1
|
Tian C, Deng S, Zhang Z, Zheng K, Wei L. Bifidobacterium bifidum 1007478 derived indole-3-lactic acid alleviates NASH via an aromatic hydrocarbon receptor-dependent pathway in zebrafish. Life Sci 2025; 369:123557. [PMID: 40074143 DOI: 10.1016/j.lfs.2025.123557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
AIMS This study investigates the potential of Bifidobacterium bifidum 1007478 (BB478) and its metabolite indole-3-lactic acid (ILA) in alleviating non-alcoholic steatohepatitis (NASH) induced by a high-fat diet (HFD) and fructose exposure. MATERIALS AND METHODS A zebrafish model of NASH was established by exposure to HFD and fructose. BB478 was administered, and the effects on liver lipid accumulation, oxidative stress, and inflammation were assessed. ILA production by BB478 was confirmed, and its impact on hepatic lipogenesis and inflammatory pathways was evaluated. The involvement of the aromatic hydrocarbon receptor (AhR) was also examined using an AhR inhibitor. KEY FINDINGS BB478 supplementation inhibited lipid accumulation in the liver, reduced triglycerides (TG) and total cholesterol (TC), and mitigated oxidative stress, as evidenced by lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). ILA, produced by BB478, could alleviate the hepatic damage and fat deposition in liver. Mechanistically, it suppressed hepatic lipogenesis by downregulating lipogenesis-related genes, including sterol response element binding protein 1 (SREBP1) and fatty acid synthase (FASN). ILA also inhibited the expression of pro-inflammatory cytokines to suppress inflammation. The therapeutic effects of ILA were reversed by the AhR inhibitor, indicating that ILA's actions are AhR-dependent. SIGNIFICANCE These findings reveal the potential of ILA, produced by Bifidobacterium bifidum, as a therapeutic agent for NASH. The mechanistic insights into AhR-mediated effects provide a foundation for further exploration of ILA as a novel approach for managing liver diseases.
Collapse
Affiliation(s)
- Chao Tian
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Tsinghua University, Beijing 100084, China
| | - Shizhou Deng
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Tsinghua University, Beijing 100084, China
| | - Zhao Zhang
- Research and Development Centre, GuangDong Longseek Testing Co., Ltd., Guangzhou, Guangdong 510700, China
| | - Kangdi Zheng
- Research and Development Centre, GuangDong Longseek Testing Co., Ltd., Guangzhou, Guangdong 510700, China
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine of Tsinghua University, Beijing 102218, China; Ministry of Education Key Laboratory of Digital Intelligence Hepatology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Ferdousmakan S, Mansourian D, Seyedi Asl FS, Fathi Z, Maleki-Sheikhabadi F, Afjadi MN, Zalpoor H. Autophagy induced by metabolic processes leads to solid tumor cell metastatic dormancy and recurrence. Med Oncol 2025; 42:62. [PMID: 39899220 DOI: 10.1007/s12032-025-02607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
A crucial cellular mechanism that has a complex impact on the biology of cancer, particularly in solid tumors, is autophagy. This review explores how metabolic processes trigger autophagy, which helps metastatic tumor cells go dormant and recur. During metastasis, tumor cells frequently encounter severe stressors, such as low oxygen levels and nutritional deprivation, which causes them to activate autophagy as a survival tactic. This process allows cancer stem cells (CSCs) to withstand severe conditions while also preserving their features. After years of dormancy, dormant disseminated tumor cells (DTCs) may reappear as aggressive metastatic cancers. The capacity of autophagy to promote resistance to treatments and avoid immune detection is intimately related to this phenomenon. According to recent research, autophagy promotes processes, such as the epithelial-to-mesenchymal transition (EMT) and helps build a pre-metastatic niche, which makes treatment strategies more challenging. Autophagy may be a promising therapeutic target because of its dual function as a tumor suppressor in early-stage cancer and a survival promoter in advanced stages. To effectively treat metastatic diseases, it is crucial to comprehend how metabolic processes interact with autophagy and affect tumor behavior. In order to find novel therapeutic approaches that can interfere with these processes and improve patient outcomes, this study highlights the critical need for additional investigation into the mechanisms by which autophagy controls tumor dormancy and recurrence.
Collapse
Affiliation(s)
- Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085, India
| | - Dorrin Mansourian
- Faculty of Pharmacy, Eastern Mediterranean University, Gazimagusa TRNC via Mersin 10, Mersin, Turkey
| | | | - Zeinab Fathi
- Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Arroyave-Ospina JC, Martínez M, Buist-Homan M, Palasantzas V, Arrese M, Moshage H. Coffee Compounds Protection Against Lipotoxicity Is Associated with Lipid Droplet Formation and Antioxidant Response in Primary Rat Hepatocytes. Antioxidants (Basel) 2025; 14:175. [PMID: 40002362 PMCID: PMC11851918 DOI: 10.3390/antiox14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic dysfunction associated with steatotic liver disease (MASLD) is the result of disturbed lipid metabolism. In MASLD, the accumulation of free fatty acids (FFAs) in hepatocytes causes lipotoxicity mediated by oxidative stress. Coffee compounds are known for their beneficial effects in MASLD; however, the mechanisms still need to be further explored. The aim of this study was to elucidate the protective mechanisms of coffee compounds against palmitate-induced lipotoxicity in primary hepatocytes. METHODS Primary hepatocytes were isolated from male Wistar rats and treated with palmitate (1 mmol/L) in combination with caffeine (CF: 1 mmol/L) or chlorogenic acid (CGA: 5 µmol/L). Mitochondrial ROS production, palmitate-induced necrosis, antioxidant response, ER stress markers and lipid droplet (LD) formation were assessed. Monoacylglycerols 2-SG (2-Stearolylglycerol), 2-OG (2-Oleoylglycerol) and SCD-1 (Stearoyl-CoA Desaturase 1) inhibitors were used to modulate LD formation. LD formation in steatotic Zucker rat hepatocytes was also investigated. RESULTS CF and CGA prevented palmitate-induced cell death and reduced ROS production. CF and CGA induced the antioxidant response, especially HO-1 expression, but had no significant effect on ER stress markers. CF and CGA increased LD formation in palmitate-treated cells. This effect was significantly reduced by 2-SG and SCD-1 inhibitors but enhanced by 2-OG. Lipid droplets were associated with lower palmitate toxicity and reduced ROS production. CONCLUSIONS CF and CGA protect hepatocytes from lipotoxicity via modulation of the antioxidant response and enhance lipid droplet formation via an SCD-1-dependent mechanism. Oxidative stress-related toxicity in hepatocytes can be prevented by enhancing LD formation.
