apoptosis 2024; 29:66-85. [PMID: 37943371 DOI: 10.1007/s10495-023-01906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Pyroptosis is a gasdermin-mediated programmed cell death (PCD) pathway. It differs from apoptosis because of the secretion of inflammatory molecules. Pyroptosis is closely associated with various malignant tumors. Recent studies have demonstrated that pyroptosis can either inhibit or promote the development of malignant tumors, depending on the cell type (immune or cancer cells) and duration and severity of the process. This review summarizes the molecular mechanisms of pyroptosis, its relationship with malignancies, and focuses on current pyroptosis inducers and their significance in cancer treatment. The molecules involved in the pyroptosis signaling pathway could serve as therapeutic targets for the development of novel drugs for cancer therapy. In addition, we analyzed the potential of combining pyroptosis with conventional anticancer techniques as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Qiaoyun Chen
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225000, China
| | - Siliang Wang
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Jingyan Xu
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, 210008, China.
- Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
16
|
Huang F, Xie R, Li R, Liu L, Zhao M, Wang Q, Liu W, Ye P, Wang W, Wang X. Attenuation of NLRP3 Inflammasome by Cigarette Smoke is Correlated with Decreased Defense Response of Oral Epithelial Cells to Candida albicans. Curr Mol Med 2024; 24:790-800. [PMID: 37723958 PMCID: PMC11327737 DOI: 10.2174/1566524023666230612143038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND It is well recognized that both smoke and Candida infection are crucial risk factors for oral mucosal diseases. The nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and its downstream effectors, interleukin (IL)-1β and IL-18, are pivotal to the host defense against Candida and other pathogens. METHODS The present study was designed to explore the effects of cigarette smoke and C. albicans on the NLRP3 inflammasome and its downstream signal pathway via in vitro cell model. Oral epithelial cells (Leuk-1 cells) were exposed to cigarette smoke extract (CSE) for 3 days and/or challenged with C. albicans. RESULTS Microscopically, Leuk-1 cells exerted a defense response to C. albicans by markedly limiting the formation of germ tubes and microcolonies. CSE clearly eliminated the defense response of Leuk-1 cells. Functionally, CSE repressed NLRP3 inflammasome, and IL-1β and IL-18 activation induced by C. albicans in Leuk-1 cells. CONCLUSION Our results suggested that in oral epithelial cells, the NLRP3 inflammasome might be one of the target pathways by which CSE attenuates innate immunity and leads to oral disorders.
Collapse
Affiliation(s)
- Fan Huang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruiqi Xie
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruowei Li
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liu Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Maomao Zhao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiong Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
| | - Weida Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
| | - Pei Ye
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
18
|
Luo Q, Hu S, Tang Y, Yang D, Chen Q. PPT1 Promotes Growth and Inhibits Ferroptosis of Oral Squamous Cell Carcinoma Cells. Curr Cancer Drug Targets 2024; 24:1047-1060. [PMID: 38299399 DOI: 10.2174/0115680096294098240123104657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers with poor prognosis in the head and neck. Elucidating molecular mechanisms underlying OSCC occurrence and development is important for the therapy. Dysregulated palmitoylation-related enzymes have been reported in several cancers but OSCC. OBJECTIVES To explore the role of palmitoyl-protein thioesterase 1 (PPT1) in OSCC. METHODS Differentially expressed genes (DEGs) and related protein-protein interaction networks between normal oral epithelial and OSCC tissues were screened and constructed via different online databases. Tumor samples from 70 OSCC patients were evaluated for the relationship between PPT1 expression level and patients'clinic characteristics. The role of PPT1 in OSCC proliferation and metastasis was studied by functional experiments including MTT, colony formation, EdU incorporation and transwell assays. Lentivirus-based constructs were used to manipulate gene expression. FerroOrange probe and malondialdehyde assay were used to determine ferroptosis. Growth of OSCC cells in vivo was investigated by a xenograft mouse model. RESULTS A total of 555 DEGs were obtained, and topological analysis revealed that PPT1 and GPX4 might play critical roles in OSCC. Increased PPT1 expression was found to be correlated with poor prognosis of OSCC patients. PPT1 effectively promoted the proliferation, migration and invasion while inhibited the ferroptosis of OSCC cells. PPT1 affected the expression of glutathione peroxidase 4 (GPX4). CONCLUSION PPT1 promoted growth and inhibited ferroptosis of OSCC cells. PPT1 might be a potential target for OSCC therapy.
Collapse
Affiliation(s)
- Qingqiong Luo
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Sheng Hu
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yijie Tang
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Dandan Yang
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 200443, Shanghai, China
| | - Qilong Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Central Laboratory, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| |
Collapse
|
19
|
Jiang D, Liu X, Tan R, Zhu Y, Zhang L. Euphorbia factor L2 suppresses the generation of liver metastatic ascites in breast cancer via inhibiting NLRP3 inflammasome activation. Int J Mol Med 2024; 53:8. [PMID: 38063231 PMCID: PMC10712698 DOI: 10.3892/ijmm.2023.5332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Metastasis is the leading cause of death in patients with breast cancer, in part due to the lack of effective treatments. Euphorbia factor L2 (EFL2) is a diterpenoid extracted from Euphorbia lathyris L. seeds, which has attracted increasing attention in recent years due to its anticancer effect. However, the role and molecular mechanism of EFL2 in breast cancer liver metastasis remain unclear. In the present study, a breast cancer liver metastasis model was constructed and the effect of EFL2 on ascites generation in mice was examined. H&E staining detected inflammatory cells and tumor cells in the liver, small intestine and tumor tissues. Western blotting and reverse transcription‑quantitative PCR were used to detect the protein and mRNA expression of NLR family pyrin domain containing‑3 (NLRP3) and related molecules in tumor tissues. Immunohistochemistry was used to detect the levels of CD4 and CD8 T cells in tumor tissue and immunofluorescence was used to further detect the expression level of NLRP3. Finally, the aforementioned experiments were further verified by overexpressing NLPR3. It was found that EFL2 inhibited generation of ascites in the model in a dose‑dependent manner. Furthermore, EFL2 inhibited tumor cell metastasis and enhanced immune cell infiltration. Meanwhile, EFL2 dose‑dependently downregulated the mRNA and protein expression of NLRP3 and related molecules in the model, and overexpression of NLRP3 abolished these beneficial effects of EFL2. Taken together, the present experimental data suggested that EFL2 has a significant inhibitory effect on ascites of breast cancer liver metastasis in vivo, which may inhibit tumor cell metastasis by downregulating NLRP3 expression, providing an experimental basis for treating breast cancer metastasis.
Collapse
Affiliation(s)
- Dongjing Jiang
- Traditional Chinese Medicine and Research Office, Suzhou Vocational Health College, Suzhou, Jiangsu 215000, P.R. China
| | - Xun Liu
- Traditional Chinese Medicine and Research Office, Suzhou Vocational Health College, Suzhou, Jiangsu 215000, P.R. China
| | - Rulan Tan
- Traditional Chinese Medicine and Research Office, Suzhou Vocational Health College, Suzhou, Jiangsu 215000, P.R. China
| | - Ye Zhu
- Traditional Chinese Medicine and Research Office, Suzhou Vocational Health College, Suzhou, Jiangsu 215000, P.R. China
| | - Li Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine and Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
20
|
Mishra SR, Behera BP, Singh VK, Mahapatra KK, Mundkinajeddu D, Bhat D, Minz AM, Sethi G, Efferth T, Das S, Bhutia SK. Anticancer activity of Bacopa monnieri through apoptosis induction and mitophagy-dependent NLRP3 inflammasome inhibition in oral squamous cell carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155157. [PMID: 37951147 DOI: 10.1016/j.phymed.2023.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.
