1
|
Zapico D, Espinosa J, Criado M, Gutiérrez D, Ferreras MDC, Benavides J, Pérez V, Fernández M. Immunohistochemical expression of TLR1, TLR2, TLR4, and TLR9 in the different types of lesions associated with bovine paratuberculosis. Vet Pathol 2025; 62:305-318. [PMID: 39720873 DOI: 10.1177/03009858241302850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The factors that determine the appearance of the different pathologic forms associated with bovine paratuberculosis are not fully understood, but new research suggests a critical role of innate immunity. Toll-like receptors (TLRs) trigger the recognition of invading pathogens by innate immune cells and the onset of specific immune responses. The aim of this work was to assess, immunohistochemically, the expression of TLR1, TLR2, TLR4, and TLR9 in intestinal samples of 20 cows showing different types of paratuberculous lesions: uninfected controls, focal lesions, paucibacillary, and multibacillary diffuse forms. The majority of labeled cells were morphologically consistent with macrophages. A differential cell count was performed in the intestinal lamina propria, gut-associated lymphoid tissue, and mesenteric lymph node. TLR9 immunolabeling between the different types of lesions was compared using a complete H-score. Focal and diffuse paucibacillary forms contained significantly increased TLR2-expressing macrophages outside of the lesions compared with the controls and diffuse multibacillary forms, and moderate TLR9 immunolabeling within granulomas. In the multibacillary granulomatous lesions, the expression of TLR1 and TLR4 was observed as well as increased TLR9 expression compared with the rest of the groups. Differences in the predominance of one type or another of TLR allows us to elucidate the importance of the innate immune response and its possible role in the development of the different types of paratuberculosis lesions.
Collapse
Affiliation(s)
- David Zapico
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - José Espinosa
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - Miguel Criado
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | - Daniel Gutiérrez
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | | | | | - Valentín Pérez
- Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, León, Spain
| | | |
Collapse
|
2
|
Zhang L, Fang F, Liu D, Xia G, Feng T, Lv J, Qi J, Li T, Liu H, Xu T, Wu F, Song C, Li W, Wang X, Chang X, Wang H, Wang T, Qian Z. Early secretory antigen target of 6-kDa of Mycobacterium tuberculosis inhibits macrophage apoptosis and host defense via TLR2. Respir Res 2025; 26:131. [PMID: 40205554 PMCID: PMC11983766 DOI: 10.1186/s12931-025-03210-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen adept at evading the human immune system through a variety of mechanisms. During infection, M. tb secretes numerous virulence factors, including the 6 kDa early secretory antigen target (ESAT-6), which is produced by the ESX-1 secretion system. ESAT-6 plays a crucial role in host-pathogen interactions, either independently or in association with culture filtrate protein 10 (CFP-10). While some research has investigated the role of ESAT-6 in M. tb pathogenicity and vaccine development, its precise contribution to immune evasion and the cellular mechanisms involved remain poorly understood. To address this, we used cultured THP-1(A) macrophages to characterize the effects of secreted ESAT-6 on cellular host defenses and apoptosis. We found that ESAT-6 (5 μg/ml) inhibited M. tb-induced apoptosis in THP-1(A) macrophages by suppressing Toll-like receptor 2 (TLR2) through the Caspase-9/Caspase-3 pathway. Additionally, ESAT-6 reduced phagocytosis of M. tb by THP-1(A) macrophages by downregulating the production of interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), and interleukin-12 (IL-12). Furthermore, ESAT-6 diminished the bactericidal activity of macrophages by inducing reactive oxygen species (ROS) production. In parallel, our in silico analysis of differentially expressed genes in dendritic cells (DCs) infected with Bacille Calmette-Guérin (BCG) strains, with or without the region of difference-1 (RD1) gene, strongly suggests that ESAT-6, located within the RD1 region, modulates host defense functions and apoptosis in DCs during BCG infection. Collectively, these findings indicate that ESAT-6 plays a pivotal role in modulating the innate immune response of macrophages against M. tb by regulating macrophage recognition, phagocytosis, bactericidal activity, and apoptosis. Our study provides valuable insights into potential molecular targets for the development of innovative vaccines and therapeutic strategies against M. tb.
Collapse
Affiliation(s)
- Lin Zhang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
- Yiwu Traditional Chinese Medicine Hospital, Jinhua, Zhejiang, China
| | - Fang Fang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Danrui Liu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Geman Xia
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Tong Feng
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Jingzhu Lv
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Jinying Qi
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Tengteng Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Hui Liu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Tao Xu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Fengjiao Wu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Chuanwang Song
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Wei Li
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical University, Bengbu, Anhui, China
| | - Xianyou Chang
- The Infectious Disease Hospital of Bengbu City, Bengbu, Anhui, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China
| | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.
- Center for Translational Science, Florida International University, Port Saint Lucie, FL, USA.
| | - Zhongqing Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, China.
| |
Collapse
|
3
|
Kilinç G, Ottenhoff THM, Saris A. Phenothiazines boost host control of Mycobacterium avium infection in primary human macrophages. Biomed Pharmacother 2025; 185:117941. [PMID: 40020517 DOI: 10.1016/j.biopha.2025.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025] Open
Abstract
Mycobacterium avium (Mav) complex is the leading cause of pulmonary diseases associated with non-tuberculous mycobacterial (NTM) infections worldwide. The inherent and increasing acquired antibiotic resistance of Mav hampers the treatment of Mav infections and emphasizes the urgent need for alternative treatment strategies. A promising approach is host-directed therapy (HDT), which aims to boost the host's immune defenses to combat infections. In this study, we show that phenothiazines, particularly trifluoperazine (TFP) and chlorproethazine (CPE), restricted Mav survival in primary human macrophages. Notably, TFP and CPE did not directly inhibit mycobacterial growth at used concentrations, confirming these drugs function through host-dependent mechanisms. TFP and CPE induced a mild, albeit not statistically significant, increase in autophagic flux along with the nuclear intensity of transcription factor EB (TFEB), the master transcriptional regulator of autophagy. Inhibition of autophagic flux with bafilomycin, however, did not impair the improved host infection control by TFP and CPE, suggesting that the host (auto)phagolysosomal pathway is not causally involved in the mechanism of action of TFP and CPE. Additionally, TFP and CPE increased the production of both cellular and mitochondrial reactive oxygen species (ROS). Scavenging mitochondrial ROS did not impact, whereas inhibition of NADPH oxidase (NOX)-mediated ROS production partially impaired the HDT activity of TFP and CPE, indicating that oxidative burst may play a limited role in the improved host control of Mav infection by these drugs. Overall, our study demonstrates that phenothiazines are promising HDT candidates that enhance the antimicrobial response of macrophages against Mav, through mechanism(s) that were partially elucidated.
Collapse
Affiliation(s)
- Gül Kilinç
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Anno Saris
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Zhang W, Li Z, Wang Z, Liu K, Huang S, Liang J, Dai Z, Guo W, Mao C, Chen S, Wei J. Polyethylene microplastics promote nucleus pulposus cell senescence by inducing oxidative stress via TLR4/NOX2 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117950. [PMID: 40020381 DOI: 10.1016/j.ecoenv.2025.117950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
This study aimed to detect and characterize microplastics in intervertebral disc and investigate their effects and molecular mechanism on intervertebral disc degeneration. We collected intervertebral disc tissues from cervical, lumbar, and thoracolumbar segments and used Raman spectroscopy to identify and characterize microplastics. Among 80 samples, 47 contained microplastics, with polyethylene being the most prevalent type. To explore the effects of polyethylene microplastics (PE-MPs), we established a mouse model and a nucleus pulposus cell model. Reactive oxygen species (ROS) levels were assessed via immunofluorescence staining, cell viability was measured using the CCK-8 assay, and protein expression related to the Toll-like receptor 4 (TLR4)/NADPH oxidase 2 (NOX2) axis, oxidative stress, and nucleus pulposus degeneration were evaluated through western blotting and immunofluorescence staining. Results showed that PE-MPs exposure led to intervertebral disc degeneration by inducing oxidative stress and activating the TLR4 / NOX2 axis, which increased the senescence of nucleus pulposus cells. These effects were mitigated by TLR4 and NOX2 inhibitors. This research highlights the existence of microplastics in human intervertebral disc tissue and unveils a novel mechanism of nucleus pulposus cell senescence induced by PE-MPs, offering new avenues for clinical treatment of microplastic-related disc degeneration.
Collapse
Affiliation(s)
- Weilin Zhang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhencong Li
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhongwei Wang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kuize Liu
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shengbang Huang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinguo Liang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhiwen Dai
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Weixiong Guo
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chao Mao
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Siyuan Chen
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinsong Wei
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
5
|
Yang X, Chen Y, Pu B, Yuan X, Wang J, Chen C. YY1 Contributes to the Inflammatory Responses of Mycobacterium tuberculosis-Infected Macrophages Through Transcription Activation-Mediated Upregulation TLR4. Mol Biotechnol 2025; 67:778-789. [PMID: 38492118 DOI: 10.1007/s12033-024-01093-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/26/2024] [Indexed: 03/18/2024]
Abstract
Tuberculosis (TB) is a chronic respiratory infectious disease and is induced by Mycobacterium tuberculosis (M.tb) infection. Macrophages serve as the cellular home in immunoreaction against M.tb infection, which is tightly regulated through Toll-like receptor 4 (TLR4) expression. Therefore, this study is designed to explore the role and mechanism of TLR4 in mycobacterial injury in human macrophages (THP-1 cells) after M.tb infection. Cell proliferation and apoptosis were assessed using MTT, EdU, and flow cytometry assays. ELISA kits were utilized to assess the levels of Interleukin-6 (IL-6), IL-1β, and tumor necrosis factor α (TNF-α). The binding between Yin-Yang-1 (YY1) and TLR4 promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. M.tb infection might repress THP-1 cell proliferation, and induce cell apoptosis and inflammatory response in a multiplicity of infection (MOI)-dependent manner. Moreover, M.tb infection increased the expression of TLR4 in HTP-1 cells in an MOI-dependent way, and its downregulation might overturn M.tb infection-mediated HTP-1 cell damage and inflammatory response. At the molecular level, YY1 was a transcription factor of TLR4 and promoted TLR4 transcription via binding to its promoter region. Besides, YY1 might activate the NF-kB signaling pathway via regulating TLR4. Meanwhile, TLR4 inhibitor BAY11-7082 might overturn the repression effect of TLR4 on M.tb-infected HTP-1 cell damage. YY1-activated TLR4 might aggravate mycobacterial injury in human macrophages after M.tb infection by the NF-kB pathway, providing a promising therapeutic target for TB treatment.
