1
|
Valdes I, Suzarte E, Lazo L, Cobas K, Cabrales A, Pérez Y, Garateix R, Silva JA, Aguilar JC, Guzman CA, Guillén G. Addition of nucleotide adjuvants enhances the immunogenicity of a recombinant subunit vaccine against the Zika virus in BALB/c mice. Vaccine 2024; 42:126213. [PMID: 39138071 DOI: 10.1016/j.vaccine.2024.126213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Zika virus (ZIKV) infection remains a global public health problem. After the "Public Health Emergencies of International Concern" declared in February 2016, the incidence of new infections by this pathogen has been decreasing in many areas. However, there is still a likely risk that ZIKV will spread to more countries. To date, there is no vaccine or antiviral drug available to prevent or treat Zika virus infection. In the Zika vaccine development, those based on protein subunits are attractive as a non-replicable platform due to their potentially enhanced safety profile to be used in all populations. However, these vaccines frequently require multiple doses and adjuvants to achieve protective immunity. In this study we show the immunological evaluation of new formulations of the recombinant protein ZEC, which combines regions of domain III of the envelope and the capsid from ZIKV. Two nucleotide-based adjuvants were used to enhance the immunity elicited by the vaccine candidate ZEC. ODN 39M or c-di-AMP was incorporated as immunomodulator into the formulations combined with aluminum hydroxide. Following immunizations in immunocompetent BALB/c mice, the formulations stimulated high IgG antibodies. Although the IgG subtypes suggested a predominantly Th1-biased immune response by the formulation including the ODN 39M, cellular immune responses measured by IFNγ secretion from spleen cells after in vitro stimulations were induced by both immunomodulators. These results demonstrate the capacity of both immunomodulators to enhance the immunogenicity of the recombinant subunit ZEC as a vaccine candidate against ZIKV.
Collapse
MESH Headings
- Animals
- Mice, Inbred BALB C
- Zika Virus/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Zika Virus Infection/prevention & control
- Zika Virus Infection/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Mice
- Female
- Adjuvants, Immunologic/administration & dosage
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Immunogenicity, Vaccine
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Adjuvants, Vaccine
- Immunity, Cellular
- Viral Envelope Proteins/immunology
- Capsid Proteins/immunology
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/immunology
Collapse
Affiliation(s)
- Iris Valdes
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba.
| | - Edith Suzarte
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Laura Lazo
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Karem Cobas
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Yusleidi Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Rocío Garateix
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - José A Silva
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Julio C Aguilar
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Germany
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, P.O. Box 6162, Havana 6 10 600, Cuba
| |
Collapse
|
2
|
Botosso VF, Precioso AR, Wilder-Smith A, de Oliveira DBL, de Oliveira FBL, De Oliveira CM, Soares CP, Oliveira LTL, dos Santo RMV, de Agostini Utescher CL, Coutinho FAB, Massad E. Seroprevalence of Zika in Brazil stratified by age and geographic distribution. Epidemiol Infect 2023; 151:1-16. [PMID: 37965751 PMCID: PMC10728971 DOI: 10.1017/s0950268823001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 11/16/2023] Open
Abstract
Congenital Zika is a devastating consequence of maternal Zika virus infections. Estimates of age-dependent seroprevalence profiles are central to our understanding of the force of Zika virus infections. We set out to calculate the age-dependent seroprevalence of Zika virus infections in Brazil. We analyzed serum samples stratified by age and geographic location, collected from 2016 to 2019, from about 16,000 volunteers enrolled in a Phase 3 dengue vaccine trial led by the Institute Butantan in Brazil. Our results show that Zika seroprevalence has a remarkable age-dependent and geographical distribution, with an average age of the first infection varying from region to region, ranging from 4.97 (3.03–5.41) to 7.24 (6.98–7.90) years. The calculated basic reproduction number, , varied from region to region, ranging from 1.18 (1.04–1.41) to 2.33 (1.54–3.85). Such data are paramount to determine the optimal age to vaccinate against Zika, if and when such a vaccine becomes available.
Collapse
Affiliation(s)
| | | | - Annelies Wilder-Smith
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | - Eduardo Massad
- Instituto Butantan, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
- Fundação Getúlio Vargas, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Valega-Mackenzie W, Ríos-Soto K, Lenhart S. Optimal control applied to Zika virus epidemics in Colombia and Puerto Rico. J Theor Biol 2023; 575:111647. [PMID: 39492547 DOI: 10.1016/j.jtbi.2023.111647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
Zika virus (ZIKV) is a mostly non-lethal disease in humans transmitted by mosquitoes or humans that can produce severe brain defects such as microcephaly in babies and Guillain-Barré syndrome in elderly adults. The use of optimal control strategies involving information campaigns about insect repellents and condoms alongside an available safe and effective vaccine can prevent the number of infected humans with ZIKV. A system of nonlinear ordinary differential equations is formulated for the transmission dynamics of ZIKV in the presence of three control strategies to evaluate the impact of various scenarios during a ZIKV epidemic. In addition, we estimate parameters using weekly incidence data from previous ZIKV outbreaks in Colombia and Puerto Rico to capture the dynamics of an epidemic in each country when control measures are available. The basic reproduction number, R0, of each country is calculated using estimated parameters (without the controls). The vector-borne transmission threshold (Rv) is dominant in both countries , but the sexual transmission threshold (Rd) in Colombia is considerably higher than in Puerto Rico. Numerical simulations for Colombia show that the most effective strategies are to use three controls since the start of the outbreak. However, for Puerto Rico only information campaigns about mosquito repellents and vaccination are the most effective ways to mitigate the epidemic.
Collapse
Affiliation(s)
| | - Karen Ríos-Soto
- Department of Mathematics, University of Puerto Rico, Mayagüez, United States of America
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, United States of America
| |
Collapse
|
4
|
Koren MA, Lin L, Eckels KH, De La Barrera R, Dussupt V, Donofrio G, Sondergaard EL, Mills KT, Robb ML, Lee C, Adedeji O, Keiser PB, Curley JM, Copeland NK, Crowell TA, Hutter JN, Hamer MJ, Valencia-Ruiz A, Darden J, Peel S, Amare MF, Mebrahtu T, Costanzo M, Krebs SJ, Gromowski GD, Jarman RG, Thomas SJ, Michael NL, Modjarrad K. Safety and immunogenicity of a purified inactivated Zika virus vaccine candidate in adults primed with a Japanese encephalitis virus or yellow fever virus vaccine in the USA: a phase 1, randomised, double-blind, placebo-controlled clinical trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:1175-1185. [PMID: 37390836 PMCID: PMC10877583 DOI: 10.1016/s1473-3099(23)00192-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Zika virus infection is a threat to at-risk populations, causing major birth defects and serious neurological complications. Development of a safe and efficacious Zika virus vaccine is, therefore, a global health priority. Assessment of heterologous flavivirus vaccination is important given co-circulation of Japanese encephalitis virus and yellow fever virus with Zika virus. We investigated the effect of priming flavivirus naive participants with a licensed flavivirus vaccine on the safety and immunogenicity of a purified inactivated Zika vaccine (ZPIV). METHODS This phase 1, placebo-controlled, double-blind trial was done at the Walter Reed Army Institute of Research Clinical Trials Center in Silver Spring, MD, USA. Eligible participants were healthy adults aged 18-49 years, with no detectable evidence of previous flavivirus exposure (by infection or vaccination), as measured by a microneutralisation assay. Individuals with serological evidence of HIV, hepatitis B, or hepatitis C infection were excluded, as were pregnant or breastfeeding women. Participants were recruited sequentially into one of three groups (1:1:1) to receive no primer, two doses of intramuscular Japanese encephalitis virus vaccine (IXIARO), or a single dose of subcutaneous yellow fever virus vaccine (YF-VAX). Within each group, participants were randomly assigned (4:1) to receive intramuscular ZPIV or placebo. Priming vaccinations were given 72-96 days before ZPIV. ZPIV was administered either two or three times, at days 0, 28, and 196-234. The primary outcome was occurrence of solicited systemic and local adverse events along with serious adverse events and adverse events of special interest. These data were analysed in all participants receiving at least one dose of ZPIV or placebo. Secondary outcomes included measurement of neutralizing antibody responses following ZPIV vaccination in all volunteers with available post-vaccination data. This trial is registered at ClinicalTrials.gov, NCT02963909. FINDINGS Between Nov 7, 2016, and Oct 30, 2018, 134 participants were assessed for eligibility. 21 did not meet inclusion criteria, 29 met exclusion criteria, and ten declined to participate. 75 participants were recruited and randomly assigned. 35 (47%) of 75 participants were male and 40 (53%) were female. 25 (33%) of 75 participants identified as Black or African American and 42 (56%) identified as White. These proportions and other baseline characteristics were similar between groups. There were no statistically significant differences in age, gender, race, or BMI between those who did and did not opt into the third dose. All participants received the planned priming IXIARO and YF-VAX vaccinations, but one participant who received YF-VAX dropped out before receipt of the first dose of ZPIV. 50 participants received a third dose of ZPIV or placebo, including 14 flavivirus-naive people, 17 people primed with Japanese encephalitis virus vaccine, and 19 participants primed with yellow fever vaccine. Vaccinations were well tolerated across groups. Pain at the injection site was the only adverse event reported more frequently in participants who received ZPIV than in those who received placebo (39 [65%] of 60 participants, 95% CI 51·6-76·9 who received ZPIV vs three [21·4%] of 14 who received placebo; 4·7-50·8; p=0·006). No patients had an adverse event of special interest or serious adverse event related to study treatment. At day 57, the flavivirus-naive volunteers had an 88% (63·6-98·5, 15 of 17) seroconversion rate (neutralising antibody titre ≥1:10) and geometric mean neutralising antibody titre (GMT) against Zika virus of 100·8 (39·7-255·7). In the Japanese encephalitis vaccine-primed group, the day 57 seroconversion rate was 31·6% (95% CI 12·6-56·6, six of 19) and GMT was 11·8 (6·1-22·8). Participants primed with YF-VAX had a seroconversion rate of 25% (95% CI 8·7-49·1, five of 20) and GMT of 6·6 (5·2-8·4). Humoral immune responses rose substantially following a third dose of ZPIV, with seroconversion rates of 100% (69·2-100; ten of ten), 92·9% (66·1-99·8; 13 of 14), and 60% (32·2-83·7, nine of 15) and GMTs of 511·5 (177·6-1473·6), 174·2 (51·6-587·6), and 79 (19·0-326·8) in the flavivirus naive, Japanese encephalitis vaccine-primed, and yellow fever vaccine-primed groups, respectively. INTERPRETATION We found ZPIV to be well tolerated in flavivirus naive and primed adults but that immunogenicity varied significantly according to antecedent flavivirus vaccination status. Immune bias towards the flavivirus antigen of initial exposure and the timing of vaccination may have impacted responses. A third ZPIV dose overcame much, but not all, of the discrepancy in immunogenicity. The results of this phase 1 clinical trial have implications for further evaluation of ZPIV's immunisation schedule and use of concomitant vaccinations. FUNDING Department of Defense, Defense Health Agency; National Institute of Allergy and Infectious Diseases; and Division of Microbiology and Infectious Disease.