Collapse
Affiliation(s)
- Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India; Current affiliation: Department of Agriculture and Allied Sciences (Zoology), C. V Raman Global University, Bhubaneswar, 752054, Odisha, India
| | | | - Deeksha Bhat
- Research and Development Department, Natural Remedies Pvt. Ltd, India
| | - Aruna Mukti Minz
- Department of Pathology, Ispat General Hospital, Rourkela, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
21
|
Tengesdal IW, Dinarello CA, Marchetti C. NLRP3 and cancer: Pathogenesis and therapeutic opportunities. Pharmacol Ther 2023; 251:108545. [PMID: 37866732 PMCID: PMC10710902 DOI: 10.1016/j.pharmthera.2023.108545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
More than a decade ago IL-1 blockade was suggested as an add-on therapy for the treatment of cancer. This proposal was based on the overall safety record of anti-IL-1 biologics and the anti-tumor properties of IL-1 blockade in animal models of cancer. Today, a new frontier in IL-1 activity regulation has developed with several orally active NLRP3 inhibitors currently in clinical trials, including cancer. Despite an increasing body of evidence suggesting a role of NLRP3 and IL-1-mediated inflammation driving cancer initiation, immunosuppression, growth, and metastasis, NLRP3 activation in cancer remains controversial. In this review, we discuss the recent advances in the understanding of NLRP3 activation in cancer. Further, we discuss the current opportunities for NLRP3 inhibition in cancer intervention with novel small molecules.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
22
|
Shadab A, Mahjoor M, Abbasi-Kolli M, Afkhami H, Moeinian P, Safdarian AR. Divergent functions of NLRP3 inflammasomes in cancer: a review. Cell Commun Signal 2023; 21:232. [PMID: 37715239 PMCID: PMC10503066 DOI: 10.1186/s12964-023-01235-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023] Open
Abstract
The cancer is a serious health problem, which is The cancer death rate (cancer mortality) is 158.3 per 100,000 men and women per year (based on 2013-2017 deaths). Both clinical and translational studies have demonstrated that chronic inflammation is associated with Cancer progression. However, the precise mechanisms of inflammasome, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the "inflammasome" a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in cancer pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the malignancy condition consequences of the inflammation. Video Abstract.
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Reza Safdarian
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno TACT), Universal Scientific Education and Research Network (USERN) Chicago, Chicago, IL, USA.
- Department of Immunology and Microbiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran.
| |
Collapse
|
23
|
Huang K, Gu X, Xu H, Li H, Shi M, Wei D, Wang S, Li Y, Liu B, Li Y. Prognostic Value of Necroptosis-Related Genes Signature in Oral Squamous Cell Carcinoma. Cancers (Basel) 2023; 15:4539. [PMID: 37760507 PMCID: PMC10527362 DOI: 10.3390/cancers15184539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The dual role of necroptosis in inhibiting and promoting tumor development has gradually received much attention because of its essential significance for targeted treatment. Accordingly, this study aims to explore the relationship between necroptosis and oral squamous cell carcinoma (OSCC), and search for novel prognostic factors for OSCC. RNA-seq data and clinical information were downloaded from TCGA and GTEx databases. The prognostic signature of necroptosis-related genes (NRGs) was constructed by univariate Cox regression analysis and the LASSO Cox regression model. Moreover, survival analyses, ROC curves, and nomograms were adopted to further analyze. GO and KEGG analyses and immune infiltration analyses were used for function enrichment and immune feature research in turn. The NRG prognostic signature expression was higher in OSCC tissues than in normal tissues, and the overall survival (OS) rate of the high-expression group was much lower. HPRT1 was proved to be an independent prognostic factor in OSCC. Furthermore, the function enrichment analyses revealed that NRGs were involved in necroptosis, apoptosis, inflammation, and immune reaction. The expression of NRGs was related to immunosuppression in OSCC. Furthermore, the knockdown of HPRT1 could suppress the proliferation and migration of OSCC. In conclusion, the high expression of NRG prognostic signature is associated with poor prognosis in OSCC, and HPRT1 can serve as a novel independent prognostic factor for OSCC.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (K.H.); (X.G.); (D.W.)
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (H.L.); (M.S.); (S.W.)
| | - Xiaoting Gu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (K.H.); (X.G.); (D.W.)
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (H.L.); (M.S.); (S.W.)
| | - Huimei Xu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China;
| | - Hui Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (H.L.); (M.S.); (S.W.)
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (H.L.); (M.S.); (S.W.)
| | - Defang Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China; (K.H.); (X.G.); (D.W.)
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (H.L.); (M.S.); (S.W.)
| | - Shiqi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (H.L.); (M.S.); (S.W.)
| | - Yao Li
- The Third People’s Hospital of Gansu Province, Lanzhou 730030, China;
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (H.L.); (M.S.); (S.W.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (H.L.); (M.S.); (S.W.)
| |
Collapse
|
24
|
Zhang Y, Bai Y, Ma XX, Song JK, Luo Y, Fei XY, Ru Y, Luo Y, Jiang JS, Zhang Z, Yang D, Xue TT, Zhang HP, Liu TY, Xiang YW, Kuai L, Liu YQ, Li B. Clinical-mediated discovery of pyroptosis in CD8 + T cell and NK cell reveals melanoma heterogeneity by single-cell and bulk sequence. Cell Death Dis 2023; 14:553. [PMID: 37620327 PMCID: PMC10449777 DOI: 10.1038/s41419-023-06068-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023]
Abstract
Histologically, melanoma tissues had fewer positive cells percentage of pyroptosis-related genes (PRGs), GZMA, GSDMB, NLRP1, IL18, and CHMP4A in epidermal than in normal skin. Pyroptosis, a new frontier in cancer, affects the tumor microenvironment and tumor immunotherapy. Nevertheless, the role of pyroptosis remains controversial, which reason is partly due to the heterogeneity of the cellular composition in melanoma. In this study, we present a comprehensive analysis of the single-cell transcriptome landscape of pyroptosis in melanoma specimens. Our findings reveal dysregulation in the expression of PRGs, particularly in immune cells, such as CD8+ cells (representing CD8+ T cells) and CD57+ cells (representing NK cells). Additionally, the immunohistochemical and multiplex immunofluorescence staining experiments results further confirmed GZMA+ cells and GSDMB+ cells were predominantly expressed in immune cells, especially in CD8 + T cells and NK cells. Melanoma specimens secreted a minimal presence of GZMA+ merged CD8+ T cells (0.11%) and GSDMB+ merged CD57+ cells (0.08%), compared to the control groups exhibiting proportions of 4.02% and 0.62%, respectively. The aforementioned findings indicate that a reduced presence of immune cells within tumors may play a role in diminishing the ability of pyroptosis, consequently posing a potential risk to the anti-melanoma properties. To quantify clinical relevance, we constructed a prognostic risk model and an individualized nomogram (C-index=0.58, P = 0.002), suggesting a potential role of PRGs in malignant melanoma prevention. In conclusion, our integrated single-cell and bulk RNA-seq analysis identified immune cell clusters and immune gene modules with experiment validation, contributing to our better understanding of pyroptosis in melanoma.
Collapse
Grants
- This study was supported by Shanghai Clinical Key Specialty Construction Project (shslczdzk05001), Shanghai Science and Technology Committee (21Y21920101,21Y21920102), the Shanghai Development Office of TCM (ZY(2021-2023)-0302, ZY(2021-2023)-0209-13).
- the Key Project of Clinical Research from Shanghai Hospital Development Center (SHDC2020CR4020), and Funding from Shanghai Skin Disease Hospital (2018KYQD01).
- Shanghai Municipal Commission of Economy and Information Technology, Shanghai Artificial Intelligence Innovation and Development Project-Intelligent Dermatology Clinic Based on Modern TCM Diagnostic Technology, No. 2020-RGZN-02038.
- the Youth Talent Promotion Project of China Association of Traditional Chinese Medicine (2021-2023) Category A (CACM-2021-QNRC2-A10), the “Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (22CGA50), the Health Young Talents of Shanghai Municipal Health Commission (2022YQ026), the Xinglin Youth Scholar of Shanghai University of Traditional Chinese Medicine (No. RY411.33.10).
Collapse
Affiliation(s)
- Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun Bai
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Xiao-Xuan Ma
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Yue Luo
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing-Si Jiang
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Yang
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China
| | - Ting-Ting Xue
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui-Ping Zhang
- Shanghai Applied Protein Technology Co., Ltd., 58 Yuanmei Road, Shanghai, 200233, China
| | - Tai-Yi Liu
- Shanghai Applied Protein Technology Co., Ltd., 58 Yuanmei Road, Shanghai, 200233, China
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ye-Qiang Liu
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, Tongji University, Shanghai, 200443, China.
