1
|
Lan Y, Wang H, Jing L, Li R, Sun J, Meng X, Wu J. Jatrorrhizine alleviates cytokine storm secondary lung injury via regulating CD39-dominant purinergic braking and downstream NLRP3 inflammasome. Phytother Res 2025; 39:2374-2392. [PMID: 40192171 DOI: 10.1002/ptr.8062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 05/21/2025]
Abstract
Cytokine storm secondary lung injury (CSSLI) is a form of acute lung injury (ALI) comparable to that caused by sepsis for which there are no effective therapeutic strategies. Coptis chinensis Franch. and Scutellaria baicalensis Georgi. are two botanical medicines that exhibit anti-inflammatory properties. This study aimed to investigate the underlying therapeutic mechanism of the combination (CCSB) treatment in mice with ALI. A high dosage of lipopolysaccharide (LPS) was administered intraperitoneally to C57BL/6 mice to establish an ALI model. The AMP-Glo™ assay was applied to screen for the component with the most potent CD39-promoting enzyme activity from CCSB constituents migrating to the bloodstream. The PMA-differentiated THP-1 and RAW264.7 macrophage cell lines were stimulated with LPS and adenosine triphosphate, followed by treatment with Jatrorrhizine (JH). The administration of CCSB demonstrated a notable improvement in lung injury through the modulation of the CD39-P2X7 purinergic pathway and subsequent regulation of the NLRP3 inflammasome. The restrained CD39 and A2b were reversed by JH, leading to the suppression of the P2X7-NLRP3 signaling pathway. In addition, the utilization of a CD39 inhibitor (POM-1) attenuated the inhibitory effect of JH on the NLRP3 signaling pathway. CCSB successfully rescued CSSLI, along with its small-molecule component JH, which demonstrated the ability to inhibit the NLRP3 signaling pathway and pyroptosis, at least partially through regulating the CD39 enzyme.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lijia Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Rui Li
- Chengdu University of Traditional Chinese Medicine-Affiliated Meishan Hospital/Meishan Hospital of Traditional Chinese Medicine, Meishan, People's Republic of China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Correa-Barbosa J, Brígido HPC, Matte BF, Campos PSD, Lamers ML, Sodré DF, Nascimento PHC, Ferreira GG, Vale VV, Marinho AMDR, Siqueira JEDS, Coelho-Ferreira MR, Monteiro MC, Dolabela MF. Healing and leishmanicidal activity of Zanthoxylum rhoifolium Lam. Front Chem 2025; 13:1504998. [PMID: 40235717 PMCID: PMC11996901 DOI: 10.3389/fchem.2025.1504998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/17/2025] Open
Abstract
Zanthoxylum rhoifolium is used in folk medicine as an antiparasitic agent. Therefore, this study evaluated the phytochemical aspects and biological activities of Z. rhoifolium. For this, the ethanolic extract (EE) was obtained by macerating the peel with ethanol and subjected to acid-base partition to obtain the neutral fractions (FN) and alkaloid fractions (FA). These samples were analyzed using chromatography techniques. From this, a substance was isolated from FN and identified by nuclear magnetic resonance. For biological activity, strains of Leishmania amazonensis were used for leishmanicidal activity. For cytotoxicity, cell viability methods were used and finally, the selectivity index (SI) was determined. Cell proliferation assay (SRB method) was also performed, such as a wound healing assay. After analysis, it was inferred that in chromatography, EE, FN and FA presented peaks suggestive of alkaloids, and the alkaloid chelerythrine was isolated from FN. In antiparasitic activity against promastigotes, EE, FN and FA were active. Against amastigotes, the infection inhibition index was dose dependent for EE and FN. In the cytotoxicity test (J774), EE and FN showed moderate cytotoxicity, while FA demonstrated cytotoxicity. In VERO strain, EE and FA showed moderate cytotoxicity, while FN was not cytotoxic. Finally, considering the SI, EE, FN and FA showed high selectivity. Furthermore, EE and FN increased cell proliferation and FN promoted a healing effect. Thus, it is highlighted that the specie Z. rhoifolium presented antileishmanial activity and selectivity for the parasite, and its FN presented healing potential.