Collapse
Affiliation(s)
- Michael A Koren
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - Leyi Lin
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kenneth H Eckels
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rafael De La Barrera
- Pilot Bioproduction Facility, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina Donofrio
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Erica L Sondergaard
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kristin T Mills
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Christine Lee
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Paul B Keiser
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Justin M Curley
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nathanial K Copeland
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Trevor A Crowell
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jack N Hutter
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Melinda J Hamer
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Anais Valencia-Ruiz
- Diagnostic Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Janice Darden
- Diagnostic Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sheila Peel
- Diagnostic Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Mihret F Amare
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Tsedal Mebrahtu
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Margaret Costanzo
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Stephen J Thomas
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
5
|
Valdes I, Gil L, Lazo L, Cobas K, Romero Y, Bruno A, Suzarte E, Pérez Y, Cabrales A, Ramos Y, Hermida L, Guillén G. Recombinant protein based on domain III and capsid regions of zika virus induces humoral and cellular immune response in immunocompetent BALB/c mice. Vaccine 2023; 41:5892-5900. [PMID: 37599141 DOI: 10.1016/j.vaccine.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Zika virus infection continues to be a global concern for human health due to the high-risk association of the disease with neurological disorders and microcephaly in newborn. Nowadays, no vaccine or specific antiviral treatment is available, and the development of safe and effective vaccines is yet a challenge. In this study, we obtained a novel subunit vaccine that combines two regions of zika genome, domain III of the envelope and the capsid, in a chimeric protein in E. coli bacteria. The recombinant protein was characterized with polyclonal anti-ZIKV and anti-DENV antibodies that corroborate the specificity of the molecule. In addition, the PBMC from zika-immune donors stimulated with the ZEC recombinant antigen showed the capacity to recall the memory T cell response previously generated by the natural infection. The chimeric protein ZEC was able to self-assemble after combination with an immunomodulatory specific oligonucleotide to form aggregates. The inoculation of BALB/c mice with ZEC aggregated and not aggregated form of the protein showed a similar humoral immune response, although the aggregated variant induced more cell-mediated immunity evaluated by in vitro IFNγ secretion. In this study, we propose a novel vaccine candidate against the zika disease based on a recombinant protein that can stimulate both arms of the immune system.
Collapse
Affiliation(s)
- Iris Valdes
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba.
| | - Lázaro Gil
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Laura Lazo
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Karem Cobas
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yaremis Romero
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Andy Bruno
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Edith Suzarte
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yusleidi Pérez
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Ania Cabrales
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Yassel Ramos
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Lisset Hermida
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology (CIGB), Avenue 31, Playa, P.O. Box 6162, Havana 10600, Cuba
| |
Collapse
|
6
|
Crooks CM, Chan C, Permar SR. Leveraging preclinical study designs to close gaps in vaccine development for perinatal pathogens. J Exp Med 2023; 220:e20230184. [PMID: 37289272 PMCID: PMC10250551 DOI: 10.1084/jem.20230184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Vaccines to perinatal pathogens are critical for both reducing the burden of endemic pathogens and preparing for the next pandemic. Although they are often at greater risk of severe disease from infection, pregnant people and children are routinely marginalized in the vaccine development process. We highlight several challenges in the vaccine development process and how three tools-translational animal models, human cohort studies of natural infection, and innovative data-use strategies-can speed vaccine development and ensure equity for pregnant people and children in the next pandemic.
Collapse
Affiliation(s)
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Sadeer NB, El Kalamouni C, Khalid A, Abdalla AN, Zengin G, Khoa Bao LV, Mahomoodally MF. Secondary metabolites as potential drug candidates against Zika virus, an emerging looming human threat: Current landscape, molecular mechanism and challenges ahead. J Infect Public Health 2023; 16:754-770. [PMID: 36958171 DOI: 10.1016/j.jiph.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Nature has given us yet another wild card in the form of Zika virus (ZIKV). It was found in 1947, but has only recently become an important public health risk, predominantly to pregnant women and their unborn offspring. Currently, no specific therapeutic agent exists for ZIKV and treatment is mainly supportive. Natural products (NPs) can serve as a major source of potent antiviral drugs. To create this review, a comprehensive search was conducted from different databases (PubMed, ScienceDirect, Google scholar). A statistical analysis on the number of publications related to NPs and ZIKV was conducted to analyse the trend in research covering the period 1980-2020. From the data collated in this review, a number of NPs have been found to be inhibitive towards different stages of the ZIKV lifecycle in in vitro studies. For instance, baicalin, (-)-epigallocatechin gallate, curcumin, nanchangmycin, gossypol, cephaeline, emetine, resveratrol, berberine, amongst others, can prevent viral entry by attacking ZIKV E protein. Compounds luteolin, myricetin, astragalin, rutin, (-)-epigallocatechin gallate, carnosine, pedalitin, amongst others, inhibited NS2B-NS3 protease activity which consequently hamper replication. Interestingly, a few NPs had the ability to arrest both viral entry and replication, namely baicalin, (-)-epigallocatechin gallate, curcumin, cephaeline, emetine, and resveratrol. To the best of our knowledge, we obtained only one in vivo study conducted on emetine and results showed that it decreased the levels of circulating ZIKV by approximately 10-fold. Our understanding on NPs exhibiting anti-ZIKV effects in in vivo testing as well as clinical trials is limited. Our trend analysis showed that interest in searching for a cure or prevention against Zika in NPs is negligible and there are no publications yet covering the clinical evaluation. NPs with anti-ZIKV property can a winning strategy in controlling the bio-burden of an epidemic or pandemic. We therefore opine that in the future, more research should be devoted to ZIKV. This review attempts to provide baseline data and roadmap to pursuit detailed investigations for developing potent and novel therapeutic agents to prevent and cure ZIKV infection.
Collapse
Affiliation(s)
- Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Chaker El Kalamouni
- Unité Mixte Processus Infectieux en Milieu Insulaire Tropical, Plateforme Technologique CYROI, Université de la Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, 94791 Sainte Clotilde, La Réunion, France.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, the Republic of the Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Campus, 42250 Konya, Turkey
| | - Le Van Khoa Bao
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam.
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai 600077, India
| |
Collapse
|
8
|
Yu W, Zhang B, Hong X, Cai H, Wang Y, Lu J, Hu X, Cao B. Identification of desoxyrhapontigenin as a novel antiviral agent against congenital Zika virus infection. Antiviral Res 2023; 211:105542. [PMID: 36646387 DOI: 10.1016/j.antiviral.2023.105542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Zika virus (ZIKV) infection arises as a global health threat owing to its association with Guillain-Barre syndrome and microcephaly in adults and fetuses since the most recent epidemics. Although extraordinary efforts have been underway globally to identify safe and effective treatments for ZIKV, therapeutic progressions seem to remain stagnant, especially for treating congenital ZIKV infection. Bio-compounds from medicinal plants evolutionarily optimized as drug-like molecules offer eligible sources of pharmaceuticals and lead drugs to fight against viral infections. Here, we identified desoxyrhapontigenin (DES), a naturally occurring bioactive product, as the strongest inhibitory compound against ZIKV infection among six conventional polyphenols in vitro. We also leveraged the trophoblast cell line, human trophoblast stem cells, and complex placental organoid models to provide solid evidence to support the anti-ZIKV bioactivity of DES. Notably, DES treatment effectively reduced the ZIKV burden in serum and target tissues, and correspondingly improved ZIKV-induced pathologic changes including weight loss, tissue inflammation, cell apoptosis, and adverse pregnancy outcomes, while it did not lead to obvious toxicity in both adult and pregnant mice. Furthermore, mechanistic studies revealed that DES could suppress ZIKV entry via dual mechanisms of direct targeting ZIKV E proteins and downregulating putative ZIKV receptors. These findings elucidate a previously unappreciated protective role of desoxyrhapontigenin against ZIKV infection both in vitro and in vivo, which shed light on the development of a novel and potent treatment for congenital ZIKV infection.
Collapse
Affiliation(s)
- Wenzhe Yu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Beiang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, China
| | - Xiao Hong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China
| | - Xiaoqian Hu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian, 361002, China.
| | - Bin Cao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian, 361002, China.
