1
|
Guzman Ruiz L, Zollner AM, Hoxie I, Küchler J, Hausjell C, Mesurado T, Krammer F, Jungbauer A, Pereira Aguilar P, Klausberger M, Grabherr R. Enhancing NA immunogenicity through novel VLP designs. Vaccine 2024; 42:126270. [PMID: 39197219 DOI: 10.1016/j.vaccine.2024.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Current influenza virus vaccines poorly display key neuraminidase (NA) epitopes and do not robustly induce NA-reactive antibodies; instead, they focus on the induction of hemagglutinin (HA)-reactive antibodies. Next-generation influenza vaccines should be optimized in order to activate NA-reactive B cells and to induce a broadly cross-reactive and protective antibody response. We aimed at enhancing the immunogenicity of the NA on vaccines by two strategies: (i) modifying the HA:NA ratio of the vaccine preparation and (ii) exposing epitopes on the lateral surface or beneath the head of the NA by extending the NA stalk. The H1N1 glycoproteins from the influenza virus A/California/04/2009 strain were displayed on human immunodeficiency virus 1 (HIV-1) gag-based virus-like particles (VLP). Using the baculovirus insect cell expression system, we biased the quantity of surface glycoproteins employing two different promoters, the very late baculovirus p10 promoter and the early and late gp64 promoter. This led to a 1:1 to 2:1 HA:NA ratio, which was approximately double or triple the amount of NA as present on the wild-type influenza A virus (HA:NA ratio 3:1 to 5:1). Furthermore, by insertion of 15 amino acids from the A-New York/61/2012 strain (NY12) which prolongates the NA stalk (NA long stalk; NA-LS), we intended to improve the accessibility of the NA. Six different types of VLPs were produced and purified using a platform downstream process based on Capto-Core 700™ followed by Capto-Heparin™ affinity chromatography combined with ultracentrifugation. These VLPs were then tested in a mouse model. Robust titers of antibodies that inhibit the neuraminidase activity were elicited even after vaccination with two low doses (0.3 μg) of the H1N1 VLPs without compromising the anti-HA responses. In conclusion, our results demonstrate the feasibility of the two developed strategies to retain HA immunogenicity and improve NA immunogenicity as a future influenza vaccine candidate.
Collapse
Affiliation(s)
- Leticia Guzman Ruiz
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria; University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Alexander M Zollner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Irene Hoxie
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Küchler
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Christina Hausjell
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Tomas Mesurado
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria
| | - Florian Krammer
- Icahn School of Medicine at Mount Sinai, Department of Microbiology, Gustave L. Levy Place, 10029-5674 New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Alois Jungbauer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Patricia Pereira Aguilar
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Bioprocess Science and Engineering (IBSE), Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria
| | - Miriam Klausberger
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Molecular Biotechnology (IMBT), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
3
|
Guzman Ruiz L, Zollner AM, Hoxie I, Arcalis E, Krammer F, Klausberger M, Jungbauer A, Grabherr R. Increased efficacy of influenza virus vaccine candidate through display of recombinant neuraminidase on virus like particles. Front Immunol 2024; 15:1425842. [PMID: 38915410 PMCID: PMC11194364 DOI: 10.3389/fimmu.2024.1425842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024] Open
Abstract
Vaccination against influenza virus can reduce the risk of influenza by 40% to 60%, they rely on the production of neutralizing antibodies specific to influenza hemagglutinin (HA) ignoring the neuraminidase (NA) as an important surface target. Vaccination with standardized NA concentration may offer broader and longer-lasting protection against influenza infection. In this regard, we aimed to compare the potency of a NA displayed on the surface of a VLP with a soluble NA. The baculovirus expression system (BEVS) and the novel virus-free Tnms42 insect cell line were used to express N2 NA on gag-based VLPs. To produce VLP immunogens with high levels of purity and concentration, a two-step chromatography purification process combined with ultracentrifugation was used. In a prime/boost vaccination scheme, mice vaccinated with 1 µg of the N2-VLPs were protected from mortality, while mice receiving the same dose of unadjuvanted NA in soluble form succumbed to the lethal infection. Moreover, NA inhibition assays and NA-ELISAs of pre-boost and pre-challenge sera confirm that the VLP preparation induced higher levels of NA-specific antibodies outperforming the soluble unadjuvanted NA.
Collapse
Affiliation(s)
- Leticia Guzman Ruiz
- Institute of Molecular Biotechnology (IMBT), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
- Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Alexander M. Zollner
- Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Elsa Arcalis
- Institute of Plant Biotechnology and Cell Biology (IPBT), Department of Applied Genetics and Cell Biology (DAGZ), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Miriam Klausberger
- Institute of Molecular Biotechnology (IMBT), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| | - Alois Jungbauer
- Institute of Bioprocess Science and Engineering (IBSE), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
- Austrian Centre of Industrial Biotechnology (acib), Vienna, Austria
| | - Reingard Grabherr
- Institute of Molecular Biotechnology (IMBT), Department of Biotechnology (DBT), University of Natural Resources and Life Sciences Vienna (BOKU), Vienna, Austria
| |
Collapse
|
4
|
Liu S, Li J, Cheng Q, Duan K, Wang Z, Yan S, Tian S, Wang H, Wu S, Lei X, Yang Y, Ma N. A Single-Step Method for Harvesting Influenza Viral Particles from MDCK Cell Culture Supernatant with High Yield and Effective Impurity Removal. Viruses 2024; 16:768. [PMID: 38793649 PMCID: PMC11125750 DOI: 10.3390/v16050768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.
Collapse
Affiliation(s)
- Sixu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Jingqi Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- GenScript (Shanghai) Biotech Co., Ltd., Shanghai 200131, China
| | - Qingtian Cheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Kangyi Duan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Zhan Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Shuang Yan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Shuaishuai Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| | - Hairui Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Qilu Pharmaceutical Co., Ltd., Jinan 250104, China
| | - Shaobin Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing 100176, China
| | - Xinkui Lei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
- Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing 100176, China
| | - Yu Yang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Ningning Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; (S.L.); (J.L.); (Q.C.); (K.D.); (S.Y.); (S.T.); (H.W.); (S.W.); (X.L.)
| |
Collapse
|
5
|
Serafin B, Kamen A, de Crescenzo G, Henry O. Antibody-independent surface plasmon resonance assays for influenza vaccine quality control. Appl Microbiol Biotechnol 2024; 108:307. [PMID: 38656587 PMCID: PMC11043112 DOI: 10.1007/s00253-024-13145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Surface plasmon resonance (SPR)-based biosensors have emerged as a powerful platform for bioprocess monitoring due to their ability to detect biointeractions in real time, without the need for labeling. Paramount for the development of a robust detection platform is the immobilization of a ligand with high specificity and affinity for the in-solution species of interest. Following the 2009 H1N1 pandemic, much effort has been made toward the development of quality control platforms for influenza A vaccine productions, many of which have employed SPR for detection. Due to the rapid antigenic drift of influenza's principal surface protein, hemagglutinin, antibodies used for immunoassays need to be produced seasonally. The production of these antibodies represents a 6-8-week delay in immunoassay and, thus, vaccine availability. This review focuses on SPR-based assays that do not rely on anti-HA antibodies for the detection, characterization, and quantification of influenza A in bioproductions and biological samples. KEY POINTS: • The single radial immunodiffusion assay (SRID) has been the gold standard for the quantification of influenza vaccines since 1979. Due to antigenic drift of influenza's hemagglutinin protein, new antibody reagents for the SRID assay must be produced each year, requiring 6-8 weeks. The resulting delay in immunoassay availability is a major bottleneck in the influenza vaccine pipeline. This review highlights ligand options for the detection and quantification of influenza viruses using surface plasmon resonance biosensors.
Collapse
Affiliation(s)
- Benjamin Serafin
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Gregory de Crescenzo
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC, Canada.
| |
Collapse
|
6
|
Flock J, Xie Y, Lemaitre R, Lapouge K, Remans K. The Use of Baculovirus-Mediated Gene Expression in Mammalian Cells for Recombinant Protein Production. Methods Mol Biol 2024; 2810:29-53. [PMID: 38926271 DOI: 10.1007/978-1-0716-3878-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Baculovirus-mediated gene expression in mammalian cells, BacMam, is a useful alternative to transient transfection for recombinant protein production in various types of mammalian cell lines. We decided to establish BacMam in our lab in order to streamline our workflows for gene expression in insect and mammalian cells, as it is straightforward to parallelize the baculovirus generation for both types of eukaryotic cells. This chapter provides a step-by-step description of the protocols we use for the generation of the recombinant BacMam viruses, the transduction of mammalian cell cultures, and optimization of the protein production conditions through small-scale expression and purification tests.
