1
|
Chen Y, Klute S, Sparrer KMJ, Serra-Moreno R. RAB5 is a host dependency factor for the generation of SARS-CoV-2 replication organelles. mBio 2025; 16:e0331424. [PMID: 40167317 PMCID: PMC12077180 DOI: 10.1128/mbio.03314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a threat due to the emergence of variants with increased transmissibility and enhanced escape from immune responses. Like other coronaviruses before, SARS-CoV-2 likely emerged after its transmission from bats. The successful propagation of SARS-CoV-2 in humans might have been facilitated by usurping evolutionarily conserved cellular factors to execute crucial steps in its life cycle, such as the generation of replication organelles-membrane structures where coronaviruses assemble their replication-transcription complex. In this study, we found that RAB5, which is highly conserved across mammals, is a critical host dependency factor for the replication of the SARS-CoV-2 genome. Our results also suggest that SARS-CoV-2 uses RAB5+ membranes to build replication organelles with the aid of COPB1, a component of the COP-I complex, and that the virus protein NSP6 participates in this process. Hence, targeting NSP6 represents a promising approach to interfere with SARS-CoV-2 RNA synthesis and halt its propagation.IMPORTANCEIn this study, we sought to identify the host dependency factors that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses for the generation of replication organelles: cellular membranous structures that SARS-CoV-2 builds in order to support the replication and transcription of its genome. We uncovered that RAB5 is an important dependency factor for SARS-CoV-2 replication and the generation of replication organelles, and that the viral protein NSP6 participates in this process. Hence, NSP6 represents a promising target to halt SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Yuexuan Chen
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Susanne Klute
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Konstantin Maria Johannes Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Ruth Serra-Moreno
- Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Djorwé S, Malki A, Nzoyikorera N, Nyandwi J, Zebsoubo SP, Bellamine K, Bousfiha A. Genetic diversity and genomic epidemiology of SARS-CoV-2 during the first 3 years of the pandemic in Morocco: comprehensive sequence analysis, including the unique lineage B.1.528 in Morocco. Access Microbiol 2024; 6:000853.v4. [PMID: 39376591 PMCID: PMC11457919 DOI: 10.1099/acmi.0.000853.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024] Open
Abstract
During the 3 years following the emergence of the COVID-19 pandemic, the African continent, like other regions of the world, was substantially impacted by COVID-19. In Morocco, the COVID-19 pandemic has been marked by the emergence and spread of several SARS-CoV-2 variants, leading to a substantial increase in the incidence of infections and deaths. Nevertheless, the comprehensive understanding of the genetic diversity, evolution, and epidemiology of several viral lineages remained limited in Morocco. This study sought to deepen the understanding of the genomic epidemiology of SARS-CoV-2 through a retrospective analysis. The main objective of this study was to analyse the genetic diversity of SARS-CoV-2 and identify distinct lineages, as well as assess their evolution during the pandemic in Morocco, using genomic epidemiology approaches. Furthermore, several key mutations in the functional proteins across different viral lineages were highlighted along with an analysis of the genetic relationships amongst these strains to better understand their evolutionary pathways. A total of 2274 genomic sequences of SARS-CoV-2 isolated in Morocco during the period of 2020 to 2023, were extracted from the GISAID EpiCoV database and subjected to analysis. Lineages and clades were classified according to the nomenclature of GISAID, Nextstrain, and Pangolin. The study was conducted and reported in accordance with STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. An exhaustive analysis of 2274 genomic sequences led to the identification of 157 PANGO lineages, including notable lineages such as B.1, B.1.1, B.1.528, and B.1.177, as well as variants such as B.1.1.7, B.1.621, B.1.525, B.1.351, B.1.617.1, B.1.617.2, and its notable sublineages AY.33, AY.72, AY.112, AY.121 that evolved over time before being supplanted by Omicron in December 2021. Among the 2274 sequences analysed, Omicron and its subvariants had a prevalence of 59.5%. The most predominant clades were 21K, 21L, and 22B, which are respectively related phylogenetically to BA.1, BA.2, and BA.5. In June 2022, Morocco rapidly observed a recrudescence of cases of infection, with the emergence and concurrent coexistence of subvariants from clade 22B such as BA.5.2.20, BA.5, BA.5.1, BA.5.2.1, and BF.5, supplanting the subvariants BA.1 (clade display 21K) and BA.2 (clade display 21L), which became marginal. However, XBB (clade 22F) and its progeny such XBB.1.5(23A), XBB.1.16(23B), CH.1.1(23C), XBB.1.9(23D), XBB.2.3(23E), EG.5.1(23F), and XBB.1.5.70(23G) have evolved sporadically. Furthermore, several notable mutations, such as H69del/V70del, G142D, K417N, T478K, E484K, E484A, L452R, F486P, N501Y, Q613H, D614G, and P681H/R, have been identified. Some of these SARS-CoV-2 mutations are known to be involved in increasing transmissibility, virulence, and antibody escape. This study has identified several distinct lineages and mutations involved in the genetic diversity of Moroccan isolates, as well as the analysis of their evolutionary trends. These findings provide a robust basis for better understanding the distinct mutations and their roles in the variation of transmissibility, pathogenicity, and antigenicity (immune evasion/reinfection). Furthermore, the noteworthy number of distinct lineages identified in Morocco highlights the importance of maintaining continuous surveillance of COVID-19. Moreover, expanding vaccination coverage would also help protect patients against more severe clinical disease.