| |
Collapse
|
9
|
Promising efforts to develop an mRNA vaccine against Zika. THE LANCET. INFECTIOUS DISEASES 2023; 23:520-522. [PMID: 36682366 DOI: 10.1016/s1473-3099(22)00827-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 01/21/2023]
|
10
|
Thirumoorthy G, Tarachand SP, Nagella P, Veerappa Lakshmaiah V. Identification of potential ZIKV NS2B-NS3 protease inhibitors from Andrographis paniculata: An insilico approach. J Biomol Struct Dyn 2022; 40:11203-11215. [PMID: 34319220 DOI: 10.1080/07391102.2021.1956592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Andrographis paniculata is a widely used medicinal plant for treating a variety of human infections. The plant's bioactives have been shown to have a variety of biological activities in various studies, including potential antiviral, anticancer, and anti-inflammatory effects in a variety of experimental models. The present investigation identifies a potent antiviral compound from the phytochemicals of Andrographis paniculata against Zika virus using computational docking simulation. The ZIKV NS2B-NS3 protease, which is involved in viral replication, has been considered as a promising target for Zika virus drug development. The bioactives from Andrographis paniculata, along with standard drugs as control were screened for their binding energy using AutoDock 4.2 against the viral protein. Based on the higher binding affinity the phytocompounds Bisandrographolide A (-11.7), Andrographolide (-10.2) and Andrographiside (-9.7) have convenient interactions at the binding site of target protein (ZIKV NS2B-NS3 protease) in comparison with the control drug. In addition, using insilico tools, the selected high-scoring molecules were analysed for pharmacological properties such as ADME (Absorption, Distribution, Metabolism, and Excretion profile) and toxicity. Andrographolide was reported to have strong pharmacodynamics properties and target accuracy based on the Lipinski rule and lower binding energy. The selected bioactives showed lower AMES toxicity and has potent antiviral activity against zika virus targets. Further, MD simulation studies validated Bisandrographolide A & Andrographolide as a potential hit compound by exhibiting good binding with the target protein. The compounds exhibited good hydrogen bonds with ZIKV NS2B-NS3 protease. As a result, bioactives from the medicinal plant Andrographis paniculata can be studied in vitro and in vivo to develop an antiviral phytopharmaceutical for the successful treatment of zika virus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Sharma Pooja Tarachand
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | | |
Collapse
|
11
|
Quan Y, Zhou R, Yang B, Wang L, Wang Y, Ji Y, Li Y, Cen S. Identification of an N-phenylsulfonyl-2-(piperazin-1-yl)methyl-benzonitrile derivative as Zika virus entry inhibitor. Bioorg Chem 2022; 130:106265. [DOI: 10.1016/j.bioorg.2022.106265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
|
12
|
Thompson D, Guenther B, Manayani D, Mendy J, Smith J, Espinosa DA, Harris E, Alexander J, Vang L, Morello CS. Zika virus-like particle vaccine fusion loop mutation increases production yield but fails to protect AG129 mice against Zika virus challenge. PLoS Negl Trop Dis 2022; 16:e0010588. [PMID: 35793354 PMCID: PMC9292115 DOI: 10.1371/journal.pntd.0010588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/18/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus with maternal infection associated with preterm birth, congenital malformations, and fetal death, and adult infection associated with Guillain-Barré syndrome. Recent widespread endemic transmission of ZIKV and the potential for future outbreaks necessitate the development of an effective vaccine. We developed a ZIKV vaccine candidate based on virus-like-particles (VLPs) generated following transfection of mammalian HEK293T cells using a plasmid encoding the pre-membrane/membrane (prM/M) and envelope (E) structural protein genes. VLPs were collected from cell culture supernatant and purified by column chromatography with yields of approximately 1-2mg/L. To promote increased particle yields, a single amino acid change of phenylalanine to alanine was made in the E fusion loop at position 108 (F108A) of the lead VLP vaccine candidate. This mutation resulted in a modest 2-fold increase in F108A VLP production with no detectable prM processing by furin to a mature particle, in contrast to the lead candidate (parent). To evaluate immunogenicity and efficacy, AG129 mice were immunized with a dose titration of either the immature F108A or lead VLP (each alum adjuvanted). The resulting VLP-specific binding antibody (Ab) levels were comparable. However, geometric mean neutralizing Ab (nAb) titers using a recombinant ZIKV reporter were significantly lower with F108A immunization compared to lead. After virus challenge, all lead VLP-immunized groups showed a significant 3- to 4-Log10 reduction in mean ZIKV RNAemia levels compared with control mice immunized only with alum, but the RNAemia reduction of 0.5 Log10 for F108A groups was statistically similar to the control. Successful viral control by the lead VLP candidate following challenge supports further vaccine development for this candidate. Notably, nAb titer levels in the lead, but not F108A, VLP-immunized mice inversely correlated with RNAemia. Further evaluation of sera by an in vitro Ab-dependent enhancement assay demonstrated that the F108A VLP-induced immune sera had a significantly higher capacity to promote ZIKV infection in FcγR-expressing cells. These data indicate that a single amino acid change in the fusion loop resulted in increased VLP yields but that the immature F108A particles were significantly diminished in their capacity to induce nAbs and provide protection against ZIKV challenge. Zika virus (ZIKV) is transmitted by mosquitoes and is a serious health threat due to potential epidemic spread. Infection in adults may lead to Guillain-Barré syndrome, a neurological disorder, or may cause harm to a developing fetus resulting in preterm birth, fetal death, or devastating congenital malformations. There are currently no approved vaccines against ZIKV. We previously developed a lead candidate vaccine based on a virus-like particle (VLP) that was generated in tissue culture. This ZIKV shell is devoid of any viral genetic material. In previous studies, this lead VLP candidate generated neutralizing antibodies (nAbs) that recognized wild-type ZIKV and prevented viral replication in both mice and non-human primates. To increase production of the lead VLP candidate and decrease cost-of-goods, we introduced a single amino acid change, phenylalanine to alanine, in the envelope glycoprotein. This change resulted in a modest increase in VLP yield. However, this single amino acid change resulted in reduced induction of nAbs following immunization and no significant reduction of RNAemia following challenge compared to the lead candidate. The results of this study suggest this investigational vaccine candidate is not suitable for further vaccine development and that ZIKV VLP maturation may have an important role in protection.
Collapse
Affiliation(s)
- Danielle Thompson
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Ben Guenther
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Darly Manayani
- PaxVax Inc., San Diego, California, United States of America
| | - Jason Mendy
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Jonathan Smith
- PaxVax Inc., San Diego, California, United States of America
| | - Diego A. Espinosa
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Jeff Alexander
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- PaxVax Inc., San Diego, California, United States of America
| | - Lo Vang
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | | |
Collapse
|
13
|
Mirza MU, Alanko I, Vanmeert M, Muzzarelli KM, Salo-Ahen OMH, Abdullah I, Kovari IA, Claes S, De Jonghe S, Schols D, Schinazi RF, Kovari LC, Trant JF, Ahmad S, Froeyen M. The discovery of Zika virus NS2B-NS3 inhibitors with antiviral activity via an integrated virtual screening approach. Eur J Pharm Sci 2022; 175:106220. [PMID: 35618201 DOI: 10.1016/j.ejps.2022.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022]
Abstract
With expanding recent outbreaks and a lack of treatment options, the Zika virus (ZIKV) poses a severe health concern. The availability of ZIKV NS2B-NS3 co-crystallized structures paved the way for rational drug discovery. A computer-aided structure-based approach was used to screen a diverse library of compounds against ZIKV NS2B-NS3 protease. The top hits were selected based on various binding free energy calculations followed by per-residue decomposition analysis. The selected hits were then evaluated for their biological potential with ZIKV protease inhibition assay and antiviral activity. Among 26 selected compounds, 8 compounds showed promising activity against ZIKV protease with a percentage inhibition of greater than 25 and 3 compounds displayed ∼50% at 10 µM, which indicates an enrichment rate of approximately 36% (threshold IC50 < 10 µM) in the ZIKV-NS2B-NS3 protease inhibition assay. Of these, only one compound (23) produced whole-cell anti-ZIKV activity, and the binding mode of 23 was extensively analyzed through long-run molecular dynamics simulations. The current study provides a promising starting point for the further development of novel compounds against ZIKV.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium; Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Ida Alanko
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Michiel Vanmeert
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium
| | - Kendall M Muzzarelli
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Outi M H Salo-Ahen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University, FI-20520 Turku, Finland; Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, FI-20520 Turku, Finland
| | - Iskandar Abdullah
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Iulia A Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - Sandra Claes
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Steven De Jonghe
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Herestraat 49, box 1043, Leuven, Belgium
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta 30322, GA, USA
| | - Ladislau C Kovari
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit 48201, MI, USA
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, Windsor N9B 3P4, ON, Canada
| | - Sarfraz Ahmad
- Drug Design Development Research Group, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Matheus Froeyen
- KU Leuven, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Herestraat 49, box 1041, Leuven 3000, Belgium.
| |
Collapse
|
14
|
Design of Vaccine Targeting Zika Virus Polyprotein by Immunoinformatics Technique. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Rong H, Qi M, Pan J, Sun Y, Gao J, Zhang X, Li W, Zhang B, Zhang XE, Cui Z. Self-Assembling Nanovaccine Confers Complete Protection Against Zika Virus Without Causing Antibody-Dependent Enhancement. Front Immunol 2022; 13:905431. [PMID: 35615356 PMCID: PMC9124840 DOI: 10.3389/fimmu.2022.905431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/14/2022] [Indexed: 01/20/2023] Open
Abstract
The Zika virus (ZIKV) epidemic poses a substantial threat to the public, and the development of safe and effective vaccines is a demanding challenge. In this study, we constructed a kind of self-assembling nanovaccine which confers complete protection against ZIKV infection. The ZIKV envelop protein domain III (zEDIII) was presented on recombinant human heavy chain ferritin (rHF) to form the zEDIII-rHF nanoparticle. Immunization of mice with zEDIII-rHF nanoparticle in the absence of an adjuvant induced robust humoral and cellular immune responses. zEDIII-rHF vaccination conferred complete protection against lethal infection with ZIKV and eliminated pathological symptoms in the brain. Importantly, the zEDIII-rHF nanovaccine induced immune response did not cross-react with dengue virus-2, overcoming the antibody-dependent enhancement (ADE) problem that is a safety concern for ZIKV vaccine development. Our constructed zEDIII-rHF nanovaccine, with superior protective performance and avoidance of ADE, provides an effective and safe vaccine candidate against ZIKV.
Collapse
Affiliation(s)
- Heng Rong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingdi Pan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiawang Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Bo Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zongqiang Cui,
| |
Collapse
|
16
|
Zika M—A Potential Viroporin: Mutational Study and Drug Repurposing. Biomedicines 2022; 10:biomedicines10030641. [PMID: 35327443 PMCID: PMC8944957 DOI: 10.3390/biomedicines10030641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022] Open
Abstract
Genus Flavivirus contains several important human pathogens. Among these, the Zika virus is an emerging etiological agent that merits concern. One of its structural proteins, prM, plays an essential role in viral maturation and assembly, making it an attractive drug and vaccine development target. Herein, we have characterized ZikV-M as a potential viroporin candidate using three different bacteria-based assays. These assays were subsequently employed to screen a library of repurposed drugs from which ten compounds were identified as ZikV-M blockers. Mutational analyses of conserved amino acids in the transmembrane domain of other flaviviruses, including West Nile and Dengue virus, were performed to study their role in ion channel activity. In conclusion, our data show that ZikV-M is a potential ion channel that can be used as a drug target for high throughput screening and drug repurposing.
Collapse
|
17
|
Lee LJ, Komarasamy TV, Adnan NAA, James W, Rmt Balasubramaniam V. Hide and Seek: The Interplay Between Zika Virus and the Host Immune Response. Front Immunol 2021; 12:750365. [PMID: 34745123 PMCID: PMC8566937 DOI: 10.3389/fimmu.2021.750365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
Zika virus (ZIKV) received worldwide attention over the past decade when outbreaks of the disease were found to be associated with severe neurological syndromes and congenital abnormalities. Unlike most other flaviviruses, ZIKV can spread through sexual and transplacental transmission, adding to the complexity of Zika pathogenesis and clinical outcomes. In addition, the spread of ZIKV in flavivirus-endemic regions, and the high degree of structural and sequence homology between Zika and its close cousin Dengue have raised questions on the interplay between ZIKV and the pre-existing immunity to other flaviviruses and the potential immunopathogenesis. The Zika epidemic peaked in 2016 and has affected over 80 countries worldwide. The re-emergence of large-scale outbreaks in the future is certainly a possibility. To date, there has been no approved antiviral or vaccine against the ZIKV. Therefore, continuing Zika research and developing an effective antiviral and vaccine is essential to prepare the world for a future Zika epidemic. For this purpose, an in-depth understanding of ZIKV interaction with many different pathways in the human host and how it exploits the host immune response is required. For successful infection, the virus has developed elaborate mechanisms to escape the host response, including blocking host interferon response and shutdown of certain host cell translation. This review provides a summary on the key host factors that facilitate ZIKV entry and replication and the mechanisms by which ZIKV antagonizes antiviral innate immune response and involvement of adaptive immune response leading to immunopathology. We also discuss how ZIKV modulates the host immune response during sexual transmission and pregnancy to induce infection, how the cross-reactive immunity from other flaviviruses impacts ZIKV infection, and provide an update on the current status of ZIKV vaccine development.