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
25
|
Casili G, Scuderi SA, Lanza M, Filippone A, Mannino D, Giuffrida R, Colarossi C, Mare M, Capra AP, De Gaetano F, Portelli M, Militi A, Cuzzocrea S, Paterniti I, Esposito E. Therapeutic Potential of BAY-117082, a Selective NLRP3 Inflammasome Inhibitor, on Metastatic Evolution in Human Oral Squamous Cell Carcinoma (OSCC). Cancers (Basel) 2023; 15:2796. [PMID: 37345134 DOI: 10.3390/cancers15102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a commonly occurring head and neck cancer and it is characterized by a high metastasis grade. The aim of this study was to evaluate for the first time the effect of BAY-117082, a selective NLRP3 inflammasome inhibitor, in an in vivo orthotopic model of OSCC and its role in the invasiveness and metastasis processes in neighbor organs such as lymph node, lung, and spleen tissues. Our results demonstrated that BAY-117082 treatment, at doses of 2.5 mg/kg and 5 mg/kg, was able to significantly reduce the presence of microscopic tumor islands and nuclear pleomorphism in tongue tissues and modulate the NLRP3 inflammasome pathway activation in tongue tissues, as well as in metastatic organs such as lung and spleen. Additionally, BAY-117082 treatment modulated the epithelial-mesenchymal transition (EMT) process in tongue tissue as well as in metastatic organs such as lymph node, lung, and spleen, also reducing the expression of matrix metalloproteinases (MMPs), particularly MMP2 and MMP9, markers of cell invasion and migration. In conclusion, the obtained data demonstrated that BAY-117082 at doses of 2.5 mg/kg and 5 mg/kg were able to reduce the tongue tumor area as well as the degree of metastasis in lymph node, lung, and spleen tissues through the NLRP3 inflammasome pathway inhibition.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | | | | | - Marzia Mare
- IOM Ricerca, Via Penninazzo 11, 95029 Viagrande Catania, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Marco Portelli
- Department of Biomedical and Dental Science, Morphological and Functional Images, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Angela Militi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
26
|
Wen J, Xuan B, Liu Y, Wang L, He L, Meng X, Zhou T, Wang Y. NLRP3 inflammasome-induced pyroptosis in digestive system tumors. Front Immunol 2023; 14:1074606. [PMID: 37081882 PMCID: PMC10110858 DOI: 10.3389/fimmu.2023.1074606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Programmed cell death (PCD) refers to cell death in a manner that depends on specific genes encoding signals or activities. PCD includes apoptosis, pyroptosis, autophagy and necrosis (programmed necrosis). Among these mechanisms, pyroptosis is mediated by the gasdermin family and is accompanied by inflammatory and immune responses. When pathogens or other danger signals are detected, cytokine action and inflammasomes (cytoplasmic multiprotein complexes) lead to pyroptosis. The relationship between pyroptosis and cancer is complex and the effect of pyroptosis on cancer varies in different tissue and genetic backgrounds. On the one hand, pyroptosis can inhibit tumorigenesis and progression; on the other hand, pyroptosis, as a pro-inflammatory death, can promote tumor growth by creating a microenvironment suitable for tumor cell growth. Indeed, the NLRP3 inflammasome is known to mediate pyroptosis in digestive system tumors, such as gastric cancer, pancreatic ductal adenocarcinoma, gallbladder cancer, oral squamous cell carcinoma, esophageal squamous cell carcinoma, in which a pyroptosis-induced cellular inflammatory response inhibits tumor development. The same process occurs in hepatocellular carcinoma and some colorectal cancers. The current review summarizes mechanisms and pathways of pyroptosis, outlining the involvement of NLRP3 inflammasome-mediated pyroptosis in digestive system tumors.
Collapse
Affiliation(s)
- Jiexia Wen
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Bin Xuan
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yang Liu
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Liwei Wang
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Li He
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Xiangcai Meng
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Tao Zhou
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| |
Collapse
|
27
|
Lin YC, Hua CH, Lu HM, Huang SW, Chen Y, Tsai MH, Lin FY, Canoll P, Chiu SC, Huang WH, Cho DY, Jan CI. CAR-T cells targeting HLA-G as potent therapeutic strategy for EGFR-mutated and overexpressed oral cancer. iScience 2023; 26:106089. [PMID: 36876120 PMCID: PMC9978640 DOI: 10.1016/j.isci.2023.106089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/11/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy in the world. Recently, scientists have focused on therapeutic strategies to determine the regulation of tumors and design molecules for specific targets. Some studies have demonstrated the clinical significance of human leukocyte antigen G (HLA-G) in malignancy and NLR family pyrin domain-containing 3 (NLRP3) inflammasome in promoting tumorigenesis in OSCC. This is the first study to investigate whether aberrant epidermal growth factor receptor (EGFR) induces HLA-G expression through NLRP3 inflammasome-mediated IL-1β secretion in OSCC. Our results showed that the upregulation of NLRP3 inflammasome leads to abundant HLA-G in the cytoplasm and cell membrane of FaDu cells. In addition, we also generated anti-HLA-G chimeric antigen receptor (CAR)-T cells and provided evidence for their effects in EGFR-mutated and overexpressed oral cancer. Our results may be integrated with OSCC patient data to translate basic research into clinical significance and may lead to novel EGFR-aberrant OSCC treatment.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan
| | - Chun-Hung Hua
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Hsin-Man Lu
- Department of Psychology, Asia University, Taichung 404, Taiwan
| | - Shi-Wei Huang
- Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Institute of New Drug Development, China Medical University, Taichung 404, Taiwan
| | - Yeh Chen
- Institute of New Drug Development, China Medical University, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Ming-Hsui Tsai
- Department of Otorhinolaryngology, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Yu Lin
- Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Shao-Chih Chiu
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Hua Huang
- Dr. Jean Landsborough Memorial Hospice Ward, Changhua Christian Hospital, Changhua 500, Taiwan.,Department of Nursing, Central Taiwan University of Science and Technology, Taichung 406, Taiwan
| | - Der-Yang Cho
- Drug Development Center, China Medical University, Taichung 404, Taiwan.,Translational Cell Therapy Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Ing Jan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
28
|
Khodabakhshi A, Monfared V, Arabpour Z, Vahid F, Hasani M. Association between Levels of Trimethylamine N-Oxide and Cancer: A Systematic Review and Meta-Analysis. Nutr Cancer 2023; 75:402-414. [PMID: 36217110 DOI: 10.1080/01635581.2022.2129080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer is the second leading cause of death in the world. Reports on the effect of Trimethylamine-N-oxide (TAMO), a small amine oxide generated by gut microbial metabolism of choline, betaine, and carnitine, on cancer are inconsistent. Therefore, this systematic review and meta-analysis summarize the effect of TAMO on cancer incidence. A systematic search was conducted in PubMed, Scopus, Web of Science, and Embase. Data were pooled using the random-effects method and were expressed as weighted mean difference (WMD) and 95% confidence intervals (CI). The pooled results of 16 studies, including 5930 participants, showed that the association between TMAO levels and cancer incidence is insignificant (Odds Ratio: 0.97, 95% CI: (0.64, 1.46), P-value = 0.871). Subgroup analysis showed that urinary TMAO levels were negatively associated with cancer incidence; in contrast, a direct and positive association was observed between serum TMAO levels and cancer incidence. However, "gender" and the "TMAO measuring method" were the potential sources of discrepancies. Meta-regression analysis did not reveal any significant association between duration of studies, age, female ratio, subjects-control, and subjects-case. The present study demonstrates that serum TAMO levels were insignificantly associated with cancer incidence.
Collapse
Affiliation(s)
- Adeleh Khodabakhshi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research center, Institute of Neuropharmacology, and Department of Nutrition, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Monfared
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Arabpour
- Department of Nutrition, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
29
|
Huang J, Lv C, Zhao B, Ji Z, Gao Z. SCARA5 inhibits oral squamous cell carcinoma via inactivating the STAT3 and PI3K/AKT signaling pathways. Open Med (Wars) 2023; 18:20230627. [PMID: 36785765 PMCID: PMC9921916 DOI: 10.1515/med-2023-0627] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/17/2022] [Indexed: 02/09/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common tumor in the world. Despite the rapid development of medical care, OSCC is also accompanied by high incidence and mortality every year. Therefore, it is still necessary to continuously develop new methods or find new targets to treat OSCC. Previous research showed that scavenger receptor class A member 5 (SCARA5) was one of the potential biomarkers of OSCC, and its expression is significantly low in OSCC. This study aimed to explore the role and related molecular mechanisms of SCARA5 in OSCC. In this study, we found that the SCARA5 expression was lower in CAL-27 and SCC-9 cells than that in human normal oral epithelial keratinocytes. SCARA5 overexpression significantly inhibited cell proliferation and induced apoptosis of CAL-27 and SCC-9 cells. In addition, SCARA5 repressed OSCC cell epithelial-mesenchymal transformation (EMT), evidenced by increased E-cadherin expression and reduced N-cadherin expression. Finally, we found that SCARA5 could suppress STAT3, PI3K, and AKT phosphorylation. Therefore, SCARA5 was related to STAT3 and PI3K/AKT signaling pathways in OSCC. In conclusion, SCARA5 inhibited the proliferation and EMT and induced the apoptosis of OSCC cells through the inhibition of STAT3 and PI3K/AKT signaling pathways, thereby exerting a tumor suppressor effect.