Collapse
Affiliation(s)
- Julia Flock
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yexin Xie
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Régis Lemaitre
- Protein Biochemistry Facility, Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Kim Remans
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
7
|
Zak AJ, Hoang T, Yee CM, Rizvi SM, Prabhu P, Wen F. Pseudotyping Improves the Yield of Functional SARS-CoV-2 Virus-like Particles (VLPs) as Tools for Vaccine and Therapeutic Development. Int J Mol Sci 2023; 24:14622. [PMID: 37834067 PMCID: PMC10572262 DOI: 10.3390/ijms241914622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/15/2023] Open
Abstract
Virus-like particles (VLPs) have been proposed as an attractive tool in SARS-CoV-2 vaccine development, both as (1) a vaccine candidate with high immunogenicity and low reactogenicity and (2) a substitute for live virus in functional and neutralization assays. Though multiple SARS-CoV-2 VLP designs have already been explored in Sf9 insect cells, a key parameter ensuring VLPs are a viable platform is the VLP spike yield (i.e., spike protein content in VLP), which has largely been unreported. In this study, we show that the common strategy of producing SARS-CoV-2 VLPs by expressing spike protein in combination with the native coronavirus membrane and/or envelope protein forms VLPs, but at a critically low spike yield (~0.04-0.08 mg/L). In contrast, fusing the spike ectodomain to the influenza HA transmembrane domain and cytoplasmic tail and co-expressing M1 increased VLP spike yield to ~0.4 mg/L. More importantly, this increased yield translated to a greater VLP spike antigen density (~96 spike monomers/VLP) that more closely resembles that of native SARS-CoV-2 virus (~72-144 Spike monomers/virion). Pseudotyping further allowed for production of functional alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) SARS-CoV-2 VLPs that bound to the target ACE2 receptor. Finally, we demonstrated the utility of pseudotyped VLPs to test neutralizing antibody activity using a simple, acellular ELISA-based assay performed at biosafety level 1 (BSL-1). Taken together, this study highlights the advantage of pseudotyping over native SARS-CoV-2 VLP designs in achieving higher VLP spike yield and demonstrates the usefulness of pseudotyped VLPs as a surrogate for live virus in vaccine and therapeutic development against SARS-CoV-2 variants.
Collapse
Affiliation(s)
| | | | | | | | | | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA (P.P.)
| |
Collapse
|
8
|
Kim A, Park JH, Lee MJ, Kim SM. Interferon alpha and beta receptor 1 knockout in human embryonic kidney 293 cells enhances the production efficiency of proteins or adenoviral vectors related to type I interferons. Front Bioeng Biotechnol 2023; 11:1192291. [PMID: 37476482 PMCID: PMC10355049 DOI: 10.3389/fbioe.2023.1192291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 07/22/2023] Open
Abstract
Human embryonic kidney (HEK) 293 cells are widely used in protein and viral vector production owing to their high transfection efficiency, rapid growth, and suspension growth capability. Given their antiviral, anticancer, and immune-enhancing effects, type I interferons (IFNs) have been used to prevent and treat human and animal diseases. However, the binding of type I IFNs to the IFN-α and-β receptor (IFNAR) stimulates the expression of IFN-stimulated genes (ISGs). This phenomenon induces an antiviral state and promotes apoptosis in cells, thereby impeding protein or viral vector production. In this study, we generated an IFNAR subtype 1 knockout (KO) HEK 293 suspension (IFNAR-KO) cell line by using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) technology. Upon treatment with human IFN-α, the IFNAR-KO cells showed a constant expression of ISGs, including 2'-5'-oligoadenylate synthetase 1 (OAS1), myxovirus resistance 1 (Mx1), protein kinase RNA-activated (PKR), and IFN-induced transmembrane protein 1 (IFITM1), when compared with the wild-type HEK 293 (WT) cells, wherein the ISGs were significantly upregulated. As a result, the titer of recombinant adenovirus expressing porcine IFN-α was significantly higher in the IFNAR-KO cells than in the WT cells. Furthermore, the IFNAR-KO cells continuously produced higher amounts of IFN-α protein than the WT cells. Thus, the CRISPR-Cas9-mediated IFNAR1 KO cell line can improve the production efficiency of proteins or viral vectors related to IFNs. The novel cell line may be used for producing vaccines and elucidating the type I IFN signaling pathway in cells.
Collapse
|
9
|
Martins SA, Santos J, Silva RDM, Rosa C, Cabo Verde S, Correia JDG, Melo R. How promising are HIV-1-based virus-like particles for medical applications. Front Cell Infect Microbiol 2022; 12:997875. [PMID: 36275021 PMCID: PMC9585283 DOI: 10.3389/fcimb.2022.997875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
New approaches aimed at identifying patient-specific drug targets and addressing unmet clinical needs in the framework of precision medicine are a strong motivation for researchers worldwide. As scientists learn more about proteins that drive known diseases, they are better able to design promising therapeutic approaches to target those proteins. The field of nanotechnology has been extensively explored in the past years, and nanoparticles (NPs) have emerged as promising systems for target-specific delivery of drugs. Virus-like particles (VLPs) arise as auspicious NPs due to their intrinsic properties. The lack of viral genetic material and the inability to replicate, together with tropism conservation and antigenicity characteristic of the native virus prompted extensive interest in their use as vaccines or as delivery systems for therapeutic and/or imaging agents. Owing to its simplicity and non-complex structure, one of the viruses currently under study for the construction of VLPs is the human immunodeficiency virus type 1 (HIV-1). Typically, HIV-1-based VLPs are used for antibody discovery, vaccines, diagnostic reagent development and protein-based assays. This review will be centered on the use of HIV-1-based VLPs and their potential biomedical applications.
Collapse
Affiliation(s)
- Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cátia Rosa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Yang Z, Xu X, Silva CAT, Farnos O, Venereo-Sanchez A, Toussaint C, Dash S, González-Domínguez I, Bernier A, Henry O, Kamen A. Membrane Chromatography-Based Downstream Processing for Cell-Culture Produced Influenza Vaccines. Vaccines (Basel) 2022; 10:vaccines10081310. [PMID: 36016198 PMCID: PMC9414887 DOI: 10.3390/vaccines10081310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
New influenza strains are constantly emerging, causing seasonal epidemics and raising concerns to the risk of a new global pandemic. Since vaccination is an effective method to prevent the spread of the disease and reduce its severity, the development of robust bioprocesses for producing pandemic influenza vaccines is exceptionally important. Herein, a membrane chromatography-based downstream processing platform with a demonstrated industrial application potential was established. Cell culture-derived influenza virus H1N1/A/PR/8/34 was harvested from benchtop bioreactor cultures. For the clarification of the cell culture broth, a depth filtration was selected as an alternative to centrifugation. After inactivation, an anion exchange chromatography membrane was used for viral capture and further processing. Additionally, two pandemic influenza virus strains, the H7N9 subtype of the A/Anhui/1/2013 and H3N2/A/Hong Kong/8/64, were successfully processed through similar downstream process steps establishing optimized process parameters. Overall, 41.3–62.5% viral recovery was achieved, with the removal of 86.3–96.5% host cell DNA and 95.5–99.7% of proteins. The proposed membrane chromatography purification is a scalable and generic method for the processing of different influenza strains and is a promising alternative to the current industrial purification of influenza vaccines based on ultracentrifugation methodologies.
Collapse
Affiliation(s)
- Zeyu Yang
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Xingge Xu
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cristina A. T. Silva
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Omar Farnos
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alina Venereo-Sanchez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cécile Toussaint
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Shantoshini Dash
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Irene González-Domínguez
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alice Bernier
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada
| | - Amine Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
- Correspondence:
| |
Collapse
|
11
|
Damm D, Suleiman E, Theobald H, Wagner JT, Batzoni M, Ahlfeld (née Kohlhauser) B, Walkenfort B, Albrecht JC, Ingale J, Yang L, Hasenberg M, Wyatt RT, Vorauer-Uhl K, Überla K, Temchura V. Design and Functional Characterization of HIV-1 Envelope Protein-Coupled T Helper Liposomes. Pharmaceutics 2022; 14:1385. [PMID: 35890282 PMCID: PMC9318220 DOI: 10.3390/pharmaceutics14071385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Functionalization of experimental HIV-1 virus-like particle vaccines with heterologous T helper epitopes (T helper VLPs) can modulate the humoral immune response via intrastructural help (ISH). Current advances in the conjugation of native-like HIV-1 envelope trimers (Env) onto liposomes and encapsulation of peptide epitopes into these nanoparticles renders this GMP-scalable liposomal platform a feasible alternative to VLP-based vaccines. In this study, we designed and analyzed customizable Env-conjugated T helper liposomes. First, we passively encapsulated T helper peptides into a well-characterized liposome formulation displaying a dense array of Env trimers on the surface. We confirmed the closed pre-fusion state of the coupled Env trimers by immunogold staining with conformation-specific antibodies. These peptide-loaded Env-liposome conjugates efficiently activated Env-specific B cells, which further induced proliferation of CD4+ T cells by presentation of liposome-derived peptides on MHC-II molecules. The peptide encapsulation process was then quantitatively improved by an electrostatically driven approach using an overall anionic lipid formulation. We demonstrated that peptides delivered by liposomes were presented by DCs in secondary lymphoid organs after intramuscular immunization of mice. UFO (uncleaved prefusion optimized) Env trimers were covalently coupled to peptide-loaded anionic liposomes by His-tag/NTA(Ni) interactions and EDC/Sulfo-NHS crosslinking. EM imaging revealed a moderately dense array of well-folded Env trimers on the liposomal surface. The conformation was verified by liposomal surface FACS. Furthermore, anionic Env-coupled T helper liposomes effectively induced Env-specific B cell activation and proliferation in a comparable range to T helper VLPs. Taken together, we demonstrated that T helper VLPs can be substituted with customizable and GMP-scalable liposomal nanoparticles as a perspective for future preclinical and clinical HIV vaccine applications. The functional nanoparticle characterization assays shown in this study can be applied to other systems of synthetic nanoparticles delivering antigens derived from various pathogens.