Collapse
Affiliation(s)
- Johanna C. Arroyave-Ospina
- Department of Fisiología y Bioquímica and Grupo de Gastrohepatología, Facultad de Medicina Universidad de Antioquia, Medellín 050010, Colombia
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Magnolia Martínez
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| | - Victoria Palasantzas
- Department of Genetics and Department of Pediatrics, University Medical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands;
| | - Marco Arrese
- Department of Gastroenterology, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Med ical Center of Groningen, University of Groningen, P.O. Box 30.001, 9713 GZ Groningen, The Netherlands; (M.M.); (M.B.-H.)
| |
Collapse
|
4
|
Ying C, Hua Z, Ma F, Yang Y, Wang Y, Liu K, Yin G. Hepatic immune response of Coilia nasus infected with Anisakidae during ovarian development. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101261. [PMID: 38897035 DOI: 10.1016/j.cbd.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Anisakidae parasitism is a prevalent disease in wild populations of Coilia nasus, and can result in a significant loss of germplasm resources. To elucidate the immune response mechanism of C. nasus livers to Anisakidae infection, we collected and analysed 18 parasitic and 18 non-parasitic livers at gonadal developmental stages II, III, and V using histopathology, molecular biology and transcriptome methods. The hepatic portal area of the parasitic group exhibited an increase in the fibrous stroma and thickened hepatic arteries with positive Ly-6G staining, indicating inflammation and immune responses in the liver. Hepatocyte cytokine levels and the expression of liver function-related genes indicated that fish livers responded similarly to Anisakidae parasitism across different gonadal developmental stages. Oxidative stress indices showed more intense changes in stage II samples, whereas gene expression levels of Nrf2 and C3 were significantly increased in parasitised livers during stage III and V. Liver transcriptome sequencing identified 2575 differentially expressed genes between the parasitic and non-parasitic groups at the three gonadal developmental stages. KEGG pathway analysis showed that natural killer cell-mediated cytotoxicity, the NOD-like receptor signaling pathway, neutrophil extracellular trap formation, and other immune pathways were significantly enriched. Expression patterns varied across developmental stages, suggesting that innate immunity was primarily responsible for the liver immune response to Anisakidae infection during C. nasus migration, possibly related to water temperature changes or shifts in the gonadal developmental stage. In summary, this study investigated the immune response of C. nasus to Anisakidae parasitism under natural conditions, focusing on reproductive aspects and environmental changes, thereby establishing a foundation for elucidating the molecular mechanisms underlying the immune response of Anisakidae in C. nasus.
Collapse
Affiliation(s)
- Congping Ying
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Zhong Hua
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fengjiao Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yanping Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yinping Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Kai Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
5
|
Wei Y, Miao Z, Ye H, Wu M, Wei X, Zhang Y, Cai L. The Effect of Caffeine Exposure on Sleep Patterns in Zebrafish Larvae and Its Underlying Mechanism. Clocks Sleep 2024; 6:749-763. [PMID: 39584977 PMCID: PMC11586999 DOI: 10.3390/clockssleep6040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
The effect of caffeine on the behavior and sleep patterns of zebrafish larvae, as well as its underlying mechanisms, has been a topic of great interest. This study aimed to investigate the impact of caffeine on zebrafish larval sleep/wake behavior and the expression of key regulatory genes such as cAMP-response element binding protein (CREB) and adenosine (ADA) in the sleep pathway. To begin, the study determined the optimal dose and duration of caffeine exposure, with the optimal doses found to be 31.25 μM, 62.5 μM, and 120 μM. Similarly, the optimal exposure time was established as no more than 120 h, ensuring a mortality rate of less than 10%. The confirmation of these conditions was achieved through the assessment of angiogenesis and the inflammatory reaction. As a result, the treatment time point of 24 h post-fertilization (hpf) was selected to examine the effects of caffeine on zebrafish larval sleep rhythm (48 h, with a light cycle of 14:10). Furthermore, the study analyzed the expression of clock genes (bmal1a, per1b, per2, per3, cry2), adenosine receptor genes (adora1a, adora1b, adora2aa, adora2ab, adora2b), and key regulatory factors (CREB and ADA). The research confirmed that caffeine could induce sleep pattern disorders, significantly upregulate adenosine receptor genes (adora1a, adora1b, adora2a, adora2ab, adora2b) (p < 0.05), and markedly decrease the total sleep time and sleep efficiency of the larvae. Additionally, the activity of ADA significantly increased during the exposure (p < 0.001), and the tissue-specific expression of CREB was also significantly increased, as assessed by immunofluorescence. Caffeine may regulate circadian clock genes through the ADA/ADORA/CREB pathway. These findings not only enhance our understanding of the effects of caffeine on zebrafish larvae but also provide valuable insights into the potential impact of caffeine on human behavior and sleep.
Collapse
Affiliation(s)
- Yuanzheng Wei
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Zongyu Miao
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Huixin Ye
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Meihui Wu
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Xinru Wei
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yu Zhang
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| | - Lei Cai
- Guangdong Provincial Biotechnology Research Institute (Guangdong Provincial Laboratory Animals Monitoring Center), Guangzhou 510663, China; (Y.W.); (Z.M.); (H.Y.); (M.W.)
| |
Collapse
|
6
|
Jiang X, Wang H, Nie K, Gao Y, Chen S, Tang Y, Wang Z, Su H, Dong H. Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. Chin Med 2024; 19:120. [PMID: 39232826 PMCID: PMC11373146 DOI: 10.1186/s13020-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Shen Q, Yang M, Wang S, Chen X, Chen S, Zhang R, Xiong Z, Leng Y. The pivotal role of dysregulated autophagy in the progression of non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1374644. [PMID: 39175576 PMCID: PMC11338765 DOI: 10.3389/fendo.2024.1374644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome characterized by excessive fat deposition in hepatocytes and a major cause of end-stage liver disease. Autophagy is a metabolic pathway responsible for degrading cytoplasmic products and damaged organelles, playing a pivotal role in maintaining the homeostasis and functionality of hepatocytes. Recent studies have shown that pharmacological intervention to activate or restore autophagy provides benefits for liver function recovery by promoting the clearance of lipid droplets (LDs) in hepatocytes, decreasing the production of pro-inflammatory factors, and inhibiting activated hepatic stellate cells (HSCs), thus improving liver fibrosis and slowing down the progression of NAFLD. This article summarizes the physiological process of autophagy, elucidates the close relationship between NAFLD and autophagy, and discusses the effects of drugs on autophagy and signaling pathways from the perspectives of hepatocytes, kupffer cells (KCs), and HSCs to provide assistance in the clinical management of NAFLD.
Collapse
Affiliation(s)
- Qiaohui Shen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ming Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Chen
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Sulan Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhuang Xiong
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yan Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Najafpour B, Canário AVM, Power DM. Transcriptome datasets and histological profiles of critical larval stages in gilthead seabream. Data Brief 2024; 55:110571. [PMID: 39022693 PMCID: PMC11252595 DOI: 10.1016/j.dib.2024.110571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
The transcriptome of the seabream larvae farmed in different European commercial hatcheries was analysed during critical larval stages. The complementary data herein presented support the findings reported in the associated research article "Insights into core molecular changes associated with metamorphosis in gilthead seabream larvae across diverse hatcheries". Samples were collected from gilthead seabream (Sparus aurata) hatcheries in Greece (site Gr), Italy (site It), and France (site Fr). RNA was extracted from larvae with different weights, mainly at the flexion (23 and 25 dph) and mid-metamorphosis stages (43, 50, 52, 56, and 60 dph). RNA-seq libraries were sequenced using Illumina HiSeq xten. The paired-end sequenced raw reads were deposited in the NCBI-SRA database with the accession number PRJNA956882. Differential expression and function of genes were obtained by comparing transcriptome profiles of larvae at different developmental stages. The presented data can be used to improve marine-farmed fish larvae production during critical larval stages.