Collapse
Affiliation(s)
- Lim Jack Lee
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Nur Amelia Azreen Adnan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod Rmt Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
18
|
Vicente Santos AC, Guedes-da-Silva FH, Dumard CH, Ferreira VNS, da Costa IPS, Machado RA, Barros-Aragão FGQ, Neris RLS, dos-Santos JS, Assunção-Miranda I, Figueiredo CP, Dias AA, Gomes AMO, de Matos Guedes HL, Oliveira AC, Silva JL. Yellow fever vaccine protects mice against Zika virus infection. PLoS Negl Trop Dis 2021; 15:e0009907. [PMID: 34735450 PMCID: PMC8594798 DOI: 10.1371/journal.pntd.0009907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/16/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Zika virus (ZIKV) emerged as an important infectious disease agent in Brazil in 2016. Infection usually leads to mild symptoms, but severe congenital neurological disorders and Guillain-Barré syndrome have been reported following ZIKV exposure. Creating an effective vaccine against ZIKV is a public health priority. We describe the protective effect of an already licensed attenuated yellow fever vaccine (YFV, 17DD) in type-I interferon receptor knockout mice (A129) and immunocompetent BALB/c and SV-129 (A129 background) mice infected with ZIKV. YFV vaccination provided protection against ZIKV, with decreased mortality in A129 mice, a reduction in the cerebral viral load in all mice, and weight loss prevention in BALB/c mice. The A129 mice that were challenged two and three weeks after the first dose of the vaccine were fully protected, whereas partial protection was observed five weeks after vaccination. In all cases, the YFV vaccine provoked a substantial decrease in the cerebral viral load. YFV immunization also prevented hippocampal synapse loss and microgliosis in ZIKV-infected mice. Our vaccine model is T cell-dependent, with AG129 mice being unable to tolerate immunization (vaccination is lethal in this mouse model), indicating the importance of IFN-γ in immunogenicity. To confirm the role of T cells, we immunized nude mice that we demonstrated to be very susceptible to infection. Immunization with YFV and challenge 7 days after booster did not protect nude mice in terms of weight loss and showed partial protection in the survival curve. When we evaluated the humoral response, the vaccine elicited significant antibody titers against ZIKV; however, it showed no neutralizing activity in vitro and in vivo. The data indicate that a cell-mediated response promotes protection against cerebral infection, which is crucial to vaccine protection, and it appears to not necessarily require a humoral response. This protective effect can also be attributed to innate factors, but more studies are needed to strengthen this hypothesis. Our findings open the way to using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak. Zika virus (ZIKV) is as an important infectious that may result in severe congenital neurological disorders. Our study reports that the current attenuated yellow fever vaccine is effective in immunizing against the infection caused by the Zika virus, due to the similarity between the two viruses. To study the efficacy of the vaccine, we used different mouse strains, including both animals with a healthy immune system (immunocompetent) and animals with compromised immune systems and therefore more susceptible to viral (immunocompromised) infections. The vaccine was given subcutaneously, as it does in humans. The animals were inoculated with the Zika virus directly into the brain—a protocol normally adopted in vaccine studies to simulate a high lethality infection. In all cases, the vaccinated mice developed a high degree of protection against Zika infection. Altogether, we demonstrate that the YFV vaccine elicits an immune response that protects against cerebral infection by ZIKV. Our findings suggest the possibility of using an available and inexpensive vaccine for large-scale immunization in the event of a ZIKV outbreak.
Collapse
Affiliation(s)
- Ana C. Vicente Santos
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisca H. Guedes-da-Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos H. Dumard
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Vivian N. S. Ferreira
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor P. S. da Costa
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ruana A. Machado
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rômulo L. S. Neris
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlio S. dos-Santos
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iranaia Assunção-Miranda
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia P. Figueiredo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André A. Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Andre M. O. Gomes
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Herbert L. de Matos Guedes
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| | - Andrea C. Oliveira
- Laboratório de Biologia Estrutural de Vírus, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| | - Jerson L. Silva
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Termodinâmica de Proteínas e Vírus Gregorio Weber, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- * E-mail: (HLMG); (ACO); j (JLS)
| |
Collapse
|
19
|
Wilder-Smith A, Brickley EB, Ximenes RADA, Miranda-Filho DDB, Turchi Martelli CM, Solomon T, Jacobs BC, Pardo CA, Osorio L, Parra B, Lant S, Willison HJ, Leonhard S, Turtle L, Ferreira MLB, de Oliveira Franca RF, Lambrechts L, Neyts J, Kaptein S, Peeling R, Boeras D, Logan J, Dolk H, Orioli IM, Neumayr A, Lang T, Baker B, Massad E, Preet R. The legacy of ZikaPLAN: a transnational research consortium addressing Zika. Glob Health Action 2021; 14:2008139. [PMID: 35377284 PMCID: PMC8986226 DOI: 10.1080/16549716.2021.2008139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Global health research partnerships with institutions from high-income countries and low- and middle-income countries are one of the European Commission's flagship programmes. Here, we report on the ZikaPLAN research consortium funded by the European Commission with the primary goal of addressing the urgent knowledge gaps related to the Zika epidemic and the secondary goal of building up research capacity and establishing a Latin American-European research network for emerging vector-borne diseases. Five years of collaborative research effort have led to a better understanding of the full clinical spectrum of congenital Zika syndrome in children and the neurological complications of Zika virus infections in adults and helped explore the origins and trajectory of Zika virus transmission. Individual-level data from ZikaPLAN`s cohort studies were shared for joint analyses as part of the Zika Brazilian Cohorts Consortium, the European Commission-funded Zika Cohorts Vertical Transmission Study Group, and the World Health Organization-led Zika Virus Individual Participant Data Consortium. Furthermore, the legacy of ZikaPLAN includes new tools for birth defect surveillance and a Latin American birth defect surveillance network, an enhanced Guillain-Barre Syndrome research collaboration, a de-centralized evaluation platform for diagnostic assays, a global vector control hub, and the REDe network with freely available training resources to enhance global research capacity in vector-borne diseases.
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden.,Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | - Tom Solomon
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, UK
| | - Bart C Jacobs
- Departments of Neurology and Immunology, Erasmus Universitair Medisch Centrum Rotterdam, The Netherlands
| | - Carlos A Pardo
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | | | | | - Suzannah Lant
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, UK
| | - Hugh J Willison
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Sonja Leonhard
- Departments of Neurology and Immunology, Erasmus Universitair Medisch Centrum Rotterdam, The Netherlands
| | - Lance Turtle
- NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, UK
| | | | | | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, 75015 Paris, France
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Suzanne Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Rosanna Peeling
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - James Logan
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Helen Dolk
- Centre for Maternal, Fetal and Infant Research, Institute for Nursing and Health Research, Ulster University, Ulster, United Kingdom
| | - Ieda M Orioli
- RELAMC and ECLAMC at Genetics Department, Federal University of Rio de Janeiro, Brazil
| | - Andreas Neumayr
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Trudie Lang
- The Global Health Network, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Bonny Baker
- The Global Health Network, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Eduardo Massad
- School of Medicine, University of Sao Paulo and Fundacao Getulio Vargas, Sao Paulo, Brazil
| | - Raman Preet
- Department of Epidemiology and Global Health, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Harrison JJ, Hobson-Peters J, Bielefeldt-Ohmann H, Hall RA. Chimeric Vaccines Based on Novel Insect-Specific Flaviviruses. Vaccines (Basel) 2021; 9:1230. [PMID: 34835160 PMCID: PMC8623431 DOI: 10.3390/vaccines9111230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Vector-borne flaviviruses are responsible for nearly half a billion human infections worldwide each year, resulting in millions of cases of debilitating and severe diseases and approximately 115,000 deaths. While approved vaccines are available for some of these viruses, the ongoing efficacy, safety and supply of these vaccines are still a significant problem. New technologies that address these issues and ideally allow for the safe and economical manufacture of vaccines in resource-poor countries where flavivirus vaccines are in most demand are urgently required. Preferably a new vaccine platform would be broadly applicable to all flavivirus diseases and provide new candidate vaccines for those diseases not yet covered, as well as the flexibility to rapidly pivot to respond to newly emerged flavivirus diseases. Here, we review studies conducted on novel chimeric vaccines derived from insect-specific flaviviruses that provide a potentially safe and simple system to produce highly effective vaccines against a broad spectrum of flavivirus diseases.
Collapse
Affiliation(s)
- Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| |
Collapse
|
21
|
Abdelzaher HM, Gabr AS, Saleh BM, Abdel Gawad RM, Nour AA, Abdelanser A. RNA Vaccines against Infectious Diseases: Vital Progress with Room for Improvement. Vaccines (Basel) 2021; 9:1211. [PMID: 34835142 PMCID: PMC8622374 DOI: 10.3390/vaccines9111211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
mRNA vaccines have amassed a strong interest from scientists and nonscientists alike for their potential in treating cancer and curbing the spread of infectious diseases. Their success has been bolstered by the COVID-19 pandemic as mRNA vaccines for the SARS-CoV-2 virus showed unrivaled efficiency and success. The strategy relies on the delivery of an RNA transcript that carries the sequence of an antigenic molecule into the body's cells where the antigen is manufactured. The lack of use of infectious pathogens and the fact that they are made of nucleic acids render these vaccines a favorable alternative to other vaccination modalities. However, mRNA vaccination still suffers from a great deal of hurdles starting from their safety, cellular delivery, uptake and response to their manufacturing, logistics and storage. In this review, we examine the premise of RNA vaccination starting from their conceptualization to their clinical applications. We also thoroughly discuss the advances in the field of RNA vaccination for infectious diseases. Finally, we discuss the challenges impeding their progress and shed light on potential areas of research in the field.