Collapse
Affiliation(s)
- Xing Yang
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China.
| | - Yu Chen
- Department of Health Management Division, Ren Huai People's Hospital, Zunyi, 564500, Guizhou, China
| | - Bingshuang Pu
- Department of Infectious Diseases, Ren Huai People's Hospital, Zunyi, 564500, Guizhou, China
| | - Xuan Yuan
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| | - Jiaojiao Wang
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| | - Chun Chen
- Department of Preventive Health Care, Ren Huai People's Hospital, 2802, Building 3, Shengjie Community Harmony Square, Luban Street, Renhuai, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Fowler JF, Eubank TA, Garey KW. Proton pump inhibitor effect on macrophage and neutrophil function: a systematic review. Front Immunol 2024; 15:1477993. [PMID: 39776898 PMCID: PMC11703997 DOI: 10.3389/fimmu.2024.1477993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Background Proton pump inhibitors (PPIs) are one of the most used drugs worldwide. While generally considered safe, the usage of PPIs is associated with several adverse outcomes including acute infectious diseases. PPIs influence macrophage and neutrophil function although a systematic review has never been undertaken. The purpose of this systematic review was to determine the potential mechanisms of how PPI-induced inhibition of macrophage and neutrophil function may increase infection risk in susceptible hosts. Methods A database search using Scopus and PubMed was performed to identify studies that investigated the effects of PPIs on neutrophils or macrophage function. Results The final screening yielded 21 English-language research articles that focused on the impacts of PPIs on the function of macrophages and neutrophils. PPI mechanistic effects included cytotoxic effects on polymorphonuclear neutrophils, inhibition of reactive oxygen species (ROS) and reactive nitrogen species, phagocytosis and phagosomal degradation, inhibition of chemotaxis and migration, altering Toll-like receptor signaling and p38 protein phosphorylation in immune cells, and altering neutrophil and macrophage gene expression. Discussion The impact of PPIs on MΦs and neutrophils regarding their role in the immune response to bacterial pathogens was summarized. PPI effects on macrophages and neutrophils occurred due to the therapeutic mechanism of PPIs, the protonation of sulfhydryl groups and the subsequent formation of a disulfide bond, and other pleiotropic manners. Given the common use of PPIs, these results highlight the necessity to optimize PPI use and stewardship to curtail unnecessary drug use.
Collapse
Affiliation(s)
| | | | - Kevin W. Garey
- College of Pharmacy, University of Houston, Houston,
TX, United States
| |
Collapse
|
7
|
Najjar RS, Grace WW, Siqueira APS, Setka AM, Lu W, Wang S, Feresin RG. Polyphenols have unique cellular effects that are distinct from antioxidant function in Toll-like receptor 4-mediated inflammation in RAW264.7 macrophage-like cells. Nutr Res 2024; 132:136-151. [PMID: 39580917 DOI: 10.1016/j.nutres.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024]
Abstract
Plant polyphenols are bioactive compounds touted for their antioxidant effects, and this is often the primary attribute used to explain their health benefits. However, we hypothesize that polyphenols have molecular properties independent of antioxidant function. The objective of this study was to investigate whether polyphenols had distinct molecular effects compared to pure antioxidants. RAW 264.7 macrophages were pretreated with either TEMPOL, a superoxide scavenger, N-acetyl cysteine, a hydroxyl radical and hydrogen peroxide scavenger, or polyphenol extracts from blackberry, blueberry, raspberry, strawberry, kale, and baru nut. After 1 hour of pretreatment, cells were treated with lipopolysaccharides (100 ng/mL) for an additional 6 hour. Antioxidants and polyphenol extracts elicited antioxidant effects in vitro; however, polyphenols regulated redox proteins in a distinct, protective manner, whereas antioxidants, TEMPOL, and N-acetyl cysteine, did not. Additionally, distinct effects were observed in downstream Toll-like receptor 4 signaling and transcriptional activity of inflammatory proteins. We conclude that polyphenols have unique molecular effects that are independent of just their free radical scavenging capacity. This work advances our molecular understanding of how polyphenols act to target inflammation.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Wesley W Grace
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Ana P S Siqueira
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Alivia M Setka
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Wen Lu
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Chemistry, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Tjahjono Y, Caroline, Foe K, Wijaya H, Dewi BDN, Karnati S, Esar SY, Karel P, Partana FR, Henrikus MA, Wiyanto CA, Wilianto YR, Hadinugroho W, Nugraha J, Nugrahaningsih DAA, Kusindarta DL, Wihadmadyatami H. 2-(3-(Chloromethyl)benzoyloxy)benzoic Acid reduces prostaglandin E-2 concentration, NOX2 and NFKB expression, ROS production, and COX-2 expression in lipopolysaccharide-induced mice. Prostaglandins Other Lipid Mediat 2024; 174:106866. [PMID: 38960027 DOI: 10.1016/j.prostaglandins.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Inflammation is a fundamental response to various insults, including microbial invasion and tissue injury. While aspirin (ASA) has been widely used for its anti-inflammatory properties, its adverse effects and limitations highlight the need for novel therapeutic alternatives. Recently, a novel salicylic acid derivative, 2-((3-(chloromethyl)benzoyl)oxy)benzoic acid (3-CH2Cl), has emerged as a potential substitute for ASA, offering a simpler, environmentally friendly synthesis and a promising safety profile. AIM OF THE STUDY This research aims to evaluate the anti-inflammatory mechanism of 3-CH2Cl in a lipopolysaccharide (LPS)-induced mouse model, focusing on its effects on prostaglandin E-2 (PGE-2) concentration, NOX2 and NFkB expression, ROS production, and COX-2 expression. MATERIAL AND METHODS Utilizing BALB/C mice subjected to LPS-induced inflammation, we investigated the therapeutic potential of 3-CH2Cl. The study included synthesis and tablet preparation, experimental design, peripheral blood plasma PGE-2 measurement, splenocyte isolation and COX-2 expression analysis, nitric oxide and ROS measurement, and immunohistochemical analysis of NOX2 and NFkB expression. RESULTS 3-CH2Cl significantly reduced PGE-2 levels (p = 0.005), NO concentration in liver homogenates (p = 0.005) and plasma (p = 0.0011), and expression of NOX2 and NFkB in liver (p < 0.0001) and splenocytes (p = 0.0036), demonstrating superior anti-inflammatory activity compared to ASA. Additionally, it showed potential in decreasing COX-2 expression in splenocytes. CONCLUSION 3-CH2Cl exhibits potent anti-inflammatory properties, outperforming ASA in several key inflammatory markers in an LPS-induced inflammation model. The reduction of COX-2 expression, alongside the reduction of pro-inflammatory cytokines and oxidative stress markers, suggest it as a promising therapeutic agent for various inflammatory conditions.
Collapse
Affiliation(s)
- Yudy Tjahjono
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia; Study Program of Veterinary Science, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna No.2 Karangmalang, Yogyakarta 55281, Indonesia
| | - Caroline
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Kuncoro Foe
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Hendy Wijaya
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Bernadette Dian Novita Dewi
- Faculty of Medicine, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Senny Yesery Esar
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Philipus Karel
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Fransiskus Regis Partana
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Michelle Angelina Henrikus
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Claritta Angelina Wiyanto
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Yufita Ratnasari Wilianto
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Wuryanto Hadinugroho
- Faculty of Pharmacy, Widya Mandala Catholic University Surabaya, Jalan Kalisari Selatan 1, Surabaya, East Java 60237, Indonesia
| | - Jusak Nugraha
- Department of Clinical Pathology, Faculty of Medicine, Universitas Airlangga, Jl. Mayjen Prof. Dr. Moestopo No.47, Surabaya, 60132, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Dwi Liliek Kusindarta
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna No.2 Karangmalang, Yogyakarta 55281, Indonesia
| | - Hevi Wihadmadyatami
- Department of Anatomy, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jalan Fauna No.2 Karangmalang, Yogyakarta 55281, Indonesia.
| |
Collapse
|
9
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
10
|
Knopf JD, Steigleder SS, Korn F, Kühnle N, Badenes M, Tauber M, Theobald SJ, Rybniker J, Adrain C, Lemberg MK. RHBDL4-triggered downregulation of COPII adaptor protein TMED7 suppresses TLR4-mediated inflammatory signaling. Nat Commun 2024; 15:1528. [PMID: 38453906 PMCID: PMC10920636 DOI: 10.1038/s41467-024-45615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/30/2024] [Indexed: 03/09/2024] Open
Abstract
The toll-like receptor 4 (TLR4) is a central regulator of innate immunity that primarily recognizes bacterial lipopolysaccharide cell wall constituents to trigger cytokine secretion. We identify the intramembrane protease RHBDL4 as a negative regulator of TLR4 signaling. We show that RHBDL4 triggers degradation of TLR4's trafficking factor TMED7. This counteracts TLR4 transport to the cell surface. Notably, TLR4 activation mediates transcriptional upregulation of RHBDL4 thereby inducing a negative feedback loop to reduce TLR4 trafficking to the plasma membrane. This secretory cargo tuning mechanism prevents the over-activation of TLR4-dependent signaling in an in vitro Mycobacterium tuberculosis macrophage infection model and consequently alleviates septic shock in a mouse model. A hypomorphic RHBDL4 mutation linked to Kawasaki syndrome, an ill-defined inflammatory disorder in children, further supports the pathophysiological relevance of our findings. In this work, we identify an RHBDL4-mediated axis that acts as a rheostat to prevent over-activation of the TLR4 pathway.
Collapse
Affiliation(s)
- Julia D Knopf
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Susanne S Steigleder
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Friederike Korn
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Nathalie Kühnle
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Marina Badenes
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University and Faculty of Veterinary Nursing, Polytechnic Institute of Lusofonia, Lisbon, Portugal
| | - Marina Tauber
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Sebastian J Theobald
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Jan Rybniker
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Colin Adrain
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany.
- Center for Biochemistry and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
He Y, Yin R. The reproductive and transgenerational toxicity of microplastics and nanoplastics: A threat to mammalian fertility in both sexes. J Appl Toxicol 2024; 44:66-85. [PMID: 37382358 DOI: 10.1002/jat.4510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are extensively distributed in the environment. However, a comprehensive review and in-depth discussion on the effects of MPs and NPs to reproductive capacity and transgenerational toxicity on mammals, especially on humans, is lacked. It is suggested that microplastics and nanoplastics could accumulate in mammalian reproductive organs and exert toxic effects on the reproductive system for both sexes. For males, the damage of microplastics consists of abnormal testicular and sperm structure, decreased sperm vitality, and endocrine disruption, which were caused by oxidative stress, inflammation, apoptosis of testicular cells, autophagy, abnormal cytoskeleton, and abnormal hypothalamic-pituitary-testicular axis. For females, the damage of microplastics includes abnormal ovary and uterus structure and endocrine disruption, which were caused by oxidative stress, inflammation, granulosa cell apoptosis, hypothalamic-pituitary-ovary axis abnormalities, and tissue fibrosis. For transgenerational toxicity, premature mortality existed in the rodent offspring after maternal exposure to microplastics. Among the surviving offspring, metabolic disorders, reproductive dysfunction, immune, neurodevelopmental, and cognitive disorders were detected, and these events directly correlated with transgenerational translocation of MPs and NPs. Studies on human-derived cells or organoids demonstrated that transgenerational toxicity studies for both sexes are yet in the phase of exploring suitable experimental models, and more detailed research on the threat of MPs and NPs to human fertility is still urgently needed. Further studies will help assess the MPs and NPs threat to public fertility and reproductive health risks.
Collapse
Affiliation(s)
- Yuchong He
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
- The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Provincial, Nanchang University, Nanchang, Jiangxi Province, China
| | - Ruocheng Yin
- Queen Mary School, Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
12
|
Ahmed A, Tripathi H, van Meijgaarden KE, Kumar NC, Adiga V, Rakshit S, Parthiban C, Eveline J S, D’Souza G, Dias M, Ottenhoff TH, Netea MG, Joosten SA, Vyakarnam A. BCG revaccination in adults enhances pro-inflammatory markers of trained immunity along with anti-inflammatory pathways. iScience 2023; 26:107889. [PMID: 37817935 PMCID: PMC10561055 DOI: 10.1016/j.isci.2023.107889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
This study characterized mechanisms of Bacille Calmette-Guérin (BCG) revaccination-induced trained immunity (TI) in India. Adults, BCG vaccinated at birth, were sampled longitudinally before and after a second BCG dose. BCG revaccination significantly elevated tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6 in HLA-DR+CD16-CD14hi monocytes, demonstrating induction of TI. Mycobacteria-specific CD4+ T cell interferon (IFN) γ, IL-2, and TNF-α were significantly higher in re-vaccinees and correlated positively with HLA-DR+CD16-CD14hi TI responses. This, however, did not translate into increased mycobacterial growth control, measured by mycobacterial growth inhibition assay (MGIA). Post revaccination, elevated secreted TNF-α, IL-1β, and IL-6 to "heterologous" fungal, bacterial, and enhanced CXCL-10 and IFNα to viral stimuli were also observed concomitant with increased anti-inflammatory cytokine, IL-1RA. RNA sequencing after revaccination highlighted a BCG and LPS induced signature which included upregulated IL17 and TNF pathway genes and downregulated key inflammatory genes: CXCL11, CCL24, HLADRA, CTSS, CTSC. Our data highlight a balanced immune response comprising pro- and anti-inflammatory mediators to be a feature of BCG revaccination-induced immunity.
