1
|
Kim J, Ha J, Song C, Sajjad MA, Kalsoom F, Kwon H, Park J, Park S, Kim K. Sirtuin 2 inhibitor AGK2 exerts antiviral effects by inducing epigenetic suppression of hepatitis B virus covalently closed circular DNA through recruitment of repressive histone lysine methyltransferases and reduction of cccDNA. Front Cell Infect Microbiol 2025; 15:1537929. [PMID: 40270769 PMCID: PMC12014779 DOI: 10.3389/fcimb.2025.1537929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a global health concern because current treatments such as interferon-α and nucleos(t)ide analogs cannot fully eliminate the virus due to persistence of covalently closed circular DNA (cccDNA) and integrated HBV DNA. Earlier research suggests that AGK2, a selective SIRT2 inhibitor, suppresses HBV replication by modifying key signaling pathways. This study aimed to further explore the anti-HBV effects of AKG2, particularly its effects on the epigenetic landscape of cccDNA. HBV-transfected and -infected cells were used to assess the impact of AGK2 on viral replication. Changes in SIRT2 expression and α-tubulin acetylation (SDS-PAGE-immunoblotting), core particle formation (native agarose gel electrophoresis and immunoblotting), HBV RNA (northern blotting) and DNA (Southern blotting) synthesis, and cccDNA levels (Southern blotting) were measured. Chromatin immunoprecipitation assays were performed to examine deposition of transcriptionally repressive epigenetic markers on cccDNA. AGK2 reduced expression of SIRT2, increased acetylated α-tubulin levels, and reduced synthesis of HBV RNA and DNA. Importantly, AGK2 also reduced cccDNA levels and increased deposition of repressive histone markers H4K20me1, H3K27me3, and H3K9me3 on cccDNA, mediated by histone lysine methyltransferases such as PR-Set7, EZH2, SETDB1, and SUV39H1. Additionally, there was a reduction in recruitment of RNA polymerase II and acetylated H3 to cccDNA, indicating that AGK2 enhances transcriptional repression. AGK2 suppresses HBV replication through direct antiviral actions, and by epigenetic modulation of cccDNA, indicating that using AGK2 to target SIRT2 and associated epigenetic regulators shows promise as a functional cure for chronic hepatitis B.
Collapse
Affiliation(s)
- Jumi Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Jiseon Ha
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Chanho Song
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Muhammad Azhar Sajjad
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Fadia Kalsoom
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyeonjoong Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Jaewoo Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Kyongmin Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Science, Graduate School of Ajou University, Suwon, Republic of Korea
| |
Collapse
|
2
|
Ugbaja SC, Mokoena AT, Mushebenge AGA, Kumalo HM, Ngcobo M, Gqaleni N. Evaluation of the Potency of Repurposed Antiretrovirals in HBV Therapy: A Narrative Investigation of the Traditional Medicine Alternatives. Int J Mol Sci 2025; 26:1523. [PMID: 40003989 PMCID: PMC11855344 DOI: 10.3390/ijms26041523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Hepatitis B is one of the killer communicable diseases, with a global estimation of 1.1 million deaths resulting from liver diseases annually. The search for HBV therapeutics has resulted in repurposing the existing antiretrovirals (ARVs) for HBV treatment, considering their shared common replication mechanisms. This review is aimed at evaluating the potencies of some of the repurposed ARVs used for HBV treatment, analyzing the common mechanisms of viral replications in HBV and HIV, and investigating the potentials of traditional medicines as an alternative treatment for HBV patients. The topical keywords drug repurposing, drug repositioning, antiretrovirals, hepatitis B treatment, HBV, natural products, traditional medicines, title, and abstract were searched in PubMed, Web of Science, and Google Scholar. The advanced search included the five years, 2019-2024. The search result was filtered from 377 to 110 relevant articles. The evaluation reveals that CD4+ T cells are targeted by HIV, while HBV targets the liver with its associated diseases (cirrhosis and hepatocellular carcinoma (HCC)). Furthermore, treatments with the available repurposed ARVs only prevent or slow down the progression to cirrhosis, reduce the HCC incidence, and can improve the quality of life and increase life expectancy; however, they are not curative for HBV. Traditional medicines/natural product extracts or their phytochemicals exert anti-HBV effects through different mechanisms. Traditional medicines exert improved therapeutic effects when combined properly. The investigation further reveals that consideration of an in silico approach in HBV therapeutics might not only streamline drug development but also contribute to a deeper understanding of viral pathogenesis. Therefore, we recommend the integration of computational drug design methods with traditional medicine and natural product screening for discovering new bioactive HBV drug candidates.