Collapse
Affiliation(s)
- Juliana Correa-Barbosa
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences - Federal University of Pará (UFPA)Belém, Brazil
- Postgraduate Pharmaceutical Sciences Program, Institute of Health Sciences - Federal University of Pará (UFPA), Belém, Brazil
| | - Heliton Patrick Cordovil Brígido
- National Council for Scientific and Technological Development (CNPq), Federal University of Pará, Belém, Brazil
- Biotechnology and Biodiversity Postgraduate Program (BIONORTE), Federal University of Pará, Belém, Brazil
| | - Bibiana Franzen Matte
- Faculty of Dentistry, Institute of Health Sciences - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Paloma Santos De Campos
- Faculty of Dentistry, Institute of Health Sciences - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcelo Lazzaron Lamers
- Faculty of Dentistry, Institute of Health Sciences - Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniele Ferreira Sodré
- Faculty of Pharmacy, Institute of Health Sciences - Federal University of Pará (UFPA), Belém, Brazil
| | | | - Gleison Gonçalves Ferreira
- Botany Coordination, Museu Paraense Emílio Goeldi, Ministério da Ciência, Tecnologia, Inovação e Comunicações, Belém, Pará, Brazil
| | - Valdicley Vieira Vale
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences - Federal University of Pará (UFPA)Belém, Brazil
| | | | - José Edson De Sousa Siqueira
- Postgraduate Program in Chemistry, Institute of Exact and Natural Sciences - Federal University of Pará (UFPA), Belém, Brazil
| | - Márlia Regina Coelho-Ferreira
- Botany Coordination, Museu Paraense Emílio Goeldi, Ministério da Ciência, Tecnologia, Inovação e Comunicações, Belém, Pará, Brazil
| | - Marta Chagas Monteiro
- Postgraduate Pharmaceutical Sciences Program, Institute of Health Sciences - Federal University of Pará (UFPA), Belém, Brazil
- Coordinator of the National Institute of Science, Technology and Innovation INCT-PROBIAM Pharmaceuticals Amazonia, Federal University of Pará, Belém, Brazil
- Postgraduate Neuroscience and Cellular Biology Program, Federal University of Pará, Belém, Brazil
- Postgraduate Pharmacology and Biochemistry Program, Federal University of Pará, Belém, Brazil
| | - Maria Fâni Dolabela
- Postgraduate Pharmaceutical Innovation Program, Institute of Health Sciences - Federal University of Pará (UFPA)Belém, Brazil
- Postgraduate Pharmaceutical Sciences Program, Institute of Health Sciences - Federal University of Pará (UFPA), Belém, Brazil
| |
Collapse
|
3
|
Feng J, Zhang B, Zhang H, Wu Z, Li M, Wang D, Wang C. Combining with E-nose, GC-MS, GC-IMS and chemometrics to explore volatile characteristics during the different stages of Zanthoxylum bungeanum maxim fruits. Food Res Int 2024; 195:114964. [PMID: 39277265 DOI: 10.1016/j.foodres.2024.114964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
To explore the volatile characteristics of Z. bungeanum fruits during different developmental stages, the dynamical changes of volatile organic compounds (VOCs) were detected by E-nose, GC-MS and GC-IMS, respectively. The results showed that terpenes, alcohols, esters and aldehydes played the important roles in the aroma formation of Z. bungeanum. Meanwhile, these VOCs also exhibited the high abundance levels among five growth stages of Z. bungeanum. According to the analysis of odor activity value (OAV) and relative odor activity value (ROAV), 37 VOCs can be recognized as the important aroma compounds. Thereinto, β-myrcene and linalool were the most key aroma compounds. Multi-factor analysis exhibited that the combination of GC-MS and GC-IMS was a better strategy to clarify the volatile characteristics comprehensively. Using the above combined VOC datasets, six positively correlated modules and 32 hub VOCs were finally identified by weighted correlation network analysis among five growth stages of Z. bungeanum.
Collapse
Affiliation(s)
- Jinze Feng
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China
| | - Beibei Zhang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China
| | - Haonan Zhang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China
| | - Zichao Wu
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China
| | - Maoying Li
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China
| | - Dongmei Wang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China
| | - Cheng Wang
- Department of Forestry Engineering, College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Wen J, Xiang Q, Guo J, Zhang J, Yang N, Huang Y, Chen Y, Hu T, Rao C. Pharmacological activities of Zanthoxylum L. plants and its exploitation and utilization. Heliyon 2024; 10:e33207. [PMID: 39022083 PMCID: PMC11252797 DOI: 10.1016/j.heliyon.2024.e33207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study aims to provide an up-to-date review at the advancements of the investigations on the ethnopharmacology, phytochemistry, pharmacological effect and exploitation and utilizations of Zanthoxylum L. Besides, the possible tendency and perspective for future research of this plant are discussed, as well. This article uses "Zanthoxylum L." "Zanthorylum bungeanum" as the keywords and collects relevant information on Zanthoxylum L. plants through electronic searches (Elsevier, PubMed, ACS, Web of Science, Science Direct, CNKI, Google Scholar), relevant books, and classic literature about Chinese herb. The plants of this genus are rich in volatile oils, alkaloids, amides, lignans, coumarins and organic acids, and has a wide range of pharmacological activities, including but not limited to anti-inflammatory, analgesic, anti-tumor, hypoglycemic, hypolipidemic, antioxidant and anti-infectious. This article reviewed both Chinese and international research progress on the active ingredients and pharmacological activities of Zanthoxylum L. as well as the applications of this genus in the fields of food, medicinal and daily chemicals, and clarified the material basis of its pharmacological activities. Based on traditional usage, phytochemicals, and pharmacological properties, of Zanthoxylum L. species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Zanthoxylum L. is a potential medicinal and edible plant with diverse pharmacological effects. Due to its various advantages, it may have vast application potential in the food and medicinal industries and daily chemicals. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of Zanthoxylum L. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Jiayu Wen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiwen Xiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiafu Guo
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jian Zhang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Nannan Yang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chaolong Rao
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
- R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
5
|
Kimani CN, Reuter H, Kotzé SH, Venter P, Ramharack P, Muller CJF. Pancreatic beta cell regenerative potential of Zanthoxylum chalybeum Engl. Aqueous stem bark extract. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117374. [PMID: 37944876 DOI: 10.1016/j.jep.2023.117374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum chalybeum Engl. is endemic to Africa and has been used traditionally to treat diabetes mellitus. Moreover, its pharmacological efficacy has been confirmed experimentally using in vitro and in vivo models of diabetes. However, the effects of Z. chalybeum extracts and its major constituent compounds on beta cell and islet regeneration are not clear. Further, the mechanisms associated with observed antidiabetic effects at the beta cell level are not fully elucidated. AIM OF THE STUDY We determined the beta cell regenerative efficacy of Z. chalybeum aqueous stem bark extract, identified the chemical compounds in Z. chalybeum aqueous stem bark extracts and explored their putative mechanisms of action. MATERIALS AND METHODS Phytochemical profiling of the Z. chalybeum extract was achieved using ultra high-performance liquid chromatography hyphenated to high-resolution mass spectrometry. Thereafter, molecular interactions of the compounds with beta cell regeneration targets were evaluated via molecular docking. In vitro, effects of the extract on cell viability, proliferation, apoptosis and oxidative stress were investigated in RIN-5F beta cells exposed to palmitate or streptozotocin. In vivo, pancreas tissue sections from streptozotocin-induced diabetic male Wistar rats treated with Z. chalybeum extract were stained for insulin, glucagon, pancreatic duodenal homeobox protein 1 (Pdx-1) and Ki-67. RESULTS Based on ligand target and molecular docking interactions diosmin was identified as a dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitor. In vitro, Z. chalybeum augmented cell viability and cell proliferation while in palmitate-pre-treated cells, the extract significantly increased cell activity after 72 h. In vivo, although morphometric analysis showed decreased islet and beta cell size and density, observation of increased Pdx-1 and Ki-67 immunoreactivity in extract-treated islets suggests that Z. chalybeum extract has mild beta cell regenerative potential mediated by increased cell proliferation. CONCLUSIONS Overall, the mitogenic effects observed in vitro, were not robust enough to elicit sufficient recovery of functional beta cell mass in our in vivo model, in the context of a sustained diabetic milieu. However, the identification of diosmin as a potential Dyrk1A inhibitor merits further inquiry into the attendant molecular interactions.