Collapse
Affiliation(s)
- Asma Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Himanshu Tripathi
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | | | - Nirutha Chetan Kumar
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Biotechnology, PES University, Bangalore, India
| | - Srabanti Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Chaitra Parthiban
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Sharon Eveline J
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - George D’Souza
- Department of Pulmonary Medicine, St. John’s Medical College, Bangalore, India
| | - Mary Dias
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
| | - Tom H.M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Simone A. Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Annapurna Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
- Infectious Disease Unit, St. John’s Research Institute, Bangalore, India
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Science & Medicine, King’s College, London, UK
| |
Collapse
|
13
|
Carabalí-Isajar ML, Rodríguez-Bejarano OH, Amado T, Patarroyo MA, Izquierdo MA, Lutz JR, Ocampo M. Clinical manifestations and immune response to tuberculosis. World J Microbiol Biotechnol 2023; 39:206. [PMID: 37221438 DOI: 10.1007/s11274-023-03636-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 05/25/2023]
Abstract
Tuberculosis is a far-reaching, high-impact disease. It is among the top ten causes of death worldwide caused by a single infectious agent; 1.6 million tuberculosis-related deaths were reported in 2021 and it has been estimated that a third of the world's population are carriers of the tuberculosis bacillus but do not develop active disease. Several authors have attributed this to hosts' differential immune response in which cellular and humoral components are involved, along with cytokines and chemokines. Ascertaining the relationship between TB development's clinical manifestations and an immune response should increase understanding of tuberculosis pathophysiological and immunological mechanisms and correlating such material with protection against Mycobacterium tuberculosis. Tuberculosis continues to be a major public health problem globally. Mortality rates have not decreased significantly; rather, they are increasing. This review has thus been aimed at deepening knowledge regarding tuberculosis by examining published material related to an immune response against Mycobacterium tuberculosis, mycobacterial evasion mechanisms regarding such response and the relationship between pulmonary and extrapulmonary clinical manifestations induced by this bacterium which are related to inflammation associated with tuberculosis dissemination through different routes.
Collapse
Grants
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- a Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá 111321, Colombia
- b PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá 111221, Colombia
- c Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Calle 222#55-37, Bogotá 111166, Colombia
- d Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá 111321, Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- e Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, Bogotá 111411. Colombia
- f Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, Bogotá 110311, Colombia
Collapse
Affiliation(s)
- Mary Lilián Carabalí-Isajar
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Biomedical and Biological Sciences Programme, Universidad del Rosario, Carrera 24#63C-69, 111221, Bogotá, Colombia
| | | | - Tatiana Amado
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, 111321, Bogotá, Colombia
| | - María Alejandra Izquierdo
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia
| | - Juan Ricardo Lutz
- Medicine Department, Hospital Universitario Mayor Mederi, Calle 24 # 29-45, 111411, Bogotá, Colombia.
| | - Marisol Ocampo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, 111321, Bogotá, Colombia.
- Universidad Distrital Francisco José de Caldas, Carrera 3#26A-40, 110311, Bogotá, Colombia.
| |
Collapse
|
14
|
Banskota S, Wang H, Kwon YH, Gautam J, Haq S, Grondin J, Steinberg GR, Khan WI. Inhibition of NADPH Oxidase (NOX) 2 Mitigates Colitis in Mice with Impaired Macrophage AMPK Function. Biomedicines 2023; 11:biomedicines11051443. [PMID: 37239114 DOI: 10.3390/biomedicines11051443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophage adenosine monophosphate-activated protein kinase (AMPK) limits the development of experimental colitis. AMPK activation inhibits NADPH oxidase (NOX) 2 expression, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine secretion in macrophages during inflammation, while increased NOX2 expression is reported in experimental models of colitis and inflammatory bowel disease (IBD) patients. Although there are reductions in AMPK activity in IBD, it remains unclear whether targeted inhibition of NOX2 in the presence of defective AMPK can reduce the severity of colitis. Here, we investigate whether the inhibition of NOX2 ameliorates colitis in mice independent of AMPK activation. Our study identified that VAS2870 (a pan-Nox inhibitor) alleviated dextran sodium sulfate (DSS)-induced colitis in macrophage-specific AMPKβ1-deficient (AMPKβ1LysM) mice. Additionally, VAS2870 blocked LPS-induced TLR-4 and NOX2 expression, ROS production, nuclear translocation of NF-κB, and pro-inflammatory cytokine secretion in bone marrow-derived macrophages (BMDMs) from AMPKβ1LysM mice, whereas sodium salicylate (SS; AMPK β1 activator) did not. Both VAS2870 and SS inhibited LPS-induced NOX2 expression, ROS production, and pro-inflammatory cytokine secretions in bone marrow-derived macrophages (BMDMs) from wildtype (AMPKβ1fl/fl) mice but only VAS2870 inhibited these effects of LPSs in AMPKβ1LysM BMDMs. Furthermore, in macrophage cells (RAW 264.7), both SS and VAS2870 inhibited ROS production and the secretion of pro-inflammatory cytokines and reversed the impaired autophagy induced by LPSs. These data suggest that inhibiting NOX2 can reduce inflammation independent of AMPK in colitis.
Collapse
Affiliation(s)
- Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jaya Gautam
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jensine Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
15
|
Gollnick H, Barber J, Wilkinson RJ, Newton S, Garg A. IL-27 inhibits anti- Mycobacterium tuberculosis innate immune activity of primary human macrophages. Tuberculosis (Edinb) 2023; 139:102326. [PMID: 36863206 PMCID: PMC10052773 DOI: 10.1016/j.tube.2023.102326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 03/04/2023]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is an intracellular pathogen that primarily infects macrophages. Despite a robust anti-mycobacterial response, many times macrophages are unable to control M. tuberculosis. The purpose of this study was to investigate the mechanism by which the immunoregulatory cytokine IL-27 inhibits the anti-mycobacterial activity of primary human macrophages. We found concerted production of IL-27 and anti-mycobacterial cytokines by M. tuberculosis-infected macrophages in a toll-like receptor (TLR) dependent manner. Notably, IL-27 suppressed the production of anti-mycobacterial cytokines TNFα, IL-6, IL-1β, and IL-15 by M. tuberculosis-infected macrophages. IL-27 limits the anti-mycobacterial activity of macrophages by reducing Cyp27B, cathelicidin (LL-37), LC3B lipidation, and increasing IL-10 production. Furthermore, neutralizing both IL-27 and IL-10 increased the expression of proteins involved in LC3-associated phagocytosis (LAP) pathway for bacterial clearance, namely vacuolar-ATPase, NOX2, and RUN-domain containing protein RUBCN. These results implicate IL-27 is a prominent cytokine that impedes M. tuberculosis clearance.
Collapse
Affiliation(s)
- Hailey Gollnick
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jamie Barber
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Robert J Wilkinson
- Department of Infectious Diseases, Imperial College London, W12 0NN, United Kingdom; The Francis Crick Institute London, NW1 1AT, United Kingdom
| | - Sandra Newton
- Section of Pediatric Infectious Disease, Department of Infectious Disease, Imperial College London, W2 1PG, United Kingdom
| | - Ankita Garg
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
16
|
Fritsch VN, Linzner N, Busche T, Said N, Weise C, Kalinowski J, Wahl MC, Antelmann H. The MerR-family regulator NmlR is involved in the defense against oxidative stress in Streptococcus pneumoniae. Mol Microbiol 2023; 119:191-207. [PMID: 36349475 DOI: 10.1111/mmi.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.
Collapse
Affiliation(s)
| | - Nico Linzner
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany.,NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
17
|
Ma X, Wang F, Zhen L, Cai Q. Hsa_circ_0001204 modulates inflammatory response of macrophages infected by Mycobacterium tuberculosis via TLR4/NF-κB signalling pathway. Clin Exp Pharmacol Physiol 2023; 50:132-139. [PMID: 36048566 DOI: 10.1111/1440-1681.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Circular RNAs (circRNAs) play a vital role in the regulation of Mycobacterium tuberculosis (M.tb) by macrophages. In this project, the potential role of hsa_circ_0001204 in M.tb-infected macrophages is explored. Hsa_circ_0001204 was determined in the patients with tuberculosis (TB) and M.tb-infected macrophages. Its effect on the survival of M.tb and the apoptosis and inflammation of M.tb-infected macrophages was evaluated. Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signalling was detected by western blotting and immunofluorescence. TB patients and M.tb-infected THP-1 cells showed the significant downregulation of hsa_circ_0001204. Upregulating hsa_circ_0001204 reduced M.tb survival and suppressed the apoptosis and inflammatory response of THP-1 cells. The TLR4/NF-κB signalling pathway could be inhibited by hsa_circ_0001204 overexpression, which was activated by M.tb-infection. Hsa_circ_0001204 confers protective effects in M.tb-infected THP-1 cells, at least partly via the inhibition of TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Xiaoqing Ma
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| | - Fang Wang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Libo Zhen
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| | - Qingshan Cai
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| |
Collapse
|
18
|
Park HE, Lee W, Choi S, Jung M, Shin MK, Shin SJ. Modulating macrophage function to reinforce host innate resistance against Mycobacterium avium complex infection. Front Immunol 2022; 13:931876. [PMID: 36505429 PMCID: PMC9730288 DOI: 10.3389/fimmu.2022.931876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium avium complex (MAC) is the main causative agent of infectious diseases in humans among nontuberculous mycobacteria (NTM) that are ubiquitous organisms found in environmental media such as soil as well as in domestic and natural waters. MAC is a primary causative agent of NTM-lung disease that threaten immunocompromised or structural lung disease patients. The incidence and the prevalence of M. tuberculosis infection have been reduced, while MAC infections and mortality rates have increased, making it a cause of global health concern. The emergence of drug resistance and the side effects of long-term drug use have led to a poor outcome of treatment regimens against MAC infections. Therefore, the development of host-directed therapy (HDT) has recently gained interest, aiming to accelerate mycobacterial clearance and reversing lung damage by employing the immune system using a novel adjuvant strategy to improve the clinical outcome of MAC infection. Therefore, in this review, we discuss the innate immune responses that contribute to MAC infection focusing on macrophages, chief innate immune cells, and host susceptibility factors in patients. We also discuss potential HDTs that can act on the signaling pathway of macrophages, thereby contributing to antimycobacterial activity as a part of the innate immune response during MAC infection. Furthermore, this review provides new insights into MAC infection control that modulates and enhances macrophage function, promoting host antimicrobial activity in response to potential HDTs and thus presenting a deeper understanding of the interactions between macrophages and MACs during infection.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sangwon Choi
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Myunghwan Jung
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea,*Correspondence: Min-Kyoung Shin, ; Sung Jae Shin,
| |
Collapse
|
19
|
Chen Z, Jiang W, Zhang M, Yu B, Li W, Liu J, Ai F. Mycobacterium tuberculosis sRNA MTS2823 regulates the growth of the multidrug-resistant strain in macrophages. FEMS Microbiol Lett 2022; 369:6825451. [PMID: 36370448 DOI: 10.1093/femsle/fnac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a serious contagious disease. MTB-encoded small regulatory RNA (sRNA) MTS2823 was reported to be upregulated in the plasma of TB patients. Nevertheless, whether MTS2823 is implicated in MTB drug resistance is unclear. Human macrophage cell line THP-1 was infected with the drug-susceptible strain H37Rv or the multidrug-resistant (MDR) strain 8462. Colony-forming unit assay was implemented for evaluating intracellular growth of the MTB strains. Enzyme-linked immunosorbent assay was used for measurement of inflammatory cytokines. Real-time quantitative polymerase chain reaction was utilized to assess MTS2823 and recombinase A (recA) expression in strains 8462 and H37Rv. Nitric oxide (NO) production in the MDR strain-infected THP-1 cells was measured. In this study, MTS2823 was found to display a low level in the MDR strain. Overexpressing MTS2823 promoted intracellular growth of the MDR strain and inhibited inflammatory cytokine and NO production in infected THP-1 cells. RecA might be a target of MTS2823 in the MDR strain. Overall, MTB-encoded sRNA MTS2823 displays a low level and regulates the growth of the MDR strain in THP-1 cells by modulating recA.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Wei Jiang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Mengli Zhang
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Jijun Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No. 26 Shengli Street, Jiang'an District, Wuhan 430014, Hubei, China
| |
Collapse
|
20
|
Zhou J, Fang F, Qi J, Li T, Zhang L, Liu H, Lv J, Xu T, Wu F, Song C, Li W, Wang X, Chang X, Wang H, Wang T, Qian Z. Activation of Nrf2 modulates protective immunity against Mycobacterium tuberculosis infection in THP1-derived macrophages. Free Radic Biol Med 2022; 193:177-189. [PMID: 36244589 DOI: 10.1016/j.freeradbiomed.2022.10.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB), caused by mycobacterium tuberculosis (M. tuberculosis) infection, is one of the leading causes of death globally and poses a threat to public health. During infection, M. tuberculosis causes redox imbalance and dysfunctions of protective immunity. Transcription factor nuclear factor erythroid 2 (NF-E2)-related factor (Nrf2) is a major modulator of cellular redox homeostasis via transcriptional induction of cytoprotective genes to protect cell against the damage from insults. Thus, we hypothesize that Nrf2 may regulate protective immunity against M. tuberculosis. RNA-seq and immunoblotting results suggested that the expression of Nrf2 protein increased after M. tuberculosis infection, and decreased upon long-term M. tuberculosis infection, while Keap1 protein maintained a low expression level during M. tuberculosis infection. Furthermore, Nrf2 activator sulforaphane (SFN) decreased proinflammatory cytokines production, phagocytosis and host cell apoptosis, while increasing ROS levels and promoting autophagy in THP1 macrophages infected with M. tuberculosis. In addition, SFN-activated Nrf2 augmented bacterial killing by macrophages, which might be due to the regulation of protective immunity via Nrf2. Combined, our results extend the understanding of the complex innate immunity regulation by Nrf2 against mycobacterial infection. Also, these findings suggested that the regulation of Nrf2 signaling cascade could be used as a therapeutic target for the treatment of TB patients and the development of better anti-TB vaccines.