Collapse
Affiliation(s)
- Soulandi Djorwé
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
- Bourgogne Laboratory of Medical and Scientific Analysis, 136, residence belhcen, Bd Bourgogne, Casablanca, Morocco
| | - Abderrahim Malki
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
| | - Néhémie Nzoyikorera
- National Reference Laboratory, National Institute of Public Health, Bujumbura, Burundi
- Higher Institute of Biosciences and Biotechnology, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
- Laboratory of Microbial Biotechnology and Infectiology Research, Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Joseph Nyandwi
- Département de Médecine, Faculté de Médecine, Université du Burundi, Bujumbura, Burundi
- Ministère de la Santé Publique et de la Lutte contre le Sida, Institut National de Santé Publique de Bujumbura, Bujumbura, Burundi
| | - Samuel Privat Zebsoubo
- School of Advanced Studies in Biotechnology and Private Health (EHEB), 183 Bd de la Resistance, Casablanca 20250, Morocco
| | - Kawthar Bellamine
- Bourgogne Laboratory of Medical and Scientific Analysis, 136, residence belhcen, Bd Bourgogne, Casablanca, Morocco
| | - Amale Bousfiha
- Laboratory of Physiopathology and Molecular Genetics, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca (Morocco), Avenue Cdt Driss El Harti, PB 7955 Sidi Othman, Casablanca, Morocco
| |
Collapse
|
3
|
Narasaraju T, Neeli I, Criswell SL, Krishnappa A, Meng W, Silva V, Bila G, Vovk V, Serhiy Z, Bowlin GL, Meyer N, Luning Prak ET, Radic M, Bilyy R. Neutrophil Activity and Extracellular Matrix Degradation: Drivers of Lung Tissue Destruction in Fatal COVID-19 Cases and Implications for Long COVID. Biomolecules 2024; 14:236. [PMID: 38397474 PMCID: PMC10886497 DOI: 10.3390/biom14020236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Pulmonary fibrosis, severe alveolitis, and the inability to restore alveolar epithelial architecture are primary causes of respiratory failure in fatal COVID-19 cases. However, the factors contributing to abnormal fibrosis in critically ill COVID-19 patients remain unclear. This study analyzed the histopathology of lung specimens from eight COVID-19 and six non-COVID-19 postmortems. We assessed the distribution and changes in extracellular matrix (ECM) proteins, including elastin and collagen, in lung alveoli through morphometric analyses. Our findings reveal the significant degradation of elastin fibers along the thin alveolar walls of the lung parenchyma, a process that precedes the onset of interstitial collagen deposition and widespread intra-alveolar fibrosis. Lungs with collapsed alveoli and organized fibrotic regions showed extensive fragmentation of elastin fibers, accompanied by alveolar epithelial cell death. Immunoblotting of lung autopsy tissue extracts confirmed elastin degradation. Importantly, we found that the loss of elastin was strongly correlated with the induction of neutrophil elastase (NE), a potent protease that degrades ECM. This study affirms the critical role of neutrophils and neutrophil enzymes in the pathogenesis of COVID-19. Consistently, we observed increased staining for peptidyl arginine deiminase, a marker for neutrophil extracellular trap release, and myeloperoxidase, an enzyme-generating reactive oxygen radical, indicating active neutrophil involvement in lung pathology. These findings place neutrophils and elastin degradation at the center of impaired alveolar function and argue that elastolysis and alveolitis trigger abnormal ECM repair and fibrosis in fatal COVID-19 cases. Importantly, this study has implications for severe COVID-19 complications, including long COVID and other chronic inflammatory and fibrotic disorders.