Collapse
Affiliation(s)
- Clare Njoki Kimani
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Department of Non-communicable Diseases, Institute of Primate Research, PO Box 24481, Karen, Nairobi, Kenya.
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Sanet Henriët Kotzé
- Division of Clinical Anatomy, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa; Division of Anatomy, Department of Biomedical Sciences, School of Veterinary Medicine, Ross University, PO Box 334, Basseterre, Saint Kitts and Nevis
| | - Pieter Venter
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa
| | - Pritika Ramharack
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Christo John Frederick Muller
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Tygerberg, 7505, South Africa; Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
6
|
Tian YQ, Liu J, Cheng P, Zou J, Xu HF, Shi XH, Zhang YS, Mei L. Dual COX-2/5-LOX inhibitors from Zanthoxylum simulans inhibit gastric cancer cells by cross-mediating thyroid, estrogen, and oxytocin signaling pathways. Front Chem 2024; 11:1287570. [PMID: 38268762 PMCID: PMC10805830 DOI: 10.3389/fchem.2023.1287570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) are overexpressed in gastric cancer cells, the dual inhibitors of which exhibit potential against metastasis and invasion with fewer side effects. To discover inhibitors targeting COX-2 and 5-LOX, we conducted ultrafiltration and enrichment calculation to screen candidates in quaternary alkaloids (QAs) from Zanthoxylum simulans through LC and LC-Q-TOF. For intensive peaks, peaks 19 (berberine) and 21 (chelerythrine) were observed as the most potent dual candidates and showed selective affinity to 5-LOX over COX-2. Peak 19 showed an enrichment at 4.36 for COX-2 and 22.81 for 5-LOX, while peak 21 showed an enrichment at 7.81 for COX-2 and 24.49 for 5-LOX. Molecular docking results revealed chelerythrine as a better dual inhibitor, showing time- and dose-dependent anti-proliferation against AGS cells. Bio-informatics strategies, such as Gene Expression Omnibus (GEO), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG), suggested that hormone pathways in gastric cancer cells might be mediated by chelerythrine. Further reviews and summaries helped outline the mechanisms by which COX-2/5-LOX inhibitors might promote apoptosis in gastric cancer cells via estrogen, thyroid, and oxytocin signaling pathways. Chelerythrine was also added to gastric cancer cells to verify the regulation of these three signaling pathways. As a result, significant calling back of thyroid-stimulating hormone receptor (TSHR), thyroid hormone α3 (TRα3), and thyroid hormone receptor β1 (TRβ1) and suppressing estrogen receptor α36 (ER-α36)-Src could benefit the anti-proliferation of chelerythrine. However, it was disappointing that regulation of estrogen receptor α66 (ER-α66), estrogen receptor β (ER-β), and oxytocin receptor (OTR) contributed inversely negative effects on anti-gastric cancer cells. At present, the integrative study not only revealed chelerythrine as the most potent dual COX-2/5-LOX inhibitor from QAs but also generally highlighted that comprehensive regulation of the estrogen, thyroid, and oxytocin pathway should be noted once gastric cancer cells were treated with inflammatory inhibitors.
Collapse
Affiliation(s)
- Yong-Qiang Tian
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jing Liu
- Department of Acupuncture, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Peng Cheng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Zou
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Hui-Fang Xu
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xin-Hua Shi
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yi-Sheng Zhang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Ling Mei
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
7
|
Maharjan B, Kumar Shrestha L, Hill JP, Ariga K, Sharan Shrestha S, Sut S, Swagat Shrestha RL, Dall'Acqua S. Chemical Characterization of Corydalis chaerophylla D.C. Extracts and Preliminary Evaluation of Their in Vitro and in Vivo Biological Properties. Chem Biodivers 2023; 20:e202301209. [PMID: 37962402 DOI: 10.1002/cbdv.202301209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/15/2023] [Indexed: 11/15/2023]
Abstract
Genus Corydalis is a rich source of isoquinoline alkaloids reported to having potential bioactivities. Corydalis chaerophylla collected from Nepal at an altitude of 2400-4800 m was extracted using hexane, methanol and chloroform as solvents. The resulting hexane, methanol and chloroform extracts were subjected to LC-DAD-MSn analysis to yield fifteen different alkaloids. To assess any potential pharmacological properties, antimicrobial activity against two Gram-positive, two Gram-negative bacterial strains and one fungal strain was assessed, revealing significant inhibitive action of the methanol and chloroform extracts. Of the extracts obtained using chloroform contained the highest content of phenolic compounds at 113 mg GAE/g, while the highest total flavonoid content was found for the hexane extract with a value of 46.45 mg QE/g. The chloroform extract also exhibited a considerable antioxidant activity at IC50 value, 261.5±3 μg/mL, for the DPPH assay. Conversely, the methanol extract exhibited the highest LC50 value for Brine Shrimp cytotoxicity at 196±3 μg/mL being least potential for the test. The methanol extract was found to be the most active against α-amylase inhibition with an IC50 of 51.52±2 μg/mL. In an in vivo acute oral toxicity study against mice, methanol and chloroform extracts presented harmful effects with 1000.36 mg/kg BW and 515 mg/kg BW for LD50 , respectively. By analyzing all the results of the solvents used, the chloroform extract was found to be the most active, a feature that will be used in future isolation procedures and other pharmacological tests.