Collapse
Affiliation(s)
| | | | | | | | | | - Anwar Abdelanser
- Institute of Global Public Health, School of Sciences and Engineering, The American University in Cairo, Cairo 11835, Egypt; (H.M.A.); (A.S.G.); (B.M.S.); (R.M.A.G.); (A.A.N.)
| |
Collapse
|
22
|
Benazzato C, Russo FB, Beltrão-Braga PCB. An update on preclinical pregnancy models of Zika virus infection for drug and vaccine discovery. Expert Opin Drug Discov 2021; 17:19-25. [PMID: 34461793 DOI: 10.1080/17460441.2021.1973999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Congenital Zika syndrome is caused by Zika virus (ZIKV) infection during pregnancy and can culminate in structural and neurological defects in the fetus, including a spectrum of symptoms such as brain calcifications, hydrocephalus, holoprosencephaly, lissencephaly, ventriculomegaly, and microcephaly. Using animal models to study ZIKV infection during pregnancy represents a critical tool for understanding ZIKV pathophysiology, drug testing, vaccine development, and prevention of vertical transmission. AREAS COVERED In this review, the authors cover state-of-the-art preclinical pregnancy models of ZIKV infection for drug discovery and vaccine development to prevent vertical transmission. EXPERT OPINION The discovery of drugs against ZIKV infection represents an urgent necessity, and until now, no effective drug that can prevent the effects of vertical transmission has been tested in humans. Even after six years of the ZIKV outbreak in Brazil, no drugs or vaccines have been approved for use in humans. In part, this failure could be related to the lack of translatability from available preclinical models to humans.
Collapse
Affiliation(s)
- Cecilia Benazzato
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo, Brazil
| | - Fabiele Baldino Russo
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo, Brazil.,Scientific Plataform Pasteur/USP, São Paulo, Brazil
| | - Patricia Cristina Baleeiro Beltrão-Braga
- Disease Modeling Laboratory at Department of Microbiology, Institute of Biomedical Sciences, São Paulo, Brazil.,Scientific Plataform Pasteur/USP, São Paulo, Brazil
| |
Collapse
|
23
|
Zika virus infection in pregnant women and their children: A review. Eur J Obstet Gynecol Reprod Biol 2021; 265:162-168. [PMID: 34508989 DOI: 10.1016/j.ejogrb.2021.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) transmitted primarily by Aedes mosquitoes. ZIKV can be transmitted to humans by non-vector borne mechanisms such as sexual intercourse, maternal-foetal transmission or blood transfusion. In 2015, ZIKV emerged in the Americas, and spread to 87 countries and territories with autochthonous transmission, distributed across four of the six WHO regions. Most ZIKV infections in pregnancy are asymptomatic, but mother to child transmission of the virus can occur in 20 to 30% of cases and cause severe foetal and child defects. Children exposed to ZIKV while in utero might develop a pattern of structural anomalies and functional disabilities secondary to central nervous system damage, known as congenital Zika syndrome, and whose most common clinical feature is microcephaly. Normocephalic children born to mothers with ZIKV infection in pregnancy, and with no observable Zika-associated birth defects, may also present with later neurodevelopmental delay or post-natal microcephaly. Screening and detection of ZIKV infection in pregnancy is essential, because most women with ZIKV infection are asymptomatic and clinical manifestations are non-specific. However, the diagnosis of ZIKV infection poses multiple challenges due to limited resources and scarce laboratory capabilities in most affected areas, the narrow window of time that the virus persists in the bloodstream, the large proportion of asymptomatic infections, and the cross-reactivity with other flaviviruses such as Dengue virus (DENV). Molecular methods (RT-PCR) are the most reliable tool to confirm ZIKV infection, as serodiagnosis requires confirmation with neutralization tests in case of inconclusive or positive serology results. Prenatal ultrasound assessment is essential for monitoring foetal development and early detection of possible severe anomalies. A mid- and long-term follow-up of children exposed to ZIKV while in utero is necessary to promptly detect clinical manifestations of possible neurological impairment. Tweetable abstract: Zika virus infection during pregnancy is a cause of pregnancy loss and disability in children. Protection against mosquito bites, access to sexual and reproductive health services, prompt screening and detection of ZIKV infection in pregnancy, and prenatal ultrasound monitoring are key control strategies whilst a vaccine is not available.
Collapse
|
24
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
25
|
Palmitoleate Protects against Zika Virus-Induced Placental Trophoblast Apoptosis. Biomedicines 2021; 9:biomedicines9060643. [PMID: 34200091 PMCID: PMC8226770 DOI: 10.3390/biomedicines9060643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023] Open
Abstract
Zika virus (ZIKV) infection in pregnancy is associated with the development of microcephaly, intrauterine growth restriction, and ocular damage in the fetus. ZIKV infection of the placenta plays a crucial role in the vertical transmission from the maternal circulation to the fetus. Our previous study suggested that ZIKV induces endoplasmic reticulum (ER) stress and apoptosis of placental trophoblasts. Here, we showed that palmitoleate, an omega-7 monounsaturated fatty acid, prevents ZIKV-induced ER stress and apoptosis in placental trophoblasts. Human trophoblast cell lines (JEG-3 and JAR) and normal immortalized trophoblasts (HTR-8) were used. We observed that ZIKV infection of the trophoblasts resulted in apoptosis and treatment of palmitoleate to ZIKV-infected cells significantly prevented apoptosis. However, palmitate (saturated fatty acid) did not offer protection from ZIKV-induced ER stress and apoptosis. We also observed that the Zika viral RNA copies were decreased, and the cell viability improved in ZIKV-infected cells treated with palmitoleate as compared to the infected cells without palmitoleate treatment. Further, palmitoleate was shown to protect against ZIKV-induced upregulation of ER stress markers, C/EBP homologous protein and X-box binding protein-1 splicing in placental trophoblasts. In conclusion, our studies suggest that palmitoleate protects placental trophoblasts against ZIKV-induced ER stress and apoptosis.
Collapse
|
26
|
Salisch NC, Stephenson KE, Williams K, Cox F, van der Fits L, Heerwegh D, Truyers C, Habets MN, Kanjilal DG, Larocca RA, Abbink P, Liu J, Peter L, Fierro C, De La Barrera RA, Modjarrad K, Zahn RC, Hendriks J, Cahill CP, Leyssen M, Douoguih M, van Hoof J, Schuitemaker H, Barouch DH. A Double-Blind, Randomized, Placebo-Controlled Phase 1 Study of Ad26.ZIKV.001, an Ad26-Vectored Anti-Zika Virus Vaccine. Ann Intern Med 2021; 174:585-594. [PMID: 33587687 DOI: 10.7326/m20-5306] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING United States. PARTICIPANTS 100 healthy adult volunteers. INTERVENTION Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE Janssen Vaccines and Infectious Diseases.
Collapse
Affiliation(s)
- Nadine C Salisch
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (K.E.S., D.G.K., R.A.L., P.A., J.L., L.P., D.H.B.)
| | - Kristi Williams
- Janssen Research and Development, Spring House, Pennsylvania (K.W.)
| | - Freek Cox
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Leslie van der Fits
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Dirk Heerwegh
- Janssen Research and Development, Beerse, Belgium (D.H., C.T.)
| | - Carla Truyers
- Janssen Research and Development, Beerse, Belgium (D.H., C.T.)
| | - Marrit N Habets
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Diane G Kanjilal
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (K.E.S., D.G.K., R.A.L., P.A., J.L., L.P., D.H.B.)
| | - Rafael A Larocca
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (K.E.S., D.G.K., R.A.L., P.A., J.L., L.P., D.H.B.)
| | - Peter Abbink
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (K.E.S., D.G.K., R.A.L., P.A., J.L., L.P., D.H.B.)
| | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (K.E.S., D.G.K., R.A.L., P.A., J.L., L.P., D.H.B.)
| | - Lauren Peter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (K.E.S., D.G.K., R.A.L., P.A., J.L., L.P., D.H.B.)
| | | | | | - Kayvon Modjarrad
- Walter Reed Army Institute of Research, Silver Spring, Maryland (R.A.D., K.M.)
| | - Roland C Zahn
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Jenny Hendriks
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Conor P Cahill
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Maarten Leyssen
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Macaya Douoguih
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Johan van Hoof
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Hanneke Schuitemaker
- Janssen Vaccines and Prevention, Leiden, the Netherlands (N.C.S., F.C., L.V., M.N.H., R.C.Z., J.H., C.P.C., M.L., M.D., J.V., H.S.)
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Boston, Massachusetts (K.E.S., D.G.K., R.A.L., P.A., J.L., L.P., D.H.B.)
| |
Collapse
|
27
|
Vang L, Morello CS, Mendy J, Thompson D, Manayani D, Guenther B, Julander J, Sanford D, Jain A, Patel A, Shabram P, Smith J, Alexander J. Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Negl Trop Dis 2021; 15:e0009195. [PMID: 33711018 PMCID: PMC7990201 DOI: 10.1371/journal.pntd.0009195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/24/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
Background Zika virus (ZIKV), a mosquito-borne flavivirus, is a re-emerging virus that constitutes a public health threat due to its recent global spread, recurrent outbreaks, and infections that are associated with neurological abnormalities in developing fetuses and Guillain-Barré syndrome in adults. To date, there are no approved vaccines against ZIKV infection. Various preclinical and clinical development programs are currently ongoing in an effort to bring forward a vaccine for ZIKV. Methodology/Principle findings We have developed a ZIKV vaccine candidate based on Virus-Like-Particles (VLPs) produced in HEK293 mammalian cells using the prM (a precursor to M protein) and envelope (E) structural protein genes from ZIKV. Transient transfection of cells via plasmid and electroporation produced VLPs which were subsequently purified by column chromatography yielding approximately 2mg/L. Initially, immunogenicity and efficacy were evaluated in AG129 mice using a dose titration of VLP with and without Alhydrogel 2% (alum) adjuvant. We found that VLP with and without alum elicited ZIKV-specific serum neutralizing antibodies (nAbs) and that titers correlated with protection. A follow-up immunogenicity and efficacy study in rhesus macaques was performed using VLP formulated with alum. Multiple neutralization assay methods were performed on immune sera including a plaque reduction neutralization test, a microneutralization assay, and a Zika virus Renilla luciferase neutralization assay. All of these assays indicate that following immunization, VLP induces high titer nAbs which correlate with protection against ZIKV challenge. Conclusions/Significance These studies confirm that ZIKV VLPs could be efficiently generated and purified. Upon VLP immunization, in both mice and NHPs, nAb was induced that correlate with protection against ZIKV challenge. These studies support translational efforts in developing a ZIKV VLP vaccine for evaluation in human clinical trials. Zika virus (ZIKV) is a significant global health threat particularly due to the speed in which epidemics can occur. The resulting infections have been demonstrated to harm a developing fetus and, in some adults, be a co-factor for the development of Guillain-Barré syndrome. ZIKV is typically spread by the Aedes mosquito, but sexual transmission is also possible. We sought to develop a ZIKV prophylactic vaccine based on surface glycoproteins of the virus that would be devoid of any viral genetic material. This Virus-Like-Particle (VLP) was generated in vitro following introduction of plasmid DNA encoding Zika structural protein (prM-E) genes into mammalian cells. The aluminum-adjuvanted VLP induced nAbs in mice and nonhuman primates and protected against ZIKV challenge in vivo. These studies support the evaluation of this VLP candidate vaccine in human clinical trials.