Collapse
Affiliation(s)
- Teluguakula Narasaraju
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
- Department of Microbiology, Adichunchanagiri Institute of Medical Sciences, Center for Research and Innovation, Adichunchanagiri University, Mandya 571448, India
| | - Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Sheila L. Criswell
- Department of Diagnostic and Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Amita Krishnappa
- Department of Pathology, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Mandya 571448, India;
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.M.); (E.T.L.P.)
| | - Vasuki Silva
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Galyna Bila
- Department of Histology, Cytology, Histology & Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (G.B.); (R.B.)
| | - Volodymyr Vovk
- Department of Pathological Anatomy and Forensic Medicine, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
- Lviv Regional Pathological Anatomy Office, CU ENT (Pulmonology Lviv Regional Diagnostic Center), 79000 Lviv, Ukraine;
| | - Zolotukhin Serhiy
- Lviv Regional Pathological Anatomy Office, CU ENT (Pulmonology Lviv Regional Diagnostic Center), 79000 Lviv, Ukraine;
| | - Gary L. Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA;
| | - Nuala Meyer
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Pulmonary, Allergy, and Critical Care Medicine and Center for Translational Lung Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eline T. Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (W.M.); (E.T.L.P.)
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marko Radic
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; or (T.N.); (I.N.); (V.S.)
| | - Rostyslav Bilyy
- Department of Histology, Cytology, Histology & Embryology, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine; (G.B.); (R.B.)
| |
Collapse
|
4
|
Kononova Y, Adamenko L, Kazachkova E, Solomatina M, Romanenko S, Proskuryakova A, Utkin Y, Gulyaeva M, Spirina A, Kazachinskaia E, Palyanova N, Mishchenko O, Chepurnov A, Shestopalov A. Features of SARS-CoV-2 Replication in Various Types of Reptilian and Fish Cell Cultures. Viruses 2023; 15:2350. [PMID: 38140591 PMCID: PMC10748073 DOI: 10.3390/v15122350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND SARS-CoV-2 can enter the environment from the feces of COVID-19 patients and virus carriers through untreated sewage. The virus has shown the ability to adapt to a wide range of hosts, so the question of the possible involvement of aquafauna and animals of coastal ecosystems in maintaining its circulation remains open. METHODS the aim of this work was to study the tropism of SARS-CoV-2 for cells of freshwater fish and reptiles, including those associated with aquatic and coastal ecosystems, and the effect of ambient temperature on this process. In a continuous cell culture FHM (fathead minnow) and diploid fibroblasts CGIB (silver carp), SARS-CoV-2 replication was not maintained at either 25 °C or 29 °C. At 29 °C, the continuous cell culture TH-1 (eastern box turtle) showed high susceptibility to SARS-CoV-2, comparable to Vero E6 (development of virus-induced cytopathic effect (CPE) and an infectious titer of 7.5 ± 0.17 log10 TCID50/mL on day 3 after infection), and primary fibroblasts CNI (Nile crocodile embryo) showed moderate susceptibility (no CPE, infectious titer 4.52 ± 0.14 log10 TCID50/mL on day 5 after infection). At 25 °C, SARS-CoV-2 infection did not develop in TH-1 and CNI. CONCLUSIONS our results show the ability of SARS-CoV-2 to effectively replicate without adaptation in the cells of certain reptile species when the ambient temperature rises.
Collapse
Affiliation(s)
- Yulia Kononova
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Lyubov Adamenko
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Evgeniya Kazachkova
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Mariya Solomatina
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Svetlana Romanenko
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia; (S.R.); (A.P.); (Y.U.)
| | - Anastasia Proskuryakova
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia; (S.R.); (A.P.); (Y.U.)
| | - Yaroslav Utkin
- Institute of Molecular and Cellular Biology, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090, Russia; (S.R.); (A.P.); (Y.U.)
| | - Marina Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
- The Department of Natural Science, Novosibirsk State University, 2, Pirogova St., Novosibirsk 630090, Russia
| | - Anastasia Spirina
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Elena Kazachinskaia
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Natalia Palyanova
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Oksana Mishchenko
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation, Moscow 141306, Russia;
| | - Alexander Chepurnov
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, The Federal State Budget Scientific Institution, Siberian Branch of the Russian Academy of Sciences, 2, Timakova St., Novosibirsk 630117, Russia; (Y.K.); (L.A.); (E.K.); (M.S.); (A.S.); (E.K.); (N.P.); (A.C.); (A.S.)