Collapse
Affiliation(s)
- Dominik Damm
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Ehsan Suleiman
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (E.S.); (M.B.); (B.A.); (K.V.-U.)
| | - Hannah Theobald
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Jannik T. Wagner
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Mirjam Batzoni
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (E.S.); (M.B.); (B.A.); (K.V.-U.)
| | - Bianca Ahlfeld (née Kohlhauser)
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (E.S.); (M.B.); (B.A.); (K.V.-U.)
| | - Bernd Walkenfort
- Electron Microscopy Unit (EMU), Imaging Center Essen (IMCES), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany; (B.W.); (M.H.)
| | - Jens-Christian Albrecht
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Jidnyasa Ingale
- Vaccine Business Unit, Takeda Pharmaceuticals, Cambridge, MA 02139, USA;
| | - Lifei Yang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.Y.); (R.T.W.)
| | - Mike Hasenberg
- Electron Microscopy Unit (EMU), Imaging Center Essen (IMCES), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany; (B.W.); (M.H.)
| | - Richard T. Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.Y.); (R.T.W.)
| | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (E.S.); (M.B.); (B.A.); (K.V.-U.)
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (D.D.); (H.T.); (J.T.W.); (J.-C.A.); (K.Ü.)
| |
Collapse
|
12
|
An In Silico Analysis of Malaria Pre-Erythrocytic-Stage Antigens Interpreting Worldwide Genetic Data to Suggest Vaccine Candidate Variants and Epitopes. Microorganisms 2022; 10:microorganisms10061090. [PMID: 35744609 PMCID: PMC9231253 DOI: 10.3390/microorganisms10061090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 02/05/2023] Open
Abstract
Failure to account for genetic diversity of antigens during vaccine design may lead to vaccine escape. To evaluate the vaccine escape potential of antigens used in vaccines currently in development or clinical testing, we surveyed the genetic diversity, measured population differentiation, and performed in silico prediction and analysis of T-cell epitopes of ten such Plasmodium falciparum pre-erythrocytic-stage antigens using whole-genome sequence data from 1010 field isolates. Of these, 699 were collected in Africa (Burkina Faso, Cameroon, Guinea, Kenya, Malawi, Mali, and Tanzania), 69 in South America (Brazil, Colombia, French Guiana, and Peru), 59 in Oceania (Papua New Guinea), and 183 in Asia (Cambodia, Myanmar, and Thailand). Antigens surveyed include cell-traversal protein for ookinetes and sporozoites, circumsporozoite protein, liver-stage antigens 1 and 3, sporozoite surface proteins P36 and P52, sporozoite asparagine-rich protein-1, sporozoite microneme protein essential for cell traversal-2, and upregulated-in-infectious-sporozoite 3 and 4 proteins. The analyses showed that a limited number of these protein variants, when combined, would be representative of worldwide parasite populations. Moreover, predicted T-cell epitopes were identified that could be further explored for immunogenicity and protective efficacy. Findings can inform the rational design of a multivalent malaria vaccine.
Collapse
|
13
|
Sullivan E, Sung PY, Wu W, Berry N, Kempster S, Ferguson D, Almond N, Jones IM, Roy P. SARS-CoV-2 Virus-like Particles Produced by a Single Recombinant Baculovirus Generate Anti-S Antibody and Protect against Variant Challenge. Viruses 2022; 14:914. [PMID: 35632656 PMCID: PMC9143203 DOI: 10.3390/v14050914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has highlighted the need for the rapid generation of efficient vaccines for emerging disease. Virus-like particles, VLPs, are an established vaccine technology that produces virus-like mimics, based on expression of the structural proteins of a target virus. SARS-CoV-2 is a coronavirus where the basis of VLP formation has been shown to be the co-expression of the spike, membrane and envelope structural proteins. Here we describe the generation of SARS-CoV-2 VLPs by the co-expression of the salient structural proteins in insect cells using the established baculovirus expression system. VLPs were heterologous ~100 nm diameter enveloped particles with a distinct fringe that reacted strongly with SARS-CoV-2 convalescent sera. In a Syrian hamster challenge model, non-adjuvanted VLPs induced neutralizing antibodies to the VLP-associated Wuhan S protein and reduced virus shedding and protected against disease associated weight loss following a virulent challenge with SARS-CoV-2 (B.1.1.7 variant). Immunized animals showed reduced lung pathology and lower challenge virus replication than the non-immunized controls. Our data suggest SARS-CoV-2 VLPs offer an efficient vaccine that mitigates against virus load and prevents severe disease.
Collapse
Affiliation(s)
- Edward Sullivan
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Po-Yu Sung
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Weining Wu
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Neil Berry
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK;
| | - Polly Roy
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| |
Collapse
|
14
|
Transduction of HEK293 Cells with BacMam Baculovirus Is an Efficient System for the Production of HIV-1 Virus-like Particles. Viruses 2022; 14:v14030636. [PMID: 35337043 PMCID: PMC8954388 DOI: 10.3390/v14030636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100–200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.
Collapse
|
15
|
Carvalho SB, Silva RJS, Sousa MFQ, Peixoto C, Roldão A, Carrondo MJT, Alves PM. Bioanalytics for Influenza Virus-Like Particle Characterization and Process Monitoring. Front Bioeng Biotechnol 2022; 10:805176. [PMID: 35252128 PMCID: PMC8894879 DOI: 10.3389/fbioe.2022.805176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 01/22/2023] Open
Abstract
Virus-like particles (VLPs) are excellent platforms for the development of influenza vaccine candidates. Nonetheless, their characterization is challenging due to VLPs’ unique biophysical and biochemical properties. To cope with such complexity, multiple analytical techniques have been developed to date (e.g., single-particle analysis, thermal stability, or quantification assays), most of which are rarely used or have been successfully demonstrated for being applicable for virus particle characterization. In this study, several biophysical and biochemical methods have been evaluated for thorough characterization of monovalent and pentavalent influenza VLPs from diverse groups (A and B) and subtypes (H1 and H3) produced in insect cells using the baculovirus expression vector system (IC-BEVS). Particle size distribution and purity profiles were monitored during the purification process using two complementary technologies — nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS). VLP surface charge at the selected process pH was also assessed by this last technique. The morphology of the VLP (size, shape, and presence of hemagglutinin spikes) was evaluated using transmission electron microscopy. Circular dichroism was used to assess VLPs’ thermal stability. Total protein, DNA, and baculovirus content were also assessed. All VLPs analyzed exhibited similar size ranges (90–115 nm for NTA and 129–141 nm for TRPS), surface charges (average of −20.4 mV), and morphology (pleomorphic particles resembling influenza virus) exhibiting the presence of HA molecules (spikes) uniformly displayed on M1 protein scaffold. Our data shows that HA titers and purification efficiency in terms of impurity removal and thermal stability were observed to be particle dependent. This study shows robustness and generic applicability of the tools and methods evaluated, independent of VLP valency and group/subtype. Thus, they are most valuable to assist process development and enhance product characterization.
Collapse
Affiliation(s)
- Sofia B. Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo J. S. Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos F. Q. Sousa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- *Correspondence: Paula M. Alves,
| |
Collapse
|
16
|
Arista-Romero M, Delcanale P, Pujals S, Albertazzi L. Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles. ACS PHOTONICS 2022; 9:101-109. [PMID: 35083366 PMCID: PMC8778639 DOI: 10.1021/acsphotonics.1c01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 05/17/2023]
Abstract
Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFlu-S). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs.
Collapse
Affiliation(s)
- Maria Arista-Romero
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Pietro Delcanale
- Dipartimento
di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco area delle Scienze 7/A, 43124 Parma, Italy
| | - Silvia Pujals
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC), The Barcelona Institute of Science and Technology, C\Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| |
Collapse
|
17
|
Makowski EK, Schardt JS, Tessier PM. Improving antibody drug development using bionanotechnology. Curr Opin Biotechnol 2021; 74:137-145. [PMID: 34890875 DOI: 10.1016/j.copbio.2021.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies are being used to treat a remarkable breadth of human disorders. Nevertheless, there are several key challenges at the earliest stages of antibody drug development that need to be addressed using simple and widely accessible methods, especially related to generating antibodies against membrane proteins and identifying antibody candidates with drug-like biophysical properties (high solubility and low viscosity). Here we highlight key bionanotechnologies for preparing functional and stable membrane proteins in diverse types of lipoparticles that are being used to improve antibody discovery and engineering efforts. We also highlight key bionanotechnologies for high-throughput and ultra-dilute screening of antibody biophysical properties during antibody discovery and optimization that are being used for identifying antibodies with superior combinations of in vitro (formulation) and in vivo (half-life) properties.