Collapse
Affiliation(s)
- Babak Najafpour
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Adelino VM Canário
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| | - Deborah M. Power
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal
- International Research Center for Marine Biosciences (Ministry of Science and Technology), Shanghai Ocean University, Shanghai, China
| |
Collapse
|
9
|
Wang M, Guo W, Chen JF. Caffeine: a potential mechanism for anti-obesity. Purinergic Signal 2024:10.1007/s11302-024-10022-1. [PMID: 38802651 DOI: 10.1007/s11302-024-10022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Obesity refers to the excessive accumulation of fat caused by a long-term imbalance between energy intake (EI) and energy expenditure (EE). Over recent years, obesity has become a major public health challenge. Caffeine is a natural product that has been demonstrated to exert anti-obesity effects; however, the mechanisms responsible for the effect of caffeine on weight loss have yet to be fully elucidated. Most obesity-related deaths are due to cardiovascular disease. Recent research has demonstrated that caffeine can reduce the risk of death from cardiovascular disease; thus, it can be hypothesized that caffeine may represent a new therapeutic agent for weight loss. In this review, we synthesize data arising from clinical and animal studies over the last decade and discuss the potential mechanisms by which caffeine may induce weight loss, focusing particularly on increasing energy consumption, suppressing appetite, altering lipid metabolism, and influencing the gut microbiota. Finally, we summarize the major challenges associated with caffeine and anti-obesity research and highlight possible directions for future research and development.
Collapse
Affiliation(s)
- Meng Wang
- International Joint Research Center on Purinergic Signaling, School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wei Guo
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiang-Fan Chen
- The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
10
|
Yang K, Liu J, He T, Dong W. Caffeine and neonatal acute kidney injury. Pediatr Nephrol 2024; 39:1355-1367. [PMID: 37665410 DOI: 10.1007/s00467-023-06122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023]
Abstract
Acute kidney injury is one of the most threatening diseases in neonates, with complex pathogenesis and limited treatment options. Caffeine is a commonly used central nervous system stimulant for treating apnea in preterm infants. There is compelling evidence that caffeine may have potential benefits for preventing neonatal acute kidney injury, but comprehensive reports are lacking in this area. Hence, this review aims to provide a summary of clinical data on the potential benefits of caffeine in improving neonatal acute kidney injury. Additionally, it delves into the molecular mechanisms underlying caffeine's effects on acute kidney injury, with a focus on various aspects such as oxidative stress, adenosine receptors, mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome, autophagy, p53, and gut microbiota. The ultimate goal of this review is to provide information for healthcare professionals regarding the link between caffeine and neonatal acute kidney injury and to identify gaps in our current understanding.
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Jinjing Liu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Ting He
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, China.
| |
Collapse
|
11
|
Wang Q, Hu GL, Qiu MH, Cao J, Xiong WY. Coffee, tea, and cocoa in obesity prevention: Mechanisms of action and future prospects. Curr Res Food Sci 2024; 8:100741. [PMID: 38694556 PMCID: PMC11061710 DOI: 10.1016/j.crfs.2024.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Gui-Lin Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun Cao
- Key Laboratory for Transboundary Ecosecurity of Southwest China (Ministry of Education), Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China
| | - Wen-Yong Xiong
- Key Laboratory of Medicinal Chemistry for Natural Resource (Ministry of Education), Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming, 650500, China
| |
Collapse
|
12
|
Thompson WA, Rajeswari JJ, Holloway AC, Vijayan MM. Excess feeding increases adipogenesis but lowers leptin transcript abundance in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109816. [PMID: 38061616 DOI: 10.1016/j.cbpc.2023.109816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Although fish exposed to municipal wastewater effluents (MWWE) show higher lipid accumulation, whether this is due to adipogenesis is unclear. The objective here was to identify molecular markers of adipogenesis in zebrafish (Danio rerio) larvae for use as high throughput screening tools for environmental contaminants, including obesogens in MWWE. Zebrafish larvae were fed a commercial diet at a maintenance level (5 % body mass) or in excess (25 or 50 % body mass) from day 6 to 30 days post-fertilization (dpf) to stimulate adipogenesis. We monitored fat accumulation and markers of lipid metabolism, including peroxisome proliferator-activated receptor γ (ppar γ), fatty acid synthase (fas), ELOVL fatty acid elongase 2 (elovl2), diacylglycerol O-acyltransferase 2 (dgat2), leptin (lepa and lepb), leptin receptor (lepr), and lipoprotein lipase (lpl). Excess feeding led to a higher growth rate, protein content and an increase in igf1 transcript abundance. Also, these larvae had higher triglyceride levels and accumulated lipids droplets in the abdominal cavity and viscera. The molecular markers of adipogenesis, including fas, elovl2, and dgat2, were upregulated, while the transcript abundance of lpl, a lipolytic gene, was transiently lower due to excess feeding. The increased adiposity seen at 30 dpf due to excess feeding coincided with a lower lep but not lepr transcript abundance in zebrafish. Our results demonstrate that excess feeding alters the developmental programming of key genes involved in lipid homeostasis, leading to excess lipid accumulation in zebrafish larvae. Overall, fas, elovl2, lpl, and dgat2, but not lep or ppar γ, have the potential to be biomarkers of adipogenesis in zebrafish larvae.
Collapse
Affiliation(s)
- William Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jithine Jayakumar Rajeswari
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
13
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
14
|
Wang R, Mao Y, Yu C, Rong Z, Wang R, Wang Y, Lv L, Gao Y, Wang Z, Zhang H. Research Progress of Natural Products with the Activity of Anti-nonalcoholic Steatohepatitis. Mini Rev Med Chem 2024; 24:1894-1929. [PMID: 38752645 DOI: 10.2174/0113895575306598240503054317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 10/16/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), a multi-target disease, is becoming a global epidemic. Although several anti-NASH drug candidates are being evaluated in late-stage clinical trials, none have been approved by the FDA to date. Given the global prevalence of the disease, the lack of effective drugs, and the very limited therapeutic efficacy of most of the existing synthetic drugs focusing on a single target, there is an urgent need to continue to develop new therapeutic agents. In contrast, many natural products, including pure compounds and crude extracts, possess hepatoprotective activities. Usually, these natural components are characterized by multi-targeting and low side effects. Therefore, natural products are important resources for the development of new anti- NASH drugs. In this paper, we focus on reviewing the anti-NASH potential, structure, and some of the side effects of natural products based on structural classification. We hope this mini-review will help researchers design and develop new anti-NASH drugs, especially based on the structure of natural products.
Collapse
Affiliation(s)
- Rui Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuheng Mao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunping Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhenji Rong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruyue Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yixin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Linjin Lv
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhigang Wang
- Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Hailong Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
15
|
Arroyave-Ospina JC, Buist-Homan M, Schmidt M, Moshage H. Protective effects of caffeine against palmitate-induced lipid toxicity in primary rat hepatocytes is associated with modulation of adenosine receptor A1 signaling. Biomed Pharmacother 2023; 165:114884. [PMID: 37423170 DOI: 10.1016/j.biopha.2023.114884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Epidemiological evidence has shown an association between coffee consumption and reduced risk for chronic liver diseases, including metabolic-dysfunction-associated liver disease (MALFD). Lipotoxicity is a key cause of hepatocyte injury during MAFLD. The coffee component caffeine is known to modulate adenosine receptor signaling via the antagonism of adenosine receptors. The involvement of these receptors in the prevention of hepatic lipotoxicity has not yet been explored. The aim of this study was to explore whether caffeine protects against palmitate-induced lipotoxicity by modulating adenosine receptor signaling. METHODS Primary hepatocytes were isolated from male rats. Hepatocytes were treated with palmitate with or without caffeine or 1,7DMX. Lipotoxicity was verified using Sytox viability staining and mitochondrial JC-10 staining. PKA activation was verified by Western blotting. Selective (ant)agonists of A1AR (DPCPX and CPA, respectively) and A2AR (istradefyline and regadenoson, respectively), the AMPK inhibitor compound C, and the Protein Kinase A (PKA) inhibitor Rp8CTP were used. Lipid accumulation was verified by ORO and BODIPY 453/50 staining. RESULTS Caffeine and its metabolite 1,7DMX prevented palmitate-induced toxicity in hepatocytes. The A1AR antagonist DPCPX also prevented lipotoxicity, whereas both the inhibition of PKA and the A1AR agonist CPA (partially) abolished the protective effect. Caffeine and DPCPX increased lipid droplet formation only in palmitate-treated hepatocytes and decreased mitochondrial ROS production. CONCLUSIONS The protective effect of caffeine against palmitate lipotoxicity was shown to be dependent on A1AR receptor and PKA activation. Antagonism of A1AR also protects against lipotoxicity. Targeting A1AR receptor may be a potential therapeutic intervention with which to treat MAFLD.