Collapse
Affiliation(s)
- Samuel Chima Ugbaja
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Ata Thabo Mokoena
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Aganze Gloire-Aimé Mushebenge
- Discipline of Pharmaceutical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Faculty of Pharmaceutical Sciences, University of Lubumbashi, Lubumbashi 1825, Democratic Republic of the Congo
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mlungisi Ngcobo
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nceba Gqaleni
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban 4000, South Africa
- Africa Health Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
3
|
Liao M, Qin M, Liu L, Huang H, Chen N, Du H, Huang D, Wang P, Zhou H, Tong G. Exosomal microRNA profiling revealed enhanced autophagy suppression and anti-tumor effects of a combination of compound Phyllanthus urinaria and lenvatinib in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155091. [PMID: 37844378 DOI: 10.1016/j.phymed.2023.155091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Compound Phyllanthus urinaria (CP), a traditional Chinese herbal remedy, possesses strong anti-cancer effects and is extensively employed in the clinical management of hepatocellular carcinoma (HCC). While lenvatinib and other oral tyrosine kinase inhibitors have been authorized as initial treatments for advanced unresectable HCC, the survival of patients is ultimately restricted due to the gradual development of drug resistance. Fortunately, the co-administration of CP and lenvatinib holds promise for anti-cancer applications. PURPOSE Our objective was to understand the molecular-level mechanisms of bioactive phytocompounds in CP, in order to explore the anti-HCC effects of combining CP and lenvatinib treatment and reveal the underlying mechanisms. Furthermore, we discovered new miRNAs associated with autophagy that are common to both HepG2-derived exosomes and HepG2 cells. These miRNAs play a role in the advancement of HCC and were identified through the utilization of CP and lenvatinib. METHODS To assess the anti-HCC effects of CP in combination with lenvatinib, both an in vitro CCK-8 assay and an in vivo xenograft model assay were performed. TEM, NTA, and nano-flow cytometry were employed for the identification of isolated exosomes. To ascertain the miRNA expression patterns in HepG2 cells and HepG2-derived exosomes, miRNA-sequencing analysis was conducted. Further investigation involved the use of real-time PCR, examination of the fusion protein GFP-mRFP-LC3, TEM analysis, and western blotting. RESULTS In vitro and in vivo, the combination of CP and lenvatinib showed a stronger and more powerful impact on HCC compared to either CP or lenvatinib alone. The combination of CP and lenvatinib had a significant impact on autophagy-related miRNAs in HepG2-derived exosomes and HepG2 cells, as demonstrated by cellular and exosomal miRNA sequencing. Additional tests indicated that the increased inhibition of autophagy in HepG2 cells subjected to CP treatment, as well as the combination of CP and lenvatinib, was accomplished through the regulation of Beclin-1, LC3-II, and P62 expression. CONCLUSION In conclusion, our results indicate that the combination of CP and lenvatinib can effectively inhibit HCC by promoting the exosome-mediated suppression of autophagy. This novel therapeutic option is highly efficient and durable, making it a promising treatment for HCC. Moreover, the miRNAs that are differentially expressed and associated with exosome-mediated autophagy, which have been discovered in this study, could potentially be targeted for clinical treatment of HCC.
Collapse
Affiliation(s)
- Mianmian Liao
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Meirong Qin
- Shenzhen Institute for Drug Control, No. 28, The second Gaoxin Road, Nanshan District, Shenzhen, Guangdong 518000, China
| | - Linhua Liu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Houshuang Huang
- Shenzhen Institute for Drug Control, No. 28, The second Gaoxin Road, Nanshan District, Shenzhen, Guangdong 518000, China
| | - Ning Chen
- Shenzhen Institute for Drug Control, No. 28, The second Gaoxin Road, Nanshan District, Shenzhen, Guangdong 518000, China
| | - Haiyan Du
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China
| | - Danping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China; Department of Integrated Traditional Chinese and Western Medicine, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, No. 28, The second Gaoxin Road, Nanshan District, Shenzhen, Guangdong 518000, China.
| | - Hua Zhou
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune, Disease Research, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, China.
| | - Guangdong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No.1 Fuhua Road, Futian District, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
4
|
Upadhyay R, Tiwari KN. The antiviral potential of Phyllanthus species: a systematic review. Arch Virol 2023; 168:177. [PMID: 37310509 DOI: 10.1007/s00705-023-05802-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023]
Abstract
Viral infections and diseases caused by viruses are worldwide problems. According to a WHO report, three to five million people are chronically infected with hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) each year globally. Since some viruses mutate very quickly, developing antiviral drugs can be a daunting task. Moreover, currently used synthetic drugs are toxic and associated with side effects. Therefore, there is a need to search for alternative natural remedies that have low toxicity, a new mechanism of action, and no major side effects. Phyllanthus plants have traditionally been used to treat viral hepatitis and liver damage in many tropical and subtropical countries worldwide. In this review, we discuss the therapeutic potential of Phyllanthus spp. against HBV, HCV, HIV, herpes simplex virus, and SARS-CoV-2. The inferences from in vitro and in vivo studies and clinical trials validate the use of Phyllanthus in antiviral remedies.