Collapse
Affiliation(s)
- Juan Huang
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Chunhua Lv
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Baoyu Zhao
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Zhongqian Ji
- Department of Stomatology, Taizhou People’s Hospital, Tauzhou225300, China
| | - Zhenran Gao
- Department of Stomatology, Taizhou People’s Hospital, No. 366 Taihu Road, Tauzhou225300, China
| |
Collapse
|
30
|
Tacconi E, Palma G, De Biase D, Luciano A, Barbieri M, de Nigris F, Bruzzese F. Microbiota Effect on Trimethylamine N-Oxide Production: From Cancer to Fitness-A Practical Preventing Recommendation and Therapies. Nutrients 2023; 15:563. [PMID: 36771270 PMCID: PMC9920414 DOI: 10.3390/nu15030563] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) is a microbial metabolite derived from nutrients, such as choline, L-carnitine, ergothioneine and betaine. Recently, it has come under the spotlight for its close interactions with gut microbiota and implications for gastrointestinal cancers, cardiovascular disease, and systemic inflammation. The culprits in the origin of these pathologies may be food sources, in particular, high fat meat, offal, egg yolk, whole dairy products, and fatty fish, but intercalated between these food sources and the production of pro-inflammatory TMAO, the composition of gut microbiota plays an important role in modulating this process. The aim of this review is to explain how the gut microbiota interacts with the conversion of specific compounds into TMA and its oxidation to TMAO. We will first cover the correlation between TMAO and various pathologies such as dysbiosis, then focus on cardiovascular disease, with a particular emphasis on pro-atherogenic factors, and then on systemic inflammation and gastrointestinal cancers. Finally, we will discuss primary prevention and therapies that are or may become possible. Possible treatments include modulation of the gut microbiota species with diets, physical activity and supplements, and administration of drugs, such as metformin and aspirin.
Collapse
Affiliation(s)
- Edoardo Tacconi
- Department of Human Science and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Giuseppe Palma
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Antonio Luciano
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Massimiliano Barbieri
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via De Crecchio 7, 80138 Naples, Italy
| | - Francesca Bruzzese
- S.S.D. Sperimentazione Animale, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| |
Collapse
|
31
|
Xue Y, Jiang X, Wang J, Zong Y, Yuan Z, Miao S, Mao X. Effect of regulatory cell death on the occurrence and development of head and neck squamous cell carcinoma. Biomark Res 2023; 11:2. [PMID: 36600313 PMCID: PMC9814270 DOI: 10.1186/s40364-022-00433-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
Head and neck cancer is a malignant tumour with a high mortality rate characterized by late diagnosis, high recurrence and metastasis rates, and poor prognosis. Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck cancer. Various factors are involved in the occurrence and development of HNSCC, including external inflammatory stimuli and oncogenic viral infections. In recent years, studies on the regulation of cell death have provided new insights into the biology and therapeutic response of HNSCC, such as apoptosis, necroptosis, pyroptosis, autophagy, ferroptosis, and recently the newly discovered cuproptosis. We explored how various cell deaths act as a unique defence mechanism against cancer emergence and how they can be exploited to inhibit tumorigenesis and progression, thus introducing regulatory cell death (RCD) as a novel strategy for tumour therapy. In contrast to accidental cell death, RCD is controlled by specific signal transduction pathways, including TP53 signalling, KRAS signalling, NOTCH signalling, hypoxia signalling, and metabolic reprogramming. In this review, we describe the molecular mechanisms of nonapoptotic RCD and its relationship to HNSCC and discuss the crosstalk between relevant signalling pathways in HNSCC cells. We also highlight novel approaches to tumour elimination through RCD.
Collapse
Affiliation(s)
- Yuting Xue
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuejiao Jiang
- grid.24696.3f0000 0004 0369 153XBeijing Key Lab of TCM Collateral Disease Theory Research, School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Junrong Wang
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxuan Zong
- Department of Breast Surgery, The First of hospital of Qiqihar, Qiqihar, China
| | - Zhennan Yuan
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Susheng Miao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- grid.412651.50000 0004 1808 3502Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
32
|
Fan Z, Tang P, Li C, Yang Q, Xu Y, Su C, Li L. Fusobacterium nucleatum and its associated systemic diseases: epidemiologic studies and possible mechanisms. J Oral Microbiol 2023; 15:2145729. [PMID: 36407281 PMCID: PMC9673791 DOI: 10.1080/20002297.2022.2145729] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Fusobacterium nucleatum (F. nucleatum) is an anaerobic oral commensal and the major coaggregation bridge organism linking early and late colonisers. In recent years, a large number of studies suggest that F. nucleatum is closely related to the development of various systemic diseases, such as cardiovascular diseases, adverse pregnancy outcomes, inflammatory bowel diseases, cancer, Alzheimer's disease, respiratory infection, rheumatoid arthritis, etc. Objective To review the effect of F. nucleatum on systemic diseases and its possible pathogenesis and to open new avenues for prevention and treatment of F. nucleatum-associated systemic diseases. Design The research included every article published up to July 2022 featuring the keywords 'Systemic diseases' OR 'Atherosclerotic cardiovascular diseases' OR 'Atherosclerosis' OR 'Adverse pregnancy outcomes' OR 'Inflammatory bowel disease' OR 'Ulcerative colitis' OR 'Crohn’s disease' OR 'Cancers' OR 'Oral squamous cell carcinomas' OR 'Gastrointestinal cancers' OR 'Colorectal cancer' OR 'Breast cancer' OR 'Genitourinary cancers' OR 'Alzheimer’s disease ' OR 'Rheumatoid arthritis' OR 'Respiratory diseases' AND 'Fusobacterium nucleatum' OR 'Periodontal pathogen' OR 'Oral microbiota' OR 'Porphyromonas gingivalis' and was conducted in the major medical databases. Results F. nucleatum can induce immune response and inflammation in the body through direct or indirect pathways, and thus affect the occurrence and development of systemic diseases. Only by continuing to investigate the pathogenic lifestyles of F. nucleatum will we discover the divergent pathways that may be leveraged for diagnostic, preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Zixin Fan
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Pengzhou Tang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Yang
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- State KeyLaboratory of Reproductive Medicine, Jiangsu Key Laboratory of Pathogen Biology, Department of Pathogen Biology and Immunology, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- Department of Periodontics, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, Shanghai road 1, Nanjing, Jiangsu, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Liu Z, Chen S, Jia W, Qian Y, Yang X, Zhang M, Fang T, Liu H. Comprehensive analysis reveals CCDC60 as a potential biomarker correlated with prognosis and immune infiltration of head and neck squamous cell carcinoma. Front Oncol 2023; 13:1113781. [PMID: 37064086 PMCID: PMC10098326 DOI: 10.3389/fonc.2023.1113781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/16/2023] [Indexed: 04/18/2023] Open
Abstract
Background Coiled-coil domain containing 60 (CCDC60) is a member of the CCDC family, which participates in the progression of many types of cancer. However, the prognostic value of CCDC60 in head and neck squamous cell carcinoma (HNSC) and its function in tumor immunity remain unclear. Methods CCDC60 expression and its prognostic potential in HNSC were evaluated by bioinformatics approaches, which was validated in human HNSC samples. Genetic alteration analysis of CCDC60 and the underlying biological function of CCDC60 related co-expressed genes in HNSC were analyzed. The impact of CCDC60 on the regulation of immune infiltration in HNSC was comprehensively investigated. In vitro, a series of functional assays on CCDC60 were performed in HNSC cells. Results Our study has indicated that compared with the adjacent normal tissues, CCDC60 expression was considerably downregulated in HNSC tissues. High CCDC60 expression was connected with favorable outcome of HNSC patients, and its prognostic significance was examined by distinct clinical characteristics. We identified the CCDC60-related co-expression genes, which were mainly enriched in the NOD-like receptor signaling pathway associated with the inhibition of tumor growth, leading to a better prognosis of HNSC patients. In vitro, CCDC60 overexpression significantly inhibited the growth, migration and invasiveness but regulated cell cycle progression, and promoted cell adhesion of Fadu and Cal27 cells. Additionally, high CCDC60 expression had strong connections with the infiltrating levels of immune cells, immune marker sets, immunomodulators and chemokines in HNSC, suggesting that targeting CCDC60 could be a promising strategy to enhance the efficacy of immunotherapy for HNSC patients. Conclusion Tumor suppressor CCDC60 may be identified as a prognostic and immune-related indicator in HNSC, which had the potential functions in regulating the immune infiltration of HNSC and improving the response to immunotherapy for HNSC patients.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shuai Chen
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenming Jia