| |
Collapse
|
5
|
Rabaan AA, Alenazy MF, Alshehri AA, Alshahrani MA, Al-Subaie MF, Alrasheed HA, Al Kaabi NA, Thakur N, Bouafia NA, Alissa M, Alsulaiman AM, AlBaadani AM, Alhani HM, Alhaddad AH, Alfouzan WA, Ali BMA, Al-Abdulali KH, Khamis F, Bayahya A, Al Fares MA, Sharma M, Dhawan M. An updated review on pathogenic coronaviruses (CoVs) amid the emergence of SARS-CoV-2 variants: A look into the repercussions and possible solutions. J Infect Public Health 2023; 16:1870-1883. [PMID: 37839310 DOI: 10.1016/j.jiph.2023.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
SARS-CoV-2, responsible for COVID-19, shares 79% and 50% of its identity with SARS-CoV-1 and MERS-CoV, respectively. It uses the same main cell attachment and entry receptor as SARS-CoV-1, which is the ACE-2 receptor. However, key residues in the receptor-binding domain of its S-protein seem to give it a stronger affinity for the receptor and a better ability to hide from the host immune system. Like SARS-CoV-1 and MERS-CoV, cytokine storms in critically ill COVID-19 patients cause ARDS, neurological pathology, multiorgan failure, and increased death. Though many issues remain, the global research effort and lessons from SARS-CoV-1 and MERS-CoV are hopeful. The emergence of novel SARS-CoV-2 variants and subvariants raised serious concerns among the scientific community amid the emergence of other viral diseases like monkeypox and Marburg virus, which are major concerns for healthcare settings worldwide. Hence, an updated review on the comparative analysis of various coronaviruses (CoVs) has been developed, which highlights the evolution of CoVs and their repercussions.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| | - Maha Fahad Alenazy
- Department of Physiology, College of Medicine, King Khalid university hospital, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Department of Infectious Diseases, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia
| | - Hayam A Alrasheed
- Department of pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Pharmacy Department, King Abdullah Bin Abdulaziz University Hospital, Riyadh 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates; College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Nabiha A Bouafia
- Infection prevention and control centre of Excellence, Prince Sultan Medical Military City, Riyadh 12233, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Abeer M AlBaadani
- Internal Medicine Department, Infectious Disease Division, London health science Center, London, Ontario N6G0X2, Canada
| | - Hatem M Alhani
- Department of Pediatric Infectious Disease, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Department of Infection Control, Maternity and Children Hospital, Dammam 31176, Saudi Arabia; Preventive Medicine and Infection Prevention and Control Department, Directorate of Ministry of Health, Dammam 32245, Saudi Arabia
| | - Ali H Alhaddad
- Assistant Agency for Hospital Affairs, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Wadha A Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait; Microbiology Unit, Department of Laboratories, Farwania Hospital, Farwania 85000, Kuwait
| | - Batool Mohammed Abu Ali
- Infectious disease section, Department of internal medicine, King Fahad Hospital Hofuf, Hofuf 36365, Saudi Arabia
| | - Khadija H Al-Abdulali
- Nursing Department, Home health care, Qatif Health Network, Qatif 31911, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Ali Bayahya
- Microbiology Department, Alqunfudah General Hospital, Alqunfudah 28813, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia.
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India; Trafford College, Altrincham, Manchester WA14 5PQ, UK.
| |
Collapse
|
6
|
Pitsillou E, Yu Y, Beh RC, Liang JJ, Hung A, Karagiannis TC. Chronicling the 3-year evolution of the COVID-19 pandemic: analysis of disease management, characteristics of major variants, and impacts on pathogenicity. Clin Exp Med 2023; 23:3277-3298. [PMID: 37615803 DOI: 10.1007/s10238-023-01168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Announced on December 31, 2019, the novel coronavirus arising in Wuhan City, Hubei Province resulted in millions of cases and lives lost. Following intense tracking, coronavirus disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) in 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified as the cause of COVID-19 and the continuous evolution of the virus has given rise to several variants. In this review, a comprehensive analysis of the response to the pandemic over the first three-year period is provided, focusing on disease management, development of vaccines and therapeutics, and identification of variants. The transmissibility and pathogenicity of SARS-CoV-2 variants including Alpha, Beta, Gamma, Delta, and Omicron are compared. The binding characteristics of the SARS-CoV-2 spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor and reproduction numbers are evaluated. The effects of major variants on disease severity, hospitalisation, and case-fatality rates are outlined. In addition to the spike protein, open reading frames mutations are investigated. We also compare the pathogenicity of SARS-CoV-2 with SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). Overall, this study highlights the strengths and weaknesses of the global response to the pandemic, as well as the importance of prevention and preparedness. Monitoring the evolution of SARS-CoV-2 is critical in identifying and potentially predicting the health outcomes of concerning variants as they emerge. The ultimate goal would be a position in which existing vaccines and therapeutics could be adapted to suit new variants in as close to real-time as possible.