Collapse
Affiliation(s)
- Emily K Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Departmant of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Abaandou L, Quan D, Shiloach J. Affecting HEK293 Cell Growth and Production Performance by Modifying the Expression of Specific Genes. Cells 2021; 10:cells10071667. [PMID: 34359846 PMCID: PMC8304725 DOI: 10.3390/cells10071667] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
The HEK293 cell line has earned its place as a producer of biotherapeutics. In addition to its ease of growth in serum-free suspension culture and its amenability to transfection, this cell line’s most important attribute is its human origin, which makes it suitable to produce biologics intended for human use. At the present time, the growth and production properties of the HEK293 cell line are inferior to those of non-human cell lines, such as the Chinese hamster ovary (CHO) and the murine myeloma NSO cell lines. However, the modification of genes involved in cellular processes, such as cell proliferation, apoptosis, metabolism, glycosylation, secretion, and protein folding, in addition to bioprocess, media, and vector optimization, have greatly improved the performance of this cell line. This review provides a comprehensive summary of important achievements in HEK293 cell line engineering and on the global engineering approaches and functional genomic tools that have been employed to identify relevant genes for targeted engineering.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Department of Chemistry and Biochemistry, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - David Quan
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
| | - Joseph Shiloach
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Correspondence:
| |
Collapse
|
19
|
B Carvalho S, Peixoto C, T Carrondo MJ, S Silva RJ. Downstream processing for influenza vaccines and candidates: An update. Biotechnol Bioeng 2021; 118:2845-2869. [PMID: 33913510 DOI: 10.1002/bit.27803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Seasonal and pandemic influenza outbreaks present severe health and economic burdens. To overcome limitations on influenza vaccines' availability and effectiveness, researchers chase universal vaccines providing broad, long-lasting protection against multiple influenza subtypes, and including pandemic ones. Novel influenza vaccine designs are under development, in clinical trials, or reaching the market, namely inactivated, or live-attenuated virus, virus-like particles, or recombinant antigens, searching for improved effectiveness; all these bring downstream processing (DSP) new challenges. Having to deal with new influenza strains, including pandemics, requires shorter development time, driving the development of faster bioprocesses. To cope with better upstream processes, new regulatory demands for quality and safety, and cost reduction requirements, new unit operations and integrated processes are increasing DSP efficiency for novel vaccine formats. This review covers recent advances in DSP strategies of different influenza vaccine formats. Focus is given to the improvements on relevant state-of-the-art unit operations, from harvest and clarification to purification steps, ending with sterile filtration and formulation. The development of more efficient unit operations to cope with biophysical properties of the new candidates is discussed: emphasis is given to the design of new stationary phases, 3D printing approaches, and continuous processing tools, such as continuous chromatography. The impact of the production platforms and vaccine designs on the downstream operations for the different influenza vaccine formats approved for this season are highlighted.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ricardo J S Silva
- Animal Cell Technology Unit, iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Animal Cell Technology Unit, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
20
|
Fernandes B, Correia R, Sousa M, Carrondo MJT, Alves PM, Roldão A. Integrating high cell density cultures with adapted laboratory evolution for improved Gag-HA virus-like particles production in stable insect cell lines. Biotechnol Bioeng 2021; 118:2536-2547. [PMID: 33764532 DOI: 10.1002/bit.27766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022]
Abstract
Stable insect cell lines are emerging as an alternative to the insect cell-baculovirus expression vector system (IC-BEVS) for protein expression, benefiting from being a virus-free, nonlytic system. Still, the titers achieved are considerably lower. In this study, stable insect (Sf-9 and High Five) cells producing Gag virus-like particles (VLPs) were first adapted to grow under hypothermic culture conditions (22°C instead of standard 27°C), and then pseudotyped with a model membrane protein (influenza hemagglutinin [HA]) for expression of Gag-HA VLPs. Adaptation to lower temperature led to an increase in protein titers of up to 12-fold for p24 (as proxy for Gag-VLP) and sixfold for HA, with adapted Sf-9 cells outperforming High Five cells. Resulting Gag-HA VLPs producer Sf-9 cells were cultured to high cell densities, that is, 100 × 106 cell/ml, using perfusion (ATF® 2) in 1 L stirred-tank bioreactors. Specific p24 and HA production rates were similar to those of batch culture, enabling to increase volumetric titers by 7-8-fold without compromising the assembly of Gag-HA VLPs. Importantly, the antigen (HA) quantity in VLPs generated using stable adapted cells in perfusion was ≈5-fold higher than that from IC-BEVS, with the added benefit of being a baculovirus-free system. This study demonstrates the potential of combining stable expression in insect cells adapted to hypothermic culture conditions with perfusion for improving Gag-HA VLPs production.
Collapse
Affiliation(s)
- Bárbara Fernandes
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marcos Sousa
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
21
|
Joshi PRH, Venereo-Sanchez A, Chahal PS, Kamen AA. Advancements in molecular design and bioprocessing of recombinant adeno-associated virus gene delivery vectors using the insect-cell baculovirus expression platform. Biotechnol J 2021; 16:e2000021. [PMID: 33277815 DOI: 10.1002/biot.202000021] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 11/27/2020] [Indexed: 01/23/2023]
Abstract
Despite rapid progress in the field, scalable high-yield production of adeno-associated virus (AAV) is still one of the critical bottlenecks the manufacturing sector is facing. The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as a mainstream platform for the scalable production of recombinant proteins with clinically approved products for human use. In this review, we provide a detailed overview of the advancements in IC-BEVS for rAAV production. Since the first report of baculovirus-induced production of rAAV vector in insect cells in 2002, this platform has undergone significant improvements, including enhanced stability of Bac-vector expression and a reduced number of baculovirus-coinfections. The latter streamlining strategy led to the eventual development of the Two-Bac, One-Bac, and Mono-Bac systems. The one baculovirus system consisting of an inducible packaging insect cell line was further improved to enhance the AAV vector quality and potency. In parallel, the implementation of advanced manufacturing approaches and control of critical processing parameters have demonstrated promising results with process validation in large-scale bioreactor runs. Moreover, optimization of the molecular design of vectors to enable higher cell-specific yields of functional AAV particles combined with bioprocess intensification strategies may also contribute to addressing current and future manufacturing challenges.
Collapse
Affiliation(s)
- Pranav R H Joshi
- Department of Bioengineering, McGill University, Montréal, Quebec, Canada
| | | | - Parminder S Chahal
- Human Health Therapeutics Portfolio, National Research Council of Canada, Montréal, Quebec, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
22
|
Ninyio NN, Ho KL, Omar AR, Tan WS, Iqbal M, Mariatulqabtiah AR. Virus-like Particle Vaccines: A Prospective Panacea Against an Avian Influenza Panzootic. Vaccines (Basel) 2020; 8:E694. [PMID: 33227887 PMCID: PMC7712863 DOI: 10.3390/vaccines8040694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/04/2023] Open
Abstract
Epizootics of highly pathogenic avian influenza (HPAI) have resulted in the deaths of millions of birds leading to huge financial losses to the poultry industry worldwide. The roles of migratory wild birds in the harbouring, mutation, and transmission of avian influenza viruses (AIVs), and the lack of broad-spectrum prophylactic vaccines present imminent threats of a global panzootic. To prevent this, control measures that include effective AIV surveillance programmes, treatment regimens, and universal vaccines are being developed and analysed for their effectiveness. We reviewed the epidemiology of AIVs with regards to past avian influenza (AI) outbreaks in birds. The AIV surveillance programmes in wild and domestic birds, as well as their roles in AI control were also evaluated. We discussed the limitations of the currently used AI vaccines, which necessitated the development of a universal vaccine. We evaluated the current development of AI vaccines based upon virus-like particles (VLPs), particularly those displaying the matrix-2 ectodomain (M2e) peptide. Finally, we highlighted the prospects of these VLP vaccines as universal vaccines with the potential of preventing an AI panzootic.
Collapse
Affiliation(s)
- Nathaniel Nyakaat Ninyio
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Department of Microbiology, Faculty of Science, Kaduna State University, Kaduna 800241, Nigeria
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.N.N.); (W.S.T.)
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK;
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
23
|
Improving Influenza HA-Vlps Production in Insect High Five Cells via Adaptive Laboratory Evolution. Vaccines (Basel) 2020; 8:vaccines8040589. [PMID: 33036359 PMCID: PMC7711658 DOI: 10.3390/vaccines8040589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
The use of non-standard culture conditions has proven efficient to increase cell performance and recombinant protein production in different cell hosts. However, the establishment of high-producing cell populations through adaptive laboratory evolution (ALE) has been poorly explored, in particular for insect cells. In this study, insect High Five cells were successfully adapted to grow at a neutral culture pH (7.0) through ALE for an improved production of influenza hemagglutinin (HA)-displaying virus-like particles (VLPs). A stepwise approach was used for the adaptation process, in which the culture pH gradually increased from standard 6.2 to 7.0 (ΔPh = 0.2–0.3), and cells were maintained at each pH value for 2–3 weeks until a constant growth rate and a cell viability over 95% were observed. These adapted cells enabled an increase in cell-specific HA productivity up to three-fold and volumetric HA titer of up to four-fold as compared to non-adapted cells. Of note, the adaptation process is the element driving increased specific HA productivity as a pH shift alone was inefficient at improving productivities. The production of HA-VLPs in adapted cells was successfully demonstrated at the bioreactor scale. The produced HA-VLPs show the typical size and morphology of influenza VLPs, thus confirming the null impact of the adaptation process and neutral culture pH on the quality of HA-VLPs produced. This work strengthens the potential of ALE as a bioprocess engineering strategy to improve the production of influenza HA-VLPs in insect High Five cells.
Collapse
|
24
|
Moleirinho MG, Fernandes RP, Carvalho SB, Bezemer S, Detmers F, Hermans P, Silva RJ, Alves PM, Carrondo MJ, Peixoto C. Baculovirus affinity removal in viral-based bioprocesses. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Pushko P, Tretyakova I. Influenza Virus Like Particles (VLPs): Opportunities for H7N9 Vaccine Development. Viruses 2020; 12:v12050518. [PMID: 32397182 PMCID: PMC7291233 DOI: 10.3390/v12050518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 01/21/2023] Open
Abstract
In the midst of the ongoing COVID-19 coronavirus pandemic, influenza virus remains a major threat to public health due to its potential to cause epidemics and pandemics with significant human mortality. Cases of H7N9 human infections emerged in eastern China in 2013 and immediately raised pandemic concerns as historically, pandemics were caused by the introduction of new subtypes into immunologically naïve human populations. Highly pathogenic H7N9 cases with severe disease were reported recently, indicating the continuing public health threat and the need for a prophylactic vaccine. Here we review the development of recombinant influenza virus-like particles (VLPs) as vaccines against H7N9 virus. Several approaches to vaccine development are reviewed including the expression of VLPs in mammalian, plant and insect cell expression systems. Although considerable progress has been achieved, including demonstration of safety and immunogenicity of H7N9 VLPs in the human clinical trials, the remaining challenges need to be addressed. These challenges include improvements to the manufacturing processes, as well as enhancements to immunogenicity in order to elicit protective immunity to multiple variants and subtypes of influenza virus.