Collapse
Affiliation(s)
- Binita Maharjan
- Department of Chemistry, Amrit Campus, Tribhuvan University, 44613, Kathmandu, Nepal
| | - Lok Kumar Shrestha
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, 305-8573, Tsukuba, Ibaraki, Japan
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561, Kashiwa, Chiba, Japan
| | | | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121, Padova, Italy
| | | | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35121, Padova, Italy
| |
Collapse
|
8
|
Hao M, Li Z, Huang X, Wang Y, Wei X, Zou X, Shi J, Huang Z, Yin L, Gao L, Li Y, Holmes M, Elrasheid Tahir H. A cell-based electrochemical taste sensor for detection of Hydroxy-α-sanshool. Food Chem 2023; 418:135941. [PMID: 36989650 DOI: 10.1016/j.foodchem.2023.135941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) has been identified as a suitable candidate for a spicy taste (Zanthoxylum plant) sensor. In this study, we investigated the response of TRPV1 expressed on human HepG2 cell membranes following stimulation with Hydroxy-α-sanshool. A three-dimensional (3D) cell-based electrochemical sensor was fabricated by layering cells expressing hTRPV1. l-cysteine/AuNFs electrodes were functionalized on indium tin oxide-coated glass (ITO) to enhance the sensor's selectivity and sensitivity. HepG2 cells were encapsulated in sodium alginate/gelatin hydrogel to create a 3D cell cultivation system, which was immobilized on the l-cysteine/AuNFs/ITO to serve as biorecognition elements. Using differential pulse voltammetry (DPV), the developed biosensor was utilized to detect Hydroxy-α-sanshool, a representative substance in Zanthoxylum bungeanum Maxim. The result obtained from DPV was linear with Hydroxy-α-sanshool concentrations ranging from 0 to 70 μmol/L, with a detection limit of 2.23 μmol/L. This biosensor provides a sensitive and novel macroscopic approach for TRPV1 detection.
Collapse
Affiliation(s)
- Mengyu Hao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuan Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaoou Wei
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhangqi Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Litao Yin
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Liying Gao
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanxiao Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Melvin Holmes
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Haroon Elrasheid Tahir
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
9
|
Wang Z, Yuan C, Chen J, Li Y, Wei Y, Li H, Qiu J, Huang L, Hu Z, Hao X, Gu W. Constituents from Zanthoxylum dimorphophyllum and their chemotaxonomic significance. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Gaobotse G, Venkataraman S, Brown PD, Masisi K, Kwape TE, Nkwe DO, Rantong G, Makhzoum A. The use of African medicinal plants in cancer management. Front Pharmacol 2023; 14:1122388. [PMID: 36865913 PMCID: PMC9971233 DOI: 10.3389/fphar.2023.1122388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cancer is the third leading cause of premature death in sub-Saharan Africa. Cervical cancer has the highest number of incidences in sub-Saharan Africa due to high HIV prevalence (70% of global cases) in African countries which is linked to increasing the risk of developing cervical cancer, and the continuous high risk of being infected with Human papillomavirus In 2020, the risk of dying from cancer amongst women was higher in Eastern Africa (11%) than it was in Northern America (7.4%). Plants continue to provide unlimited pharmacological bioactive compounds that are used to manage various illnesses, including cancer. By reviewing the literature, we provide an inventory of African plants with reported anticancer activity and evidence supporting their use in cancer management. In this review, we report 23 plants that have been used for cancer management in Africa, where the anticancer extracts are usually prepared from barks, fruits, leaves, roots, and stems of these plants. Extensive information is reported about the bioactive compounds present in these plants as well as their potential activities against various forms of cancer. However, information on the anticancer properties of other African medicinal plants is insufficient. Therefore, there is a need to isolate and evaluate the anticancer potential of bioactive compounds from other African medicinal plants. Further studies on these plants will allow the elucidation of their anticancer mechanisms of action and allow the identification of phytochemicals that are responsible for their anticancer properties. Overall, this review provides consolidated and extensive information not only on diverse medicinal plants of Africa but on the different types of cancer that these plants are used to manage and the diverse mechanisms and pathways that are involved during cancer alleviation.