Collapse
Affiliation(s)
- Eleni Pitsillou
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Yiping Yu
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Raymond C Beh
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Julia J Liang
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine Laboratory at prospED, Carlton, VIC, 3053, Australia.
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC, 3010, Australia.
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
Kitayama R, Ogata Y. Analyses of S Protein Homology Using the Genomes of SARS-CoV-2 Specimens Unveil Missing Links in the Temporal Order of Mutations in Its Variants. Viruses 2023; 15:2182. [PMID: 38005860 PMCID: PMC10675617 DOI: 10.3390/v15112182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the evolutionary traits of its variants have been revealed. However, the temporal order of the majority of mutations harbored by variants after the closest ancestors (or precursors), as "missing links", remains unclear. In this study, we aimed to unveil such missing links based on analyses of S protein homology by focusing on specimens with incomplete sets of S protein mutations in a variant. (2) Methods: Prevariant and postvariant mutations were defined as those before and after the variant's development, respectively. A total of 6,758,926 and 14,519,521 genomes were obtained from the National Center for Biotechnology Information and the GISAID initiative, respectively, and S protein mutations were detected based on BLASTN analyses. (3) Results: The temporal order of prevariant mutations harbored by 12 variants was deduced. In particular, the D950N mutation in the Mu variant shows V-shaped mutation transitions, in which multiple routes of evolution were combined and resulted in the formation of a V-shaped transition, indicating recombination. (4) Conclusions: Many genome data for SARS-CoV-2 unveiled the candidate precursors of Mu variant based on a data-driven approach to its prevariant mutations in each nation.
Collapse
|
8
|
Lista F, Peragallo MS, Biselli R, De Santis R, Mariotti S, Nisini R, D'Amelio R. Have Diagnostics, Therapies, and Vaccines Made the Difference in the Pandemic Evolution of COVID-19 in Comparison with "Spanish Flu"? Pathogens 2023; 12:868. [PMID: 37513715 PMCID: PMC10384375 DOI: 10.3390/pathogens12070868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
In 1918 many countries, but not Spain, were fighting World War I. Spanish press could report about the diffusion and severity of a new infection without censorship for the first-time, so that this pandemic is commonly defined as "Spanish flu", even though Spain was not its place of origin. "Spanish flu" was one of the deadliest pandemics in history and has been frequently compared with the coronavirus disease (COVID)-19 pandemic. These pandemics share similarities, being both caused by highly variable and transmissible respiratory RNA viruses, and diversity, represented by diagnostics, therapies, and especially vaccines, which were made rapidly available for COVID-19, but not for "Spanish flu". Most comparison studies have been carried out in the first period of COVID-19, when these resources were either not yet available or their use had not long started. Conversely, we wanted to analyze the role that the advanced diagnostics, anti-viral agents, including monoclonal antibodies, and innovative COVID-19 vaccines, may have had in the pandemic containment. Early diagnosis, therapies, and anti-COVID-19 vaccines have markedly reduced the pandemic severity and mortality, thus preventing the collapse of the public health services. However, their influence on the reduction of infections and re-infections, thus on the transition from pandemic to endemic condition, appears to be of minor relevance. The high viral variability of influenza and coronavirus may probably be contained by the development of universal vaccines, which are not easy to be obtained. The only effective weapon still remains the disease prevention, to be achieved with the reduction of promiscuity between the animal reservoirs of these zoonotic diseases and humans.