Collapse
Affiliation(s)
- Richa Upadhyay
- Department of Botany, Mihir Bhoj PG College, Dadri, G.B. Nagar, 203207, Uttar Pradesh, India
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Ca2+/Calmodulin-Dependent Protein Kinase II Inhibits Hepatitis B Virus Replication from cccDNA via AMPK Activation and AKT/mTOR Suppression. Microorganisms 2022; 10:microorganisms10030498. [PMID: 35336076 PMCID: PMC8950817 DOI: 10.3390/microorganisms10030498] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII), which is involved in the calcium signaling pathway, is an important regulator of cancer cell proliferation, motility, growth, and metastasis. The effects of CaMKII on hepatitis B virus (HBV) replication have never been evaluated. Here, we found that phosphorylated, active CaMKII is reduced during HBV replication. Similar to other members of the AMPK/AKT/mTOR signaling pathway associated with HBV replication, CaMKII, which is associated with this pathway, was found to be a novel regulator of HBV replication. Overexpression of CaMKII reduced the expression of covalently closed circular DNA (cccDNA), HBV RNAs, and replicative intermediate (RI) DNAs while activating AMPK and inhibiting the AKT/mTOR signaling pathway. Findings in HBx-deficient mutant-transfected HepG2 cells showed that the CaMKII-mediated AMPK/AKT/mTOR signaling pathway was independent of HBx. Moreover, AMPK overexpression reduced HBV cccDNA, RNAs, and RI DNAs through CaMKII activation. Although AMPK acts downstream of CaMKII, AMPK overexpression altered CaMKII phosphorylation, suggesting that CaMKII and AMPK form a positive feedback loop. These results demonstrate that HBV replication suppresses CaMKII activity, and that CaMKII upregulation suppresses HBV replication from cccDNA via AMPK and the AKT/mTOR signaling pathway. Thus, activation or overexpression of CaMKII may be a new therapeutic target against HBV infection.
Collapse
|
6
|
Linn YH, Ei WW, Myint LMM, Lwin KM. Anti-hepatitis B activities of Myanmar medicinal plants: a narrative review of current evidence. Virusdisease 2021; 32:446-466. [PMID: 34631974 DOI: 10.1007/s13337-021-00714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/12/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatitis B is one of the major burdens for health services and is the leading cause of morbidity and mortality from cirrhosis of liver and hepatocellular carcinoma. Current treatment strategies using nucleos(t)ide analogue reverse-transcriptase inhibitors or interferons are targeted for the long-term suppression of hepatitis B DNA. However, functional cure of hepatitis B infection (HBsAg clearance) was difficult to attain with such treatments. Therefore, new treatment strategies or innovative treatments are urgently needed. The new treatments should focus on the potential therapeutic targets such as covalently closed circular DNA which may be important for the HBsAg clearance. Plant based medicines have been used in different traditional medicine practices and these natural products/compounds serve as a good source of information or clues for use in drug discovery and design. Many natural products were found to be effective against hepatitis B virus and some even have better therapeutic activities than currently used compounds. This review summarizes the current evidence of Myanmar medicinal plants in basic and clinical research which shows promising potential for the development of novel therapeutic agents for the treatment of hepatitis B.
Collapse
Affiliation(s)
- Ye Htut Linn
- FAME Pharmaceuticals Industry Co., Ltd., No. 20, Mingyi Mahar Min Gaung Road, Industrial Zone (3), Hlaing Thar Yar City of Industry, Yangon, 11401 Myanmar
| | - Win Win Ei
- FAME Pharmaceuticals Industry Co., Ltd., No. 20, Mingyi Mahar Min Gaung Road, Industrial Zone (3), Hlaing Thar Yar City of Industry, Yangon, 11401 Myanmar
| | - Lwin Mon Mon Myint
- FAME Pharmaceuticals Industry Co., Ltd., No. 20, Mingyi Mahar Min Gaung Road, Industrial Zone (3), Hlaing Thar Yar City of Industry, Yangon, 11401 Myanmar
| | - Khin Maung Lwin
- FAME Pharmaceuticals Industry Co., Ltd., No. 20, Mingyi Mahar Min Gaung Road, Industrial Zone (3), Hlaing Thar Yar City of Industry, Yangon, 11401 Myanmar
| |
Collapse
|
7
|
Huang D, Yang B, Yao Y, Liao M, Zhang Y, Zeng Y, Zhang F, Wang N, Tong G. Autophagic Inhibition of Caveolin-1 by Compound Phyllanthus urinaria L. Activates Ubiquitination and Proteasome Degradation of β-catenin to Suppress Metastasis of Hepatitis B-Associated Hepatocellular Carcinoma. Front Pharmacol 2021; 12:659325. [PMID: 34168559 PMCID: PMC8217966 DOI: 10.3389/fphar.2021.659325] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 12/29/2022] Open
Abstract
Compound Phyllanthus urinaria L. (CP) is a traditional Chinese medicine (TCM) formula for cancer treatment in the clinic, particularly during progression of hepatitis B-associated hepatocellular carcinoma (HBV-associated HCC). Nevertheless, its anti-metastatic action and mechanisms are not well elucidated. In this study, CP was found to exert remarkable inhibitory effects on the proliferation, migration and invasion of HBV-associated HCC cells. The following network and biological analyses predicted that CP mainly targeted Caveolin-1 (Cav-1) to induce anti-metastatic effects, and Wnt/β-catenin pathway was one of the core mechanisms of CP action against HBV-associated HCC. Further experimental validation implied that Cav-1 overexpression promoted metastasis of HBV-associated HCC by stabilizing β-catenin, while CP administration induced autophagic degradation of Cav-1, activated the Akt/GSK3β-mediated proteasome degradation of β-catenin via ubiquitination activation, and subsequently attenuated the metastasis-promoting effect of Cav-1. In addition, the anti-cancer and anti-metastatic action of CP was further confirmed by in vivo and ex vivo experiments. It was found that CP inhibited the tumor growth and metastasis of HBV-associated HCC in both mice liver cancer xenograft and zebrafish xenotransplantation models. Taken together, our study not only highlights the novel function of CP formula in suppressing metastasis of HBV-associated HCC, but it also addresses the critical role of Cav-1 in mediating Akt/GSK3β/β-catenin axis to control the late-phase of cancer progression.