Collapse
Affiliation(s)
- Lo Vang
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- * E-mail:
| | | | - Jason Mendy
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Danielle Thompson
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Darly Manayani
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| | - Ben Guenther
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Justin Julander
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Daniel Sanford
- Battelle Biomedical Research Center, West Jefferson, Ohio, United States of America
| | - Amit Jain
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Amish Patel
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Paul Shabram
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
| | - Jonathan Smith
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| | - Jeff Alexander
- Emergent BioSolutions Inc., Gaithersburg, Maryland, United States of America
- PaxVax Inc., San Diego, California, United States of America (PaxVax was acquired by Emergent BioSolutions Inc. Oct 2018)
| |
Collapse
|
28
|
Shukla R, Shanmugam RK, Ramasamy V, Arora U, Batra G, Acklin JA, Krammer F, Lim JK, Swaminathan S, Khanna N. Zika virus envelope nanoparticle antibodies protect mice without risk of disease enhancement. EBioMedicine 2021; 54:102738. [PMID: 32305868 PMCID: PMC7186774 DOI: 10.1016/j.ebiom.2020.102738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background Zika virus (ZIKV), an arbovirus capable of causing neurological abnormalities, is a recognised human pathogen, for which a vaccine is required. As ZIKV antibodies can mediate antibody-dependent enhancement (ADE) of dengue virus (DENV) infection, a ZIKV vaccine must not only protect against ZIKV but must also not sensitise vaccinees to severe dengue. Methods The N-terminal 80% of ZIKV envelope protein (80E) was expressed in Pichia pastoris and its capacity to self-assemble into particulate structures evaluated using dynamic light scattering and electron microscopy. Antigenic integrity of the 80E protein was evaluated using ZIKV-specific monoclonal antibodies. Its immunogenicity and protective efficacy were assessed in BALB/c and C57BL/6 Stat2−/− mice, respectively. Its capacity to enhance DENV and ZIKV infection was assessed in AG129 and C57BL/6 Stat2−/− mice, respectively. Findings ZIKV-80E protein self-assembled into discrete nanoparticles (NPs), which preserved the antigenic integrity of neutralising epitopes on E domain III (EDIII) and elicited potent ZIKV-neutralising antibodies predominantly against this domain in BALB/c mice. These antibodies conferred statistically significant protection in vivo (p = 0.01, Mantel–Cox test), and did not exacerbate sub-lethal DENV-2 or ZIKV challenges in vivo. Interpretation Yeast-expressed ZIKV-80E, which forms highly immunogenic EDIII-displaying NPs, elicits ZIKV EDIII-specific antibodies capable of offering significant protection in vivo, without the potential risk of ADE upon subsequent DENV-2 or ZIKV infection. This offers a promising vaccine candidate for further development. Funding This study was supported partly by ICGEB, India, and by NIAID, USA.
Collapse
Affiliation(s)
- Rahul Shukla
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rajgokul K Shanmugam
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Viswanathan Ramasamy
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Upasana Arora
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gaurav Batra
- Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Joshua A Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sathyamangalam Swaminathan
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Navin Khanna
- Recombinant Gene Products Group, Molecular Medicine Division, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India.
| |
Collapse
|
29
|
Song W, Zhang H, Zhang Y, Li R, Han Y, Lin Y, Jiang J. Repurposing clinical drugs is a promising strategy to discover drugs against Zika virus infection. Front Med 2020; 15:404-415. [PMID: 33369711 PMCID: PMC7768800 DOI: 10.1007/s11684-021-0834-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022]
Abstract
Zika virus (ZIKV) is an emerging pathogen associated with neurological complications, such as Guillain-Barré syndrome in adults and microcephaly in fetuses and newborns. This mosquito-borne flavivirus causes important social and sanitary problems owing to its rapid dissemination. However, the development of antivirals against ZIKV is lagging. Although various strategies have been used to study anti-ZIKV agents, approved drugs or vaccines for the treatment (or prevention) of ZIKV infections are currently unavailable. Repurposing clinically approved drugs could be an effective approach to quickly respond to an emergency outbreak of ZIKV infections. The well-established safety profiles and optimal dosage of these clinically approved drugs could provide an economical, safe, and efficacious approach to address ZIKV infections. This review focuses on the recent research and development of agents against ZIKV infection by repurposing clinical drugs. Their characteristics, targets, and potential use in anti-ZIKV therapy are presented. This review provides an update and some successful strategies in the search for anti-ZIKV agents are given.
Collapse
Affiliation(s)
- Weibao Song
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hongjuan Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yu Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
30
|
Abstract
Understanding the pathophysiology, management, and prevention of emerging infectious diseases among pregnant women is imperative to achieve a successful response from the medical community. Ebola and Zika viruses represent infections with profound public health implications. In particular, Ebola virus is associated with high case fatality and pregnancy and neonatal loss rates, while Zika virus has been associated with multiple congenital anomalies; these features present critical clinical dilemmas for management of pregnant and reproductive aged women. The objective of this article is to summarize key background information and best practices for management of Ebola and Zika virus in pregnancy.
Collapse
Affiliation(s)
- Lauren Sayres
- University of Colorado, Academic Office 1, 12631 East 17th Avenue, Aurora, CO 802, USA.
| | - Brenna L. Hughes
- Duke University Hospital, 203 Baker House, 201 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
31
|
Fontes-Garfias CR, Baker CK, Shi PY. Reverse genetic approaches for the development of Zika vaccines and therapeutics. Curr Opin Virol 2020; 44:7-15. [PMID: 32563700 PMCID: PMC9373025 DOI: 10.1016/j.coviro.2020.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 01/09/2023]
Abstract
In 2015-2016, the little known Zika virus (ZIKV) caused an epidemic, in which it became recognized as a unique human pathogen associated with a range of devastating congenital abnormalities collectively categorized as congenital Zika syndrome (CZS). In adults, the virus can trigger the autoimmune disorder Guillain-Barré syndrome (GBS), characterized by ascending paralysis. In February 2016, the World Health Organization (WHO) declared ZIKV to be a Public Health Emergency of International Concern. The global public health problem prompted academia, industry, and governments worldwide to initiate development of an effective vaccine to prevent another ZIKV epidemic that would put millions at risk. The development of reverse genetic systems for the study and manipulation of RNA viral genomes has revolutionized the field of virology, providing platforms for vaccine and antiviral development. In this review, we discuss the impact of reverse genetic systems on the rapid progress of ZIKV vaccines and antiviral therapeutics.
Collapse
Affiliation(s)
- Camila R Fontes-Garfias
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Coleman K Baker
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
32
|
Hobson-Peters J, Harrison JJ, Watterson D, Hazlewood JE, Vet LJ, Newton ND, Warrilow D, Colmant AMG, Taylor C, Huang B, Piyasena TBH, Chow WK, Setoh YX, Tang B, Nakayama E, Yan K, Amarilla AA, Wheatley S, Moore PR, Finger M, Kurucz N, Modhiran N, Young PR, Khromykh AA, Bielefeldt-Ohmann H, Suhrbier A, Hall RA. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci Transl Med 2020; 11:11/522/eaax7888. [PMID: 31826984 DOI: 10.1126/scitranslmed.aax7888] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
Flaviviruses such as dengue, yellow fever, Zika, West Nile, and Japanese encephalitis virus present substantial global health burdens. New vaccines are being sought to address safety and manufacturing issues associated with current live attenuated vaccines. Here, we describe a new insect-specific flavivirus, Binjari virus, which was found to be remarkably tolerant for exchange of its structural protein genes (prME) with those of the aforementioned pathogenic vertebrate-infecting flaviviruses (VIFs). Chimeric BinJ/VIF-prME viruses remained replication defective in vertebrate cells but replicated with high efficiency in mosquito cells. Cryo-electron microscopy and monoclonal antibody binding studies illustrated that the chimeric BinJ/VIF-prME virus particles were structurally and immunologically similar to their parental VIFs. Pilot manufacturing in C6/36 cells suggests that high yields can be reached up to 109.5 cell culture infectious dose/ml or ≈7 mg/liter. BinJ/VIF-prME viruses showed utility in diagnostic (microsphere immunoassays and ELISAs using panels of human and equine sera) and vaccine applications (illustrating protection against Zika virus challenge in murine IFNAR-/- mouse models). BinJ/VIF-prME viruses thus represent a versatile, noninfectious (for vertebrate cells), high-yield technology for generating chimeric flavivirus particles with low biocontainment requirements.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Natalee D Newton
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Carmel Taylor
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Bixing Huang
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Thisun B H Piyasena
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Weng Kong Chow
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Queensland, Australia
| | - Yin Xiang Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Alberto A Amarilla
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Sarah Wheatley
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Peter R Moore
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Mitchell Finger
- Public Health Virology Laboratory, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland, Australia
| | - Nina Kurucz
- Centre for Disease Control, Health Protection Division, Northern Territory Department of Health, Darwin, Northern Territory, Australia
| | - Naphak Modhiran
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Alexander A Khromykh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,School of Veterinary Science, University of Queensland Gatton Campus, Queensland 4343, Australia
| | - Andreas Suhrbier
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
33
|
Goh VSL, Mok CK, Chu JJH. Antiviral Natural Products for Arbovirus Infections. Molecules 2020; 25:molecules25122796. [PMID: 32560438 PMCID: PMC7356825 DOI: 10.3390/molecules25122796] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
Over the course of the last 50 years, the emergence of several arboviruses have resulted in countless outbreaks globally. With a high proportion of infections occurring in tropical and subtropical regions where arthropods tend to be abundant, Asia in particular is a region that is heavily affected by arboviral diseases caused by dengue, Japanese encephalitis, West Nile, Zika, and chikungunya viruses. Major gaps in protection against the most significant emerging arboviruses remains as there are currently no antivirals available, and vaccines are only available for some. A potential source of antiviral compounds could be discovered in natural products—such as vegetables, fruits, flowers, herbal plants, marine organisms and microorganisms—from which various compounds have been documented to exhibit antiviral activities and are expected to have good tolerability and minimal side effects. Polyphenols and plant extracts have been extensively studied for their antiviral properties against arboviruses and have demonstrated promising results. With an abundance of natural products to screen for new antiviral compounds, it is highly optimistic that natural products will continue to play an important role in contributing to antiviral drug development and in reducing the global infection burden of arboviruses.