Collapse
Affiliation(s)
- Goabaone Gaobotse
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Srividhya Venkataraman
- Virology Laboratory, Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Phenyo D. Brown
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| | - Tebogo E. Kwape
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - David O. Nkwe
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Gaolathe Rantong
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana
| | - Abdullah Makhzoum
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Botswana International University of Science and Technology, Palapye, Botswana,*Correspondence: Goabaone Gaobotse, ; Kabo Masisi, ; Abdullah Makhzoum,
| |
Collapse
|
11
|
Correa-Barbosa J, Sodré DF, Nascimento PHC, Dolabela MF. Activity of the genus Zanthoxylum against diseases caused by protozoa: A systematic review. Front Pharmacol 2023; 13:873208. [PMID: 36699053 PMCID: PMC9868958 DOI: 10.3389/fphar.2022.873208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/15/2022] [Indexed: 01/12/2023] Open
Abstract
Neglected diseases (NDs) are treated with a less varied range of drugs, with high cost and toxicity, which makes the search for therapeutic alternatives important. In this context, plants, such as those from the genus Zanthoxylum, can be promising due to active substances in their composition. This study evaluates the potential of species from this genus to treat NDs. Initially, a protocol was developed to carry out a systematic review approved by Prospero (CRD42020200438). The databases PubMed, BVS, Scopus, Science Direct, and Web of Science were used with the following keywords: "zanthoxylum," "xanthoxylums," "fagaras," "leishmaniasis," "chagas disease," "malaria," and "African trypanosomiasis." Two independent evaluators analyzed the title and abstract of 166 articles, and 122 were excluded due to duplicity or for not meeting the inclusion criteria. From the 44 selected articles, results of in vitro/in vivo tests were extracted. In vitro studies showed that Z. rhoifolium, through the alkaloid nitidine, was active against Plasmodium (IC50 <1 μg/ml) and Leishmania (IC50 <8 μg/ml), and selective for both (>10 and >30, respectively). For Chagas disease, the promising species (IC50 <2 μg/ml) were Z. naranjillo and Z. minutiflorum, and for sleeping sickness, the species Z. zanthoxyloides (IC50 <4 μg/ml) stood out. In the in vivo analysis, the most promising species were Z. rhoifolium and Z. chiloperone. In summary, the species Z. rhoifolium, Z. naranjillo, Z. minutiflorum, Z. zanthoxyloides, and Z. chiloperone are promising sources of active molecules for the treatment of NDs.
Collapse
Affiliation(s)
- Juliana Correa-Barbosa
- Pharmaceutical Science Post-graduation Programx, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Maria Fâni Dolabela
- Pharmaceutical Science Post-graduation Programx, Federal University of Pará, Belém, Pará, Brazil,Faculty of Pharmacy, Federal University of Pará, Belém, Brazil,*Correspondence: Maria Fâni Dolabela,
| |
Collapse
|
12
|
Kaigongi MM, Lukhoba CW, Musila FM, Taylor M, Mbugua RW, Githiomi J, Yenesew A, Makunga NP. A versatile untargeted metabolomics-driven technology for rapid phytochemical profiling of stem barks of Zanthoxylum species with antioxidant and antimicrobial activities. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00676-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractZanthoxylum species are credited with various uses in ethnomedicine due to their rich metabolite composition. In Kenya, these include management of cancer and microbial related ailments. However, there are limited reports showing how the bioactivity of Kenyan Zanthoxylum species is linked to their phytochemical profiles. This study therefore aimed at examining the chemical variation among five Zanthoxylum species found in Kenya (Z. chalybeum, Z. gilletii, Z. holtzianum, Z. paracanthum and Z. usambarense) using metabolomics approaches and the anti-oxidant and antimicrobial activities of these species. In a Folin–Ciocalteu test, the phenolic content of the stem bark extracts of these species were 73.083–145.272 mg TAE/g, while the alkaloids (in bromothymol blue chromogenic test) and flavonoids (in aluminium chloride test) were found to be 152.39–207.19 mg ME/g, and 109.416–186.413 mg CE/g, respectively. These extracts also exerted strong antioxidant activities in the 2,2-iphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power assays. In a broth dilution assay, the extract of the stem bark of Z. holtzianum ability showed the highest antimicrobial activity, followed by Z. chalybeum stem bark extract. The activities were positively correlated to both flavonoids and alkaloids concentrations, while the concentration of phenolics had weak negative correlation to antimicrobial activities. A chemometric analysis of the liquid-chromatography mass spectrometry profiles led to grouping of the species into three clusters. This study illustrates the variation in the bioactivity of Zanthoxylum species based on metabolite composition and justifies the wide usage of Zanthoxylum species in Kenyan traditional medicinal practices.
Graphical abstract
Collapse
|
13
|
Zhao M, Li T, Yang F, Cui X, Zou T, Song H, Liu Y. Characterization of key aroma-active compounds in Hanyuan Zanthoxylum bungeanum by GC-O-MS and switchable GC × GC-O-MS. Food Chem 2022; 385:132659. [DOI: 10.1016/j.foodchem.2022.132659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 12/16/2022]
|
14
|
Tian YQ, Hu D, Zhang YL, Zou J, Chen GL, Guo MQ. Inhibitors Targeting Multiple Janus Kinases From Zanthoxylum simulans Mediate Inhibition and Apoptosis Against Gastric Cancer Cells via the Estrogen Pathway. Front Chem 2022; 10:922110. [PMID: 35734442 PMCID: PMC9207197 DOI: 10.3389/fchem.2022.922110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Janus kinases (JAKs) play a key role in subtly regulating proliferation, apoptosis, and differentiation of cancer cells, and their inhibitors are actively sought as new drug leads. By developing JAKs based affinity ultrafiltration method coupled with LC/Q-TOF-MS in order to discover selective JAKs inhibitors from total quaternary alkaloids (QAs) from Zanthoxylum simulans, peak 19 (Berberine) and peak 21 (Chelerythrine) were revealed to exhibit notable selectivity on JAK1, JAK2, and JAK3 over Tyk2. In addition, Chelerythrine showed stronger inhibitory activity than the positive control (Cerdulatinib) on gastric cancer cells (AGS), while Berberine, with weaker inhibition. Chelerythrine and Berberine also showed obvious inhibition on human hepatocyte cells (LO2). Furthermore, molecular docking analysis revealed their discrepancies due to different interaction bonds and characteristic residues. Quaternary N was proposed as the functional group to enhance the selectivity of JAK1, and some specific moieties towards Asp1021, Leu855, and Leu828 were suggested to increase the selectivity for JAK1, JAK2, and JAK3, respectively. As the most potential inhibitor of JAKs from QAs, Chelerythrine exhibited distinct suppression of adhesion, migration, invasion, and stimulating apoptosis of AGS cells, which was consistent with the significant down-regulation of estrogen receptors (ER-α36, ER-α66, and ER-β1) and Src expression. In conclusion, an efficient screening approach was developed to identify Berberine and Chelerythrine as potential selective candidates from Zanthoxylum simulans with significant anti-proliferative activity against gastric carcinoma. As we know, it was the first report to propose an estrogen signal pathway for Chelerythrine in anti-gastric cancer cells (AGS) study. The results supported Chelerythrine inhibitory effects on AGS by not only direct inhibiting JAKs but also down-regulating the estrogen pathway.