Collapse
Affiliation(s)
- Jie Zhou
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China; Department of Clinical Laboratory, The Third People's Hospital of Bengbu, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Fang Fang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Jinying Qi
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Tengteng Li
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Lin Zhang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Hui Liu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Jingzhu Lv
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Tao Xu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Fengjiao Wu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Chuanwang Song
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Wei Li
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xianyou Chang
- The Infectious Disease Hospital of Bengbu City, Bengbu, Anhui, 233000, China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Ting Wang
- Department of Internal Medicine, University of Arizona, Phoenix, AZ, 85004, USA.
| | - Zhongqing Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| |
Collapse
|
21
|
Engelmann C, Habtesion A, Hassan M, Kerbert AJ, Hammerich L, Novelli S, Fidaleo M, Philips A, Davies N, Ferreira-Gonzalez S, Forbes SJ, Berg T, Andreola F, Jalan R. Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote regeneration in a mouse model of ACLF. J Hepatol 2022; 77:1325-1338. [PMID: 35843375 DOI: 10.1016/j.jhep.2022.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Acute-on-chronic liver failure (ACLF) is characterised by high short-term mortality, systemic inflammation, and failure of hepatic regeneration. Its treatment is a major unmet medical need. This study was conducted to explore whether combining TAK-242, a Toll-like receptor-4 (TLR4) antagonist, with granulocyte-colony stimulating factor (G-CSF), could reduce inflammation whilst enhancing liver regeneration. METHODS Two mouse models of ACLF were investigated. Chronic liver injury was induced by carbon tetrachloride; lipopolysaccharide (LPS) or galactosamine (GalN) were then administered as extrahepatic or hepatic insults, respectively. G-CSF and/or TAK-242 were administered daily. Treatment durations were 24 hours and 5 days in the LPS model and 48 hours in the GalN model. RESULTS In a mouse model of LPS-induced ACLF, treatment with G-CSF was associated with significant mortality (66% after 48 hours vs. 0% without G-CSF). Addition of TAK-242 to G-CSF abrogated mortality (0%) and significantly reduced liver cell death, macrophage infiltration and inflammation. In the GalN model, both G-CSF and TAK-242, when used individually, reduced liver injury but their combination was significantly more effective. G-CSF treatment, with or without TAK-242, was associated with activation of the pro-regenerative and anti-apoptotic STAT3 pathway. LPS-driven ACLF was characterised by p21 overexpression, which is indicative of hepatic senescence and inhibition of hepatocyte regeneration. While TAK-242 treatment mitigated the effect on senescence, G-CSF, when co-administered with TAK-242, resulted in a significant increase in markers of hepatocyte regeneration. CONCLUSION The combination of TAK-242 and G-CSF inhibits inflammation, promotes hepatic regeneration and prevents mortality in models of ACLF; thus, this combination could be a potential treatment option for ACLF. LAY SUMMARY Acute-on-chronic liver failure is associated with severe liver inflammation and poor short-term survival. Therefore, effective treatments are urgently needed. Herein, we have shown, using mouse models, that the combination of granulocyte-colony stimulating factor (which can promote liver regeneration) and TAK-242 (which inhibits a receptor that plays a key role in inflammation) could be effective for the treatment of acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany; Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany; Berlin Institute of Health - Charité - Universitätsmedizin Berlin, Germany
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Mohsin Hassan
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Annarein Jc Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Linda Hammerich
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Simone Novelli
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Fidaleo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Biology and Biotechnology "C. Darwin", University of Rome Sapienza, 00185 Rome, Italy
| | - Alexandra Philips
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; European Foundation of the Study of Chronic Liver Failure, Barcelona, Spain.
| |
Collapse
|
22
|
Davuluri KS, Chauhan DS. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2022; 12:1009901. [PMID: 36389170 PMCID: PMC9647626 DOI: 10.3389/fcimb.2022.1009901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Despite more than a decade of active study, tuberculosis (TB) remains a serious health concern across the world, and it is still the biggest cause of mortality in the human population. Pathogenic bacteria recognize host-induced responses and adapt to those hostile circumstances. This high level of adaptability necessitates a strong regulation of bacterial metabolic characteristics. Furthermore, the immune reponse of the host virulence factors such as host invasion, colonization, and survival must be properly coordinated by the pathogen. This can only be accomplished by close synchronization of gene expression. Understanding the molecular characteristics of mycobacterial pathogenesis in order to discover therapies that prevent or resolve illness relies on the bacterial capacity to adjust its metabolism and replication in response to various environmental cues as necessary. An extensive literature details the transcriptional alterations of host in response to in vitro environmental stressors, macrophage infection, and human illness. Various studies have recently revealed the finding of several microRNAs (miRNAs) that are believed to play an important role in the regulatory networks responsible for adaptability and virulence in Mycobacterium tuberculosis. We highlighted the growing data on the existence and quantity of several forms of miRNAs in the pathogenesis of M. tuberculosis, considered their possible relevance to disease etiology, and discussed how the miRNA-based signaling pathways regulate bacterial virulence factors.
Collapse
|
23
|
Wu H, Xu T, Chen T, Liu J, Xu S. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155825. [PMID: 35597360 DOI: 10.1016/j.scitotenv.2022.155825] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), as a new environmental pollutant, have received widespread attention worldwide. Uterine fibrosis is one of the main factors of female reproductive disorders. However, it is unclear whether the female reproductive disorders caused by MPs are related to uterine fibrosis. Therefore, in this study, we constructed female mouse models exposed to polystyrene microplastics (PS-MPs). We found that PS-MP exposure resulted in endometrial thinning and severe collagen fibre deposition in female mice. Further mechanistic studies found that PS-MP exposure increased the expression of high mobility group Box 1 (HMGB1) and acetyl-HMGB1, further activating the Toll-like receptor 4/NADPH oxidase 2 (TLR4/NOX2) signalling axis and eventually causing oxidative stress. Afterwards, oxidative stress elicited the activation of Notch and the transforming growth factor β (TGF-β) signalling pathway, leading to increased levels of fibrotic proteins and collagen. Correspondingly, PS-MP treatment upregulated the expression of TLR4 and NOX2 and the level of reactive oxygen species (ROS) and increased the levels of fibrotic protein and collagen in mouse endometrial epithelial cells cultured in vitro. Conversely, inhibition of the TLR4/NOX2 signalling pathway effectively reduced the level of ROS in cells, weakened the upregulation of Notch and TGF-β signalling by PS-MPs, and efficiently reduced the expression of fibrotic and collagen genes. In summary, we demonstrated a new mechanism by which MPs induce uterine fibrosis in mice, that is, by inducing oxidative stress to activate the Notch and TGF-β signalling pathways by triggering the TLR4/NOX2 signalling axis. Targeting TLR4/NOX2 signalling may consequently prove to be an innovative therapeutic option that is effective in alleviating the reproductive toxicity of PS-MPs. Our study sheds new light on the reproductive toxicity of MPs and provides suggestions and references for comparative medicine and clinical medicine.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
24
|
Saelee C, Hanthamrongwit J, Soe PT, Khaenam P, Inthasin N, Ekpo P, Chootong P, Leepiyasakulchai C. Toll-like receptor-mediated innate immune responses by recognition of the recombinant dormancy-associated Mycobacterium tuberculosis proteins Rv2659c and Rv1738. PLoS One 2022; 17:e0273517. [PMID: 36048884 PMCID: PMC9436120 DOI: 10.1371/journal.pone.0273517] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) poses a major threat to the global public health. Importantly, latent tuberculosis infection (LTBI) still impedes the elimination of TB incidence since it has a substantial risk to develop active disease. A multi-stage subunit vaccine comprising active and latency antigens of Mtb has been raised as the promising vaccine to trigger immune protection against all stages of TB. Therefore, the discovery of new antigens that could trigger broad immune response is essential. While current development of TB vaccine mainly focuses on protective immunity mediated by adaptive immune response, the knowledge on triggering the innate immune response by antigens is still limited. We showed that recombinant dormancy-associated Mtb proteins Rv2659c and Rv1738 were recognized by human innate immune recognition molecules, Toll-like receptors (TLRs) 2 and 4 by using HEK-Blue™ hTLR2/hTLR4 systems. We further demonstrated that these two proteins activated phosphorylated NF-κB p65 (Ser536) in the human CD14+ blood cells. We also investigated that these two proteins significantly induced level of pro- and anti-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-10 and TNF-α) which were mediated through TLR2 and TLR4 pathways in human peripheral blood mononuclear cells (hPBMCs). These findings suggest that proteins Rv2659c and Rv1738 stimulated innate immune response targeting TLR2 and TLR4 to produce inflammatory cytokines, and their benefits would be valuable for the development of an effective prophylactic tuberculosis vaccine.