Collapse
|
26
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quantification of the HIV-1 virus-like particle production process by super-resolution imaging: From VLP budding to nanoparticle analysis. Biotechnol Bioeng 2020; 117:1929-1945. [PMID: 32242921 DOI: 10.1002/bit.27345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/17/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Virus-like particles (VLPs) offer great promise in the field of nanomedicine. Enveloped VLPs are a class of these nanoparticles and their production process occurs by a budding process, which is known to be the most critical step at intracellular level. In this study, we developed a novel imaging method based on super-resolution fluorescence microscopy (SRFM) to assess the generation of VLPs in living cells. This methodology was applied to study the production of Gag VLPs in three animal cell platforms of reference: HEK 293-transient gene expression (TGE), High Five-baculovirus expression vector system (BEVS) and Sf9-BEVS. Quantification of the number of VLP assembly sites per cell ranged from 500 to 3,000 in the different systems evaluated. Although the BEVS was superior in terms of Gag polyprotein expression, the HEK 293-TGE platform was more efficient regarding the assembly of Gag as VLPs. This was translated into higher levels of non-assembled Gag monomer in BEVS harvested supernatants. Furthermore, the presence of contaminating nanoparticles was evidenced in all three systems, specifically in High Five cells. The SRFM-based method here developed was also successfully applied to measure the concentration of VLPs in crude supernatants. The lipid membrane of VLPs and the presence of nucleic acids alongside these nanoparticles could also be detected using common staining procedures. Overall, a complete picture of the VLP production process was achieved in these three production platforms. The robustness and sensitivity of this new approach broaden the applicability of SRFM toward the development of new detection, diagnosis and quantification methods based on confocal microscopy in living systems.
Collapse
Affiliation(s)
- Irene González-Domínguez
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Eduard Puente-Massaguer
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Laura Cervera
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Bellaterra, Spain
| |
Collapse
|
27
|
Barnard KN, Alford-Lawrence BK, Buchholz DW, Wasik BR, LaClair JR, Yu H, Honce R, Ruhl S, Pajic P, Daugherity EK, Chen X, Schultz-Cherry SL, Aguilar HC, Varki A, Parrish CR. Modified Sialic Acids on Mucus and Erythrocytes Inhibit Influenza A Virus Hemagglutinin and Neuraminidase Functions. J Virol 2020; 94:e01567-19. [PMID: 32051275 PMCID: PMC7163148 DOI: 10.1128/jvi.01567-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (Sia) are the primary receptors for influenza viruses and are widely displayed on cell surfaces and in secreted mucus. Sia may be present in variant forms that include O-acetyl modifications at C-4, C-7, C-8, and C-9 positions and N-acetyl or N-glycolyl at C-5. They can also vary in their linkages, including α2-3 or α2-6 linkages. Here, we analyze the distribution of modified Sia in cells and tissues of wild-type mice or in mice lacking CMP-N-acetylneuraminic acid hydroxylase (CMAH) enzyme, which synthesizes N-glycolyl (Neu5Gc) modifications. We also examined the variation of Sia forms on erythrocytes and in saliva from different animals. To determine the effect of Sia modifications on influenza A virus (IAV) infection, we tested for effects on hemagglutinin (HA) binding and neuraminidase (NA) cleavage. We confirmed that 9-O-acetyl, 7,9-O-acetyl, 4-O-acetyl, and Neu5Gc modifications are widely but variably expressed in mouse tissues, with the highest levels detected in the respiratory and gastrointestinal (GI) tracts. Secreted mucins in saliva and surface proteins of erythrocytes showed a high degree of variability in display of modified Sia between different species. IAV HAs from different virus strains showed consistently reduced binding to both Neu5Gc- and O-acetyl-modified Sia; however, while IAV NAs were inhibited by Neu5Gc and O-acetyl modifications, there was significant variability between NA types. The modifications of Sia in mucus may therefore have potent effects on the functions of IAV and may affect both pathogens and the normal flora of different mucosal sites.IMPORTANCE Sialic acids (Sia) are involved in numerous different cellular functions and are receptors for many pathogens. Sia come in chemically modified forms, but we lack a clear understanding of how they alter interactions with microbes. Here, we examine the expression of modified Sia in mouse tissues, on secreted mucus in saliva, and on erythrocytes, including those from IAV host species and animals used in IAV research. These Sia forms varied considerably among different animals, and their inhibitory effects on IAV NA and HA activities and on bacterial sialidases (neuraminidases) suggest a host-variable protective role in secreted mucus.
Collapse
Affiliation(s)
- Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin R LaClair
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Petar Pajic
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Erin K Daugherity
- Center for Animal Resources and Education, Cornell University, Ithaca, New York, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | - Stacey L Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, California, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
28
|
González-Domínguez I, Puente-Massaguer E, Cervera L, Gòdia F. Quality Assessment of Virus-Like Particles at Single Particle Level: A Comparative Study. Viruses 2020; 12:E223. [PMID: 32079288 PMCID: PMC7077327 DOI: 10.3390/v12020223] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Virus-like particles (VLPs) have emerged as a powerful scaffold for antigen presentation and delivery strategies. Compared to single protein-based therapeutics, quality assessment requires a higher degree of refinement due to the structure of VLPs and their similar properties to extracellular vesicles (EVs). Advances in the field of nanotechnology with single particle and high-resolution analysis techniques provide appealing approaches to VLP characterization. In this study, six different biophysical methods have been assessed for the characterization of HIV-1-based VLPs produced in mammalian and insect cell platforms. Sample preparation and equipment set-up were optimized for the six strategies evaluated. Electron Microscopy (EM) disclosed the presence of several types of EVs within VLP preparations and cryogenic transmission electron microscopy (cryo-TEM) resulted in the best technique to resolve the VLP ultrastructure. The use of super-resolution fluorescence microscopy (SRFM), nanoparticle tracking analysis (NTA) and flow virometry enabled the high throughput quantification of VLPs. Interestingly, differences in the determination of nanoparticle concentration were observed between techniques. Moreover, NTA and flow virometry allowed the quantification of both EVs and VLPs within the same experiment while analyzing particle size distribution (PSD), simultaneously. These results provide new insights into the use of different analytical tools to monitor the production of nanoparticle-based biologicals and their associated contaminants.
Collapse
|
29
|
Puente-Massaguer E, Lecina M, Gòdia F. Integrating nanoparticle quantification and statistical design of experiments for efficient HIV-1 virus-like particle production in High Five cells. Appl Microbiol Biotechnol 2020; 104:1569-1582. [PMID: 31907573 PMCID: PMC7224031 DOI: 10.1007/s00253-019-10319-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023]
Abstract
The nature of enveloped virus-like particles (VLPs) has triggered high interest in their application to different research fields, including vaccine development. The baculovirus expression vector system (BEVS) has been used as an efficient platform for obtaining large amounts of these complex nanoparticles. To date, most of the studies dealing with VLP production by recombinant baculovirus infection utilize indirect detection or quantification techniques that hinder the appropriate characterization of the process and product. Here, we propose the application of cutting-edge quantification methodologies in combination with advanced statistical designs to exploit the full potential of the High Five/BEVS as a platform to produce HIV-1 Gag VLPs. The synergies between CCI, MOI, and TOH were studied using a response surface methodology approach on four different response functions: baculovirus infection, VLP production, VLP assembly, and VLP productivity. TOH and MOI proved to be the major influencing factors in contrast with previous reported data. Interestingly, a remarkable competition between Gag VLP production and non-assembled Gag was detected. Also, the use of nanoparticle tracking analysis and flow virometry revealed the existence of remarkable quantities of extracellular vesicles. The different responses of the study were combined to determine two global optimum conditions, one aiming to maximize the VLP titer (quantity) and the second aiming to find a compromise between VLP yield and the ratio of assembled VLPs (quality). This study provides a valuable approach to optimize VLP production and demonstrates that the High Five/BEVS can support mass production of Gag VLPs and potentially other complex nanoparticles.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
30
|
Durous L, Rosa-Calatrava M, Petiot E. Advances in influenza virus-like particles bioprocesses. Expert Rev Vaccines 2019; 18:1285-1300. [DOI: 10.1080/14760584.2019.1704262] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Laurent Durous
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath team - Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
31
|
Barnard KN, Wasik BR, LaClair JR, Buchholz DW, Weichert WS, Alford-Lawrence BK, Aguilar HC, Parrish CR. Expression of 9- O- and 7,9- O-Acetyl Modified Sialic Acid in Cells and Their Effects on Influenza Viruses. mBio 2019; 10:e02490-19. [PMID: 31796537 PMCID: PMC6890989 DOI: 10.1128/mbio.02490-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (Sia) are widely displayed on the surfaces of cells and tissues. Sia come in a variety of chemically modified forms, including those with acetyl modifications at the C-7, C-8, and C-9 positions. Here, we analyzed the distribution and amounts of these acetyl modifications in different human and canine cells. Since Sia or their variant forms are receptors for influenza A, B, C, and D viruses, we examined the effects of these modifications on virus infections. We confirmed that 9-O-acetyl and 7,9-O-acetyl modified Sia are widely but variably expressed across cell lines from both humans and canines. Although they were expressed on the cell surfaces of canine MDCK cell lines, they were located primarily within the Golgi compartment of human HEK-293 and A549 cells. The O-acetyl modified Sia were expressed at low levels of 1 to 2% of total Sia in these cell lines. We knocked out and overexpressed the sialate O-acetyltransferase gene (CasD1) and knocked out the sialate O-acetylesterase gene (SIAE) using CRISPR/Cas9 editing. Knocking out CasD1 removed 7,9-O- and 9-O-acetyl Sia expression, confirming previous reports. However, overexpression of CasD1 and knockout of SIAE gave only modest increases in 9-O-acetyl levels in cells and no change in 7,9-O-acetyl levels, indicating that there are complex regulations of these modifications. These modifications were essential for influenza C and D infection but had no obvious effect on influenza A and B infection.IMPORTANCE Sialic acids are key glycans that are involved in many different normal cellular functions, as well as being receptors for many pathogens. However, Sia come in diverse chemically modified forms. Here, we examined and manipulated the expression of 7,9-O- and 9-O-acetyl modified Sia on cells commonly used in influenza virus and other research by engineering the enzymes that produce or remove the acetyl groups.