Collapse
Affiliation(s)
- Danping Huang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bowen Yang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoyao Yao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mianmian Liao
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihao Zeng
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengxue Zhang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangdong Tong
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
8
|
Du HX, Zhu JQ, Chen J, Zhou HF, Yang JH, Wan HT. Revealing the therapeutic targets and molecular mechanisms of emodin-treated coronavirus disease 2019 via a systematic study of network pharmacology. Aging (Albany NY) 2021; 13:14571-14589. [PMID: 34088885 PMCID: PMC8221358 DOI: 10.18632/aging.203098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/13/2021] [Indexed: 04/30/2023]
Abstract
Emodin has shown pharmacological effects in the treatment of infection with severe acute respiratory syndrome coronavirus-2, which leads to coronavirus disease 2019 (COVID-19). Thus, we speculated that emodin may possess anti-COVID-19 activity. In this study, using bioinformatics databases, we screened and harvested the candidate genes or targets of emodin and COVID-19 prior to the determination of pharmacological targets and molecular mechanisms of emodin against COVID-19. We discovered core targets for the treatment of COVID-19, including mitogen-activated protein kinase 1 (MAPK1), tumor protein (TP53), tumor necrosis factor (TNF), caspase-3 (CASP3), epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA), interleukin 1B (IL1B), mitogen-activated protein kinase 14 (MAPK14), prostaglandin-endoperoxide synthase 2 (PTGS2), B-cell lymphoma-2-like protein 1 (BCL2L1), interleukin-8 (CXCL8), myeloid cell leukemia-1 (MCL1), and colony stimulating factor 2 (CSF2). The GO analysis of emodin against COVID-19 mainly included cytokine-mediated signaling pathway, response to lipopolysaccharide, response to molecule of bacterial origin, developmental process involved in reproduction, and reproductive structure development. The KEGG results exhibited that the molecular pathways mainly included IL-17 signaling pathway, AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, pertussis, proteoglycans in cancer, pathways in cancer, MAPK signaling pathway, NOD-like receptor signaling pathway, NF-kappa B signaling pathway, etc. Also, molecular docking results revealed the docking capability between emodin and COVID-19 and the potential pharmacological activity of emodin against COVID-19. Taken together, these findings uncovered the targets and pharmacological mechanisms of emodin for treating COVID-19 and suggested that the vital targets might be used as biomarkers against COVID-19.
Collapse
Affiliation(s)
- Hai-Xia Du
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jia-Qi Zhu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jing Chen
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hui-Fen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jie-Hong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hai-Tong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
9
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
10
|
Haddad JG, Grauzdytė D, Koishi AC, Viranaicken W, Venskutonis PR, Nunes Duarte dos Santos C, Desprès P, Diotel N, El Kalamouni C. The Geraniin-Rich Extract from Reunion Island Endemic Medicinal Plant Phyllanthus phillyreifolius Inhibits Zika and Dengue Virus Infection at Non-Toxic Effect Doses in Zebrafish. Molecules 2020; 25:molecules25102316. [PMID: 32429073 PMCID: PMC7287739 DOI: 10.3390/molecules25102316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
The mosquito-borne viruses dengue (DENV) and Zika (ZIKV) viruses are two medically important pathogens in tropical and subtropical regions of the world. There is an urgent need of therapeutics against DENV and ZIKV, and medicinal plants are considered as a promising source of antiviral bioactive metabolites. In the present study, we evaluated the ability of Phyllanthus phillyreifolius, an endemic medicinal plant from Reunion Island, to prevent DENV and ZIKV infection in human cells. At non-cytotoxic concentration in vitro, incubation of infected A549 cells with a P. phillyreifolius extract or its major active phytochemical geraniin resulted in a dramatic reduction of virus progeny production for ZIKV as well as four serotypes of DENV. Virological assays showed that P. phillyreifolius extract-mediated virus inhibition relates to a blockade in internalization of virus particles into the host cell. Infectivity studies on ZIKV showed that both P. phillyreifolius and geraniin cause a loss of infectivity of the viral particles. Using a zebrafish model, we demonstrated that administration of P. phillyreifolius and geraniin has no effect on zebrafish locomotor activity while no morbidity nor mortality was observed up to 5 days post-inoculation. Thus, P. phillyreifolius could act as an important source of plant metabolite geraniin which is a promising antiviral compound in the fight against DENV and ZIKV.