Collapse
Affiliation(s)
- Johanna C Arroyave-Ospina
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Manon Buist-Homan
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martina Schmidt
- Department Molecular Pharmacology, Groningen Research Institute of Pharmacy, Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen University of Groningen, Groningen, the Netherlands
| | - Han Moshage
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
16
|
Hegazi OE, Alalalmeh SO, Alnuaimi GRH, Shahwan M, Jairoun AA, Alorfi NM, Majrashi SA, Alkhanani MF, Alkhattabi A, Alourfi MM, Alsolami FA, Alsharif S, Alshahrani H. NAFLD and nutraceuticals: a review of completed phase III and IV clinical trials. Front Med (Lausanne) 2023; 10:1227046. [PMID: 37601777 PMCID: PMC10433184 DOI: 10.3389/fmed.2023.1227046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Background Nonalcoholic Fatty Liver Disease (NAFLD) has become a significant public health concern, affecting approximately one-fourth of the population. Despite its prevalence, no FDA-approved drug treatments specifically target NAFLD. Aim To provide a review of clinical trials investigating the use of herbal remedies and dietary supplements in NAFLD management, utilizing the ClinicalTrials.gov database. Methods This review evaluates the current evidence by examining completed phase III and IV clinical trials registered on ClinicalTrials.gov. An exhaustive search was performed on April 17, 2023, using the terms "Nonalcoholic Fatty Liver Disease" and "NAFLD." Two independent reviewers appraised eligible trials based on pre-defined inclusion and exclusion criteria. Results An initial search yielded 1,226 clinical trials, with 12 meeting the inclusion criteria after filtration. The majority of trials focused on Omega-3 fatty acids (20.0%) and vitamin D (26.7%), followed by caffeine, chlorogenic acid, ginger, phosphatidylcholine, Trigonella Foenum-graecum seed extract, vitamin C, and vitamin E (each 6.7%). Most studies were Phase 3 (75.0%) and used a parallel assignment model (91.7%). Quadruple masking was the most prevalent technique (58.3%), and Iran was the leading country in terms of trial locations (25.0%). These interventions constitute two herbal interventions and nine supplement interventions. Conclusion This reveals a diverse range of nutraceuticals, with Omega-3 fatty acids and vitamin D being predominant in the management of NAFLD. The global distribution of trials highlights the widespread interest in these therapeutics. However, more rigorous, large-scale trials are needed to establish safety, efficacy, and optimal dosages.
Collapse
Affiliation(s)
- Omar E. Hegazi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Samer O. Alalalmeh
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ghala Rashid Humaid Alnuaimi
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Ammar Abdulrahman Jairoun
- Health and Safety Department, Dubai Municipality, Dubai, United Arab Emirates
- School of Pharmaceutical Sciences, University Sains Malaysia (USM), Pulau Pinang, Malaysia
| | - Nasser M. Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shaker A. Majrashi
- Department of Laparoscopic Surgery, King Fahad Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Mustfa Faisal Alkhanani
- Biology Department, College of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | | | - Mansour M. Alourfi
- Department of Gastroenterology, East Jeddah Hospital, Jeddah, Saudi Arabia
- Internal Medicine Department, King Faisal Medical City for Southern Region, Abha, Saudi Arabia
| | - Faris A. Alsolami
- Khulais General Hospital, Makkah cluster, Ministry of Health, Makkah, Saudi Arabia
| | - Saeed Alsharif
- Gastroenterology Department, Armed force hospital of Southern region, Khamis Mushait, Saudi Arabia
| | - Hatim Alshahrani
- Internal medicine Department, Khamis Mushait General hospital, Khamis Mushait, Saudi Arabia
| |
Collapse
|
17
|
Yehuda H, Madrer N, Goldberg D, Soreq H, Meerson A. Inversely Regulated Inflammation-Related Processes Mediate Anxiety-Obesity Links in Zebrafish Larvae and Adults. Cells 2023; 12:1794. [PMID: 37443828 PMCID: PMC10341043 DOI: 10.3390/cells12131794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Anxiety and metabolic impairments are often inter-related, but the underlying mechanisms are unknown. To seek RNAs involved in the anxiety disorder-metabolic disorder link, we subjected zebrafish larvae to caffeine-induced anxiety or high-fat diet (HFD)-induced obesity followed by RNA sequencing and analyses. Notably, differentially expressed (DE) transcripts in these larval models and an adult zebrafish caffeine-induced anxiety model, as well as the transcript profiles of inherently anxious versus less anxious zebrafish strains and high-fat diet-fed versus standard diet-fed adult zebrafish, revealed inversely regulated DE transcripts. In both larval anxiety and obesity models, these included long noncoding RNAs and transfer RNA fragments, with the overrepresented immune system and inflammation pathways, e.g., the "interleukin signaling pathway" and "inflammation mediated by chemokine and cytokine signaling pathway". In adulthood, overrepresented immune system processes included "T cell activation", "leukocyte cell-cell adhesion", and "antigen processing and presentation". Furthermore, unlike adult zebrafish, obesity in larvae was not accompanied by anxiety-like behavior. Together, these results may reflect an antagonistic pleiotropic phenomenon involving a re-adjusted modulation of the anxiety-metabolic links with an occurrence of the acquired immune system. Furthermore, the HFD potential to normalize anxiety-upregulated immune-related genes may reflect the high-fat diet protection of anxiety and neurodegeneration reported by others.
Collapse
Affiliation(s)
- Hila Yehuda
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
| | - Nimrod Madrer
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Doron Goldberg
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| | - Hermona Soreq
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (H.Y.); (N.M.)
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Ari Meerson
- MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel
- Tel-Hai College, Upper Galilee 1220800, Israel;
| |
Collapse
|
18
|
Li D, Li Z, Dong L, Zhang Y, Lu Y, Wang J, Sun H, Wang S. Coffee prevents IQ-induced liver damage by regulating oxidative stress, inflammation, endoplasmic reticulum stress, autophagy, apoptosis, and the MAPK/NF-κB signaling pathway in zebrafish. Food Res Int 2023; 169:112946. [PMID: 37254370 DOI: 10.1016/j.foodres.2023.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023]
Abstract
2-Amino-3-methylimidazole[4,5-f]quinoline (IQ), one of heterocyclic amines (HCAs) produced in proteinaceous foods upon heating, is recognized as a carcinogen. Previous studies have confirmed that IQ intake can cause liver damage in zebrafish. In the current study, we revealed the protective effects of coffee against IQ-induced liver damage. We exposed one-month-old wild-type zebrafish to IQ (80 ng/mL) and coffee at 50 mg/L, 100 mg/L, and 300 mg/L for 35 days. Markers of oxidative stress, inflammation, endoplasmic reticulum stress (ERS), autophagy, and apoptosis in the liver were assessed to explore the potential mechanisms of the protective effects. The results showed that coffee effectively improved IQ-induced liver damage by reducing ALT, AST, TC, TG, and LDL-C levels, increasing HDL-C level, and restoring hepatic morphology. Moreover, coffee showed an antioxidative effect by increasing GSH, GSH-Px, GST, CAT, and SOD levels and attenuating ROS and MDA contents. Additionally, coffee reduced the NO, iNOS, TNF-α, IL-6, IL-1β, and IL-12 expression levels, presenting an anti-inflammatory effect. Furthermore, coffee protected against ERS, autophagy dysfunction, and apoptosis by decreasing the GRP78, CHOP, and p62 while increasing the Atg5-Atg12, Beclin1, LC3-II, and Bcl-2 expression levels. TUNEL results showed that coffee rescued IQ-induced hepatocyte apoptosis. In addition, coffee interrupted the MAPK/NF-κB signaling pathway by suppressing the phosphorylation expressions of JNK, ERK, p38, p65, and IκB. These findings indicated that coffee prevents IQ-induced liver damage with antioxidative, anti-inflammatory, anti-ERS, anti-apoptotic, and pro-autophagic effects, thus to serve as a functional beverage with potential health benefits.