Collapse
Affiliation(s)
- Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin R LaClair
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Wendy S Weichert
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
32
|
Characterization of influenza H1N1 Gag virus-like particles and extracellular vesicles co-produced in HEK-293SF. Vaccine 2019; 37:7100-7107. [DOI: 10.1016/j.vaccine.2019.07.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/06/2019] [Accepted: 07/05/2019] [Indexed: 01/02/2023]
|
33
|
Lai CC, Cheng YC, Chen PW, Lin TH, Tzeng TT, Lu CC, Lee MS, Hu AYC. Process development for pandemic influenza VLP vaccine production using a baculovirus expression system. J Biol Eng 2019; 13:78. [PMID: 31666806 PMCID: PMC6813129 DOI: 10.1186/s13036-019-0206-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Influenza viruses cause hundreds of thousands of respiratory diseases worldwide each year, and vaccination is considered the most effective approach for preventing influenza annual epidemics or pandemics. Since 1950, chicken embryonated eggs have been used as the main method for producing seasonal influenza vaccines. However, this platform has the main drawback of a lack of scale-up flexibility, and thus, egg-based vaccine manufacturers cannot supply sufficient doses within a short period for use for pandemic prevention. As a result, strategies for reducing the manufacturing time and increasing production capacity are urgently needed. Non-virion vaccine methods have been considered an alternative strategy against an influenza pandemic, and the purpose of maintaining an immunogenic capsule structure with infectious properties appears to be met by the virus-like particle (VLP) platform. Results An influenza H7N9-TW VLP production platform using insect cells, which included the expression of hemagglutinin (HA), NA, and M1 proteins, was established. To scale up H7N9-TW VLP production, several culture conditions were optimized to obtain a higher production yield. A high level of dissolved oxygen (DO) could be critical to H7N9-TW VLP production. If the DO was maintained at a high level, the HA titer obtained in the spinner flask system with ventilation was similar to that obtained in a shake flask. In this study, the HA titer in a 5-L bioreactor with a well-controlled DO level was substantially improved by 128-fold (from 4 HA units (HAU)/50 μL to 512 HAU/50 μL). Conclusions In this study, a multigene expression platform and an effective upstream process were developed. Notably, a high H7N9-TW VLP yield was achieved using a two-step production strategy while a high DO level was maintained. The upstream process, which resulted in high VLP titers, could be further used for large-scale influenza VLP vaccine production.
Collapse
Affiliation(s)
- Chia-Chun Lai
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan.,2College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Yu-Chieh Cheng
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Pin-Wen Chen
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Ting-Hui Lin
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan.,2College of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Tsai-Teng Tzeng
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Chia-Chun Lu
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Min-Shi Lee
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Alan Yung-Chih Hu
- National Institute of Infectious Diseases and Vaccinology, NHRI, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| |
Collapse
|
34
|
Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies. Vaccine 2019; 37:6857-6867. [DOI: 10.1016/j.vaccine.2019.09.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022]
|
35
|
Carvalho SB, Silva RJS, Moleirinho MG, Cunha B, Moreira AS, Xenopoulos A, Alves PM, Carrondo MJT, Peixoto C. Membrane‐Based Approach for the Downstream Processing of Influenza Virus‐Like Particles. Biotechnol J 2019; 14:e1800570. [DOI: 10.1002/biot.201800570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Sofia B. Carvalho
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República 2780‐157 Oeiras Portugal
| | | | | | - Bárbara Cunha
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República 2780‐157 Oeiras Portugal
| | - Ana S. Moreira
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
| | | | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República 2780‐157 Oeiras Portugal
| | | | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e TecnológicaOeiras Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República 2780‐157 Oeiras Portugal
| |
Collapse
|
36
|
Bleckmann M, Schürig M, Endres M, Samuels A, Gebauer D, Konisch N, van den Heuvel J. Identifying parameters to improve the reproducibility of transient gene expression in High Five cells. PLoS One 2019; 14:e0217878. [PMID: 31170233 PMCID: PMC6553862 DOI: 10.1371/journal.pone.0217878] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Virus-free, transient gene expression (TGE) in High Five cells was recently presented as an efficient protein production method. However, published TGE protocols have not been standardized to a general protocol. Therefore, reproducibility and implementation of the method in other labs remains difficult. The aim of this study is to analyse the parameters determining the reproducibility of the TGE in insect cells. Here, we identified that using linear 40 kDa PEI instead of 25 kDa PEI was one of the most important aspects to improve TGE. Furthermore, DNA amount, DNA:PEI ratio, growth phase of the cells before transfection, passage number, the origin of the High-Five cell isolates and the type of cultivation medium were considered. Interestingly, a correlation of the passage number to the DNA content of single cells (ploidy) and to the transfection efficacy could be shown. The optimal conditions for critical parameters were used to establish a robust TGE method. Finally, we compared the achieved product yields in High Five cells using our improved TGE method with both the baculoviral expression system and TGE in the mammalian HEK293-6E cell line. In conclusion, the presented robust TGE protocol in High Five cells is easy to establish and produces ample amounts of high-quality recombinant protein, bridging the gap in expression level of this method to the well-established mammalian TGE in HEK293 cells as well as to the baculoviral expression vector system (BEVS).
Collapse
Affiliation(s)
- Maren Bleckmann
- Department Recombinant Protein Expression Facility, Rudolf Virchow Centre, Würzburg, Bavaria, Germany
| | - Margitta Schürig
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Michelle Endres
- Department Recombinant Protein Expression Facility, Rudolf Virchow Centre, Würzburg, Bavaria, Germany
| | - Anke Samuels
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Daniela Gebauer
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Nadine Konisch
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Joop van den Heuvel
- Department Recombinant Protein Expression, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
37
|
Shaddeau AW, Schneck NA, Li Y, Ivleva VB, Arnold FJ, Cooper JW, Lei QP. Development of a New Tandem Ion Exchange and Size Exclusion Chromatography Method To Monitor Vaccine Particle Titer in Cell Culture Media. Anal Chem 2019; 91:6430-6434. [PMID: 31034206 PMCID: PMC11040568 DOI: 10.1021/acs.analchem.9b00095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A new tandem chromatography method was developed to directly measure the titers of various vaccine candidate molecules in cell culture without a prior purification step. The method utilized a strong anion exchange chromatography (IEC) column in tandem with a size exclusion chromatography (SEC) column to efficiently separate the nanoparticle and virus-like particle (VLP) vaccine molecules from host cell proteins and other components in the cell culture media. The dual (charge and hydrodynamic size) separation mode was deemed necessary to achieve good separation of the vaccine product for quantitation. The method development and quality assessment illustrated herein was focused on the influenza vaccine candidate H1ssF, a hemagglutinin (group 1) stabilized stem molecule fused to ferritin to form nanoparticles. This newly established method was then successfully applied to several vaccine candidate developmental projects, such as the hemagglutinin-ferritin (HAF) nanoparticle and encephalitic alphavirus VLP-based vaccines. This IEC-SEC strategy was established as a platform approach for direct titer measurement of novel vaccine molecules in cell culture.
Collapse
Affiliation(s)
- Andrew W. Shaddeau
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg Maryland United States
| | - Nicole A. Schneck
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg Maryland United States
| | - Yile Li
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg Maryland United States
| | - Vera B. Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg Maryland United States
| | - Frank J. Arnold
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg Maryland United States
| | - Jonathan W. Cooper
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg Maryland United States
| | - Q. Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Gaithersburg Maryland United States
| |
Collapse
|
38
|
Koczka K, Ernst W, Palmberger D, Klausberger M, Nika L, Grabherr R. Development of a Dual-Vector System Utilizing MicroRNA Mimics of the Autographa californica miR-1 for an Inducible Knockdown in Insect Cells. Int J Mol Sci 2019; 20:E533. [PMID: 30691228 PMCID: PMC6387257 DOI: 10.3390/ijms20030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/16/2022] Open
Abstract
The baculovirus-insect cell expression system is a popular tool for the manufacturing of various attractive recombinant products. Over the years, several attempts have been made to engineer and further improve this production platform by targeting host or baculoviral genes by RNA interference. In this study, an inducible knockdown system was established in insect (Sf9) cells by combining an artificial microRNA precursor mimic of baculoviral origin and the bacteriophage T7 transcription machinery. Four structurally different artificial precursor constructs were created and tested in a screening assay. The most efficient artificial microRNA construct resulted in a 69% reduction in the fluorescence intensity of the target enhanced yellow fluorescent protein (eYFP). Next, recombinant baculoviruses were created carrying either the selected artificial precursor mimic under the transcriptional control of the T7 promoter or solely the T7 RNA polymerase under a baculoviral promoter. Upon co-infecting Sf9 cells with these two viruses, the fluorescence intensity of eYFP was suppressed by ~30⁻40% on the protein level. The reduction in the target mRNA level was demonstrated with real-time quantitative PCR. The presented inducible knockdown system may serve as an important and valuable tool for basic baculovirus-insect cell research and for the improvement of production processes using this platform.