Collapse
Affiliation(s)
- Chutiphon Saelee
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Jariya Hanthamrongwit
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Phyu Thwe Soe
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
- Department of Medical Laboratory Technology, University of Medical Technology, Mandalay, Myanmar
| | - Prasong Khaenam
- Faculty of Medical Technology, Center of Standardization and Product Validation, Mahidol University, Bangkok, Thailand
| | - Naharuthai Inthasin
- Faculty of Medicine Siriraj Hospital, Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Pattama Ekpo
- Faculty of Medicine Siriraj Hospital, Department of Immunology, Mahidol University, Bangkok, Thailand
| | - Patchanee Chootong
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Faculty of Medical Technology, Department of Clinical Microbiology and Applied Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Dong Z, Sun X, Tang Y, Luo S, Jia H, Xu Q, Jiang Q, Loor JJ, Xu W, Xu C. β-hydroxybutyrate impairs monocyte function via the ROS-NLR family pyrin domain-containing three inflammasome (NLRP3) pathway in ketotic cows. Front Vet Sci 2022; 9:925900. [PMID: 36105004 PMCID: PMC9464975 DOI: 10.3389/fvets.2022.925900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Cows with ketosis display severe metabolic stress and immune dysfunction which renders them more susceptible to infections. Monocytes, one of the major subtypes of white blood cells, play an important role in innate immune defense against infections. Thus, the aim of this study was to investigate alterations in immune function, reactive oxygen species (ROS) production and activity of the NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in monocytes (CD14+) of cows with clinical ketosis (CK). Twelve healthy multiparous Holstein cows [blood β-hydroxybutyrate (BHB) concentration < 1.2 mM] and 12 cows with CK (BHB > 3.0 mM) at 3 to 14 days in milk were used for blood sample collection. To determine effects of BHB on phagocytosis, ROS and protein abundance of the NLRP3 inflammasome pathway in vitro, monocytes isolated from healthy cows were treated with 3.0 mM BHB for 0, 6, 12 or 24 h. Dry matter intake (22.7 vs. 19.0 kg) was lower in cows with CK. Serum concentrations of fatty acids (0.30 vs. 0.88 mM) and BHB (0.52 vs. 3.78 mM) were greater in cows with CK, whereas concentration of glucose was lower (4.09 vs. 2.23 mM). The adhesion, migration and phagocytosis of monocytes were lower in cows with CK, but apoptosis and ROS content were greater. Protein abundance of NLRP3, cysteinyl aspartate specific proteinase 1 (caspase 1) and interleukin-1B p17 (IL1B p17) were greater in monocytes of cows with CK, while abundance of NADPH oxidase isoform 2 (NOX2) was lower. Compared with 0 h BHB, ROS content and apoptosis were greater in the monocytes challenged for 6, 12 or 24 h BHB. Compared with 0 h BHB, protein abundance of NLRP3, caspase 1, IL1B p17 and concentration of IL1B in medium were greater in the monocytes challenged for 6, 12 or 24 h BHB. However, compared with 0 h BHB, protein abundance of NOX2 and phagocytosis of monocytes were lower in the monocytes challenged for 6, 12 or 24 h BHB. Overall, the data suggested that exogenous BHB activated the ROS-NLRP3 pathway, which might be partly responsible for immune dysfunction of dairy cows with CK.
Collapse
Affiliation(s)
- Zhihao Dong
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xudong Sun
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yan Tang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shengbin Luo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongdou Jia
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiushi Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianming Jiang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J. Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Wei Xu
- Department of Biosystems, Biosystems Technology Cluster, KULeuven, Geel, Belgium
| | - Chuang Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Chuang Xu
| |
Collapse
|
26
|
Pattanaik KP, Sengupta S, Jit BP, Kotak R, Sonawane A. Host-Mycobacteria conflict: Immune responses of the host vs. the mycobacteria TLR2 and TLR4 ligands and concomitant host-directed therapy. Microbiol Res 2022; 264:127153. [DOI: 10.1016/j.micres.2022.127153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
|
27
|
Matsuo I, Kawamura N, Ohnuki Y, Suita K, Ishikawa M, Matsubara T, Mototani Y, Ito A, Hayakawa Y, Nariyama M, Morii A, Kiyomoto K, Tsunoda M, Gomi K, Okumura S. Role of TLR4 signaling on Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS One 2022; 17:e0258823. [PMID: 35648750 PMCID: PMC9159598 DOI: 10.1371/journal.pone.0258823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/14/2022] [Indexed: 12/02/2022] Open
Abstract
Oral infections, particularly periodontitis, are a well-established risk factor for cardiovascular diseases, although the molecular mechanisms involved remain elusive. The aims of the present study were to investigate the effects of lipopolysaccharide derived from Porphyromonas gingivalis (PG-LPS) on cardiac function in mice, and to elucidate the underlying mechanisms. Mice (C57BL/6) were injected with PG-LPS (0.8 mg/kg/day) with or without an inhibitor of Toll-like receptor 4 (TLR4) signaling (TAK-242, 0.8 mg/kg/day) for 4 weeks. Left ventricular ejection function was significantly decreased at 1 week (from 67 ± 0.5 to 58 ± 1.2%) and remained low at 4 weeks (57 ± 1.0%). The number of apoptotic myocytes was increased (approximately 7.4-fold), the area of fibrosis was increased (approximately 3.3-fold) and the number of 8-hydroxydeoxyguanosine-positive myocytes, a sensitive indicator of oxidative DNA damage, was increased (approximately 7.6-fold) at 4 weeks in the heart of PG-LPS treated mice. However, levels of various serum pro-inflammatory cytokines in PG-LPS-treated mice were similar to those in control mice. The impairment of cardiac function in PG-LPS-treated mice appears to involve activation of TLR4-NADPH oxidase (NOX) 4 signaling, leading to abundant production of reactive oxygen species and Ca2+ leakage from sarcoplastic reticulumn induced by calmodulin kinase II (CaMKII)-mediated phosphorylation of phospholamban (at Thr-17) and ryanodine receptor 2 (at Ser-2448). Pharmacological inhibition of TLR4 with TAK-242 attenuated the changes in cardiac function in PG-LPS-treated mice. Our results indicate that TLR4-NOX4 signaling may be a new therapeutic target for treatment of cardiovascular diseases in patients with periodontitis.
Collapse
Affiliation(s)
- Ichiro Matsuo
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Naoya Kawamura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshiki Ohnuki
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenji Suita
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Misao Ishikawa
- Department of Oral Anatomy, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takehiro Matsubara
- Division of BioBank, Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasumasa Mototani
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Aiko Ito
- Department of Orthodontics, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yoshio Hayakawa
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Dental Anesthesiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Megumi Nariyama
- Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Akinaka Morii
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kenichi Kiyomoto
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Michinori Tsunoda
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Kazuhiro Gomi
- Department of Periodontology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Satoshi Okumura
- Department of Physiology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|
28
|
Meng JX, Zhang Y, Saman D, Haider AM, De S, Sang JC, Brown K, Jiang K, Humphrey J, Julian L, Hidari E, Lee SF, Balmus G, Floto RA, Bryant CE, Benesch JLP, Ye Y, Klenerman D. Hyperphosphorylated tau self-assembles into amorphous aggregates eliciting TLR4-dependent responses. Nat Commun 2022; 13:2692. [PMID: 35577786 PMCID: PMC9110413 DOI: 10.1038/s41467-022-30461-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/28/2022] [Indexed: 01/19/2023] Open
Abstract
Soluble aggregates of the microtubule-associated protein tau have been challenging to assemble and characterize, despite their important role in the development of tauopathies. We found that sequential hyperphosphorylation by protein kinase A in conjugation with either glycogen synthase kinase 3β or stress activated protein kinase 4 enabled recombinant wild-type tau of isoform 0N4R to spontaneously polymerize into small amorphous aggregates in vitro. We employed tandem mass spectrometry to determine the phosphorylation sites, high-resolution native mass spectrometry to measure the degree of phosphorylation, and super-resolution microscopy and electron microscopy to characterize the morphology of aggregates formed. Functionally, compared with the unmodified aggregates, which require heparin induction to assemble, these self-assembled hyperphosphorylated tau aggregates more efficiently disrupt membrane bilayers and induce Toll-like receptor 4-dependent responses in human macrophages. Together, our results demonstrate that hyperphosphorylated tau aggregates are potentially damaging to cells, suggesting a mechanism for how hyperphosphorylation could drive neuroinflammation in tauopathies.
Collapse
Affiliation(s)
- Jonathan X Meng
- Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at Cambridge, Cambridge, UK
| | - Yu Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Dominik Saman
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Arshad M Haider
- UK Dementia Research Institute at Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Suman De
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Neuroscience Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Jason C Sang
- Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at Cambridge, Cambridge, UK
| | - Karen Brown
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Kun Jiang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jane Humphrey
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Linda Julian
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric Hidari
- UK Dementia Research Institute at Cambridge, Cambridge, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Gabriel Balmus
- UK Dementia Research Institute at Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Clare E Bryant
- Medicine and Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Yu Ye
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Tian X, Guo M, Zhang X, Guo L, Lan N, Cheng Y, Han Y, Wang M, Peng Z, Zhou C, Fan H. Strongylocentrotus nudus Eggs Polysaccharide Enhances Macrophage Phagocytosis Against E.coli Infection by TLR4/STAT3 Axis. Front Pharmacol 2022; 13:807440. [PMID: 35370674 PMCID: PMC8968116 DOI: 10.3389/fphar.2022.807440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Antibiotics resistance is one of the most significant public health threats globally. Strategies that strengthen host defenses to control pathogen infection has become a hot research field. Macrophages are part of early host defense mechanisms, and are activated via host pattern recognition receptors (PRRs), such as Toll-like receptor 4 (TLR4), which then facilitates phagocytosis and elimination of invading pathogens. However, few activators of PRRs have been approved for clinical use because of their toxic effects. This study aimed to investigate whether Strongylocentrotus nudus eggs polysaccharide (SEP), a non-toxic extract from seafood, contributes to host defense against bacterial infection. Results showed that SEP promoted bacterial clearance by enhancing phagocytosis by macrophages during E. coli infection in vitro, but was inhibited by TLR4 specific inhibitor TAK-242, STAT3 inhibitor Stattic or blockade of CD64. In addition, SEP protected mice from E. coli induced mortality, reduced pulmonary inflammation and inhibited dissemination of bacteria to organs, while TAK-242 retarded the protection of SEP. Overall, SEP strengthened innate host defense and improved the outcome in bacterial infection, suggesting that SEP could be used as a potential immunomodulator in host-directed therapies.