Collapse
Affiliation(s)
- Dan Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhi Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yingshuang Lu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Chang C, Li H, Zhang R. Zebrafish facilitate non-alcoholic fatty liver disease research: Tools, models and applications. Liver Int 2023; 43:1385-1398. [PMID: 37122203 DOI: 10.1111/liv.15601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become an increasingly epidemic metabolic disease worldwide. NAFLD can gradually deteriorate from simple liver steatosis, inflammation and fibrosis to liver cirrhosis and/or hepatocellular carcinoma. Zebrafish are vertebrate animal models that are genetically and metabolically conserved with mammals and have unique advantages such as high fecundity, rapid development ex utero and optical transparency. These features have rendered zebrafish an emerging model system for liver diseases and metabolic diseases favoured by many researchers in recent years. In the present review, we summarize a series of tools for zebrafish NAFLD research and the models established through different dietary feeding, hepatotoxic chemical treatments and genetic manipulations via transgenic or genome editing technologies. We also discuss how zebrafish models facilitate NAFLD studies by providing novel insights into NAFLD pathogenesis, toxicology research, and drug evaluation and discovery.
Collapse
Affiliation(s)
- Cheng Chang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Huicong Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
20
|
Wang J, Wang L, Zhang XJ, Zhang P, Cai J, She ZG, Li H. Recent updates on targeting the molecular mediators of NAFLD. J Mol Med (Berl) 2023; 101:101-124. [PMID: 36792729 DOI: 10.1007/s00109-022-02282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 02/17/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is rapidly becoming the most common disease worldwide in an era of rapid economic growth. NAFLD is a multifactorial disease, involving multiple genetic, metabolic, and environmental factors, and is closely associated with metabolic syndrome, obesity, and cardiovascular disease. NAFLD can be classified into nonalcoholic fatty liver disease (NAFL) and nonalcoholic steatohepatitis (NASH), which can both progress to cirrhosis and even hepatocellular carcinoma (HCC). Due to the enormous burden of NAFLD and its complications, no FDA-approved drugs for the treatment of NAFLD are on the market, and therapeutic targets and drug therapies are being actively investigated. In view of the various pathological mechanisms of NAFLD, numbers of preclinical studies and clinical trials have made rapid progress. This review mainly summarizes the most recently characterized mechanisms and therapeutic targets in each mechanism of NAFLD, focusing on the mechanism and application potential.
Collapse
Affiliation(s)
- Jia Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Lei Wang
- Department of Neurosurgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
- Translation Medicine Research Center, Yangtze University, Huanggang, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Institute of Model Animal, Wuhan University, Wuhan, China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, The Third Xiangya Hospital, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Luojia Mount Wuchang, Wuhan, China.
- Institute of Model Animal, Wuhan University, Wuhan, China.
- Translation Medicine Research Center, Yangtze University, Huanggang, China.
| |
Collapse
|
21
|
Zhou Z, He Y, Wang S, Wang Y, Shan P, Li P. Autophagy regulation in teleost fish: A double-edged sword. AQUACULTURE 2022; 558:738369. [DOI: 10.1016/j.aquaculture.2022.738369] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Tripathi M, Singh BK, Liehn EA, Lim SY, Tikno K, Castano-Mayan D, Rattanasopa C, Nilcham P, Abdul Ghani SAB, Wu Z, Azhar SH, Zhou J, Hernández-Resèndiz S, Crespo-Avilan GE, Sinha RA, Farah BL, Moe KT, De Silva DA, Angeli V, Singh MK, Singaraja RR, Hausenloy DJ, Yen PM. Caffeine prevents restenosis and inhibits vascular smooth muscle cell proliferation through the induction of autophagy. Autophagy 2022; 18:2150-2160. [PMID: 35012409 PMCID: PMC9466618 DOI: 10.1080/15548627.2021.2021494] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/11/2021] [Accepted: 12/17/2021] [Indexed: 01/13/2023] Open
Abstract
Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.
Collapse
Affiliation(s)
- Madhulika Tripathi
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
| | - Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
| | - Elisa A. Liehn
- National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-
- Insitute for Molecular Medicine, University of Southern Denmark, Odense, J.B. Winsløws Vej 25, 5230, Odense, Denmark
- Department for Cardiology, Angiology and Intensive Care, Aachen, Germany
| | - Sheau Yng Lim
- Immunology Translational Research Program, Department of Microbiology & Immunology, Immunology Programme, Life Sciences Institute, Singapore- 117456
| | - Keziah Tikno
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
| | - David Castano-Mayan
- Translational Laboratories in Genetic Medicine, A*star Institute, and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chutima Rattanasopa
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
- Translational Laboratories in Genetic Medicine, A*star Institute, and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Pakhwan Nilcham
- Department for Cardiology, Angiology and Intensive Care, Aachen, Germany
| | | | - Zihao Wu
- Translational Laboratories in Genetic Medicine, A*star Institute, and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Syaza Hazwany Azhar
- Immunology Translational Research Program, Department of Microbiology & Immunology, Immunology Programme, Life Sciences Institute, Singapore- 117456
| | - Jin Zhou
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
| | - Sauri Hernández-Resèndiz
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-
| | - Gustavo E. Crespo-Avilan
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Uttar Pradesh, India
| | - Benjamin Livingston Farah
- Department of Anatomical Pathology, Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kyaw Thu Moe
- Newcastle University Medicine Malaysia, Newcastle University, 79200 Gelang Patah, Johor,Malaysia
| | - Deidre Anne De Silva
- Department of Neurology, National Neuroscience Institute, Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608
| | - Veronique Angeli
- Immunology Translational Research Program, Department of Microbiology & Immunology, Immunology Programme, Life Sciences Institute, Singapore- 117456
| | - Manvendra K. Singh
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
- National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-
| | - Roshni R. Singaraja
- Translational Laboratories in Genetic Medicine, A*star Institute, and Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Yong Loo Lin School of Medicine, National University, Singapore-117597
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Center, Singapore, Singapore-
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, 7 Chenies Mews, Bloomsbury, London WC1E 6HX, United Kingdom
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500 Liufeng Road, Wufeng District, Taichung City, Taiwan
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Paul Michael Yen
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 169857, Singapore
- Endocrinology, Diabetes, and Metabolism Division, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
23
|
Tan X, Sun Y, Chen L, Hu J, Meng Y, Yuan M, Wang Q, Li S, Zheng G, Qiu Z. Caffeine Ameliorates AKT-Driven Nonalcoholic Steatohepatitis by Suppressing De Novo Lipogenesis and MyD88 Palmitoylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6108-6122. [PMID: 35536225 DOI: 10.1021/acs.jafc.2c01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dysregulated hepatic lipogenesis represents a promising druggable target for treating nonalcoholic steatohepatitis (NASH). This work aims to evaluate the therapeutic efficacy of caffeine in a NASH mouse model displaying increased hepatic lipogenesis driven by constitutive hepatic overexpression of the active v-akt murine thymoma viral oncogene homolog (AKT). Caffeine was administered in the AKT mice to study the efficacy in vivo. AKT-transfected and insulin-stimulated human hepatoma cells were used for in vitro experiments. The results demonstrated that caffeine ameliorated hepatic steatosis and inflammatory injury in vivo. Mechanistically, caffeine repressed the AKT/mTORC1 and SREBP-1/ACC/FASN signaling in mice and in vitro. Furthermore, caffeine impaired NF-κB activation by stabilizing IκBα, resulting in a reduction of proinflammatory mediators interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α). Notably, caffeine abolished mTORC1/FASN-dependent MyD88 palmitoylation, which could be essential for its anti-inflammatory potential. Collectively, these results suggest that caffeine consumption could be advantageous in the prevention and therapy of NASH, especially in the subset accompanied by increased de novo lipogenesis.