Collapse
Affiliation(s)
- Juliano G. Haddad
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (J.G.H.); (W.V.); (P.D.)
| | - Dovilė Grauzdytė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (D.G.); (P.R.V.)
| | - Andrea Cristine Koishi
- Laboratorio de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba 81350-010, Brazil; (A.C.K.); (C.N.D.d.S.)
| | - Wildriss Viranaicken
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (J.G.H.); (W.V.); (P.D.)
| | - Petras Rimantas Venskutonis
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (D.G.); (P.R.V.)
| | - Claudia Nunes Duarte dos Santos
- Laboratorio de Virologia Molecular, Instituto Carlos Chagas, ICC/FIOCRUZ/PR, Curitiba 81350-010, Brazil; (A.C.K.); (C.N.D.d.S.)
| | - Philippe Desprès
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (J.G.H.); (W.V.); (P.D.)
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97490 Saint-Denis de La Réunion, France;
| | - Chaker El Kalamouni
- Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, 94791 Sainte Clotilde, France; (J.G.H.); (W.V.); (P.D.)
- Correspondence: ; Tel.: +33-262-938822
| |
Collapse
|
11
|
Li Y, Jiang M, Li M, Chen Y, Wei C, Peng L, Liu X, Liu Z, Tong G, Zhou D, He J. Compound Phyllanthus urinaria L Inhibits HBV-Related HCC through HBx-SHH Pathway Axis Inactivation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1635837. [PMID: 31019539 PMCID: PMC6451826 DOI: 10.1155/2019/1635837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/24/2019] [Indexed: 12/18/2022]
Abstract
Compound Phyllanthus urinaria L (CP) is a traditional formula widely used in clinical practice for hepatocellular carcinoma (HCC), especially HBV-related HCC. HBx, HBV X gene encoded X protein, has positive correlation with the abnormal SHH pathway in HBV-related HCC. So, we predicted that CP has the capability of anti-HBV-related HCC maybe via inactivating the HBx-Hedgehog pathway axis. HepG2-HBx cells, HBx overexpression, were treated with CP (70μg/ml and 35 μg/ml, respectively) for 48 hours and the mice which received the HepG2-HBx cells were treated with CP (625mg/kg and 300 mg/kg, respectively) for 17 days to evaluate the effect of CP on HBV-related HCC. HBx could accelerate HepG2 cells proliferation, clone formation, and migration in vitro and also could strengthen tumor growth in mice. However, CP could significantly decrease HepG2-HBx cells proliferation, clone formation, and migration in vitro and also could inhibit tumors growth in mice in a dose-dependent manner. Mechanism studies suggested that HBx upregulated the mRNA and proteins expression of Sonic hedgehog (SHH), transmembrane receptor patched (PTCH-1), smoothened (SMO), oncogene homolog transcription factors-1 (GLI-1), and oncogene homolog transcription factors-2 (GLI-2), which are compositions of the SHH pathway. CP could inhibit the mRNA and proteins expression of SHH, PTCH-1, GLI-1, and HBx. It may be one of the underlying mechanisms of CP to delay the HBV-related HCC development through the HBx-SHH pathway axis inactivation.