Collapse
Affiliation(s)
- Xinlei Tian
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Min Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoya Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lingfeng Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Nan Lan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yaojun Cheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yannan Han
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Mingxin Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhonglu Peng
- School of Pharmacy, Xiangnan University, Chenzhou, China
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongye Fan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Liang S, Huang G, Wu T, Peng Y, Liu X, Ji X, Sha W, Wang F, Shen L, Shen H. MIR337-3p Enhances Mycobacterial Pathogenicity Involving TLR4/MYD88 and STAT3 Signals, Impairing VDR Antimicrobial Response and Fast-Acting Immunity. Front Immunol 2021; 12:739219. [PMID: 34912331 PMCID: PMC8666424 DOI: 10.3389/fimmu.2021.739219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
Active form of vitamin D (VitD) enhances human innate immunity against Mycobacterium tuberculosis (Mtb) infection. Our previous studies showed that MIR337-3p was highly expressed in lymphocytes of tuberculosis (TB) patients. Here, we identified the mechanism of MIR337-3p in the regulation of fast-acting anti-TB immunity by inhibiting VitD-dependent antimicrobial response pathways. While high-level MIR337-3p expression was induced by mycobacterial infection in cellular models and mice, TB patients exhibited significantly increased MIR337-3p in CD14+ monocytes/macrophages, innate-like Vγ2+ T cells, and CD8+ lymphocytes containing natural killer (NK)/innate lymphoid cells. MIR337-3p promoted the mycobacterial entry/infection and replication/growth in host target cells: macrophages and lung epithelial cells. Such MIR337-3p-enhanced pathogenicity coincided with the MIR337-3p depression of VitD-dependent antimicrobial response of cytochrome P450, family 27, subfamily b, polypeptide 1 (CYP27B1)/Beta-defensin 4 (DEFB4A)/ cathelicidin antimicrobial peptide CAMP pathways. Surprisingly, single MIR337-3p species could specifically target both the Toll-like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) 3′-untranslated regions (UTRs) to depress the TLR4/MYD88 and STAT3 signals and impair either of the two signals inhibiting the VitD-dependent antimicrobial pathways in macrophages. Concurrently, human peripheral blood mononuclear cells (PBMCs) expressing high-level MIR337-3p exhibited a reduced ability of innate cell populations to mount fast-acting cellular immunity against intracellular mycobacterial infection. Furthermore, a higher expression of Mir337-3p after mycobacterial infection of mice coincided with much greater colony-forming unit (CFU) counts in lungs and even the death of infected animals, whereas Mir337-3p inhibitor treatment of infected mice reduced Mir337-3p levels and reversed Mir337-3p-mediated increases in CFU counts. Thus, TB-driven single MIR337-3p species could specifically target/impair both TLR4/MYD88 and STAT3 activation signals, inhibiting VitD-dependent antimicrobial response and fast-acting anti-TB immunity, leading to enhanced pathogenicity.
Collapse
Affiliation(s)
- Shanshan Liang
- Clinic and Research Center of Tuberculosis, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Guixian Huang
- Clinic and Research Center of Tuberculosis, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Tian Wu
- Clinic and Research Center of Tuberculosis, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Ying Peng
- Clinic and Research Center of Tuberculosis, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Xi Liu
- Clinic and Research Center of Tuberculosis, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Xuejiao Ji
- Clinic and Research Center of Tuberculosis, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| | - Feifei Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education of the people's Republic of China (MOE)/National Health Commission of the people's Republic of China (NHC)/Chinese Academy of Medical Sciences (CAMS)), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling Shen
- Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, United States
| | - Hongbo Shen
- Clinic and Research Center of Tuberculosis, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Liu F, Dong Z, Lin Y, Yang H, Wang P, Zhang Y. MicroRNA‑502‑3p promotes Mycobacterium tuberculosis survival in macrophages by modulating the inflammatory response by targeting ROCK1. Mol Med Rep 2021; 24:753. [PMID: 34476503 PMCID: PMC8436224 DOI: 10.3892/mmr.2021.12393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/29/2021] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (M. tuberculosis) infection and has the highest mortality rate of any single infectious disease worldwide. The aim of the present study was to investigate the function of microRNA (miR)-502-3p in M. tuberculosis-infected macrophages. The Gene Expression Omnibus database was used to analyze miR-502-3p expression in patients with TB and healthy individuals. THP-1 and RAW 264.7 cells were transfected with miR-502-3p mimic, miR-502-3p inhibitor, pcDNA3.1-ROCK1 or their negative controls. The expression levels of miR-502-3p and inflammatory cytokines were evaluated using reverse transcription-quantitative PCR. The colony-forming unit assay was performed to assess the survival of M. tuberculosis in macrophages, and Toll-like receptor (TLR)4/NF-κB signaling pathway-associated protein expression levels were detected by western blotting. The nuclear translocation of NF-κB p65 was detected via immunocytochemistry. TargetScan was used to predict the binding sites between miR-502-3p and ROCK1. The interaction between miR-502-3p and Rho-associated coiled-coil-forming protein kinase 1 (ROCK1) was confirmed using a dual-luciferase reporter assay; ROCK1 was demonstrated to be a direct target gene of miR-502-3p. Results from the present study demonstrated that miR-502-3p expression was significantly increased during M. tuberculosis infection in macrophages. Upregulation of miR-502-3p expression levels significantly enhanced the survival of intracellular M. tuberculosis. IL-6, TNF-α, and IL-1β mRNA expression levels were significantly upregulated during M. tuberculosis infection but were downregulated by miR-502-3p overexpression. Moreover, miR-502-3p mimics transfection significantly downregulated TLR4/NF-κB signaling pathway-associated protein expression and significantly reduced nuclear transcription of NF-κB in M. tuberculosis-infected macrophages. ROCK1 overexpression reversed the miR-502-3p inhibitory effect on cytokine production in M. tuberculosis-infected macrophages. In conclusion, miR-502-3p/ROCK1 may serve an anti-inflammatory role and may improve the survival of M. tuberculosis within macrophages, which may provide a promising therapeutic target for TB.
Collapse
Affiliation(s)
- Fang Liu
- Respiratory Endoscopy Room, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Zhen Dong
- East Medical District Office, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Yuefu Lin
- Department of Prevention, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Haibo Yang
- Department of Occupational Diseases, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| | - Pingping Wang
- Rehabilitation Department, Shandong Coal Linyi Hot Spring Sanatorium, Linyi, Shandong 276034, P.R. China
| | - Yongxia Zhang
- Emergency Department, Linyi People's Hospital, Linyi, Shandong 276034, P.R. China
| |
Collapse
|
32
|
Li P, Chang M. Roles of PRR-Mediated Signaling Pathways in the Regulation of Oxidative Stress and Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22147688. [PMID: 34299310 PMCID: PMC8306625 DOI: 10.3390/ijms22147688] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-6878-0760
| |
Collapse
|
33
|
Li X, Wang M, Ming S, Liang Z, Zhan X, Cao C, Liang S, Liu Q, Shang Y, Lao J, Zhang S, Kuang L, Geng L, Wu Z, Wu M, Gong S, Wu Y. TARM-1 Is Critical for Macrophage Activation and Th1 Response in Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:234-243. [PMID: 34183366 DOI: 10.4049/jimmunol.2001037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
T cell-interacting activating receptor on myeloid cells 1 (TARM-1) is a novel leukocyte receptor expressed in neutrophils and macrophages. It plays an important role in proinflammatory response in acute bacterial infection, but its immunomodulatory effects on chronic Mycobacterium tuberculosis infections remain unclear. TARM-1 expression was significantly upregulated on CD14high monocytes from patients with active pulmonary tuberculosis (TB) as compared that on cells from patients with latent TB or from healthy control subjects. Small interfering RNA knockdown of TARM-1 reduced expression levels of proinflammatory cytokines IL-12, IL-18, IL-1β, and IL-8 in M. tuberculosis-infected macrophages, as well as that of HLA-DR and costimulatory molecules CD83, CD86, and CD40. Moreover, TARM-1 enhanced phagocytosis and intracellular killing of M. tuberculosis through upregulating reactive oxygen species. In an in vitro monocyte and T cell coculture system, blockade of TARM-1 activity by TARM-1 blocking peptide suppressed CD4+ T cell activation and proliferation. Finally, administration of TARM-1 blocking peptide in a mouse model of M. tuberculosis infection increased bacterial load and lung pathology, which was associated with decreased macrophage activation and IFN-γ production by T cell. Taken together, these results, to our knowledge, demonstrate a novel immune protective role of TARM-1 in M. tuberculosis infection and provide a potential therapeutic target for TB disease.
Collapse
Affiliation(s)
- Xingyu Li
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Manni Wang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Zibin Liang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Thoracic Oncology, The Cancer Center of the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xiaoxia Zhan
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Can Cao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Sipin Liang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Qiaojuan Liu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Yuqi Shang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Juanfeng Lao
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Shunxian Zhang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Liangjian Kuang
- Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Zhilong Wu
- The Fourth People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Minhao Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| | - Yongjian Wu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center (Guangzhou), The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China; .,Center for Infection and Immunity, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China; and
| |
Collapse
|
34
|
Zhou J, Lv J, Carlson C, Liu H, Wang H, Xu T, Wu F, Song C, Wang X, Wang T, Qian Z. Trained immunity contributes to the prevention of Mycobacterium tuberculosis infection, a novel role of autophagy. Emerg Microbes Infect 2021; 10:578-588. [PMID: 33666534 PMCID: PMC8018485 DOI: 10.1080/22221751.2021.1899771] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) is the pathogen which causes tuberculosis (TB), a significant human public health threat. Co-infection of M. tuberculosis and the human immunodeficiency virus (HIV), emergence of drug resistant M. tuberculosis, and failure to develop highly effective TB vaccines have limited control of the TB epidemic. Trained immunity is an enhanced innate immune response which functions independently of the adaptive/acquired immune system and responds non-specifically to reinfection with invading agents. Recently, several studies have found trained immunity has the capability to control and eliminate M. tuberculosis infection. Over the past decades, however, the consensus was adaptive immunity is the only protective mechanism by which hosts inhibit M. tuberculosis growth. Furthermore, autophagy plays an essential role in the development of trained immunity. Further investigation of trained immunity, M. tuberculosis infection, and the role of autophagy in this process provide new possibilities for vaccine development. In this review, we present the general characteristics of trained immunity and autophagy. We additionally summarize several examples where initiation of trained immunity contributes to the prevention of M. tuberculosis infection and propose future directions for research in this area.
Collapse
Affiliation(s)
- Jie Zhou
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Jingzhu Lv
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chelsea Carlson
- Department of Internal Medicine, University of Arizona, Phoenix, AZ, USA
| | - Hui Liu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Hongtao Wang
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Tao Xu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Fengjiao Wu
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chuanwang Song
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| | - Xiaojing Wang
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ting Wang
- Department of Internal Medicine, University of Arizona, Phoenix, AZ, USA
| | - Zhongqing Qian
- Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Anhui Provincial Key Laboratory of Infection and Immunology, and Department of Laboratory Medicine, Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
35
|
Interaction of TLR4 and TLR8 in the Innate Immune Response against Mycobacterium Tuberculosis. Int J Mol Sci 2021; 22:ijms22041560. [PMID: 33557133 PMCID: PMC7913854 DOI: 10.3390/ijms22041560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
The interaction and crosstalk of Toll-like receptors (TLRs) is an established pathway in which the innate immune system recognises and fights pathogens. In a single nucleotide polymorphisms (SNP) analysis of an Indian cohort, we found evidence for both TLR4-399T and TRL8-1A conveying increased susceptibility towards tuberculosis (TB) in an interdependent manner, even though there is no established TLR4 ligand present in Mycobacterium tuberculosis (Mtb), which is the causative pathogen of TB. Docking studies revealed that TLR4 and TLR8 can build a heterodimer, allowing interaction with TLR8 ligands. The conformational change of TLR4-399T might impair this interaction. With immunoprecipitation and mass spectrometry, we precipitated TLR4 with TLR8-targeted antibodies, indicating heterodimerisation. Confocal microscopy confirmed a high co-localisation frequency of TLR4 and TLR8 that further increased upon TLR8 stimulation. The heterodimerisation of TLR4 and TLR8 led to an induction of IL12p40, NF-κB, and IRF3. TLR4-399T in interaction with TLR8 induced an increased NF-κB response as compared to TLR4-399C, which was potentially caused by an alteration of subsequent immunological pathways involving type I IFNs. In summary, we present evidence that the heterodimerisation of TLR4 and TLR8 at the endosome is involved in Mtb recognition via TLR8 ligands, such as microbial RNA, which induces a Th1 response. These findings may lead to novel targets for therapeutic interventions and vaccine development regarding TB.