Collapse
Affiliation(s)
- Krisztina Koczka
- Austrian Centre of Industrial Biotechnology - acib, A-1190 Vienna, Austria.
- Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.
| | - Wolfgang Ernst
- Austrian Centre of Industrial Biotechnology - acib, A-1190 Vienna, Austria.
- Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.
| | - Dieter Palmberger
- Austrian Centre of Industrial Biotechnology - acib, A-1190 Vienna, Austria.
| | - Miriam Klausberger
- Austrian Centre of Industrial Biotechnology - acib, A-1190 Vienna, Austria.
- Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.
| | - Lisa Nika
- Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.
| | - Reingard Grabherr
- Austrian Centre of Industrial Biotechnology - acib, A-1190 Vienna, Austria.
- Department of Biotechnology, University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.
| |
Collapse
|
39
|
Yee CM, Zak AJ, Hill BD, Wen F. The Coming Age of Insect Cells for Manufacturing and Development of Protein Therapeutics. Ind Eng Chem Res 2018; 57:10061-10070. [PMID: 30886455 PMCID: PMC6420222 DOI: 10.1021/acs.iecr.8b00985] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein therapeutics is a rapidly growing segment of the pharmaceutical market. Currently, the majority of protein therapeutics are manufactured in mammalian cells for their ability to generate safe and efficacious human-like glycoproteins. The high cost of using mammalian cells for manufacturing has motivated a constant search for alternative host platforms. Insect cells have begun to emerge as a promising candidate, largely due to the development of the baculovirus expression vector system. While there are continuing efforts to improve insect-baculovirus expression for producing protein therapeutics, key limitations including cell lysis and the lack of homogeneous humanized glycosylation still remain. The field has started to see a movement toward virus-less gene expression approaches, notably the use of clustered regularly interspaced short palindromic repeats to address these shortcomings. This review highlights recent technological advances that are realizing the transformative potential of insect cells for the manufacturing and development of protein therapeutics.
Collapse
Affiliation(s)
- Christine M. Yee
- Department of Chemical Engineering, University of Michigan, Ann Arbor,
Michigan 48109, United States
| | - Andrew J. Zak
- Department of Chemical Engineering, University of Michigan, Ann Arbor,
Michigan 48109, United States
| | - Brett D. Hill
- Department of Chemical Engineering, University of Michigan, Ann Arbor,
Michigan 48109, United States
| | - Fei Wen
- Department of Chemical Engineering, University of Michigan, Ann Arbor,
Michigan 48109, United States
| |
Collapse
|
40
|
Koczka K, Peters P, Ernst W, Himmelbauer H, Nika L, Grabherr R. Comparative transcriptome analysis of a Trichoplusia ni cell line reveals distinct host responses to intracellular and secreted protein products expressed by recombinant baculoviruses. J Biotechnol 2018; 270:61-69. [PMID: 29432775 DOI: 10.1016/j.jbiotec.2018.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/12/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
Abstract
The baculovirus insect cell expression system has become a firmly established production platform in biotechnology. Various complex proteins, multi-subunit particles including veterinary and human vaccines are manufactured with this system on a commercial scale. Apart from baculovirus infected Spodoptera frugiperda (Sf9) cells, the Trichoplusia ni (HighFive) cell line is alternatively used as host organism. In this study, we explored the protein production capabilities of Tnms42 insect cells, a new derivative of HighFive, which is free of latent nodavirus infection. As a model system, a cytosolic (mCherry) and a secreted (hemagglutinin) protein were overexpressed in Tnms42 cells. The response of the host cells was followed in a time course experiment over the infection cycle by comparative transcriptome analysis (RNA-seq). As expected, the baculovirus infection per se had a massive impact on the host cell transcriptome, which was observed by the huge total number of differentially expressed transcripts (>14,000). Despite this severe overall cellular reaction, a specific response could be clearly attributed to the overexpression of secreted hemagglutinin, revealing limits in the secretory capacity of the host cell. About 400 significantly regulated transcripts were identified and assigned to biochemical pathways and gene ontology (GO) categories, all related to protein processing, folding and response to unfolded protein. The identification of relevant target genes will serve to design specific virus engineering concepts for improving the yield of proteins that are dependent on the secretory pathway.
Collapse
Affiliation(s)
- Krisztina Koczka
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.
| | - Philipp Peters
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.
| | - Wolfgang Ernst
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.
| | - Heinz Himmelbauer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.
| | - Lisa Nika
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; acib - Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
41
|
Nika L, Wallner J, Palmberger D, Koczka K, Vorauer-Uhl K, Grabherr R. Expression of full-length HER2 protein in Sf 9 insect cells and its presentation on the surface of budded virus-like particles. Protein Expr Purif 2017; 136:27-38. [DOI: 10.1016/j.pep.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 06/11/2017] [Indexed: 12/11/2022]
|
42
|
Identification of HIV-1-Based Virus-like Particles by Multifrequency Atomic Force Microscopy. Biophys J 2017; 111:1173-1179. [PMID: 27653476 DOI: 10.1016/j.bpj.2016.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 11/21/2022] Open
Abstract
Virus-like particles (VLPs) have become a promising platform for vaccine production. VLPs are formed by structural viral proteins that inherently self-assemble when expressed in a host cell. They represent a highly immunogenic and safe vaccine platform, due to the absence of the viral genome and its high protein density. One of the most important parameters in vaccine production is the quality of the product. A related bottleneck in VLP-based products is the presence of cellular vesicles as a major contaminant in the preparations, which will require the set up of techniques allowing for specific discrimination of VLPs from host vesicular bodies. In this work novel, to our knowledge, multifrequency (MF) atomic force microscopy (AFM) has permitted full structural nanophysical characterization by its access to the virus capsid of the HIV-based VLPs. The assessment of these particles by advanced amplitude modulation-frequency modulation (AM-FM) viscoelastic mapping mode has enhanced the imaging resolution of their nanomechanical properties, opening a new window for the study of the biophysical attributes of VLPs. Finally, the identification and differentiation of HIV-based VLPs from cellular vesicles has been performed under ambient conditions, providing, to our knowledge, novel methodology for the monitoring and quality control of VLPs.
Collapse
|
43
|
Carvalho SB, Moleirinho MG, Wheatley D, Welsh J, Gantier R, Alves PM, Peixoto C, Carrondo MJT. Universal label-free in-process quantification of influenza virus-like particles. Biotechnol J 2017; 12. [PMID: 28514082 DOI: 10.1002/biot.201700031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/07/2017] [Accepted: 05/16/2017] [Indexed: 01/19/2023]
Abstract
Virus-like particles (VLPs) are becoming established as vaccines, in particular for influenza pandemics, increasing the interest in the development of VLPs manufacturing bioprocess. However, for complex VLPs, the analytical tools used for quantification are not yet able to keep up with the bioprocess progress. Currently, quantification for Influenza relies on traditional methods: hemagglutination assay or Single Radial Immunodiffusion. These analytical technologies are time-consuming, cumbersome, and not supportive of efficient downstream process development and monitoring. Hereby we report a label-free tool that uses Biolayer interferometry (BLI) technology applied on an Octet platform to quantify Influenza VLPs at all stages of bioprocess. Human (α2,6-linked sialic acid) and avian (α2,3-linked sialic acid) biotinylated receptors associated with streptavidin biosensors were used, to quantify hemagglutinin content in several mono- and multivalent Influenza VLPs. The applied method was able to quantify hemagglutinin from crude samples up to final bioprocessing VLP product. BLI technology confirmed its value as a high throughput analytical tool with high sensitivity and improved detection limits compared to traditional methods. This simple and fast method allowed for real-time results, which are crucial for in-line monitoring of downstream processing, improving process development, control and optimization.
Collapse
Affiliation(s)
- Sofia B Carvalho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mafalda G Moleirinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina Peixoto
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, Portugal
| |
Collapse
|
44
|
Venereo-Sanchez A, Simoneau M, Lanthier S, Chahal P, Bourget L, Ansorge S, Gilbert R, Henry O, Kamen A. Process intensification for high yield production of influenza H1N1 Gag virus-like particles using an inducible HEK-293 stable cell line. Vaccine 2017. [DOI: 10.1016/j.vaccine.2017.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Milián E, Julien T, Biaggio R, Venereo-Sanchez A, Montes J, Manceur AP, Ansorge S, Petiot E, Rosa-Calatrava M, Kamen A. Accelerated mass production of influenza virus seed stocks in HEK-293 suspension cell cultures by reverse genetics. Vaccine 2017; 35:3423-3430. [PMID: 28495315 DOI: 10.1016/j.vaccine.2017.04.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 01/20/2023]
Abstract
Despite major advances in developing capacities and alternative technologies to egg-based production of influenza vaccines, responsiveness to an influenza pandemic threat is limited by the time it takes to generate a Candidate Vaccine Virus (CVV) as reported by the 2015 WHO Informal Consultation report titled "Influenza Vaccine Response during the Start of a Pandemic". In previous work, we have shown that HEK-293 cell culture in suspension and serum free medium is an efficient production platform for cell culture manufacturing of influenza candidate vaccines. This report, took advantage of, recombinant DNA technology using Reverse Genetics of influenza strains, and advances in the large-scale transfection of suspension cultured HEK-293 cells. We demonstrate the efficient generation of H1N1 with the PR8 backbone reassortant under controlled bioreactor conditions in two sequential steps (transfection/rescue and infection/production). This approach could deliver a CVV for influenza vaccine manufacturing within two-weeks, starting from HA and NA pandemic sequences. Furthermore, the scalability of the transfection technology combined with the HEK-293 platform has been extensively demonstrated at >100L scale for several biologics, including recombinant viruses. Thus, this innovative approach is better suited to rationally engineer and mass produce influenza CVV within significantly shorter timelines to enable an effective global response in pandemic situations.