Collapse
Affiliation(s)
- Vanessa Shi Li Goh
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Chee-Keng Mok
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
- Infectious Disease Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
- Correspondence: (C.-K.M.); (J.J.H.C.)
| |
Collapse
|
34
|
Arora HS. A to Z of Zika Virus: A Comprehensive Review for Clinicians. Glob Pediatr Health 2020; 7:2333794X20919595. [PMID: 32529004 PMCID: PMC7262985 DOI: 10.1177/2333794x20919595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Since its first outbreak in 2007 in the Pacific (Yap islands and Federal States of Micronesia), Zika virus has gradually and recently spread to the Americas in 2015. The neurotropic character of the virus was first noted during this outbreak in Brazil in 2015. Increasing number of infants born with microcephaly and other congenital deformities were identified through studies that have highlighted the importance of prevention of transmission of Zika virus in pregnant women. Long-term outcomes in infants born with this infection are now better understood than at the time of onset of this outbreak. Topics covered in this review include the history, modes of transmission, diagnosis of suspected cases, pathophysiology, complications, and prevention of Zika virus infection.
Collapse
Affiliation(s)
- Harbir Singh Arora
- Children's Hospital of Michigan, Detroit, MI, USA.,Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
35
|
Sun J, Du S, Zheng Z, Cheng G, Jin X. Defeat Dengue and Zika Viruses With a One-Two Punch of Vaccine and Vector Blockade. Front Microbiol 2020; 11:362. [PMID: 32265852 PMCID: PMC7100368 DOI: 10.3389/fmicb.2020.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/18/2020] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) and Zika virus (ZIKV) are two mosquito-borne flaviviruses afflicting nearly half of the world population. Human infection by these viruses can either be asymptomatic or manifest as clinical diseases from mild to severe. Despite more cases are presented as self-limiting febrile illness, severe dengue disease can be manifested as hemorrhagic fever and hemorrhagic shock syndrome, and ZIKV infection has been linked to increased incidence of peripheral neuropathy Guillain-Barre syndrome and central neural disease such as microcephaly. The current prevention and treatment of these infectious diseases are either non-satisfactory or entirely lacking. Because DENV and ZIKV have much similarities in genomic and structural features, almost identical mode of mosquito-mediated transmission, and probably the same pattern of host innate and adaptive immunity toward them, it is reasonable and often desirable to investigate these two viruses side-by-side, and thereby devise common countermeasures against both. Here, we review the existing knowledge on DENV and ZIKV regarding epidemiology, molecular virology, protective immunity and vaccine development, discuss recent new discoveries on the functions of flavivirus NS1 protein in viral pathogenesis and transmission, and propose a one-two punch strategy using vaccine and vector blockade to overcome antibody-dependent enhancement and defeat Dengue and Zika viruses.
Collapse
Affiliation(s)
- Jin Sun
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Senyan Du
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Zhihang Zheng
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xia Jin
- Viral Disease and Vaccine Translational Research Unit, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Xia Jin, ;
| |
Collapse
|
36
|
Diamos AG, Pardhe MD, Sun H, Hunter JGL, Mor T, Meador L, Kilbourne J, Chen Q, Mason HS. Codelivery of improved immune complex and virus-like particle vaccines containing Zika virus envelope domain III synergistically enhances immunogenicity. Vaccine 2020; 38:3455-3463. [PMID: 32173095 PMCID: PMC7102565 DOI: 10.1016/j.vaccine.2020.02.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/04/2020] [Accepted: 02/29/2020] [Indexed: 12/29/2022]
Abstract
Zika virus (ZIKV) reemergence poses a significant health threat especially due to its risks to fetal development, necessitating safe and effective vaccines that can protect pregnant women. Zika envelope domain III (ZE3) has been identified as a safe and effective vaccine candidate, however it is poorly immunogenic. We previously showed that plant-made recombinant immune complex (RIC) vaccines are a robust platform to improve the immunogenicity of weak antigens. In this study, we altered the antigen fusion site on the RIC platform to accommodate N-terminal fusion to the IgG heavy chain (N-RIC), and thus a wider range of antigens, with a resulting 40% improvement in RIC expression over the normal C-terminal fusion (C-RIC). Both types of RICs containing ZE3 were efficiently assembled in plants and purified to >95% homogeneity with a simple one-step purification. Both ZE3 RICs strongly bound complement receptor C1q and elicited strong ZE3-specific antibody titers that correlated with ZIKV neutralization. When either N-RIC or C-RIC was codelivered with plant-produced hepatitis B core (HBc) virus-like particles (VLP) displaying ZE3, the combination elicited 5-fold greater antibody titers (>1,000,000) and more strongly neutralized ZIKV than either RICs or VLPs alone, after only two doses without adjuvant. These findings demonstrate that antigens that require a free N-terminus for optimal antigen display can now be used with the RIC system, and that plant-made RICs and VLPs are highly effective vaccines targeting ZE3. Thus, the RIC platform can be more generally applied to a wider variety of antigens.
Collapse
Affiliation(s)
- Andrew G Diamos
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Mary D Pardhe
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Haiyan Sun
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Joseph G L Hunter
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Tsafrir Mor
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Lydia Meador
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Jacquelyn Kilbourne
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Qiang Chen
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States.
| |
Collapse
|
37
|
Voss S, Nitsche C. Inhibitors of the Zika virus protease NS2B-NS3. Bioorg Med Chem Lett 2020; 30:126965. [PMID: 31980339 DOI: 10.1016/j.bmcl.2020.126965] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/09/2023]
Abstract
In recent years, the Zika virus has emerged from a neglected flavivirus to a health-threatening pathogen that causes epidemic outbreaks associated with neurological disorders and congenital malformations. In addition to vaccine development, the discovery of specific antiviral agents has been pursued intensely. The Zika virus protease NS2B-NS3 catalyses the processing of the viral precursor polyprotein as an essential step during viral replication. Since the epidemic Zika virus outbreak in the Americas, several inhibitors of this protease have been reported. Substrate-derived peptides revealed important structural information about the active site, whilst more drug-like small molecules have been discovered as allosteric inhibitors.
Collapse
Affiliation(s)
- Saan Voss
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
38
|
Choi H, Kudchodkar SB, Reuschel EL, Asija K, Borole P, Agarwal S, Van Gorder L, Reed CC, Gulendran G, Ramos S, Broderick KE, Kim JJ, Ugen KE, Kobinger G, Siegel DL, Weiner DB, Muthumani K. Synthetic nucleic acid antibody prophylaxis confers rapid and durable protective immunity against Zika virus challenge. Hum Vaccin Immunother 2019; 16:907-918. [PMID: 31799896 PMCID: PMC7227701 DOI: 10.1080/21645515.2019.1688038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Significant concerns have arisen over the past 3 y from the increased global spread of the mosquito-borne flavivirus, Zika. Accompanying this spread has been an increase in cases of the devastating birth defect microcephaly as well as of Guillain-Barré syndrome in adults in many affected countries. Currently there is no vaccine or therapy for this infection; however, we sought to develop a combination approach that provides more rapid and durable protection than traditional vaccination alone. A novel immune-based prophylaxis/therapy strategy entailing the facilitated delivery of a synthetic DNA consensus prME vaccine along with DNA-encoded anti-ZIKV envelope monoclonal antibodies (dMAb) were developed and evaluated for antiviral efficacy. This immediate and persistent protection strategy confers the ability to overcome shortcomings inherent with conventional active vaccination or passive immunotherapy. A collection of novel dMAbs were developed which were potent against ZIKV and could be expressed in serum within 24-48 h of in vivo administration. The DNA vaccine, from a previous development, was potent after adaptive immunity was developed, protecting against infection, brain and testes pathology in relevant mouse challenge models and in an NHP challenge. Delivery of potent dMAbs protected mice from the same murine viral challenge within days of delivery. Combined injection of dMAb and the DNA vaccine afforded rapid and long-lived protection in this challenge model, providing an important demonstration of the advantage of this synergistic approach to pandemic outbreaks.
Collapse
Affiliation(s)
- Hyeree Choi
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Emma L. Reuschel
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kanika Asija
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Piyush Borole
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Sangya Agarwal
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Lucas Van Gorder
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | | | - Gayathri Gulendran
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, PA, USA
| | | | | | - J Joseph Kim
- R&D, Inovio Pharmaceuticals, Plymouth Meeting, PA, USA
| | - Kenneth E. Ugen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | - Don L. Siegel
- Department of Pathology & Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - David B. Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| | - Kar Muthumani
- Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA,CONTACT Kar Muthumani Vaccine & Immunotherapy Center, The Wistar Institute, Philadelphia, PA, USA
| |
Collapse
|
39
|
Poland GA, Ovsyannikova IG, Kennedy RB. Zika Vaccine Development: Current Status. Mayo Clin Proc 2019; 94:2572-2586. [PMID: 31806107 PMCID: PMC7094556 DOI: 10.1016/j.mayocp.2019.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/22/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Zika virus outbreaks have been explosive and unpredictable and have led to significant adverse health effects-as well as considerable public anxiety. Significant scientific work has resulted in multiple candidate vaccines that are now undergoing further clinical development, with several vaccines now in phase 2 clinical trials. In this review, we survey current vaccine efforts, preclinical and clinical results, and ethical and other concerns that directly bear on vaccine development. It is clear that the world needs safe and effective vaccines to protect against Zika virus infection. Whether such vaccines can be developed through to licensure and public availability absent significant financial investment by countries, and other barriers discussed within this article, remains uncertain.
Collapse
Key Words
- ade, antibody-dependent enhancement
- c, capsid
- denv, dengue virus
- e, envelope
- gbs, guillain-barré syndrome
- ifn, interferon
- irf, ifn response factor
- mrna, messenger rna
- prm, premembrane/membrane
- who, world health organization
- zikv, zika virus
Collapse
Affiliation(s)
- Gregory A Poland
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN.
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
40
|
When Is It Acceptable to Vaccinate Pregnant Women? Risk, Ethics, and Politics of Governance in Epidemic Crises. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00190-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Zika virus-like particles (VLPs): Stable cell lines and continuous perfusion processes as a new potential vaccine manufacturing platform. Vaccine 2019; 37:6970-6977. [DOI: 10.1016/j.vaccine.2019.05.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
|
42
|
Kim KS. Current Challenges in the Development of Vaccines and Drugs Against Emerging Vector-borne Diseases. Curr Med Chem 2019; 26:2974-2986. [PMID: 30394204 DOI: 10.2174/0929867325666181105121146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023]
Abstract
Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.