Collapse
|
36
|
Nocella C, Mezzaroma I, Cammisotto V, Castellani V, Milito C, Rugova A, Frati G, Pignatelli P, Violi F, Pastori D, Carnevale R. Lipopolysaccharide induces platelet activation in HIV patients: the role of different viral load patterns. HIV Med 2021; 22:434-444. [PMID: 33426758 DOI: 10.1111/hiv.13059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/26/2020] [Accepted: 12/12/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study aimed to assess whether gut-derived lipopolysaccharide (LPS) could affect platelet function in HIV-1 patients with residual viral load. METHODS In 23 HIV-1 patients on effective antiretroviral treatment, 10 treatment-naïve HIV-1 subjects and 20 healthy subjects (HS), LPS, zonulin, markers of platelet activation and oxidative stress were evaluated. In vitro, platelets from HS were exposed to plasma from HIV-1-infected treated and untreated patients. RESULTS Compared with HS, LPS was higher in treated and treatment-naïve subjects with HIV-1 (7.7 ± 2.9, 80.9 ± 13.7 and 75.3 ± 22.6 pg/mL, P < 0.001 vs. HS) as well as serum zonulin (1.3 ± 0.5, 6.1 ± 1.5 and 5.3 ± 1.7 ng/mL, P < 0.001 vs. HS). LPS and zonulin were correlated in HIV patients (Spearman correlation coefficient (rS) = 0.73, P < 0.0001). Levels of soluble CD40 ligand (sCD40L), soluble P-selectin (sP-selectin) and thromboxane B2 (TxB2 ) were higher in HIV-1-treated and treatment-naïve subjects compared with HS as well as NADPH oxidase 2 (NOX2) activation and hydrogen peroxide (H2 O2 ) production. In vitro, sCD40L, sP-selectin and TxB2 production, NOX2 activation and p47phox phosphorylation were higher in platelets exposed to plasma from HIV-1 patients with different viral load compared with the exposure to plasma from HS. This effect was blunted in platelets pre-treated with TLR4 or TLR7 inhibitors. CONCLUSIONS Low-grade endotoxaemia and persistent viraemia increase platelet function with a mechanism mediated by NOX2 in patients with HIV-1 infection.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Ivano Mezzaroma
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, Rome, Italy
| | - Valentina Castellani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alban Rugova
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy
| | - Pasquale Pignatelli
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.,Mediterranea, Cardiocentro, Napoli, Italy
| | - Francesco Violi
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.,Mediterranea, Cardiocentro, Napoli, Italy
| | - Daniele Pastori
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.,Mediterranea, Cardiocentro, Napoli, Italy
| |
Collapse
|
37
|
Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:179-215. [PMID: 34661896 DOI: 10.1007/978-3-030-67452-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Innate immunity against Mycobacterium tuberculosis is a critical early response to prevent the establishment of the infection. Despite recent advances in understanding the host-pathogen dialogue in the early stages of tuberculosis (TB), much has yet to be learnt. The nature and consequences of this dialogue ultimately determine the path of infection: namely, either early clearance of M. tuberculosis, or establishment of M. tuberculosis infection leading to active TB disease and/or latent TB infection. On the frontline in innate immunity are pattern recognition receptors (PRRs), with soluble factors (e.g. collectins and complement) and cell surface factors (e.g. Toll-like receptors and other C-type lectin receptors (Dectin 1/2, Nod-like receptors, DC-SIGN, Mincle, mannose receptor, and MCL) that play a central role in recognising M. tuberculosis and facilitating its clearance. However, in a 'double-edged sword' scenario, these factors can also be involved in enhancement of pathogenesis as well. Furthermore, innate immunity is also a critical bridge in establishing the subsequent adaptive immune response, which is also responsible for granuloma formation that cordons off M. tuberculosis infection, establishing latency and acting as a reservoir for bacterial persistence and dissemination of future disease. This chapter discusses the current understanding of pattern recognition of M. tuberculosis by innate immunity and the role this plays in the pathogenesis and protection against TB.
Collapse
|
38
|
Deng SL, Zhang BL, Reiter RJ, Liu YX. Melatonin Ameliorates Inflammation and Oxidative Stress by Suppressing the p38MAPK Signaling Pathway in LPS-Induced Sheep Orchitis. Antioxidants (Basel) 2020; 9:antiox9121277. [PMID: 33327643 PMCID: PMC7765110 DOI: 10.3390/antiox9121277] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gram-negative bacterial infections of the testis can lead to infectious orchitis, which negatively influences steroid hormone synthesis and spermatogenesis. Lipopolysaccharide (LPS), a major component of the Gram-negative bacterial cell wall, acts via toll like receptors 4 (TLR4) to trigger innate immune responses and activate nuclear factor kappa B signaling. The protective mechanisms of melatonin on LPS-induced infectious orchitis have not been reported. Herein, we developed an LPS-induced sheep infectious orchitis model. In this model, the phagocytic activity of testicular macrophages (TM) was enhanced after melatonin treatment. Moreover, we found that melatonin suppressed secretion of TM pro-inflammatory factors by suppressing the p38MAPK pathway and promoting Leydig cell testosterone secretion. Expressions of GTP cyclohydrolase-I and NADPH oxidase-2 were reduced by melatonin while heme oxygenase-1 expression was up-regulated. Thus, melatonin reduced the severity of LPS-induced orchitis by stimulating antioxidant activity. The results of this study provide a reference for the treatment of acute infectious orchitis.
Collapse
Affiliation(s)
- Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Bao-Lu Zhang
- Marine Consulting Center of Natural Resources of the People’s Republic of China, Beijing 100071, China;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
- Correspondence: (R.J.R.); (Y.-X.L.); Tel.: +35-210-567-3859 (R.J.R.); +86-010-84097698 (Y.-X.L.)
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (R.J.R.); (Y.-X.L.); Tel.: +35-210-567-3859 (R.J.R.); +86-010-84097698 (Y.-X.L.)
| |
Collapse
|
39
|
Miao J, Ye P, Lan J, Ye S, Zhong J, Gresham A, Li S, You A, Chen X, Liu X, Li H. Paeonol promotes the phagocytic ability of macrophages through confining HMGB1 to the nucleus. Int Immunopharmacol 2020; 89:107068. [PMID: 33091813 DOI: 10.1016/j.intimp.2020.107068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Phagocytosis is a basic immune response to the pathogens invading. Immunosuppression may occur in diseases like sepsis and cancer, and cause a low phagocytic ability of phagocytes. High mobility group protein B1 (HMGB1) is a DNA chaperone which is closely related to the phagocytosis. Nonetheless, its influence on phagocytosis is still controversial. We found that paeonol could inhibit the translocation of HMGB1 from the nucleus to the cytoplasm, it may have an impact on phagocytosis. In the present study, we performed in vivo and in vitro experiments to investigate the influence of paeonol on phagocytosis. Zymosan was used to test the phagocytic function of macrophages. Our results showed that paeonol promotes the phagocytosis of macrophages through confining HMGB1 to the nucleus. Through interacting with P53, the nuclear HMGB1 keep it in the nucleus and decrease the negative influence of P53 on the phosphorylation of Focal Adhesion Kinase (FAK). The increasing of phosphorylated FAK promotes the formation of pseudopod and enhances the phagocytic ability of macrophages.
Collapse
Affiliation(s)
- Jifei Miao
- Research Center of Integrative Medicine, School Basic Medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Ye
- Research Center of Integrative Medicine, School Basic Medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiao Lan
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Sen Ye
- Research Center of Integrative Medicine, School Basic Medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhong
- Research Center of Integrative Medicine, School Basic Medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Siyan Li
- Research Center of Integrative Medicine, School Basic Medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijia You
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianjie Chen
- Research Center of Integrative Medicine, School Basic Medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Liu
- Research Center of Integrative Medicine, School Basic Medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- Research Center of Integrative Medicine, School Basic Medical sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
40
|
Sánchez-Tarjuelo R, Cortegano I, Manosalva J, Rodríguez M, Ruíz C, Alía M, Prado MC, Cano EM, Ferrándiz MJ, de la Campa AG, Gaspar ML, de Andrés B. The TLR4-MyD88 Signaling Axis Regulates Lung Monocyte Differentiation Pathways in Response to Streptococcus pneumoniae. Front Immunol 2020; 11:2120. [PMID: 33042124 PMCID: PMC7525032 DOI: 10.3389/fimmu.2020.02120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is the main cause of bacterial pneumonia, a condition that currently produces significant global morbidity and mortality. The initial immune response to this bacterium occurs when the innate system recognizes common motifs expressed by many pathogens, events driven by pattern recognition receptors like the Toll-like family receptors (TLRs). In this study, lung myeloid-cell populations responsible for the innate immune response (IIR) against S. pneumoniae, and their dependence on the TLR4-signaling axis, were analyzed in TLR4-/- and Myeloid-Differentiation factor-88 deficient (MyD88-/-) mice. Neutrophils and monocyte-derived cells were recruited in infected mice 3-days post-infection. Compared to wild-type mice, there was an increased bacterial load in both these deficient mouse strains and an altered IIR, although TLR4-/- mice were more susceptible to bacterial infection. These mice also developed fewer alveolar macrophages, weaker neutrophil infiltration, less Ly6Chigh monocyte differentiation and a disrupted classical and non-classical monocyte profile. The pro-inflammatory cytokine profile (CXCL1, TNF-α, IL-6, and IL-1β) was also severely affected by the lack of TLR4 and no induction of Th1 was observed in these mice. The respiratory burst (ROS production) after infection was profoundly dampened in TLR4-/- and MyD88-/- mice. These data demonstrate the complex dynamics of myeloid populations and a key role of the TLR4-signaling axis in the IIR to S. pneumoniae, which involves both the MyD88 and TRIF (Toll/IL-1R domain-containing adaptor-inducing IFN-β) dependent pathways.
Collapse
Affiliation(s)
| | - Isabel Cortegano
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain
| | - Juliana Manosalva
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain
| | | | - Carolina Ruíz
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain
| | - Mario Alía
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain
| | | | - Eva M. Cano
- Chronic Disease Programme, Carlos III Health Institute, Madrid, Spain
| | | | - Adela G. de la Campa
- Bacterial Genetics Department, Carlos III Health Institute, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
41
|
Vavougios GD, Zarogiannis SG, Krogfelt KA, Stamoulis G, Gourgoulianis KI. Epigenetic regulation of apoptosis via the PARK7 interactome in peripheral blood mononuclear cells donated by tuberculosis patients vs. healthy controls and the response to treatment: A systems biology approach. Tuberculosis (Edinb) 2020; 123:101938. [PMID: 32741527 DOI: 10.1016/j.tube.2020.101938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aims of our study were to determine for the first time differentially expressed genes (DEGs) and enriched molecular pathways involving the PARK7 interactome in PBMCs donated from tuberculosis patients. METHODS Data on a previously reconstructed PARK7 interactome (Vavougios et al., 2017) from datasets GDS4966 (Case-Control) and GDS4781 (Treatment Series) were retrieved from the Gene Expression Omnibus (GEO) repository. Gene Enrichment analysis was performed via the STRING algorithm and the GeneTrail2 software. RESULTS 17 and 22 PARK7 interactores were determined as DEGs in the active TB vs HD and Treatment Series subset analyses, correspondingly, associated with significantly enriched pathways (FDR <0.05) involving p53 and PTEN mediated, stress responsive apoptosis regulation pathways. The treatment subset was characterized by the emergence of an additional layer of transcriptional regulation mediated by polycomb proteins among others, as well as TLR-mediated and cytokine survival signaling. Finally, the enrichment of a Parkinson's disease signature including PARK7 interactors was determined by its differential regulation both in the exploratory analyses (FDR = 0.024), as well as the confirmatory analyses (FDR = 1.81e-243). CONCLUSIONS Our in silico analysis revealed for the first time the role of PARK7's interactome in regulating the epigenetics of the PBMC lifecycle and Mtb symbiosis.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Neurology, Athens Naval Hospital, Deinokratous 70, 115 21, Athens, Greece; Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece.