Collapse
Affiliation(s)
- Xiangyun Tan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yi Sun
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Liang Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Ming Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Shan Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, People's Republic of China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| |
Collapse
|
24
|
Dai W, Wang K, Zhen X, Huang Z, Liu L. Magnesium isoglycyrrhizinate attenuates acute alcohol-induced hepatic steatosis in a zebrafish model by regulating lipid metabolism and ER stress. Nutr Metab (Lond) 2022; 19:23. [PMID: 35331265 PMCID: PMC8944020 DOI: 10.1186/s12986-022-00655-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Background Alcoholism is a well-known risk factor for liver injury and is one of the major causes of hepatic steatosis worldwide. Although many drugs have been reported to have protective effects against acute alcohol-induced hepatotoxicity, there is limited available treatment for alcoholic liver disease (ALD), indicating an urgent need for effective therapeutic options. Herein, we first reported the protective effects of magnesium isoglycyrrhizinate (MgIG) on acute alcohol-induced hepatic steatosis and its related mechanisms in a zebrafish model. Methods Alcohol was administered directly to embryo medium at 5 days post-fertilization (dpf) for up to 32 h. MgIG was given to the larvae 2 h before the administration of alcohol and then cotreated with alcohol starting at 5 dpf. Oil red O staining was used to determine the incidence of steatosis, and pathological features of the liver were assessed by hematoxylin–eosin staining. Biological indexes, total cholesterol (TC) and triacylglycerol (TG) were detected in the livers of zebrafish larvae. Morphological changes in the livers of zebrafish larvae were observed using liver-specific EGFP transgenic zebrafish (Tg(lfabp10a:eGFP)). The expression levels of critical molecules related to endoplasmic reticulum (ER) stress and lipid metabolism were detected by qRT–PCR, whole-mount in situ hybridization and western blotting. Results Alcohol-treated larvae developed hepatomegaly and steatosis after 32 h of exposure. We found that MgIG improved hepatomegaly and reduced the incidence of steatosis in a dose-dependent manner by oil red O staining and diminished deposits of alcohol-induced fat droplets by histologic analysis. Moreover, MgIG significantly decreased the levels of TC and TG in the livers of zebrafish larvae. Furthermore, the expression levels of critical genes involved in ER stress (atf6, irela, bip, chop) and the key enzymes regulating lipid metabolism (acc1, fasn, hmgcs1 and hmgcra) were significantly higher in the alcohol-treated group than in the control group. However, in the MgIG plus alcohol-treated group, the expression of these genes was markedly decreased compared with that in the alcohol-treated group. Whole-mount in situ hybridization and western blotting also showed that MgIG had an effect on the expression levels of critical genes and proteins involved in lipid metabolism and ER stress. Our results revealed that MgIG could markedly regulate these genes and protect the liver from ER stress and lipid metabolism disorders. Conclusions Our study is the first to demonstrate that MgIG could protect the liver from acute alcohol stimulation by ameliorating the disorder of lipid metabolism and regulating ER stress in zebrafish larvae. Supplementary Information The online version contains supplementary material available at 10.1186/s12986-022-00655-7.
Collapse
Affiliation(s)
- Wencong Dai
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kunyuan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Xinchun Zhen
- Department of Infectious Diseases, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
25
|
Salvoza N, Giraudi PJ, Tiribelli C, Rosso N. Natural Compounds for Counteracting Nonalcoholic Fatty Liver Disease (NAFLD): Advantages and Limitations of the Suggested Candidates. Int J Mol Sci 2022; 23:2764. [PMID: 35269912 PMCID: PMC8911502 DOI: 10.3390/ijms23052764] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
The booming prevalence of nonalcoholic fatty liver disease (NAFLD) in adults and children will threaten the health system in the upcoming years. The "multiple hit" hypothesis is the currently accepted explanation of the complex etiology and pathophysiology of the disease. Some of the critical pathological events associated with the development of NAFLD are insulin resistance, steatosis, oxidative stress, inflammation, and fibrosis. Hence, attenuating these events may help prevent or delay the progression of NAFLD. Despite an increasing understanding of the mechanisms involved in NAFLD, no approved standard pharmacological treatment is available. The only currently recommended alternative relies on lifestyle modifications, including diet and physical activity. However, the lack of compliance is still hampering this approach. Thus, there is an evident need to characterize new therapeutic alternatives. Studies of food bioactive compounds became an attractive approach to overcome the reticence toward lifestyle changes. The present study aimed to review some of the reported compounds with beneficial properties in NAFLD; namely, coffee (and its components), tormentic acid, verbascoside, and silymarin. We provide details about their protective effects, their mechanism of action in ameliorating the critical pathological events involved in NAFLD, and their clinical applications.
Collapse
Affiliation(s)
- Noel Salvoza
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
- Philippine Council for Health Research and Development, DOST Compound, Bicutan, Taguig 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| | - Natalia Rosso
- Fondazione Italiana Fegato—ONLUS, Area Science Park Basovizza, SS14 km 163.5, 34149 Trieste, Italy; (N.S.); (P.J.G.)