Collapse
Affiliation(s)
- Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
43
|
Honek JF. Commentary on "Current Challenges in the Development of Vaccines and Drugs Against Emerging Vector-borne Diseases" by Professor Kwang-sun Kim, Pusan National University, Republic of Korea. Curr Med Chem 2019; 26:3201-3204. [PMID: 31526346 DOI: 10.2174/092986732617190820145226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
44
|
Basak SC, Majumdar S, Nandy A, Roy P, Dutta T, Vracko M, Bhattacharjee AK. Computer-Assisted and Data Driven Approaches for Surveillance, Drug Discovery, and Vaccine Design for the Zika Virus. Pharmaceuticals (Basel) 2019; 12:E157. [PMID: 31623241 PMCID: PMC6958466 DOI: 10.3390/ph12040157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Human life has been at the edge of catastrophe for millennia due diseases which emerge and reemerge at random. The recent outbreak of the Zika virus (ZIKV) is one such menace that shook the global public health community abruptly. Modern technologies, including computational tools as well as experimental approaches, need to be harnessed fast and effectively in a coordinated manner in order to properly address such challenges. In this paper, based on our earlier research, we have proposed a four-pronged approach to tackle the emerging pathogens like ZIKV: (a) Epidemiological modelling of spread mechanisms of ZIKV; (b) assessment of the public health risk of newly emerging strains of the pathogens by comparing them with existing strains/pathogens using fast computational sequence comparison methods; (c) implementation of vaccine design methods in order to produce a set of probable peptide vaccine candidates for quick synthesis/production and testing in the laboratory; and (d) designing of novel therapeutic molecules and their laboratory testing as well as validation of new drugs or repurposing of drugs for use against ZIKV. For each of these stages, we provide an extensive review of the technical challenges and current state-of-the-art. Further, we outline the future areas of research and discuss how they can work together to proactively combat ZIKV or future emerging pathogens.
Collapse
Affiliation(s)
- Subhash C Basak
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA.
| | | | - Ashesh Nandy
- Centre for Interdisciplinary Research and Education, Kolkata 700068, India.
| | - Proyasha Roy
- Centre for Interdisciplinary Research and Education, Kolkata 700068, India.
| | - Tathagata Dutta
- Centre for Interdisciplinary Research and Education, Kolkata 700068, India.
| | - Marjan Vracko
- National Institute of Chemistry, Hajdrihova 19, Ljubljana 1000, Slovenia.
| | - Apurba K Bhattacharjee
- Biomedical Graduate Research Organization, Department of Microbiology and Immunology School of Medicine, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
45
|
Mattiuzzo G, Knezevic I, Hassall M, Ashall J, Myhill S, Faulkner V, Hockley J, Rigsby P, Wilkinson DE, Page M. Harmonization of Zika neutralization assays by using the WHO International Standard for anti-Zika virus antibody. NPJ Vaccines 2019; 4:42. [PMID: 31632743 PMCID: PMC6791859 DOI: 10.1038/s41541-019-0135-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/02/2019] [Indexed: 01/06/2023] Open
Abstract
During outbreaks of emerging viruses, such as the Zika outbreak in 2015-2016, speed and accuracy in detection of infection are critical factors to control the spread of the disease; often serological and diagnostic methods for emerging viruses are not well developed and validated. Thus, vaccines and treatments are difficult to evaluate due to the lack of comparable methods. In this study, we show how the 1st WHO International Standard for anti-Zika antibody was able to harmonize the neutralization titres of a panel of serological Zika-positive samples from laboratories worldwide. Expression of the titres in International Unit per millilitre reduced the inter-laboratory variance, allowing for greater comparability between laboratories. We advocate the use of the International Standard for anti-Zika virus antibodies for the calibration of neutralization assays to create a common language, which will permit a clear evaluation of the results of different clinical trials and expedite the vaccine/treatment development.
Collapse
Affiliation(s)
- Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - Ivana Knezevic
- Department of Essential Medicines and Health Products, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland
| | - Mark Hassall
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - James Ashall
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - Sophie Myhill
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - Valwynne Faulkner
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - Jason Hockley
- Department of Biostatistics, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - Peter Rigsby
- Department of Biostatistics, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - Dianna E. Wilkinson
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| | - Mark Page
- Division of Virology, National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG UK
| |
Collapse
|
46
|
Affiliation(s)
- Didier Musso
- From Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), and Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France (D.M.); private practice, Punaauia, Tahiti, French Polynesia (D.M.); Laboratoire Eurofins Labazur Guyane, Eurofins, French Guiana (D.M.); the Department of Epidemiology of Infectious Diseases, Yale School of Public Health, New Haven, CT (A.I.K.); Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil (A.I.K.); and the Materno-foetal and Obstetrics Research Unit, Department Femme-Mère-Enfant, Centre Hospitalier Universitaire Vaudois, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland (D.B.)
| | - Albert I Ko
- From Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), and Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France (D.M.); private practice, Punaauia, Tahiti, French Polynesia (D.M.); Laboratoire Eurofins Labazur Guyane, Eurofins, French Guiana (D.M.); the Department of Epidemiology of Infectious Diseases, Yale School of Public Health, New Haven, CT (A.I.K.); Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil (A.I.K.); and the Materno-foetal and Obstetrics Research Unit, Department Femme-Mère-Enfant, Centre Hospitalier Universitaire Vaudois, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland (D.B.)
| | - David Baud
- From Aix Marseille Université, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille, Service de Santé des Armées, Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), and Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France (D.M.); private practice, Punaauia, Tahiti, French Polynesia (D.M.); Laboratoire Eurofins Labazur Guyane, Eurofins, French Guiana (D.M.); the Department of Epidemiology of Infectious Diseases, Yale School of Public Health, New Haven, CT (A.I.K.); Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil (A.I.K.); and the Materno-foetal and Obstetrics Research Unit, Department Femme-Mère-Enfant, Centre Hospitalier Universitaire Vaudois, and Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland (D.B.)
| |
Collapse
|
47
|
Jagger BW, Dowd KA, Chen RE, Desai P, Foreman B, Burgomaster KE, Himansu S, Kong WP, Graham BS, Pierson TC, Diamond MS. Protective Efficacy of Nucleic Acid Vaccines Against Transmission of Zika Virus During Pregnancy in Mice. J Infect Dis 2019; 220:1577-1588. [PMID: 31260518 PMCID: PMC6782106 DOI: 10.1093/infdis/jiz338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) caused an epidemic of congenital malformations in 2015-2016. Although many vaccine candidates have been generated, few have demonstrated efficacy against congenital ZIKV infection. Here, we evaluated lipid-encapsulated messenger RNA (mRNA) vaccines and a DNA plasmid vaccine encoding the prM-E genes of ZIKV in mouse models of congenital infection. Although the DNA vaccine provided comparable efficacy against vertical transmission of ZIKV, the mRNA vaccines, including one that minimizes antibody-dependent enhancement of infection, elicited higher levels of antigen-specific long-lived plasma cells and memory B cells. Despite the induction of robust neutralizing antibody titers by all vaccines, breakthrough seeding of the placenta and fetal head was observed in a small subset of type I interferon signaling-deficient immunocompromised dams. In comparison, evaluation of one of the mRNA vaccines in a human STAT2-knockin transgenic immunocompetent mouse showed complete protection against congenital ZIKV transmission. These data will inform ongoing human ZIKV vaccine development efforts and enhance our understanding of the correlates of vaccine-induced protection.
Collapse
Affiliation(s)
- Brett W Jagger
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Kimberly A Dowd
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rita E Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Bryant Foreman
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland
| | - Katherine E Burgomaster
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
48
|
Bernatchez JA, Tran LT, Li J, Luan Y, Siqueira-Neto JL, Li R. Drugs for the Treatment of Zika Virus Infection. J Med Chem 2019; 63:470-489. [PMID: 31549836 DOI: 10.1021/acs.jmedchem.9b00775] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zika virus is an emerging flavivirus that causes the neurodevelopmental congenital Zika syndrome and that has been linked to the neuroinflammatory Guillain-Barré syndrome. The absence of a vaccine or a clinically approved drug to treat the disease combined with the likelihood that another outbreak will occur in the future defines an unmet medical need. Several promising drug candidate molecules have been reported via repurposing studies, high-throughput compound library screening, and de novo design in the short span of a few years. Intense research activity in this area has occurred in response to the World Health Organization declaration of a Public Health Emergency of International Concern on February 1, 2016. In this Perspective, the authors review the emergence of Zika virus, the biology of its replication, targets for therapeutic intervention, target product profile, and current drug development initiatives.
Collapse
Affiliation(s)
| | - Lana T Tran
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | | | - Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China
| | | | - Rongshi Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong , China.,UNMC Center for Drug Discovery, Department of Pharmaceutical Sciences, College of Pharmacy, Fred and Pamela Buffett Cancer Center, and Center for Staphylococcal Research , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
49
|
Azar SR, Weaver SC. Vector Competence: What Has Zika Virus Taught Us? Viruses 2019; 11:E867. [PMID: 31533267 PMCID: PMC6784050 DOI: 10.3390/v11090867] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
The unprecedented outbreak of Zika virus (ZIKV) infection in the Americas from 2015 to 2017 prompted the publication of a large body of vector competence data in a relatively short period of time. Although differences in vector competence as a result of disparities in mosquito populations and viral strains are to be expected, the limited competence of many populations of the urban mosquito vector, Aedes aegypti, from the Americas (when its susceptibility is viewed relative to other circulating/reemerging mosquito-borne viruses such as dengue (DENV), yellow fever (YFV), and chikungunya viruses (CHIKV)) has proven a paradox for the field. This has been further complicated by the lack of standardization in the methodologies utilized in laboratory vector competence experiments, precluding meta-analyses of this large data set. As the calls for the standardization of such studies continue to grow in number, it is critical to examine the elements of vector competence experimental design. Herein, we review the various techniques and considerations intrinsic to vector competence studies, with respect to contemporary findings for ZIKV, as well as historical findings for other arboviruses, and discuss potential avenues of standardization going forward.
Collapse
Affiliation(s)
- Sasha R Azar
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, 300 University Blvd, Galveston, TX 77555, USA.
| |
Collapse
|
50
|
Clapham H. Determinants of Zika Transmission and Control. J Infect Dis 2019; 220:917-919. [PMID: 30544174 PMCID: PMC6688055 DOI: 10.1093/infdis/jiy691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hannah Clapham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| |
Collapse
|