Collapse
Affiliation(s)
- Yong-Qiang Tian
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Dai Hu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong-Li Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zou
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese Medicine, Third Clinical Medical College of Hubei University of Chinese Medicine, Wuhan, China
| | - Gui-Lin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Quan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Ming-Quan Guo,
| |
Collapse
|
15
|
Molecular networking and collision cross section prediction for structural isomer and unknown compound identification in plant metabolomics: a case study applied to Zhanthoxylum heitzii extracts. Anal Bioanal Chem 2022; 414:4103-4118. [PMID: 35419692 DOI: 10.1007/s00216-022-04059-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/28/2022]
Abstract
Mass spectrometry-based plant metabolomics allow large-scale analysis of a wide range of compounds and the discovery of potential new active metabolites with minimal sample preparation. Despite recent tools for molecular networking, many metabolites remain unknown. Our objective is to show the complementarity of collision cross section (CCS) measurements and calculations for metabolite annotation in a real case study. Thus, a systematic and high-throughput investigation of root, bark, branch, and leaf of the Gabonese plant Zhanthoxylum heitzii was performed through ultra-high performance liquid chromatography high-resolution tandem mass spectrometry (UHPLC-QTOF/MS). A feature-based molecular network (FBMN) was employed to study the distribution of metabolites in the organs of the plants and discover potential new components. In total, 143 metabolites belonging to the family of alkaloids, lignans, polyphenols, fatty acids, and amino acids were detected and a semi-quantitative analysis in the different organs was performed. A large proportion of medical plant phytochemicals is often characterized by isomerism and, in the absence of reference compounds, an additional dimension of gas phase separation can result in improvements to both quantitation and compound annotation. The inclusion of ion mobility in the ultra-high performance liquid chromatography mass spectrometry workflow (UHPLC-IMS-MS) has been used to collect experimental CCS values in nitrogen and helium (CCSN2 and CCSHe) of Zhanthoxylum heitzii features. Due to a lack of reference data, the investigation of predicted collision cross section has enabled comparison with the experimental values, helping in dereplication and isomer identification. Moreover, in combination with mass spectra interpretation, the comparison of experimental and theoretical CCS values allowed annotation of unknown features. The study represents a practical example of the potential of modern mass spectrometry strategies in the identification of medicinal plant phytochemical components.
Collapse
|
16
|
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2022; 12:783127. [PMID: 35095493 PMCID: PMC8793695 DOI: 10.3389/fphar.2021.783127] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Okagu IU, Ndefo JC, Aham EC, Udenigwe CC. Zanthoxylum Species: A Review of Traditional Uses, Phytochemistry and Pharmacology in Relation to Cancer, Infectious Diseases and Sickle Cell Anemia. Front Pharmacol 2021; 12:713090. [PMID: 34603027 PMCID: PMC8479109 DOI: 10.3389/fphar.2021.713090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
The health benefits and toxicity of plant products are largely dependent on their secondary metabolite contents. These compounds are biosynthesized by plants as protection mechanisms against environmental factors and infectious agents. This review discusses the traditional uses, phytochemical constituents and health benefits of plant species in genus Zanthoxylum with a focus on cancer, microbial and parasitic infections, and sickle cell disease as reported in articles published from 1970 to 2021 in peer-reviewed journals and indexed in major scientific databases. Generally, Z. species are widely distributed in Asia, America and Africa, where they are used as food and for disease treatment. Several compounds belonging to alkaloids, flavonoids, terpenoids, and lignans, among others have been isolated from Z. species. This review discusses the biological activities reported for the plant species and their phytochemicals, including anticancer, antibacterial, antifungal, antiviral, anti-trypanosomal, antimalarial and anti-sickling properties. The safety profiles and suggestions for conservation of the Z. species were also discussed. Taken together, this review demonstrates that Z. species are rich in a wide range of bioactive phytochemicals with multiple health benefits, but more research is needed towards their practical application in the development of functional foods, nutraceuticals and lead compounds for new drugs.