Collapse
Affiliation(s)
- Florigio Lista
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Mario Stefano Peragallo
- Centro Studi e Ricerche di Sanità e Veterinaria, Comando Logistico dell'Esercito, 00184 Roma, Italy
| | - Roberto Biselli
- Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
| | - Riccardo De Santis
- Istituto di Scienze Biomediche della Difesa, Ispettorato Generale della Sanità Militare, Stato Maggiore della Difesa, 00184 Roma, Italy
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza, Università di Roma, 00161 Roma, Italy
| | - Sabrina Mariotti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Raffaele D'Amelio
- Dipartimento di Medicina Clinica e Molecolare, Sapienza, Università di Roma, 00198 Roma, Italy
| |
Collapse
|
9
|
Lu X, Chen Y, Zhang G. Functional evolution of SARS-CoV-2 spike protein: Maintaining wide host spectrum and enhancing infectivity via surface charge of spike protein. Comput Struct Biotechnol J 2023; 21:2068-2074. [PMID: 36936817 PMCID: PMC10008190 DOI: 10.1016/j.csbj.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
The SARS-CoV-2 virus, which causes the COVID-19, is rapidly accumulating mutations to adapt to the hosts. We collected SARS-CoV-2 sequence data from the end of 2019 to January 2023 to analyze for their evolutionary features during the pandemic. We found that most of the SARS-CoV-2 genes are undergoing negative purifying selection, while the spike protein gene (S-gene) is undergoing rapid positive selection. From the original strain to the alpha, delta and omicron variant types, the Ka/Ks of the S-gene increases, while the Ka/Ks within one variant type decreases over time. During the evolution, the codon usage did not evolve towards optimal translation and protein expression. In contrast, only S-gene mutations showed a remarkable trend on accumulating more positive charges. This facilitates the infection via binding human ACE2 for cell entry and binding furin for cleavage. Such a functional evolution emphasizes the survival strategy of SARS-CoV-2, and indicated new druggable target to contain the viral infection. The nearly fully positively-charged interaction surfaces indicated that the infectivity of SARS-CoV-2 virus may approach a limit.
Collapse
Affiliation(s)
- Xiaolong Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
- Chi-Biotech Co. Ltd., Shenzhen, China
| |
Collapse
|
10
|
Rojas-Cruz AF, Gallego-Gómez JC, Bermúdez-Santana CI. RNA structure-altering mutations underlying positive selection on Spike protein reveal novel putative signatures to trace crossing host-species barriers in Betacoronavirus. RNA Biol 2022; 19:1019-1044. [PMID: 36102368 PMCID: PMC9481089 DOI: 10.1080/15476286.2022.2115750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Similar to other RNA viruses, the emergence of Betacoronavirus relies on cross-species viral transmission, which requires careful health surveillance monitoring of protein-coding information as well as genome-wide analysis. Although the evolutionary jump from natural reservoirs to humans may be mainly traced-back by studying the effect that hotspot mutations have on viral proteins, it is largely unexplored if other impacts might emerge on the structured RNA genome of Betacoronavirus. In this survey, the protein-coding and viral genome architecture were simultaneously studied to uncover novel insights into cross-species horizontal transmission events. We analysed 1,252,952 viral genomes of SARS-CoV, MERS-CoV, and SARS-CoV-2 distributed across the world in bats, intermediate animals, and humans to build a new landscape of changes in the RNA viral genome. Phylogenetic analyses suggest that bat viruses are the most closely related to the time of most recent common ancestor of Betacoronavirus, and missense mutations in viral proteins, mainly in the S protein S1 subunit: SARS-CoV (G > T; A577S); MERS-CoV (C > T; S746R and C > T; N762A); and SARS-CoV-2 (A > G; D614G) appear to have driven viral diversification. We also found that codon sites under positive selection on S protein overlap with non-compensatory mutations that disrupt secondary RNA structures in the RNA genome complement. These findings provide pivotal factors that might be underlying the eventual jumping the species barrier from bats to intermediate hosts. Lastly, we discovered that nearly half of the Betacoronavirus genomes carry highly conserved RNA structures, and more than 90% of these RNA structures show negative selection signals, suggesting essential functions in the biology of Betacoronavirus that have not been investigated to date. Further research is needed on negatively selected RNA structures to scan for emerging functions like the potential of coding virus-derived small RNAs and to develop new candidate antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Alexis Felipe Rojas-Cruz