Collapse
Affiliation(s)
- Yun Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Mingjie Jiang
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Mingshun Li
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Yingjie Chen
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Chunshan Wei
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Lisheng Peng
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Xinliang Liu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Zhen Liu
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Guangdong Tong
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Daqiao Zhou
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| | - Jinsong He
- Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, China
| |
Collapse
|
12
|
Parvulin 14 and Parvulin 17 Bind to HBx and cccDNA and Upregulate Hepatitis B Virus Replication from cccDNA to Virion in an HBx-Dependent Manner. J Virol 2019; 93:JVI.01840-18. [PMID: 30567987 DOI: 10.1128/jvi.01840-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
The parvulin 14 (Par14) and parvulin 17 (Par17) proteins, which are both encoded by the PIN4 gene, play roles in protein folding, chromatin remodeling, DNA binding, ribosome biogenesis, and cell cycle progression. However, the effects of Par14 and Par17 on viral replication have never been explored. In this study, we found that, in the presence of HBx, either Par14 or Par17 could upregulate hepatitis B virus (HBV) replication, whereas in the absence of HBx, neither Par14 nor Par17 had any effect on replication. Overexpression of Par14/Par17 markedly increased the formation of covalently closed circular DNA (cccDNA), synthesis of HBV RNA and DNA, and virion secretion. Conversely, PIN4 knockdown significantly decreased HBV replication in HBV-transfected and -infected cells. Coimmunoprecipitation revealed that Par14/Par17 engaged in direct physical interactions with HBx in the cytoplasm, nucleus, and mitochondria, possibly mediated through substrate-binding residues on Par14/Par17 (E46/D74 and E71/D99, respectively) and conserved 19R20P-28R29P motifs on HBx. Furthermore, these interactions enhanced HBx stability, promoted HBx translocation to the nuclear and mitochondrial fractions, and increased HBV replication. Chromatin immunoprecipitation assays revealed that, in the presence of HBx, Par14/Par17 were efficiently recruited to cccDNA and promoted transcriptional activation via specific DNA-binding residues (S19/44). In contrast, in the absence of HBx, Par14/Par17 bound cccDNA only at the basal level and did not promote transcriptional activation. Taken together, our results demonstrate that Par14 and Par17 upregulate HBV RNA transcription and DNA synthesis, thereby increasing the HBV cccDNA level, through formation of the cccDNA-Par14/17-HBx complex.IMPORTANCE The HBx protein plays an essential regulatory role in HBV replication. We found that substrate-binding residues on the human parvulin peptidylprolyl cis/trans isomerase proteins Par14 and Par17 bound to conserved arginine-proline (RP) motifs on HBx in the cytoplasm, nucleus, and mitochondria. The HBx-Par14/Par17 interaction stabilized HBx; promoted its translocation to the nucleus and mitochondria; and stimulated multiple steps of HBV replication, including cccDNA formation, HBV RNA and DNA synthesis, and virion secretion. In addition, in the presence of HBx, the Par14 and Par17 proteins bound to cccDNA and promoted its transcriptional activation. Our results suggest that inhibition or knockdown of Par14 and Par17 may represent a novel therapeutic option against HBV infection.
Collapse
|
13
|
Wan LF, Shen JJ, Wang YH, Zhao W, Fang NY, Yuan X, Xue BY. Extracts of Qizhu decoction inhibit hepatitis and hepatocellular carcinoma in vitro and in C57BL/6 mice by suppressing NF-κB signaling. Sci Rep 2019; 9:1415. [PMID: 30723284 PMCID: PMC6363746 DOI: 10.1038/s41598-018-38391-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis and hepatocellular carcinoma are serious human diseases. Here, we examined the in vivo and in vitro inhibitory effect of extracts of Qizhu decoction (a traditional Chinese medicine) on hepatitis caused by diethylnitrosamine or hepatitis B virus and on diethylnitrosamine-induced hepatocellular carcinoma. The results showed that both the aqueous and ethanol extracts (QC and QS, respectively) of Qizhu decoction significantly inhibited hepatic inflammation and liver cancer induced by diethylnitrosamine or hepatitis B virus by suppressing NF-κB signaling and decreasing the levels of TNF-α and IL-1β. Both QC and QS inhibited the proliferation and migration of primary cancer hepatocytes by reducing cyclin B1, cyclin D1 and N-cadherin expression and increasing E-cadherin expression. QC and QS also promoted the apoptosis of primary cancer hepatocytes by upregulating caspase-3 and downregulating BCL-2 expression. The knockdown of p65 in NF-κB signaling inhibited the ability of QC and QS to significantly reduce the colony formation ability of liver cancer cells. Additionally, QC and QS might significantly inhibit the DNA replication of hepatitis B virus in vivo and in vitro, and we found that corilagin and polydatin were the active compounds of QC and QS. Taken together, our in vitro findings and our results in C57BL/6 mice showed that extracts of Qizhu decoction might inhibit hepatitis and hepatocellular carcinoma by suppressing NF-κB signaling.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Diethylnitrosamine/pharmacology
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Gene Knockdown Techniques
- Hep G2 Cells
- Hepatitis B virus/genetics
- Hepatitis B, Chronic/drug therapy
- Hepatitis B, Chronic/virology
- Hepatitis, Animal/chemically induced
- Hepatitis, Animal/drug therapy