Collapse
Affiliation(s)
| | | | - Emmanuel Chigozie Aham
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Nigeria
| | | |
Collapse
|
18
|
Identification and characterization of quinoline alkaloids from the root bark of Dictamnus dasycarpus and their metabolites in rat plasma, urine and feces by UPLC/Qtrap-MS and UPLC/Q-TOF-MS. J Pharm Biomed Anal 2021; 204:114229. [PMID: 34252820 DOI: 10.1016/j.jpba.2021.114229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/15/2021] [Accepted: 06/19/2021] [Indexed: 01/19/2023]
Abstract
Quinoline alkaloids are the main bioactive and potentially toxic constituents in the root bark of Dictamnus dasycarpus Turcz. (BXP), a widely used traditional Chinese medicine for the treatment of skin inflammation, eczema and rubella. However, the comprehensive analysis of the chemical components and metabolites of quinoline alkaloids remain unclear. In this study, an integrated strategy by combining UPLC/Q-TOF-MS and UPLC/Qtrap-MS was established to comprehensively profile the quinoline alkaloids from BXP and their metabolites in rat plasma, urine and feces. Q-TOF-MS (MSE mode), Qtrap-MS (EMS, MIM, pMRM and NL mode) were performed for acquiring more precursor ions and clearer precursor product ions. A step-by-step manner based on the diagnostic fragment ions (DFIs), in-house database, ClogP value and dipole moment (μ) was proposed to overcome the complexities due to the similar fragmentation behaviors of the quinoline alkaloids. As a result, a total of 73 quinoline alkaloids were unambiguously or tentatively identified. Among them, 4 furoquinolines, 10 dihydrofuroquinolines, 2 pyranoquinolinones, 4 dihydropyranoquinolinones and 9 quinol-2-ones were characterized in BXP for the first time. Moreover, a total of 98 BXP-related constituents (including 57 prototypes and 41 metabolites) were detected in rat plasma, urine and feces. The metabolic pathways included phase I reactions (O-demethylation, hydroxylation and 2,3-olefinic epoxidation) and phase II reactions (conjugation with glucuronide, sulfate and N-acetylcysteine). In conclusion, the integrated strategy with the proposed stepwise manner is suitable for rapid identifying and characterizing more extensive quinoline alkaloids of BXP in vitro and in vivo. Moreover, the results will be helpful for revealing the pharmacological effective substances or toxic substances of BXP and provide a solid basis for further research.
Collapse
|
19
|
Wei WJ, Chen XH, Guo T, Liu XQ, Zhao Y, Wang LL, Lan JX, Li HW, Si YP, Wang ZM. A Review on Classification and Biological Activities of Alkaloids from the Genus Zanthoxylum Species. Mini Rev Med Chem 2021; 21:336-361. [PMID: 32912124 DOI: 10.2174/1389557520666200910091905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 11/22/2022]
Abstract
Many plants in the genus Zanthoxylum, belonging to the Rutaceae family, are used as folk medicines for the treatment of various diseases, which have gained much attention for their phytochemical and pharmacological activity investigations. Alkaloids are the largest secondary metabolites with structurally diverse types found in this genus and they demonstrate a wide range of biological activities. The aim of this review is to provide a summary on the isolation, classification, and biological properties of alkaloids from Zanthoxylum species, which also will bring more attention to other researchers for further biological study on alkaloids for the new drug development.
Collapse
Affiliation(s)
- Wen-Jun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-Hui Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiao-Qian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College, and The Graduate Center, The City University of New York, New York, United States
| | - Li-Li Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jin-Xu Lan
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Han-Wei Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yan-Po Si
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhi-Min Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
Sahu R, Kar RK, Sunita P, Bose P, Kumari P, Bharti S, Srivastava S, Pattanayak SP. LC-MS characterized methanolic extract of zanthoxylum armatum possess anti-breast cancer activity through Nrf2-Keap1 pathway: An in-silico, in-vitro and in-vivo evaluation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113758. [PMID: 33359860 DOI: 10.1016/j.jep.2020.113758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC (Rutaceae) containing flavonoids, alkaloids, coumarins, lignans, amides and terpenoid is well-known for its curative properties against various ailments including cancer. In the current research, phytochemicals present in the methanolic extract of Zanthoxylum armatum bark (MeZb) were characterized by LC-MS/MS analysis and chemotherapeutic potential of this extract was determined on DMBA-induced female Sprague Dawley rats. MATERIALS AND METHODS A simple and fast high-performance liquid chromatography-mass spectroscopy (LC-MS/MS) of MeZb was established followed by in-vitro antioxidant assays. This was followed by in-silico docking analysis as well as cytotoxicity assessment. Successively in-vivo study of MeZb was performed in DMBA-induced Sprague Dawley rats possessing breast cancer along with detailed molecular biology studies involving immunofluorescence, RT-qPCR and Western blot analysis. RESULTS LC-MS/MS investigation revealed the presence of compounds belonging to flavonoid, alkaloid and glycoside groups. MeZb revealed potential antioxidant activity in in-vitro antioxidant assays and strong binding energy of identified compounds was seen from the in-silico study with both HO1 and Keap1 receptor. Furthermore, the antioxidant action of MeZb was proven from the in-vivo analysis of antioxidant marker enzymes (lipid peroxidation, enzymic and non-enzymic antioxidants). This study also revealed upregulation of protective Nrf-2 following downregulation of Keap1 after MeZb treatment with respect to untreated cancerous rats. CONCLUSION These results exhibited anti-breast-cancer potential of MeZb through Nrf2-Keap1 pathway which may be due to the flavonoids, alkaloids and glycosides present in it.