- Theoretical and Computational RNomics Group, Department of Biology, Faculty of Sciences, National University of Colombia, Bogota Colombia
| | - Juan Carlos Gallego-Gómez
- Molecular and Translational Medicine Group, Faculty of Medicine, University of Antioquia, Medellin Colombia
| | - Clara Isabel Bermúdez-Santana
- Theoretical and Computational RNomics Group, Department of Biology, Faculty of Sciences, National University of Colombia, Bogota Colombia
- Center of Excellence in Scientific Computing, National University of Colombia, Bogota Colombia
| |
Collapse
|
11
|
Chavda VP, Mishra T, Vuppu S. Immunological Studies to Understand Hybrid/Recombinant Variants of SARS-CoV-2. Vaccines (Basel) 2022; 11:45. [PMID: 36679891 PMCID: PMC9867374 DOI: 10.3390/vaccines11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The zoonotic SARS-CoV-2 virus was present before the onset of the pandemic. It undergoes evolution, adaptation, and selection to develop variants that gain high transmission rates and virulence, resulting in the pandemic. Structurally, the spike protein of the virus is required for binding to ACE2 receptors of the host cells. The gene coding for the spike is known to have a high propensity of mutations, as a result generating numerous variants. The variants can be generated by random point mutations or recombination during replication. However, SARS-CoV-2 can also produce hybrid variants on co-infection of the host by two distinct lineages of the virus. The genomic sequences of the two variants undergo recombination to produce the hybrid variants. Additionally, these sub-variants also contain numerous mutations from both the parent variants, as well as some novel mutations unique to the hybrids. The hybrid variants (XD, XE, and XF) can be identified through numerous techniques, such as peak PCR, NAAT, and hybrid capture SARS-CoV-2 NGS (next generation sequencing) assay, etc., but the most accurate approach is genome sequencing. There are numerous immunological diagnostic assays, such as ELISA, chemiluminescence immunoassay, flow-cytometry-based approaches, electrochemiluminescence immunoassays, neutralization assays, etc., that are also designed and developed to provide an understanding of the hybrid variants, their pathogenesis, and other reactions. The objective of our study is to comprehensively analyze the variants of SARS-CoV-2, especially the hybrid variants. We have also discussed the techniques available for the identification of hybrids, as well as the immunological assays and studies for analyzing the hybrid variants.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, LM College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab. 115, Hexagon (SMV), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab. 115, Hexagon (SMV), Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
12
|
Domingo JL. An updated review of the scientific literature on the origin of SARS-CoV-2. ENVIRONMENTAL RESEARCH 2022; 215:114131. [PMID: 36037920 PMCID: PMC9420317 DOI: 10.1016/j.envres.2022.114131] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
More than two and a half years have already passed since the first case of COVID-19 was officially reported (December 2019), as well as more than two years since the WHO declared the current pandemic (March 2020). During these months, the advances on the knowledge of the COVID-19 and SARS-CoV-2, the coronavirus responsible of the infection, have been very significant. However, there are still some weak points on that knowledge, being the origin of SARS-CoV-2 one of the most notorious. One year ago, I published a review focused on what we knew and what we need to know about the origin of that coronavirus, a key point for the prevention of potential future pandemics of a similar nature. The analysis of the available publications until July 2021 did not allow drawing definitive conclusions on the origin of SARS-CoV-2. Given the great importance of that issue, the present review was aimed at updating the scientific information on that origin. Unfortunately, there have not been significant advances on that topic, remaining basically the same two hypotheses on it. One of them is the zoonotic origin of SARS-CoV-2, while the second one is the possible leak of this coronavirus from a laboratory. Most recent papers do not include observational or experimental studies, being discussions and positions on these two main hypotheses. Based on the information here reviewed, there is not yet a definitive and well demonstrated conclusion on the origin of SARS-CoV-2.