| |
Collapse
|
26
|
Zhang S, Peng X, Yang S, Li X, Huang M, Wei S, Liu J, He G, Zheng H, Yang L, Li H, Fan Q. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis 2022; 13:132. [PMID: 35136038 PMCID: PMC8825858 DOI: 10.1038/s41419-022-04593-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a conserved method of quality control in which cytoplasmic contents are degraded via lysosomes. Lipophagy, a form of selective autophagy and a novel type of lipid metabolism, has recently received much attention. Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). Although much remains unknown, lipophagy appears to play a significant role in many organisms, cell types, metabolic states, and diseases. It participates in the regulation of intracellular lipid storage, intracellular free lipid levels (e.g., fatty acids), and energy balance. However, it remains unclear how intracellular lipids regulate autophagy. Impaired lipophagy can cause cells to become sensitive to death stimuli and may be responsible for the onset of a variety of diseases, including nonalcoholic fatty liver disease and metabolic syndrome. Like autophagy, the role of lipophagy in cancer is poorly understood, although analysis of specific autophagy receptors has helped to expand the diversity of chemotherapeutic targets. These studies have stimulated increasing interest in the role of lipophagy in the pathogenesis and treatment of cancer and other human diseases.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyu Zheng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
27
|
Clayman CL, Connaughton VP. Neurochemical and Behavioral Consequences of Ethanol and/or Caffeine Exposure: Effects in Zebrafish and Rodents. Curr Neuropharmacol 2021; 20:560-578. [PMID: 34766897 DOI: 10.2174/1570159x19666211111142027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Zebrafish are increasingly being utilized to model the behavioral and neurochemical effects of pharmaceuticals and, more recently, pharmaceutical interactions. Zebrafish models of stress establish that both caffeine and ethanol influence anxiety, though few studies have implemented co-administration to assess the interaction of anxiety and reward-seeking. Caffeine exposure in zebrafish is teratogenic, causing developmental abnormalities in the cardiovascular, neuromuscular, and nervous systems of embryos and larvae. Ethanol is also a teratogen and, as an anxiolytic substance, may be able to offset the anxiogenic effects of caffeine. Co-exposure to caffeine and alcohol impacts neuroanatomy and behavior in adolescent animal models, suggesting stimulant substances may moderate the impact of alcohol on neural circuit development. Here, we review the literature describing neuropharmacological and behavioral consequences of caffeine and/or alcohol exposure in the zebrafish model, focusing on neurochemistry, locomotor effects, and behavioral assessments of stress/anxiety as reported in adolescent/juvenile and adult animals. The purpose of this review is twofold: (1) describe the work in zebrafish documenting the effects of ethanol and/or caffeine exposure and (2) compare these zebrafish studies with comparable experiments in rodents. We focus on specific neurochemical pathways (dopamine, serotonin, adenosine, GABA, adenosine), anxiety-type behaviors (assessed with novel tank, thigmotaxis, shoaling), and locomotor changes resulting from both individual and co-exposure. We compare findings in zebrafish with those in rodent models, revealing similarities across species and identifying conservation of mechanisms that potentially reinforce co-addiction.
Collapse
Affiliation(s)
- Carly L Clayman
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| | - Victoria P Connaughton
- Department of Biology and Center for Neuroscience and Behavior American University, Washington, DC 20016, United States
| |
Collapse
|
28
|
Félix L, Lobato-Freitas C, Monteiro SM, Venâncio C. 24-Epibrassinolide modulates the neurodevelopmental outcomes of high caffeine exposure in zebrafish (Danio rerio) embryos. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109143. [PMID: 34284067 DOI: 10.1016/j.cbpc.2021.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Previous embryonic fish data have shown caffeine to induce potential teratogenic and long-term neurodevelopmental outcomes through oxidative stress-mediated apoptosis. In this context, antioxidants may have the potential to counteract the caffeine-induced effects. Therefore, the present study aimed to investigate the potential protective role of 24-epibrassinolide (24-EPI), a natural brassinosteroid with proven antioxidant properties, against caffeine-induced teratogenic effects during early zebrafish development. Embryos (~2 h post-fertilization - hpf) were exposed to 0.5 mM caffeine, co-exposed to 24-EPI (0.01, 0.1 and 1 μM) and to 24-EPI alone (1 μM) for 96 h. During exposure, lethal and sublethal developmental parameters were evaluated. At the end of the exposure, biochemical evaluations were made, and 24 h after, different behavioural paradigms were assessed. An increased number of animals showing oedema and malformations were observed after caffeine exposure, while these were reduced after co-exposure to 24-EPI concentration, namely the tail curvature. The results showed oxidative stress and related parameters similar among treatments. Yet, caffeine exposure resulted in locomotor deficits (decreased speed and distance) and disrupted anxiety-like and avoidance responses. The co-exposure to caffeine and to the highest 24-EPI concentrations resulted in less pronounced behavioural deficits. Overall, there was an absence of effects in the embryo/larvae exposed solely to 24-EPI, while caffeine caused developmental and neurotoxic effects. Although further studies are needed, the results showed promising protective effects of the highest 24-EPI concentration tested against the toxicity induced by caffeine in zebrafish.
Collapse
Affiliation(s)
- Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production. University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Institute for Research and Innovation in Health (i3s), Laboratory Animal Science (LAS), Institute of Molecular and Cell Biology (IBMC), University of Porto (UP), Porto, Portugal.
| | - Carolina Lobato-Freitas
- Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production. University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production. University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Veterinary and Animal Science Research Center (CECAV), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Department of Animal Science, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
29
|
He YF, Mai CT, Pan HD, Liu L, Zhou H, Xie Y. Targeting immunometabolism by active ingredients derived from traditional Chinese medicines for treatment of rheumatoid arthritis. CHINESE HERBAL MEDICINES 2021; 13:451-460. [PMID: 36119361 PMCID: PMC9476673 DOI: 10.1016/j.chmed.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Rheumatoid arthritis (RA), the most common inflammatory arthropathy word wild, is a systemic autoimmune disease that mainly affects the synovium of joints with a high disability rate. Metabolic mis-regulation has emerged as a fundamental pathogenesis of RA linked to immune cell dysfunction, while targeting immunometabolism provides a new and effective approach to regulate the immune responses and thus alleviate the symptom of RA. Recently, natural active compounds from traditional Chinese medicines (TCMs) have potential therapeutic effects on RA and regulating immunometabolism. In this review, in addition to updating the connection between cellular metabolism and cell function in immune cells of RA, we summarized that the anti-inflammatory mechanisms of the potential natural compounds from TCM by targeting metabolic reprogramming of immune cells, and discusses them as a rich resource for providing the new potential paradigm for the treatment of RA.
Collapse
Affiliation(s)
| | | | - Hu-dan Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Ying Xie
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau (SAR), China
| |
Collapse
|
30
|
Yang B, Ji R, Li X, Fang W, Chen Q, Chen Q, Xu W, Mai K, Ai Q. Activation of Autophagy Relieves Linoleic Acid-Induced Inflammation in Large Yellow Croaker ( Larimichthys crocea). Front Immunol 2021; 12:649385. [PMID: 34276647 PMCID: PMC8279755 DOI: 10.3389/fimmu.2021.649385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
High levels of soybean oil (SO) in fish diets enriched with linoleic acid (LA, 18:2n-6) could induce strong inflammation. However, the molecular mechanism underlying LA-induced inflammation in the liver of large yellow croaker (Larimichthys crocea) has not been elucidated. Based on previous research, autophagy has been considered a new pathway to relieve inflammation. Therefore, the present study was performed to investigate the role of autophagy in regulating LA-induced inflammation in the liver of large yellow croaker in vivo and in vitro. The results of the present study showed that activation of autophagy in liver or hepatocytes could significantly reduce the gene expression of proinflammatory factors, such as tumor necrosis factor α (TNFα) and interleukin 1β (IL1β). The results of the present study also showed that inhibition of autophagy could upregulate the gene expression of proinflammatory factors and downregulate the gene expression of anti-inflammatory factors in vivo and in vitro. Furthermore, autophagy could alleviate LA-induced inflammatory cytokine gene expression in vivo and in vitro, while inhibition of autophagy obtained the opposite results. In conclusion, our study shows that autophagy could regulate inflammation and alleviate LA-induced inflammation in the liver of large yellow croaker in vivo and in vitro for the first time, which may offer considerable benefits to the aquaculture industry and human health.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Renlei Ji
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueshan Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Fang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiuchi Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiang Chen
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) & Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
31
|
Zhang Y, Jiao Y, Tao Y, Li Z, Yu H, Han S, Yang Y. Monobutyl phthalate can induce autophagy and metabolic disorders by activating the ire1a-xbp1 pathway in zebrafish liver. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125243. [PMID: 33524730 DOI: 10.1016/j.jhazmat.2021.125243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/01/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Monobutyl phthalate (MBP) can exist in biological organisms for a long time because of its excellent fat solubility, and it has been found to have certain toxic effects. In this study, the acute effects of MBP on endoplasmic reticulum (ER) stress and metabolism in the zebrafish liver were studied. After continuous exposure to MBP (5 and 10 mg / L) for 96 h, ER damage and the appearance of apoptotic bodies and autophagosomes were found in liver. This is because MBP stimulated the ire-xbp1 pathway of ER stress, thus leading to apoptosis and autophagy. Also, through analysis of metabolic enzymes and genes, it was found that the activated ire-xbp1 pathway could promote lipid synthesis and cause the accumulation of lipid droplets. The gene pparγ related to lipid storage affected the level of insulin, which can also further affect the glucose metabolism process, that is, glycolysis and aerobic respiration were inhibited. And the pentose phosphate pathway (PPP) was activated as a compensation mechanism to alleviate glycogen accumulation. The abnormal supply of energy and the death of excessive cells will eventually severely damage the zebrafish liver. This study will enrich the knowledge about the toxic effects of MBP.