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ye Qian
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqi Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Minfa Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tianhe Fang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Heng Liu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- *Correspondence: Heng Liu,
| |
Collapse
|
34
|
Chen L, Wan SC, Mao L, Huang CF, Bu LL, Sun ZJ. NLRP3 in tumor-associated macrophages predicts a poor prognosis and promotes tumor growth in head and neck squamous cell carcinoma. Cancer Immunol Immunother 2022; 72:1647-1660. [PMID: 36586012 DOI: 10.1007/s00262-022-03357-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays cell- and tissue-specific roles in cancer, meaning that its activation in different tumors or cells may play different roles in tumor progression. We have previously described the tumor-promoting function of tumor-intrinsic NLRP3/IL-1β signaling in head and neck squamous cell carcinoma (HNSCC), but its role in immune cells remains unclear. In this study, we found that NLRP3 was highly expressed in tumor-associated macrophages (TAMs) in both mouse and human HNSCC, and the expression of NLRP3 was positively correlated with the density of TAMs according to immunohistochemistry, immunofluorescence, and flow cytometry analyses. Importantly, the number of NLRP3high TAMs was related to worse overall survival in HNSCC patients. Knocking out NLRP3 inhibited M2-like macrophage differentiation in vitro. Moreover, the carcinogenic effect induced by 4-nitroquinoline-1-oxide was decreased in Nlrp3-deficient mice, which had smaller tumor sizes. Genetic depletion of NLRP3 reduced the expression of protumoral cytokines, such as IL-1β, IL-6, IL-10, and CCL2, and suppressed the accumulation of TAMs and myeloid-derived suppressor cells (MDSCs) in mouse HNSCC. Thus, activation of NLRP3 in TAMs may contribute to tumor progression and have prognostic significance in HNSCC.
Collapse
Affiliation(s)
- Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
35
|
Lian MQ, Chng WH, Liang J, Yeo HQ, Lee CK, Belaid M, Tollemeto M, Wacker MG, Czarny B, Pastorin G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J Extracell Vesicles 2022; 11:e12283. [PMID: 36519808 PMCID: PMC9753580 DOI: 10.1002/jev2.12283] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) represent a diverse class of lipid bilayer membrane vesicles released by both animal and plant cells. These ubiquitous vesicles are involved in intercellular communication and transport of various biological cargos, including proteins, lipids, and nucleic acids. In recent years, interest in plant-derived EVs has increased tremendously, as they serve as a scalable and sustainable alternative to EVs derived from mammalian sources. In vitro and in vivo findings have demonstrated that these plant-derived vesicles (PDVs) possess intrinsic therapeutic activities that can potentially treat diseases and improve human health. In addition, PDVs can also act as efficient and biocompatible drug carriers. While preclinical studies have shown promising results, there are still several challenges and knowledge gaps that have to be addressed for the successful translation of PDVs into clinical applications, especially in view of the lack of standardised protocols for material handling and PDV isolation from various plant sources. This review provides the readers with a quick overview of the current understanding and research on PDVs, critically analysing the current challenges and highlighting the immense potential of PDVs as a novel class of therapeutics to treat human diseases. It is expected that this work will guide scientists to address the knowledge gaps currently associated with PDVs and promote new advances in plant-based therapeutic solutions.
Collapse
Affiliation(s)
| | - Wei Heng Chng
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering Programme, NUS Graduate SchoolNational University of SingaporeSingaporeSingapore
| | - Jeremy Liang
- Department of ChemistryNational University of SingaporeSingaporeSingapore
| | - Hui Qing Yeo
- Department of PharmacyNational University of SingaporeSingaporeSingapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Choon Keong Lee
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| | - Mona Belaid
- Institute of Pharmaceutical ScienceKing's College LondonLondonUnited Kingdom
| | - Matteo Tollemeto
- Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Bertrand Czarny
- School of Materials Science & EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Giorgia Pastorin
- Department of PharmacyNational University of SingaporeSingaporeSingapore
| |
Collapse
|
36
|
Theivanthiran B, Yarla N, Haykal T, Nguyen YV, Cao L, Ferreira M, Holtzhausen A, Al-Rohil R, Salama AKS, Beasley GM, Plebanek MP, DeVito NC, Hanks BA. Tumor-intrinsic NLRP3-HSP70-TLR4 axis drives premetastatic niche development and hyperprogression during anti-PD-1 immunotherapy. Sci Transl Med 2022; 14:eabq7019. [PMID: 36417489 DOI: 10.1126/scitranslmed.abq7019] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The tumor-intrinsic NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome-heat shock protein 70 (HSP70) signaling axis is triggered by CD8+ T cell cytotoxicity and contributes to the development of adaptive resistance to anti-programmed cell death protein 1 (PD-1) immunotherapy by recruiting granulocytic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) into the tumor microenvironment. Here, we demonstrate that the tumor NLRP3-HSP70 axis also drives the accumulation of PMN-MDSCs into distant lung tissues in a manner that depends on lung epithelial cell Toll-like receptor 4 (TLR4) signaling, establishing a premetastatic niche that supports disease hyperprogression in response to anti-PD-1 immunotherapy. Lung epithelial HSP70-TLR4 signaling induces the downstream Wnt5a-dependent release of granulocyte colony-stimulating factor (G-CSF) and C-X-C motif chemokine ligand 5 (CXCL5), thus promoting myeloid granulopoiesis and recruitment of PMN-MDSCs into pulmonary tissues. Treatment with anti-PD-1 immunotherapy enhanced the activation of this pathway through immunologic pressure and drove disease progression in the setting of Nlrp3 amplification. Genetic and pharmacologic inhibition of NLRP3 and HSP70 blocked PMN-MDSC accumulation in the lung in response to anti-PD-1 therapy and suppressed metastatic progression in preclinical models of melanoma and breast cancer. Elevated baseline concentrations of plasma HSP70 and evidence of NLRP3 signaling activity in tumor tissue specimens correlated with the development of disease hyperprogression and inferior survival in patients with stage IV melanoma undergoing anti-PD-1 immunotherapy. Together, this work describes a pathogenic mechanism underlying the phenomenon of disease hyperprogression in melanoma and offers candidate targets and markers capable of improving the management of patients with melanoma.
Collapse
Affiliation(s)
- Balamayooran Theivanthiran
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nagendra Yarla
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Tarek Haykal
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Y-Van Nguyen
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Linda Cao
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michelle Ferreira
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Alisha Holtzhausen
- Lineberger Comprehensive Cancer Center, University of North Caroline at Chapel Hill, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rami Al-Rohil
- Department of Pathology, Duke Cancer Institute, Duke University Durham, Durham, NC 27710, USA
| | - April K S Salama
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Georgia M Beasley
- Department of Surgery, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Michael P Plebanek
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Nicholas C DeVito
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Brent A Hanks
- Department of Medicine, Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
37
|
Identification of a Prognostic Pyroptostic-Related Model for Head and Neck Squamous Cell Carcinoma Based on LASSO-Cox Regression Analysis. JOURNAL OF ONCOLOGY 2022; 2022:1434565. [DOI: 10.1155/2022/1434565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/14/2022] [Accepted: 10/08/2022] [Indexed: 11/23/2022]
Abstract
Pyroptosis is associated with the biological behavior of the tumor and with tumor immunity. We investigated the effect of pyroptosis on the tumor microenvironment and tumor immunity in head and neck squamous cell carcinoma (HNSCC). RNA sequencing data and clinical information of HNSCC were downloaded from TCGA. Differentially expressed pyroptosis-related genes in HNSCC were identified between HNSCC and normal tissue. Pyroptosis-related classification of HNSCC was conducted based on consensus clustering analysis. LASSO-Cox regression analysis was used to construct a prognostic risk model-based pyroptosis-related gene. Evaluation of the immune microenvironment was conducted in prognostic risk signature based on pyroptosis-related genes. Total 22 differentially expressed pyroptosis-related genes were identified in HNSCC. Six prognostic-related genes were included to construct a LASSO regression model with a prognostic risk score = (0.133 ∗ GSDME (DFNA5) + 0.084 ∗ NOD1 + 0.039 ∗ IL6 + 0.003 ∗ IL1B + 0.084 ∗ CASP3 + 0.028 ∗ NLRP2). Higher fraction of resting memory CD4+ T cells and macrophages M1 was infiltrated in the high-risk group compared with the low-risk group in HNSCC. Furthermore, the PI3K-Akt signaling pathway and the IL-17 signaling pathways were identified to be involved in the development of high-risk HNSCC. Our study constructed a prognostic risk signature based on pyroptosis-related genes, which emphasizes the critical importance of pyroptosis in HNSCC and provided a novel perspective of HNSCC therapy.