| | - Sotirios G Zarogiannis
- Department of Pleural Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41500, Larisa, Greece
| | - Karen A Krogfelt
- Department of Science and Environment, Molecular and Medical Biology, Roskilde University, Universitetsvej 1, 28A.1, DK-4000, Roskilde, Denmark
| | - George Stamoulis
- Department of Electrical and Computer Engineering, 37 Glavani - 28th October Street, Deligiorgi Building, 4th floor, 382 21, Volos, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Mezourlo, 41110, Larisa, Greece
| |
Collapse
|
42
|
LPS restores protective immunity in macrophages against Mycobacterium tuberculosis via autophagy. Mol Immunol 2020; 124:18-24. [DOI: 10.1016/j.molimm.2020.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
|
43
|
Addition of High Molecular Weight Hyaluronic Acid to Fibroblast-Like Stromal Cells Modulates Endogenous Hyaluronic Acid Metabolism and Enhances Proteolytic Processing and Secretion of Versican. Cells 2020; 9:cells9071681. [PMID: 32668663 PMCID: PMC7407811 DOI: 10.3390/cells9071681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
We have examined the effect of exogenous linear chain high molecular weight hyaluronic acid (HMW HA) on endogenously synthesized hyaluronic acid (HA) and associated binding proteins in primary cultures of fibroblast-like stromal cells that were obtained by collagenase digestion of the murine peripatellar fat pad. The cultures were expanded in DMEM that was supplemented with fetal bovine serum and basic fibroblast growth factor (bFGF) then exposed to macrophage-colony-stimulating factor (MCSF) to induce macrophage properties, before activation of inflammatory pathways using E. coli lipopolysaccharide (LPS). Under all culture conditions, a significant amount of endogenously synthesized HA localized in LAMP1-positive lysosomal vesicles. However, this intracellular pool was depleted after the addition of exogenous HMW HA and was accompanied by enhanced proteolytic processing and secretion of de novo synthesized versican, much of which was associated with endosomal compartments. No changes were detected in synthesis, secretion, or proteolytic processing of aggrecan or lubricin (PRG4). The addition of HMW HA also modulated a range of LPS-affected genes in the TLR signaling and phagocytosis pathways, as well as endogenous HA metabolism genes, such as Has1, Hyal1, Hyal2, and Tmem2. However, there was no evidence for association of endogenous or exogenous HMW HA with cell surface CD44, TLR2 or TLR4 protein, suggesting that its physiochemical effects on pericelluar pH and/or ionic strength might be the primary modulators of signal transduction and vesicular trafficking by this cell type. We discuss the implications of these findings in terms of a potential in vivo effect of therapeutically applied HMW HA on the modification of osteoarthritis-related joint pathologies, such as pro-inflammatory and degradative responses of multipotent mesenchymal cells residing in the synovial membrane, the underlying adipose tissue, and the articular cartilage surface.
Collapse
|
44
|
Choreño-Parra JA, Weinstein LI, Yunis EJ, Zúñiga J, Hernández-Pando R. Thinking Outside the Box: Innate- and B Cell-Memory Responses as Novel Protective Mechanisms Against Tuberculosis. Front Immunol 2020; 11:226. [PMID: 32117325 PMCID: PMC7034257 DOI: 10.3389/fimmu.2020.00226] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/28/2020] [Indexed: 12/31/2022] Open
Abstract
Tuberculosis (TB) is currently the deadliest infectious disease worldwide. Failure to create a highly effective vaccine has limited the control of the TB epidemic. Historically, the vaccine field has relied on the paradigm that IFN-γ-mediated CD4+ T cell memory responses are the principal correlate of protection in TB. Nonetheless, the demonstration that other cellular subsets offer protective memory responses against Mycobacterium tuberculosis (Mtb) is emerging. Among these are memory-like features of macrophages, myeloid cell precursors, natural killer (NK) cells, and innate lymphoid cells (ILCs). Additionally, the dynamics of B cell memory responses have been recently characterized at different stages of the clinical spectrum of Mtb infection, suggesting a role for B cells in human TB. A better understanding of the immune mechanisms underlying such responses is crucial to better comprehend protective immunity in TB. Furthermore, targeting immune compartments other than CD4+ T cells in TB vaccine strategies may benefit a significant proportion of patients co-infected with Mtb and the human immunodeficiency virus (HIV). Here, we summarize the memory responses of innate immune cells and B cells against Mtb and propose them as novel correlates of protection that could be harnessed in future vaccine development programs.
Collapse
Affiliation(s)
- José Alberto Choreño-Parra
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - León Islas Weinstein
- Section of Experimental Pathology, Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Edmond J Yunis
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Section of Experimental Pathology, Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
45
|
Jędrzejewski T, Piotrowski J, Pawlikowska M, Wrotek S, Kozak W. Extract from Coriolus versicolor fungus partially prevents endotoxin tolerance development by maintaining febrile response and increasing IL-6 generation. J Therm Biol 2019; 83:69-79. [PMID: 31331527 DOI: 10.1016/j.jtherbio.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/25/2022]
Abstract
Endotoxin tolerance is defined as a reduced endotoxin-induced fever following repeated injections of lipopolysaccharide (LPS). Clinical examples of endotoxin tolerance include sepsis or cystic fibrosis. This state is characterized by inhibition of pro-inflammatory cytokines production and decrease in nuclear factor-kappa B (NF-κB) activation. Extract from Coriolus versicolor (CV) fungus is classified as a biological response modifier, which exhibits various biological activities, including immunopotentiating properties. The aim of study was to examine the effect of CV extract injection on body core temperature of Wistar rats during LPS-induced endotoxin tolerance. Body temperature was measured using biotelemetry. CV extract was injected intraperitoneally (100 mg kg-1) 2 h prior to the first LPS peritoneal administration (50 μg/kg). Endotoxin tolerance was induced by three consecutive daily injections of LPS at the same dose. We also investigated the influence of CV extract pre-injection on the properties of peripheral blood mononuclear cells (PBMCs) isolated from LPS-treated rats in response to LPS stimulation ex vivo. PBMCs were isolated 2 h after the first LPS injection. After 24 h pre-incubation, the cells were stimulated with LPS (1 μg ml-1) for 4 h. Our results revealed that CV extract partially prevents endotoxin tolerance through maintaining febrile response in rats following consecutive exposure to LPS. This state was accompanied by the ability of PBMCs isolated from rats injected with CV extract and LPS to release larger amounts of interleukin 6 and greater NF-κB activation in response to LPS stimulation ex vivo compared with the cells derived from rats injected only with LPS. Data also showed that CV extract augmented mitogenic effect of LPS on PBMCs and caused increase in reactive oxygen species generation. We concluded that CV extract, by a modifying effect on body temperature during endotoxin tolerance, can be consider as the immunostimulating agent, which prevents the non-specific refractoriness described in patients with sepsis or ischemia.
Collapse
Affiliation(s)
- Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| | - Jakub Piotrowski
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| | - Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| | - Wieslaw Kozak
- Department of Immunology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, Torun, 87-100, Poland.
| |
Collapse
|
46
|
Abstract
Macrophages exist in most tissues and play a variety of functions in vertebrates. Teleost fish species are found in most aquatic environments throughout the world and are quite diverse for a group of vertebrate animals. Due to whole genome duplication and environmental adaptation, teleost monocytes/macrophages possess a variety of different functions and modulations compared with those of mammals. A deeper understanding of teleost monocytes/macrophages in the immune system will not only help develop teleost-specific methods of disease prevention but will also help improve our understanding of the various immune mechanisms in mammals. In this review, we summarize the differences in polarization and phagocytosis of teleost and mammalian macrophages to improve our understanding of the various immune mechanisms in vertebrates.
Collapse
Affiliation(s)
- Xin-Jiang Lu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo Zhejiang 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo Zhejiang 315211, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo Zhejiang 315211, China
| |
Collapse
|
47
|
Significance of the Differential Peptidome in Multidrug-Resistant Tuberculosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5653424. [PMID: 30792993 PMCID: PMC6354167 DOI: 10.1155/2019/5653424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/23/2022]
Abstract
Most multidrug-resistant tuberculosis (MDR-TB) patients fail to receive a timely diagnosis and treatment. Therefore, we explored the differentially expressed peptides in MDR-TB compared with drug-susceptible tuberculosis (DS-TB) patients using LC-MS/MS and Ingenuity Pathway Analysis (IPA) to analyse the potential significance of these differentially expressed peptides. A total of 301 peptides were differentially expressed between MDR-TB and DS-TB groups. Of these, 24 and 16 peptides exhibited presented high (fold change ≥ 2.0, P < 0.05) and low (fold change ≤ −2.0, P < 0.05) levels in MDR-TB. Significant canonical pathways included the prothrombin activation system, coagulation system, and complement system. In the network of differentially expressed precursor proteins, lipopolysaccharide (LPS) regulates many precursor proteins, including four proteins correlated with organism survival. These four important differentially expressed proteins are prothrombin (F2), complement receptor type 2 (CR2), collagen alpha-2(V) chain (COL5A2), and inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4). After addition of CR2 peptide, IL-6 mRNA expression in THP-1 cells decreased significantly in dose- and time-dependent manners. Cumulatively, our study proposes potential biomarkers for MDR-TB diagnosis and enables a better understanding of the pathogenesis of MDR-TB. The functions of differentially expressed peptides, especially CR2, in MDR-TB require further investigation.
Collapse
|
48
|
Zha C, Zhang W, Gao F, Xu J, Jia R, Cai J, Liu Y. Anti-β 2GPI/β 2GPI induces neutrophil extracellular traps formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation. Neuropharmacology 2018; 138:140-150. [PMID: 29883691 DOI: 10.1016/j.neuropharm.2018.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Antiphospholipid antibodies (aPLs) are a large group of heterogeneous antibodies that bind to anionic phospholipids alone or in combination with phospholipid binding proteins. Increasing evidence has converged to indicate that aPLs especially anti-β2 glycoprotein I antibody (anti-β2GPI) correlate with stroke severity and outcome. Though studies have shown that aPLs promote thrombus formation in a neutrophil-dependent way, the underlying mechanisms remain largely unknown. In the present study, we investigated the effect of anti-β2GPI in complex with β2GPI (anti-β2GPI/β2GPI) on neutrophil extracellular traps (NETs) formation and thrombus generation in vitro and in vivo. We found that anti-β2GPI/β2GPI immune complex induced NETs formation in a time- and concentration-dependent manner. This effect was mediated by its interaction with TLR4 and the production of ROS. We demonstrated that MyD88-IRAKs-MAPKs, an intracellular signaling pathway, was involved in anti-β2GPI/β2GPI-induced NETs formation. We also presented evidence that tissue factor was expressed on anti-β2GPI/β2GPI-induced NETs, and NETs could promote platelet aggregation in vitro. In addition, we identified that anti-β2GPI/β2GPI-induced NETs enhanced thrombus formation in vivo, and this effect was counteracted by using DNase I. Our data suggest that anti-β2GPI/β2GPI induces NETs formation to promote thrombogenesis via the TLR4/MyD88/MAPKs axis activation, and could be a potentially novel target for aPLs related ischemic stroke.
Collapse
Affiliation(s)
- Caijun Zha
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wenjing Zhang
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Fei Gao
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jiali Xu
- Laboratory of Endocrinology and Metabolism Department, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ruichun Jia
- Department of Blood Transfusion, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| | - Yanhong Liu
- Department of Laboratory Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|