Collapse
Affiliation(s)
- Roja Sahu
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Rajiv Kumar Kar
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Priyashree Sunita
- Government Pharmacy Institute, Department of Health, Family Welfare and Medical Education, Government of Jharkhand, Bariatu, Ranchi, 834009, India
| | - Pritha Bose
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Puja Kumari
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Salona Bharti
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India
| | - Sharad Srivastava
- Pharmacognosy & Ethnopharmacology Division, CSIR-National Botanical Research Institute, NBRI-Govt. of India, Lucknow, 226001, India
| | - Shakti P Pattanayak
- Division of Pharmacology, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835 215, Jharkhand, India; Department of Pharmacy, School of Health Sciences, Central University of South Bihar (Gaya), Bihar, 824236, India.
| |
Collapse
|
21
|
Lima JM, Leme GM, Costa EV, Cass QB. LC-HRMS and acetylcholinesterase affinity assay as a workflow for profiling alkaloids in Annona salzmannii extract. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1164:122493. [DOI: 10.1016/j.jchromb.2020.122493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
|
22
|
Bhatt V, Kumari S, Upadhyay P, Agrawal P, Sahal D, Sharma U. Chemical profiling and quantification of potential active constituents responsible for the antiplasmodial activity of Cissampelos pareira. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113185. [PMID: 32726676 DOI: 10.1016/j.jep.2020.113185] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cissampelos pareira is used traditionally in India as a remedy for the treatment of various diseases including malaria but the active ingredients responsible for antiplasmodial activity have not yet been investigated. AIM OF THE STUDY The identification and quantification of compounds responsible for antiplasmodial activity in different parts (leaf, stem and root) of C. pareira is the target of current study. MATERIAL AND METHODS The hydro ethanolic parent extracts of different parts of C. pareira and fractions prepared from these extracts were evaluated against Pf3D7 (chloroquine sensitive) and PfINDO (chloroquine resistance) strains in culture to quantify the IC50 for extracts and fractions. Promising fractions of root part of plant were subjected to silica gel column chromatography to obtain pure compounds and their structures were elucidated by detailed spectroscopic analysis. Pure compounds were also tested against Pf3D7 and PfINDO strains. A rapid and simple UPLC-DAD method was developed for the identification and quantification of pharmaceutically important metabolites of C. pareira. RESULTS Among different extracts, the hydro ethanolic extract of root part of C. pareira was found most active with IC50 values (μg/ml) of 1.42 and 1.15 against Pf 3D7 and Pf INDO, respectively. Tested against Pf 3D7 the most potent fractions were root ethyl acetate fraction (IC50 4.0 μg/ml), stem water fraction (IC50 4.4 μg/ml), and root water fraction (IC50 8.5 μg/ml). Further, phytochemical investigation of active fractions of root part led to the isolation and characterization of a new isoquinoline alkaloid, namely pareirarine (8), along with five known compounds magnoflorine (5), magnocurarine (10), salutaridine (11), cissamine (13) and hayatinine (15). Hayatinine (15), a bisbenzylisoquinoline alkaloid, isolated from root ethyl acetate fraction was most promising compound with IC50 of 0.41 μM (Pf INDO) and 0.509 μM (Pf 3D7). Magnocurarine (10) and cissamine (13) were also found active with IC50 values of 12.51 and 47.34 μM against Pf INDO and 12.54 and 8.76 μM against Pf 3D7, respectively. A total of thirty compounds were detected in studied extracts and fractions, structures were assigned to 15 of these and five of these biologically important compounds were quantified. Isolation of saluteridine (11) from C. pareira and the evaluation of antiplasmodial activity of pure compound from C. pariera is disclosed for the first time. CONCLUSION This study concludes that the antimalarial potential of C. pareira may be attributed to isoquinoline type alkaloids present in this plant and also provides the scientific evidence for the traditional use of this plant in treatment of malaria.
Collapse
Affiliation(s)
- Vinod Bhatt
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur, Himachal Pradesh, 176 061, India
| | - Surekha Kumari
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur, Himachal Pradesh, 176 061, India
| | - Pooja Upadhyay
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prakhar Agrawal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur, Himachal Pradesh, 176 061, India.
| |
Collapse
|
23
|
Fan M, Tian Y, Chen G, Sarker SD, Nahar L, Wu J, Li N, Guo M. Enrichment and analysis of quaternary alkaloids from Zanthoxylum simulans using weak cation exchange solid-phase extraction coupled with LC-MS. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:727-734. [PMID: 31317605 DOI: 10.1002/pca.2860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Quaternary alkaloids (QAs) are the major alkaloids in several traditional Chinese medicines, especially in Zanthoxylum simulans. However, few studies on enrichment of QAs from Z. simulans were conducted due to their high polarity and low content. OBJECTIVE To develop a weak cation exchange (WCX) solid-phase extraction (SPE) coupled with liquid chromatography mass spectrometry (LC-MS) method to enrich and identify QAs from Z. simulans. Meanwhile, the qualitative and quantitative analyses of QAs were carried out based on the optimum conditions of the method. METHODS Fresh stem bark of Z. simulans was extracted with 70% aqueous methanol and enriched by WCX-SPE. A high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) with an electrospray ionisation (ESI) source was used for the qualitative and quantitative analyses of QAs. RESULTS Significant improvements were observed in resolution and abundance of the peaks with WCX-SPE. The linearity, limit of detection (LOD) and limit of quantification (LOQ) were determined for this analytical method. The linear relationship (A = 338.85C - 187.72, R2 = 0.99) was explored in the range of 0.5 to 312.5 μg/mL for chelerythrine. The LOD and LOQ for chelerythrine standard solutions were 0.0539 μg/mL and 0.1798 μg/mL, respectively. In addition, 22 peaks were detected successfully with WCX-SPE and nine of them are undetectable without the processing of WCX-SPE. CONCLUSION A highly selective and efficient method for simultaneous enrichment and identification of QAs from crude extract of Z. simulans was developed for the first time by combining WCX-SPE with LC-MS.
Collapse
Affiliation(s)
- Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongqiang Tian
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Satyajit D Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jianlin Wu
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao
| | - Na Li
- State Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Taipa, Macao
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|