- Humans
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Male
- Medicine, Chinese Traditional/methods
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Transfection
Collapse
Affiliation(s)
- Ling-Feng Wan
- Department of Infectious Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Jian-Jiang Shen
- Department of Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Yao-Hui Wang
- Department of Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu medical college, 783 Xindu Road, Chengdu, 610500, Sichuan, China
| | - Nan-Yuan Fang
- Department of Infectious Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Xin Yuan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China
| | - Bo-Yu Xue
- Department of Infectious Disease, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, 155 HanZhong Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
14
|
Sirtuin 2 Isoform 1 Enhances Hepatitis B Virus RNA Transcription and DNA Synthesis through the AKT/GSK-3β/β-Catenin Signaling Pathway. J Virol 2018; 92:JVI.00955-18. [PMID: 30111572 DOI: 10.1128/jvi.00955-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 2 (Sirt2), a NAD+-dependent protein deacetylase, is overexpressed in many hepatocellular carcinomas (HCCs) and can deacetylate many proteins, including tubulins and AKT, prior to AKT activation. Here, we found that endogenous Sirt2 was upregulated in wild-type hepatitis B virus (HBV WT)-replicating cells, leading to tubulin deacetylation; however, this was not the case in HBV replication-deficient-mutant-transfected cells and 1.3-mer HBV WT-transfected and reverse transcriptase inhibitor (entecavir or lamivudine)-treated cells, but all HBV proteins were expressed. In HBV WT-replicating cells, upregulation of Sirt2 induced AKT activation, which consequently downregulated glycogen synthase kinase 3β (GSK-3β) and increased β-catenin levels; however, downregulation of Sirt2 in HBV-nonreplicating cells impaired AKT/GSK-3β/β-catenin signaling. Overexpression of Sirt2 isoform 1 stimulated HBV transcription and consequently HBV DNA synthesis, which in turn activated AKT and consequently increased β-catenin levels, possibly through physical interactions with Sirt2 and AKT. Knockdown of Sirt2 by short hairpin RNAs (shRNAs), inhibition by 2-cyano-3-[5-(2,5-dichlorophenyl)-2-furanyl]-N-5-quinolinyl-2-propenamide (AGK2), or dominant negative mutant expression inhibited HBV replication, reduced AKT activation, and decreased β-catenin levels. Through HBV infection, we demonstrated that Sirt2 knockdown inhibited HBV replication from transcription. Although HBx itself activates AKT and upregulates β-catenin, Sirt2-mediated signaling and upregulated HBV replication were HBx independent. Since constitutively active AKT inhibits HBV replication, the results suggest that upregulated Sirt2 and activated AKT may balance HBV replication to prolong viral replication, eventually leading to the development of HCC. Also, the results indicate that Sirt2 inhibition may be a new therapeutic option for controlling HBV infection and preventing HCC.IMPORTANCE Even though Sirt2, a NAD+-dependent protein deacetylase, is overexpressed in many HCCs, and overexpressed Sirt2 promotes hepatic fibrosis and associates positively with vascular invasion by primary HCCs through AKT/GSK-3β/β-catenin signaling, the relationship between Sirt2, HBV, HBx, and/or HBV-associated hepatocarcinogenesis is unclear. Here, we show that HBV DNA replication, not HBV expression, correlates positively with Sirt2 upregulation and AKT activation. We demonstrate that overexpression of Sirt2 further increases HBV replication, increases AKT activation, downregulates GSK-3β, and increases β-catenin levels. Conversely, inhibiting Sirt2 decreases HBV replication, reduces AKT activation, and decreases β-catenin levels. Although HBx activates AKT to upregulate β-catenin, Sirt2-mediated effects were not dependent on HBx. The results also indicate that a Sirt2 inhibitor may control HBV infection and prevent the development of hepatic fibrosis and HCC.
Collapse
|
15
|
Geethangili M, Ding ST. A Review of the Phytochemistry and Pharmacology of Phyllanthus urinaria L. Front Pharmacol 2018; 9:1109. [PMID: 30327602 PMCID: PMC6174540 DOI: 10.3389/fphar.2018.01109] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
The genus Phyllanthus (L.) is one of the most important groups of plants belonging to the Phyllantaceae family. Phyllanthus urinaria (L.) is an annual perennial herbal species found in tropical Asia, America, China, and the Indian Ocean islands. P. urinaria is used in folk medicine as a cure to treat jaundice, diabetes, malaria, and liver diseases. This review provides traditional knowledge, phytochemistry, and biological activities of P. urinaria. The literature reviewed for this article was obtained from the Web of Science, SciFinder, PubMed, ScienceDirect, and Google Scholar journal papers published prior to December 2017. Phytochemical investigations reveal that the plant is a rich source of lignans, tannins, flavonoids, phenolics, terpenoids, and other secondary metabolites. Pharmacological activities include anticancer, hepatoprotective, antidiabetic, antimicrobial, and cardioprotective effects. Thus, this present review summarizes the phytochemical constituents and their biological activities including biological studies on various crude extracts and fractions both in vitro and in vivo, and on clinical trial information about P. urinaria. This review compiles 93 naturally occurring compounds from P. urinaria along with their structures and pharmacological activities. The review is expected to stimulate further research on P. urinaria, and its pharmacological potential to yield novel therapeutic agents.