Collapse
|
38
|
Tran VTH, Pham DV, Choi DY, Park PH. Mitophagy Induction and Aryl Hydrocarbon Receptor-Mediated Redox Signaling Contribute to the Suppression of Breast Cancer Cell Growth by Taloxifene via Regulation of Inflammasomes Activation. Antioxid Redox Signal 2022; 37:1030-1050. [PMID: 35286219 DOI: 10.1089/ars.2021.0192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aims: Raloxifene, a selective estrogen receptor (ER) modulator, has been reported to exert the tumor-suppressive effects in both ER-positive and ER-negative cancer cells; however, the mechanisms underlying its ER-independent anti-cancer effects are poorly understood. The NLRP3 inflammasome, a critical component of the innate immune system, has recently received growing attention owing to its multifaceted roles in various aspects of cancer development. The present study aimed at examining the involvement of NLRP3 inflammasomes in the anti-breast cancer effects of raloxifene and its underlying mechanisms. Results: Raloxifene significantly inhibited the activation of NLRP3 inflammasomes in various breast cancer cell lines. Importantly, forced expression of a gain-of-function variant of NLRP3 rescued breast cancer cells from growth arrest by raloxifene, suggesting that the suppression of NLRP3 inflammasomes activation mediates the raloxifene-induced inhibition of breast cancer growth. Mechanistically, raloxifene suppressed NLRP3 inflammasomes activation by lowering the cellular levels of reactive oxygen species (ROS) through the modulation of redox signaling mediated via aryl hydrocarbon receptor (AhR)-nuclear factor erythroid 2-related factor 2 (Nrf2)-heme oxygenase-1 (HO-1) axis or the impaired generation of mitochondrial ROS in a mitophagy-dependent manner. Further, the blockage of AhR signaling or inhibition of mitophagy abolished the tumor-suppressive effect of raloxifene in a human breast tumor xenograft model. Innovation: We elucidate a novel molecular mechanism underlying the breast tumor suppressing effect of raloxifene. Conclusion: The results observed in this study suggest that the modulation of NLRP3 inflammasomes activation is a critical event in the inhibition of breast tumor growth by raloxifene. Antioxid. Redox Signal. 37, 1030-1050.
Collapse
Affiliation(s)
- Van Thi-Hong Tran
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
39
|
Fan FS. Inhibition of NLRP3 inflammasome activation by caffeine might be a potential mechanism to reduce the risk of squamous cell carcinoma of the oral cavity and oropharynx with coffee drinking. FRONTIERS IN ORAL HEALTH 2022; 3:1017543. [PMID: 36325196 PMCID: PMC9619210 DOI: 10.3389/froh.2022.1017543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022] Open
|
40
|
Wu Y, Chang J, Ge J, Xu K, Zhou Q, Zhang X, Zhu N, Hu M. Isobavachalcone's Alleviation of Pyroptosis Contributes to Enhanced Apoptosis in Glioblastoma: Possible Involvement of NLRP3. Mol Neurobiol 2022; 59:6934-6955. [PMID: 36053436 DOI: 10.1007/s12035-022-03010-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant intracranial tumor with high mortality rates and invariably poor prognosis due to its limited clinical treatments. There is an urgent need to develop new therapeutic drugs for GBM treatment. As a natural prenylated chalcone compound, Isobavachalcone (IBC)'s favorable pharmacological activities have been widely revealed. However, potential inhibitory effects of IBC on GBM have not been explored. In the present study, we aimed to detect the effects of IBC on GBM and clarify its anti-GBM mechanisms for the first time. It was observed that IBC could inhibit GBM cell proliferation, migration, and invasion in vitro and prevent tumor growth without any significant drug toxicity in both subcutaneous and orthotopic GBM xenograft tumor models in vivo. Mechanistically, IBC may target NOD-like receptor family pyrin domain-containing 3 (NLRP3) transcription factor estrogen receptor α (ESR1 gene) by network pharmacology and molecular docking analysis. Experimentally, IBC alleviated NLRP3 inflammasome-related pyroptosis and inflammation, arrested cell cycle at G1 phase, and induced mitochondria-dependent apoptosis in GBM cells. IBC's inhibition on NLRP3 could be rescued by the NLRP3 antagonist CY-09 both in vitro and in vivo. These results indicate that IBC is a potential therapeutic drug against GBM and provide a new insight into GBM treatment.
Collapse
Affiliation(s)
- Yueshan Wu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Jing Chang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Juanjuan Ge
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Kangyan Xu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Quan Zhou
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Xiaowen Zhang
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China
| | - Ni Zhu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China.
| | - Meichun Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, 437100, Hubei, People's Republic of China.
| |
Collapse
|
41
|
Rajesh A, Saito M, Morrin H, Tschirley A, Simcock J, Currie M, Hibma M. Characterisation of the immune microenvironment of cutaneous squamous cell carcinoma in immunosuppression. Exp Dermatol 2022; 31:1720-1728. [PMID: 35861124 DOI: 10.1111/exd.14650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common cancer. Systemic immunosuppression with drugs such as Prednisone results in more aggressive disease. We hypothesise that more aggressive disease in immunosuppression is the result of immune changes in the tumour microenvironment. We characterised T cell, phagocytic and antigen presenting cell subsets in cSCC, and determined if these infiltrates were altered by immunosuppressive therapy. We found a dominant 'CD8 profile' in the centre of cSCC lesions, with CD8 cells correlating with Tbet, FoxP3, OX40 and 'M2-like' macrophages, whereas a 'Tbet and granulocyte profile' with associated inflammation predominated at the margin of the tumour. Individuals on systemic immunosuppressive therapy had lesions that were comparable in size, stage and number of vessels to immune competent individuals however the number of CD11c positive cells in the lesion centre was significantly reduced. We conclude that cSCC lesions are immunologically heterogeneous across the lesion and that systemically immunosuppressed individuals have reduced CD11c positive cells in the centre of the lesion. The role and detailed phenotype of CD11c positive cells in cSCC lesions warrants further investigation.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Mayumi Saito
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Helen Morrin
- Cancer Society Tissue Bank, Christchurch, New Zealand
| | - Allison Tschirley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jeremy Simcock
- Department of Surgery, University of Otago Christchurch, Christchurch, New Zealand
| | - Margaret Currie
- Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Merilyn Hibma
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
42
|
Xiao L, Li X, Cao P, Fei W, Zhou H, Tang N, Liu Y. Interleukin-6 mediated inflammasome activation promotes oral squamous cell carcinoma progression via JAK2/STAT3/Sox4/NLRP3 signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:166. [PMID: 35513871 PMCID: PMC9069786 DOI: 10.1186/s13046-022-02376-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Background Interleukin-6 (IL-6) has been reported to be critical in oral squamous cell carcinoma (OSCC). However, the set of pathways that IL-6 might activate in OSCC are not fully understood. Methods IL-6 and Sox4 expressions were first determined with RT-qPCR, ELISA, Western blot, or immunohistochemistry in OSCC tissues, and correlations between IL-6 and Sox4 expression and patient pathological characteristics were examined, and Kaplan–Meier approach was employed for evaluating the prognostic utility in OSCC patients. CCK-8, EdU stain and colony formation assays were utilized to test cell proliferation in vitro. Mechanistically, downstream regulatory proteins of IL-6 were verified through chromatin immunoprecipitation, luciferase reporter, pull-down, and the rescued experiments. Western blot was used for detecting protein expression. A nude mouse tumorigenicity assay was used to confirm the role of IL-6 and Sox4 in vivo. Results IL-6 was upregulated in OSCC tissues, and Sox4 expression was positively correlated with IL-6 expression. High IL-6 and Sox4 expression was closely related to tumor size, TNM stage, and a poorer overall survival. Besides, IL-6 could accelerate OSCC cell proliferation by activating inflammasome via JAK2/STAT3/Sox4/NLRP3 pathways in vitro and in vivo. Furthermore, STAT3 played as a transcription factor which positively regulated Sox4, and IL-6 promotes Sox4 expression by activating JAK2/STAT3 pathway. Moreover, through the rescue experiments, we further confirmed that IL-6 could promote proliferation and NLRP3 inflammasome activation via JAK2/STAT3/Sox4 pathway in OSCC cells. Finally, knockdown of Sox4 suppressed OSCC growth in vivo, and antagonized the acceleration of IL-6 on tumor growth. Conclusions We confirmed that IL-6 plays an oncogenic role in OSCC progression by activating JAK2/STAT3/Sox4/NLRP3 pathway, which might be the therapeutic targets for OSCC remedy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02376-4.