Collapse
Affiliation(s)
- Jose L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
13
|
Chakraborty C, Bhattacharya M, Sharma AR, Dhama K. Evolution, epidemiology, geographical distribution, and mutational landscape of newly emerging monkeypox virus. GeroScience 2022; 44:2895-2911. [PMID: 36094771 PMCID: PMC9466330 DOI: 10.1007/s11357-022-00659-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 01/18/2023] Open
Abstract
Recent monkeypox (MPX) outbreaks are major ones in non-endemic countries. The present study analyzed molecular phylogenetics, divergence, epidemiology, the geographical distribution, entropy diversity of genome, mutational landscape, and evolution of the monkeypox virus (MPXV) genome and the current MPXV is entitled "hMPXV1." We used different in-silico and statistical methods to study our objectives. The developed phylogram from molecular phylogenetics describes the origin and evolution of hMPXV1 of A, A.1, A.1.1, A.2, and B.1 lineages. The microevolution of B.1 lineage shows its evolution from May to August 2022. B.1 lineage is further adapting and showing more mutation and sub-lineages. The scatter plot of all lineages shows the clustering pattern of lineages and the divergence. We also developed two statistical models of confirmed cases and a diagram of the age-related pattern of infected cases to illustrate the epidemiology of the MPX outbreaks. The entropy diversity and mutational landscape of the hMPXV1 genome were analyzed in nucleotide and codon contexts. Our study has shown the in-depth evolution pattern of different lineages of the hMPXV1. We found B.1 lineage is associated with the current outbreaks. The mutational landscape informs about the slow mutation of the virus. Finally, the study might assists the new therapeutic development considering all the above points and would help the researcher to set up their future research directions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, Bareilly, India
| |
Collapse
|
14
|
Chakraborty C, Bhattacharya M, Nandi SS, Mohapatra RK, Dhama K, Agoramoorthy G. Appearance and re-appearance of zoonotic disease during the pandemic period: long-term monitoring and analysis of zoonosis is crucial to confirm the animal origin of SARS-CoV-2 and monkeypox virus. Vet Q 2022; 42:119-124. [PMID: 35658858 PMCID: PMC9225752 DOI: 10.1080/01652176.2022.2086718] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/16/2022] Open
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Shyam Sundar Nandi
- ICMR-National Institute of Virology, (Mumbai Unit), Indian Council of Medical Research, Haffkine Institute Compound, Mumbai, India
| | - Ranjan K. Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | |
Collapse
|
15
|
Domnich A, Orsi A, Trombetta CS, Costa E, Guarona G, Lucente M, Ricucci V, Bruzzone B, Icardi G. Comparative Diagnostic Accuracy of the STANDARD M10 Assay for the Molecular Diagnosis of SARS-CoV-2 in the Point-of-Care and Critical Care Settings. J Clin Med 2022; 11:2465. [PMID: 35566591 PMCID: PMC9105343 DOI: 10.3390/jcm11092465] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Accurate and rapid molecular diagnosis of COVID-19 is a crucial step to tackle the ongoing pandemic. The primary objective of this study was to estimate the real-world performance of the novel RT-PCR STANDARD M10 SARS-CoV-2 assay in a large number of nasopharyngeal (NP) specimens eluted in universal transport medium. The secondary objective was to evaluate the compatibility of this kit in testing NP samples eluted in an inactivated transport medium (essential for point-of-care testing) and lower respiratory tract (LRT) specimens, which are commonly collected in critical care. A total of 591 samples were analyzed. Compared with the standard extraction-based RT-PCR Allplex 2019-nCoV (time-to-result of 270 min), the sensitivities of the STANDARD M10 were 100% (95% CI: 98.1-100%), 95.5% (95% CI: 91.7-97.6%), and 99.5% (95% CI: 97.2-99.9%) for ≥1 gene, the ORF1ab gene, and the E gene, respectively, while the specificity was 100% (95% CI: 98.7-100%). The diagnostic accuracy was 100% in testing both NP samples eluted in an inactivated transport medium and LRT specimens. STANDARD M10 reliably detects SARS-CoV-2 in 60 min, may be used as a POC tool, and is suitable for testing LRT specimens in the critical care setting.
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (M.L.); (V.R.); (B.B.); (G.I.)
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (M.L.); (V.R.); (B.B.); (G.I.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (C.-S.T.); (E.C.)
| | - Carlo-Simone Trombetta
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (C.-S.T.); (E.C.)
| | - Elisabetta Costa
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (C.-S.T.); (E.C.)
| | - Giulia Guarona
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (M.L.); (V.R.); (B.B.); (G.I.)
| | - Miriana Lucente
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (M.L.); (V.R.); (B.B.); (G.I.)
| | - Valentina Ricucci
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (M.L.); (V.R.); (B.B.); (G.I.)
| | - Bianca Bruzzone
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (M.L.); (V.R.); (B.B.); (G.I.)
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital-IRCCS for Oncology and Neurosciences, 16132 Genoa, Italy; (A.O.); (G.G.); (M.L.); (V.R.); (B.B.); (G.I.)
- Department of Health Sciences (DISSAL), University of Genoa, 16132 Genoa, Italy; (C.-S.T.); (E.C.)
| |
Collapse
|