Collapse
Affiliation(s)
- Ernest Milián
- Department of Bioengineering, McGill University, Montréal, Québec, Canada; Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Thomas Julien
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Rafael Biaggio
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Alina Venereo-Sanchez
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Johnny Montes
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Aziza P Manceur
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Sven Ansorge
- Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada
| | - Emma Petiot
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Manuel Rosa-Calatrava
- Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montréal, Québec, Canada; Vaccine Program, Human Health Therapeutics, National Research Council, Montréal, Québec, Canada.
| |
Collapse
|
46
|
Sequeira DP, Correia R, Carrondo MJT, Roldão A, Teixeira AP, Alves PM. Combining stable insect cell lines with baculovirus-mediated expression for multi-HA influenza VLP production. Vaccine 2017; 36:3112-3123. [PMID: 28291648 DOI: 10.1016/j.vaccine.2017.02.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 01/08/2023]
Abstract
Safer and broadly protective vaccines are needed to cope with the continuous evolution of circulating influenza virus strains and promising approaches based on the expression of multiple hemagglutinins (HA) in a virus-like particle (VLP) have been proposed. However, expression of multiple genes in the same vector can lead to its instability due to tandem repetition of similar sequences. By combining stable with transient expression systems we can rationally distribute the number of genes to be expressed per platform and thus mitigate this risk. In this work, we developed a modular system comprising stable and baculovirus-mediated expression in insect cells for production of multi-HA influenza enveloped VLPs. First, a stable insect High Five cell population expressing two different HA proteins from subtype H3 was established. Infection of this cell population with a baculovirus vector encoding three other HA proteins from H3 subtype proved to be as competitive as traditional co-infection approaches in producing a pentavalent H3 VLP. Aiming at increasing HA expression, the stable insect cell population was infected at increasingly higher cell concentrations (CCI). However, cultures infected at CCI of 3×106cells/mL showed lower HA titers per cell in comparison to standard CCI of 2×106cells/mL, a phenomenon named "cell density effect". To lessen the negative impact of this phenomenon, a tailor-made refeed strategy was designed based on the exhaustion of key nutrients during cell growth. Noteworthy, cultures supplemented and infected at a CCI of 4×106cells/mL showed comparable HA titers per cell to those of CCI of 2×106cells/mL, thus leading to an increase of up to 4-fold in HA titers per mL. Scalability of the modular strategy herein proposed was successfully demonstrated in 2L stirred tank bioreactors with comparable HA protein levels observed between bioreactor and shake flasks cultures. Overall, this work demonstrates the suitability of combining stable with baculovirus-mediated expression in insect cells as an efficient platform for production of multi-HA influenza VLPs, surpassing the drawbacks of traditional co-infection strategies and/or the use of larger, unstable vectors.
Collapse
Affiliation(s)
- Daniela P Sequeira
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Monte da Caparica, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal.
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal.
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. Da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
47
|
Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen. Vaccine 2017; 35:1140-1147. [PMID: 28131394 DOI: 10.1016/j.vaccine.2017.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/13/2022]
Abstract
The malaria parasite Plasmodium falciparum presents antigens on the infected erythrocyte surface that bind human receptors expressed on the vascular endothelium. The VAR2CSA mediated binding to a distinct chondroitin sulphate A (CSA) is a crucial step in the pathophysiology of placental malaria and the CSA binding region of VAR2CSA has been identified as a promising vaccine target against placental malaria. Here we designed adenovirus encoded virus-like particles (VLP) by co-encoding Simian Immunodeficiency Virus (SIV) gag and VAR2CSA. The VAR2CSA antigen was fused to the transmembrane (TM) and cytoplasmic tail (CT) domains of either the envelope protein of mouse mammary tumour virus (MMTV) or the hemagglutinin (HA) of influenza A. For a non-VLP incorporation control, a third design was made where VAR2CSA was expressed without TM-CT domains. In the primary immunogenicity study in Balb/c mice, VAR2CSA fused to HA TM-CT was significantly superior in inducing ID1-ID2a specific antibodies after the first immunization. A sequential study was performed to include a comparison to the soluble VAR2CSA protein vaccine, which has entered a phase I clinical trial (NCT02647489). The results revealed the induction of higher antibody responses and increased inhibition of parasite binding to CSA using either VAR2CSA HA TM-CT or VAR2CSA MMTV TM-CT as priming vaccines for protein double-boost immunizations, compared to protein prime-double boost regimen. Analysis of pooled serum samples on peptide arrays revealed a unique targeting of several epitopes in mice that had been primed with VAR2CSA HA TM-CT. Consequently, modification of VLP anchors is an important point of optimization in virus-encoded retroviral VLP-based vaccines, and adenovirus VLPs boosted by recombinant proteins offer hope of increasing the levels of protective VAR2CSA specific antibodies.
Collapse
|
48
|
Carvalho SB, Freire JM, Moleirinho MG, Monteiro F, Gaspar D, Castanho MARB, Carrondo MJT, Alves PM, Bernardes GJL, Peixoto C. Bioorthogonal Strategy for Bioprocessing of Specific-Site-Functionalized Enveloped Influenza-Virus-Like Particles. Bioconjug Chem 2016; 27:2386-2399. [PMID: 27652605 PMCID: PMC5080633 DOI: 10.1021/acs.bioconjchem.6b00372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Virus-like
particles (VLPs) constitute a promising platform in
vaccine development and targeted drug delivery. To date, most applications
use simple nonenveloped VLPs as human papillomavirus or hepatitis
B vaccines, even though the envelope is known to be critical to retain
the native protein folding and biological function. Here, we present
tagged enveloped VLPs (TagE-VLPs) as a valuable strategy for the downstream
processing and monitoring of the in vivo production of specific-site-functionalized
enveloped influenza VLPs. This two-step procedure allows bioorthogonal
functionalization of azide-tagged nascent influenza type A hemagglutinin
proteins in the envelope of VLPs through a strain-promoted [3 + 2]
alkyne–azide cycloaddition reaction. Importantly, labeling
does not influence VLP production and allows for construction of functionalized
VLPs without deleterious effects on their biological function. Refined
discrimination and separation between VLP and baculovirus, the major
impurity of the process, is achieved when this technique is combined
with flow cytometry analysis, as demonstrated by atomic force microscopy.
TagE-VLPs is a versatile tool broadly applicable to the production,
monitoring, and purification of functionalized enveloped VLPs for
vaccine design trial runs, targeted drug delivery, and molecular imaging.
Collapse
Affiliation(s)
- Sofia B Carvalho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica , Apartado 12, 2780-901 Oeiras, Portugal
| | - João M Freire
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Mafalda G Moleirinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica , Apartado 12, 2780-901 Oeiras, Portugal
| | - Francisca Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica , Apartado 12, 2780-901 Oeiras, Portugal
| | - Diana Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Manuel J T Carrondo
- iBET, Instituto de Biologia Experimental e Tecnológica , Apartado 12, 2780-901 Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Monte da Caparica, Portugal
| | - Paula M Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica , Apartado 12, 2780-901 Oeiras, Portugal
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.,Department of Chemistry, University of Cambridge , Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Cristina Peixoto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Avenida da República, 2780-157 Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica , Apartado 12, 2780-901 Oeiras, Portugal
| |
Collapse
|
49
|
Faqih L, Klapper P, Blanchard T, McKenzie E, Vallely P. HIV neutralising antibody delivered by gene therapy with a stable retroviral vector encoded in baculovirus expression systems. J Clin Virol 2016. [DOI: 10.1016/j.jcv.2016.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Gene transduction in mammalian cells using Bombyx mori nucleopolyhedrovirus assisted by glycoprotein 64 of Autographa californica multiple nucleopolyhedrovirus. Sci Rep 2016; 6:32283. [PMID: 27562533 PMCID: PMC4999795 DOI: 10.1038/srep32283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/04/2016] [Indexed: 12/28/2022] Open
Abstract
Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an alphabaculovirus, has been widely utilized for protein expression in not only insect cells but also mammalian cells. AcMNPV is closely related to Bombyx mori nucleopolyhedrovirus (BmNPV), and nucleotide sequences of AcMNPV genes have high similarity with those of BmNPV. However, the transduction of BmNPV into mammalian cells has not been reported. In this study, we constructed a recombinant BmNPV (BmNPVΔbgp/AcGP64/EGFP) whose surface 64 kDa glycoprotein (BmGP64) was substituted with that from AcMNPV (AcGP64). BmNPVΔbgp/AcGP64/EGFP also carried an EGFP gene under the control of the CMV promoter. BmNPVΔbgp/AcGP64/EGFP successfully transduced HEK293T cells. In comparison, a control construct (BmNPVΔbgp/BmGP64/EGFP) which possessed BmGP64 instead of AcGP64 did not express EGFP in HEK293T cells. The transduction efficiency of BmNPVΔbgp/AcGP64/EGFP was lower than that of an AcMNPV based-BacMam GFP transduction control. This result indicates that AcGP64 facilitates BmNPV transduction into HEK293T cells. BmNPV can be prepared easily on a large scale because BmNPV can infect silkworm larvae without any special equipment, even though specific diet is needed for silkworm rearing. BmNPV gene transduction into mammalian cells can potentially be applied easily for gene delivery into mammalian cells.
Collapse
|