Collapse
Affiliation(s)
- Li Xiao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Xue Li
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Peilin Cao
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Wei Fei
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Hao Zhou
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Na Tang
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Yi Liu
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
43
|
Sultan AS, Theofilou VI, Alfaifi A, Montelongo-Jauregui D, Jabra-Rizk MA. Is Candida albicans an opportunistic oncogenic pathogen? PLoS Pathog 2022; 18:e1010413. [PMID: 35421207 PMCID: PMC9009622 DOI: 10.1371/journal.ppat.1010413] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
- University of Maryland Greenebaum Cancer Center, Baltimore, Maryland, United States of America
- * E-mail:
| | - Vasileios Ionas Theofilou
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Areej Alfaifi
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
- Department of Restorative and Prosthetic Dental Sciences, College of Dentistry King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
| | - Mary-Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
44
|
Plant-RNA in Extracellular Vesicles: The Secret of Cross-Kingdom Communication. MEMBRANES 2022; 12:membranes12040352. [PMID: 35448322 PMCID: PMC9028404 DOI: 10.3390/membranes12040352] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
The release of extracellular vesicles (EVs) is a common language, used by living organisms from different kingdoms as a means of communication between them. Extracellular vesicles are lipoproteic particles that contain many biomolecules, such as proteins, nucleic acids, and lipids. The primary role of EVs is to convey information to the recipient cells, affecting their function. Plant-derived extracellular vesicles (PDEVs) can be isolated from several plant species, and the study of their biological properties is becoming an essential starting point to study cross-kingdom communication, especially between plants and mammalians. Furthermore, the presence of microRNAs (miRNAs) in PDEVs represents an interesting aspect for understanding how PDEVs can target the mammalian genes involved in pathological conditions such as cancer, inflammation, and oxidative stress. In particular, this review focuses on the history of PDEVs, from their discovery, to purification from various matrices, and on the functional role of PDEV-RNAs in cross-kingdom interactions. It is worth noting that miRNAs packaged in PDEVs can be key modulators of human gene expression, representing potential therapeutic agents.
Collapse
|
45
|
Luo Q, Li X, Gan G, Yang M, Chen X, Chen F. PPT1 Reduction Contributes to Erianin-Induced Growth Inhibition in Oral Squamous Carcinoma Cells. Front Cell Dev Biol 2022; 9:764263. [PMID: 35004674 PMCID: PMC8740138 DOI: 10.3389/fcell.2021.764263] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
The anticancer properties of erianin have been recently discovered. However, the antitumor effect of erianin in oral squamous cell carcinoma (OSCC) remains unclear. In this study, we demonstrated that erianin can hamper OSCC cells growth both in vitro and in vivo. Erianin induced obvious G2/M arrest as well as apoptosis and gasdermin E (GSDME)-dependent pyroptosis in OSCC cells. Moreover, erianin increased autophagosome formation but decreased autolysosome function. Further study indicated that erianin significantly suppressed the expression of protein-palmitoyl thioesterase 1 (PPT1) and mTOR signaling. PPT1 has been reported to be a critical regulator of cancer progression by its modulation of autophagy and mTOR signaling. According to online databases, higher expression of PPT1 has been observed in OSCC tissues and is associated with poorer patient prognosis. As overexpression of PPT1 significantly reversed erianin-induced growth inhibition in OSCC cells, we identified the importance of PPT1 reduction in erianin-induced growth suppression. With the xenograft model, we confirmed the antitumor effect of erianin in vivo. Erianin efficiently decreased the tumor sizes, together with visibly reduced expression of PPT1 and phosphorylation of mTOR in the xenograft tumor tissues. Therefore, the present study indicated that erianin may be potentially used in OSCC therapy.
Collapse
Affiliation(s)
- Qingqiong Luo
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Li
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guifang Gan
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng Yang
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Li X, Long J, Zong L, Zhang C, Yang Z, Guo S. ZNF561-AS1 Regulates Cell Proliferation and Apoptosis in Myocardial Infarction Through miR-223-3p/NLRP3 Axis. Cell Transplant 2022; 31:9636897221077928. [PMID: 35997481 PMCID: PMC9421029 DOI: 10.1177/09636897221077928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been widely recognized as important regulators in myocardial infarction (MI) and other heart diseases. Our study aimed to investigate the mechanism and biological function of an unknown lncRNA zinc finger protein 561 antisense RNA 1 (ZNF561-AS1) in MI. After confirming the MI model was successful, we applied reverse transcription quantitative polymerase chain reaction and Western blot (WB) and found that the expression of NLR family pyrin domain containing 3 (NLRP3), interleukin (IL)-1β, and IL-18 was substantially increased in infarct and border zones of MI mice heart at 24 h and 72 h compared with that in sham-operated models. Moreover, we found that NLRP3 expression was promoted in hypoxia human cardiomyocytes (HCMs). Through cell function assays including CCK-8, 5-Ethynyl-2’-deoxyuridine (EdU), flow cytometry, and TdT-mediated dUTP Nick-End Labeling (TUNEL), supported by WB analysis, we verified that silencing of NLRP3 facilitated proliferation but impeded apoptosis of hypoxia-induced myocardial cell. Moreover, Ago2-RIP and RNA pull-down assays displayed that NLRP3 could combine with miR-223-3p. Luciferase reporter assays further confirmed that NLRP3 was directly targeted by miR-223-3p. Simultaneously, we found that miR-223-3p was the downstream gene of ZNF561-AS1. In addition, we conducted a series of rescue experiments to affirm that ZNF561-AS1 regulated cell proliferation and apoptosis in MI through miR-223-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Xiaoyu Li
- Cardiovascular Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Jun Long
- Centre for Cardiovascular Disease, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ligeng Zong
- Department of Cardiology, Binzhou People's Hospital of Shandong Province, Binzhou, China
| | - Chengcheng Zhang
- Department of Cardiology, Binzhou People's Hospital of Shandong Province, Binzhou, China
| | - Zhongxin Yang
- The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Shengnan Guo
- Cardiovascular Medicine, The First Affiliated Hospital of Henan University, Kaifeng, China
| |
Collapse
|
47
|
Mittmann LA, Haring F, Schaubächer JB, Hennel R, Smiljanov B, Zuchtriegel G, Canis M, Gires O, Krombach F, Holdt L, Brandau S, Vogl T, Lauber K, Uhl B, Reichel CA. Uncoupled biological and chronological aging of neutrophils in cancer promotes tumor progression. J Immunother Cancer 2021; 9:jitc-2021-003495. [PMID: 34876407 PMCID: PMC8655594 DOI: 10.1136/jitc-2021-003495] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 01/13/2023] Open
Abstract
Background Beyond their fundamental role in homeostasis and host defense, neutrophilic granulocytes (neutrophils) are increasingly recognized to contribute to the pathogenesis of malignant tumors. Recently, aging of mature neutrophils in the systemic circulation has been identified to be critical for these immune cells to properly unfold their homeostatic and anti-infectious functional properties. The role of neutrophil aging in cancer remains largely obscure. Methods Employing advanced in vivo microscopy techniques in different animal models of cancer as well as utilizing pulse-labeling and cell transfer approaches, various ex vivo/in vitro assays, and human data, we sought to define the functional relevance of neutrophil aging in cancer. Results Here, we show that signals released during early tumor growth accelerate biological aging of circulating neutrophils, hence uncoupling biological from chronological aging of these immune cells. This facilitates the accumulation of highly reactive neutrophils in malignant lesions and endows them with potent protumorigenic functions, thus promoting tumor progression. Counteracting uncoupled biological aging of circulating neutrophils by blocking the chemokine receptor CXCR2 effectively suppressed tumor growth. Conclusions Our data uncover a self-sustaining mechanism of malignant neoplasms in fostering protumorigenic phenotypic and functional changes in circulating neutrophils. Interference with this aberrant process might therefore provide a novel, already pharmacologically targetable strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Laura A Mittmann