Collapse
Affiliation(s)
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Jang E, Kim S, Lee NR, Kim H, Chae S, Han CW, Kim Y, Lee KT, Kim BJ, Inn KS, Lee JH. Sanguisorba officinalis extract, ziyuglycoside I, and II exhibit antiviral effects against hepatitis B virus. Eur J Integr Med 2018; 20:165-172. [DOI: 10.1016/j.eujim.2018.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Frederico ÉHFF, Cardoso ALBD, Moreira-Marconi E, de Sá-Caputo DDC, Guimarães CAS, Dionello CDF, Morel DS, Paineiras-Domingos LL, de Souza PL, Brandão-Sobrinho-Neto S, Carvalho-Lima RP, Guedes-Aguiar EDO, Costa-Cavalcanti RG, Kutter CR, Bernardo-Filho M. ANTI-VIRAL EFFECTS OF MEDICINAL PLANTS IN THE MANAGEMENT OF DENGUE: A SYSTEMATIC REVIEW. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES : AJTCAM 2017; 14:33-40. [PMID: 28740942 PMCID: PMC5514443 DOI: 10.21010/ajtcam.v14i4s.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
BACKGROUND Dengue is considered as an important arboviral disease. Safe, low-cost, and effective drugs that possess inhibitory activity against dengue virus (DENV) are mostly needed to try to combat the dengue infection worldwide. Medicinal plants have been considered as an important alternative to manage several diseases, such as dengue. As authors have demonstrated the antiviral effect of medicinal plants against DENV, the aim of this study was to review systematically the published research concerning the use of medicinal plants in the management of dengue using the PubMed database. MATERIALS AND METHODS Search and selection of publications were made using the PubMed database following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA statement). RESULTS Six publications met the inclusion criteria and were included in the final selection after thorough analysis. CONCLUSION It is suggested that medicinal plants' products could be used as potential anti-DENV agents.
Collapse
Affiliation(s)
- Éric Heleno Freira Ferreira Frederico
- Programa de Pós-graduação em Biociências, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
- Corresponding Author E-mail Address:
| | - André Luiz Bandeira Dionísio Cardoso
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Eloá Moreira-Marconi
- Programa de Pós-Graduação em Fisiopatologia Clínica e Experimental, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Danúbia da Cunha de Sá-Caputo
- Laboratório de Vibrações Mecânicas e Práticas Integrativas e Complementares, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Carlos Alberto Sampaio Guimarães
- Laboratório de Vibrações Mecânicas e Práticas Integrativas e Complementares, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Carla da Fontoura Dionello
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Danielle Soares Morel
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Laisa Liane Paineiras-Domingos
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Patricia Lopes de Souza
- Laboratório de Vibrações Mecânicas e Práticas Integrativas e Complementares, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Samuel Brandão-Sobrinho-Neto
- Mestrado Profissional em Saúde, Medicina Laboratorial e Tecnologia Forense, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Av. Marechal Rondon, Rio de Janeiro, 20950-003, RJ, Brasil
| | - Rafaelle Pacheco Carvalho-Lima
- Mestrado Profissional em Saúde, Medicina Laboratorial e Tecnologia Forense, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Av. Marechal Rondon, Rio de Janeiro, 20950-003, RJ, Brasil
| | - Eliane de Oliveira Guedes-Aguiar
- Laboratório de Vibrações Mecânicas e Práticas Integrativas e Complementares, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Rebeca Graça Costa-Cavalcanti
- Laboratório de Vibrações Mecânicas e Práticas Integrativas e Complementares, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| | - Cristiane Ribeiro Kutter
- Mestrado Profissional em Saúde, Medicina Laboratorial e Tecnologia Forense, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcantara Gomes, Av. Marechal Rondon, Rio de Janeiro, 20950-003, RJ, Brasil
| | - Mario Bernardo-Filho
- Laboratório de Vibrações Mecânicas e Práticas Integrativas e Complementares, Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 20551-030, RJ, Brasil
| |
Collapse
|
18
|
Siddiqui MH, Alamri SA, Al-Whaibi MH, Hussain Z, Ali HM, El-Zaidy ME. A mini-review of anti-hepatitis B virus activity of medicinal plants. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1240593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud A. Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed H. Al-Whaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Hussain
- Centre of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed E. El-Zaidy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Dutra RC, Campos MM, Santos AR, Calixto JB. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol Res 2016; 112:4-29. [DOI: 10.1016/j.phrs.2016.01.021] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/17/2016] [Indexed: 12/16/2022]
|
20
|
Qiu Y, Wang DM, Lin ZN. Hepatitis B virus X protein and endoplasmic reticulum stress. Shijie Huaren Xiaohua Zazhi 2016; 24:1040-1047. [DOI: 10.11569/wcjd.v24.i7.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Persistent hepatitis B virus (HBV) infection is closely related to chronic hepatitis, cirrhosis and liver cancer. China is a country with a high prevalence of HBV infection, where the infection rate is up to 60%-70%, bringing great threat and harm to public health. What's worse is that HBV infection is the main etiology factor of primary hepatocellular carcinoma (HCC). However, the underlying mechanisms of virus-induced tumor formation remain controversial. Numerous studies indicate that HBV X protein (HBx) plays a prominent role in HBV-induced liver cell damage, hepatitis, liver fibrosis and malignant transformation, and is related to liver cancer induced by environmental exposure factors. As a multifunctional regulatory protein, HBx regulates a variety of cell signal transduction pathways, including the endoplasmic reticulum (ER) stress response. ER stress refers to the dysfunction of the ER, and misfolded or unfolded proteins gather in the ER. It is noteworthy that the expression of HBx can induce or effect ER stress, although the molecular mechanism remains unclear. This review summarizes the role of HBx in ER stress pathways, providing clues for the liver injury induced by HBV infection.
Collapse
|