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Florian Haring
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Johanna B Schaubächer
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Roman Hennel
- Department of Radiotherapy and Radiation Oncology, LMU München, Munich, Germany
| | - Bojan Smiljanov
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Gabriele Zuchtriegel
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, LMU München, Munich, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, LMU München, Munich, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Lesca Holdt
- Institute for Laboratory Medicine, LMU München, Munich, Germany
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Thomas Vogl
- Institute for Immunology, University of Munster, Munster, Germany
| | - Kirsten Lauber
- Department of Radiotherapy and Radiation Oncology, LMU München, Munich, Germany
| | - Bernd Uhl
- Department of Otorhinolaryngology, LMU München, Munich, Germany.,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology, LMU München, Munich, Germany .,Walter Brendel Centre of Experimental Medicine, LMU München, Munich, Germany
| |
Collapse
|
48
|
Zhang X, Li C, Chen D, He X, Zhao Y, Bao L, Wang Q, Zhou J, Xie Y. H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion. Inflamm Res 2021; 71:141-155. [PMID: 34854954 DOI: 10.1007/s00011-021-01522-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The CagA (cytotoxin-related gene A, CagA) protein is an important factor for the pathogenicity of Helicobacter pylori (H. pylori). Although H. pylori has previously been shown to activate the NLRP3 inflammasome, it remains unclear what role CagA plays in this process. In the current study, we aimed to investigate the effect of CagA on NLRP3 activation and how it is linked to gastric cancer cell migration and invasion. METHODS CagA positive H. pylori strain (Hp/CagA+) and CagA gene knockout mutant (Hp/ΔCagA) infected and the pcDNA3.1/CagA plasmid transfected gastric epithelial cell lines, respectively. The morphological alterations of cells under a microscope; the NLRP3 inflammasome-related markers: NLRP3, caspase-1, and ASC protein levels were detected by Western blot, IL-1β and IL-18 levels were determined by ELISA; cell migration and invasion were determined by transwell assay; and the pyroptosis levels and intracellular ROS were determined by flow cytometry analysis. Then, pretreated with 5 mM NAC for 2 h and subsequently transfected with the pcDNA3.1/CagA plasmid for 48 h, the effects of NAC pretreatment on CagA-induced NLRP3 inflammasome-related markers expression and cell pyroptosis were examined, finally assessed the effect of CagA on migration and invasion in NLRP3-silenced cells. RESULTS We found that Hp/CagA+ strain infection and pcDNA3.1/CagA vector transfection result in NLRP3 inflammasome activation, generation of intracellular ROS, and increased invasion and migration of gastric cancer cells. Moreover, we found that ROS inhibition via NAC effectively blocks NLRP3 activation and pyroptosis. Silencing of NLRP3 reduces the effects of CagA on gastric cancer cell migration and invasion. CONCLUSION Our study shows that CagA can promote the invasion and migration of gastric cancer cells by activating NLRP3 inflammasome pathway. These findings provide novel insights into the mechanism of gastric cancer induction by H. pylori.
Collapse
Affiliation(s)
- XiaoYi Zhang
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou Province, China
| | - Chao Li
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Guiyang Maternity and Child Health Care Hospital, Guiyang, Guizhou Province, China
| | - Dingyu Chen
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - XiaoFeng He
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - LiYa Bao
- Affiliated Hospital, Guiyang Medical University, No. 9, Beijing Road, Guiyang, 550004, China
| | - Qingrong Wang
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China.,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China
| | - JianJiang Zhou
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China. .,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China. .,Affiliated Hospital, Guiyang Medical University, No. 9, Beijing Road, Guiyang, 550004, China.
| | - Yuan Xie
- Key Laboratory of Endemic and Ethnic Diseases (Guizhou Medical University), Ministry of Education, Guiyang, China. .,Key Laboratory of Medical Molecular Biology (Guizhou Medical University), No. 9, Beijing Road, Guiyang, 550004, China.
| |
Collapse
|
49
|
Crosstalk between the oral microbiota, mucosal immunity, and the epithelial barrier regulates oral mucosal disease pathogenesis. Mucosal Immunol 2021; 14:1247-1258. [PMID: 34040155 DOI: 10.1038/s41385-021-00413-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Oral mucosal disease (OMD), which is also called soft tissue oral disease, is described as a series of disorders or conditions affecting the mucosa and soft tissue in the oral cavity. Its etiology is unclear, but emerging evidence has implicated the influence of the composition of the oral mucosa and saliva-resident microbiota. In turn, this dysbiosis effects the immune response balance and epithelial barrier function, followed by the occurrence and progression of OMD. In addition, oral microbial dysbiosis is diverse in different types of diseases and different disease progressions, suggesting that key causal pathogens may exist in various oral pathologies. This narrative literature review primarily discusses the most recent findings focusing on how microbial dysbiosis communicates with mucosal adaptive immune cells and the epithelial barrier in the context of five representative OMDs, including oral candidiasis (OC), oral lichen planus (OLP), recurrent aphthous ulcer (RAU), oral leukoplakia (OLK), and oral squamous cell carcinoma (OSCC), to provide new insight into the pathogenetic mechanisms of OMDs.
Collapse
|
50
|
Yao Y, Shen X, Zhou M, Tang B. Periodontal Pathogens Promote Oral Squamous Cell Carcinoma by Regulating ATR and NLRP3 Inflammasome. Front Oncol 2021; 11:722797. [PMID: 34660289 PMCID: PMC8514820 DOI: 10.3389/fonc.2021.722797] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/09/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is closely related to oral cancer, but the molecular mechanism of periodontal pathogens involved in the occurrence and development of oral cancer is still inconclusive. Here, we demonstrate that, in vitro, the cell proliferation ability and S phase cells of the periodontitis group (colonized by Porphyromonas gingivalis and Fusobacterium nucleatum, P+) significantly increased, but the G1 cells were obviously reduced. The animal models with an in situ oral squamous cell carcinoma (OSCC) and periodontitis-associated bacteria treatment were constructed, and micro-CT showed that the alveolar bone resorption of mice in the P+ group (75.3 ± 4.0 μm) increased by about 53% compared with that in the control group (48.8 ± 1.3 μm). The tumor mass and tumor growth rate in the P+ group were all higher than those in the blank control group. Hematoxylin-eosin (H&E) staining of isolated tumor tissues showed that large-scale flaky necrosis was found in the tumor tissue of the P+ group, with lots of damaged vascular profile and cell debris. Immunohistochemistry (IHC) of isolated tumor tissues showed that the expression of Ki67 and the positive rate of cyclin D1 were significantly higher in tumor tissues of the P+ group. The qRT-PCR results of the expression of inflammatory cytokines in oral cancer showed that periodontitis-associated bacteria significantly upregulated interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-18, apoptosis-associated speck-like protein containing a CARD (ASC) (up to six times), and caspase-1 (up to four times), but it downregulated nuclear factor (NF)-κB, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), and IL-1β (less than 0.5 times). In addition, the volume of spleen tissue and the number of CD4+ T cells, CD8+ T cells, and CD206+ macrophages in the P+ group increased significantly. IHC and Western blotting in tumor tissues showed that expression levels of γ-H2AX, p-ATR, RPA32, CHK1, and RAD51 were upregulated, and the phosphorylation level of CHK1 (p-chk1) was downregulated. Together, we identify that the periodontitis-related bacteria could promote tumor growth and proliferation, initiate the overexpressed NLRP3, and activate upstream signal molecules of ATR-CHK1. It is expected to develop a new molecular mechanism between periodontitis-related bacteria and OSCC.
Collapse
Affiliation(s)
- Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Maolin Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|