Collapse
Affiliation(s)
- Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Siyue Han
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
32
|
Chen JC, Hwang JH. Caffeine Inhibits Growth of Temozolomide-Treated Glioma via Increasing Autophagy and Apoptosis but Not via Modulating Hypoxia, Angiogenesis, or Endoplasmic Reticulum Stress in Rats. Nutr Cancer 2021; 74:1090-1096. [PMID: 34060393 DOI: 10.1080/01635581.2021.1931361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thirty rats with glioma were divided into control group, temozolomide (TMZ) group (TMZ 30 mg/kg once daily for 5 day), and TMZ plus Caffeine group (TMZ 30 mg/kg once daily for 5 day and caffeine 100 mg/kg once daily for 2 weeks). The relative tumor fold and expression of hypoxia-induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), neuropilin-1 (NRP-1), CCAAT/enhancer-binding protein homologous protein (CHOP), LC-3A/B, apoptosis-inducing factor-1 (AIF-1), and cleaved caspase three were compared. The relative tumor fold of TMZ plus Caffeine group was lower significantly than that of TMZ group at day 14. HIF-1α, VEGF, NRP-1, and CHOP expressions were not significantly different in the three groups. The LC-3A/B expression of TMZ plus Caffeine group was higher significantly than that of the control group and TMZ group. The AIF expressions of TMZ group and TMZ plus Caffeine group were higher significantly than that of the control group. The caspase-3 expression of TMZ plus Caffeine group was higher significantly than that of the control group and TMZ group. In conclusions, the inhibitory effect of caffeine on TMZ-treated glioma might be associated with increasing expressions of autophagy- and apoptosis-related genes.
Collapse
Affiliation(s)
- Jin-Cherng Chen
- Department of Neurosurgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Juen-Haur Hwang
- School of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
33
|
Flessa CM, Kyrou I, Nasiri-Ansari N, Kaltsas G, Papavassiliou AG, Kassi E, Randeva HS. Endoplasmic Reticulum Stress and Autophagy in the Pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Evidence and Perspectives. Curr Obes Rep 2021; 10:134-161. [PMID: 33751456 DOI: 10.1007/s13679-021-00431-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease with rising prevalence worldwide. Herein, we provide a comprehensive overview of the current knowledge supporting the role of ER stress and autophagy processes in NAFLD pathogenesis and progression. We also highlight the interrelation between these two pathways and the impact of ER stress and autophagy modulators on NAFLD treatment. RECENT FINDINGS The pathophysiological mechanisms involved in NAFLD progression are currently under investigation. The endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR) seem to contribute to its pathogenesis mainly due to high ER content in the liver which exerts significant metabolic functions and can be dysregulated. Furthermore, disruption of autophagy processes has also been identified in NAFLD. The crucial role of these two pathways in NAFLD is underlined by the fact that they have recently emerged as promising targets of therapeutic interventions. There is a greater need for finding the natural/chemical compounds and drugs which can modulate the ER stress pathway and autophagy for the treatment of NAFLD. Clarifying the inter-relation between these two pathways and their interaction with inflammatory and apoptotic mechanisms will allow the development of additional therapeutic options which can better target and reprogram the underlying pathophysiological pathways, aiming to attenuate NAFLD progression.
Collapse
Affiliation(s)
- Christina-Maria Flessa
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK
- Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, B4 7ET, Birmingham, UK
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Gregory Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527, Athens, Greece.
- Endocrine Unit, 1st Department of Propaedeutic and Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry, CV2 2DX, UK.
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
34
|
Singh MK, Jayarajan R, Varshney S, Upadrasta S, Singh A, Yadav R, Scaria V, Sengupta S, Shanmugam D, Shalimar, Sivasubbu S, Gandotra S, Sachidanandan C. Chronic systemic exposure to IL6 leads to deregulation of glycolysis and fat accumulation in the zebrafish liver. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158905. [PMID: 33582286 DOI: 10.1016/j.bbalip.2021.158905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 02/08/2023]
Abstract
Inflammation is a constant in Non-Alcoholic Fatty Liver Disease (NAFLD), although their relationship is unclear. In a transgenic zebrafish system with chronic systemic overexpression of human IL6 (IL6-OE) we show that inflammation can cause intra-hepatic accumulation of triglycerides. Transcriptomics and proteomics analysis of the IL6-OE liver revealed a deregulation of glycolysis/gluconeogenesis pathway, especially a striking down regulation of the glycolytic enzyme aldolase b. Metabolomics analysis by mass spectrometry showed accumulation of hexose monophosphates and their derivatives, which can act as precursors for triglyceride synthesis. Our results suggest that IL6-driven repression of glycolysis/gluconeogenesis, specifically aldolase b, may be a novel mechanism for fatty liver. This mechanism may be relevant for NAFLD in lean individuals, an emerging class of NAFLD prevalent more in Asian Indian populations.
Collapse
Affiliation(s)
- Manoj K Singh
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rijith Jayarajan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Swati Varshney
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sindhuri Upadrasta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-National Chemical Laboratory, Pune, India
| | - Archana Singh
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajni Yadav
- All India Institute of Medical Sciences, New Delhi, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dhanasekaran Shanmugam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-National Chemical Laboratory, Pune, India
| | - Shalimar
- All India Institute of Medical Sciences, New Delhi, India
| | - Sridhar Sivasubbu
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sheetal Gandotra
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
35
|
Sun Z, Zhou Y, Zhou W, Luo J, Liu R, Zhang X, Zhou L, Pang Q. Pb(II) detection and versatile bio-imaging of green-emitting carbon dots with excellent stability and bright fluorescence. NANOSCALE 2021; 13:2472-2480. [PMID: 33471010 DOI: 10.1039/d0nr07245a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Green-emitting carbon dots (G-CDs) were synthesized via a simple and green hydrothermal method using betaine hydrochloride and sulfadiazine as carbon and nitrogen sources, respectively. Excellent luminescence stability with varying pH, salt concentrations, temperature is found with excitation-independent emission. G-CDs can be successfully used for the detection of Pb(ii) in the range of 0-200 μM. There was good linear relationship between the Pb(ii) concentration and G-CD fluorescence intensity with a correlation coefficient of 0.993, and the limit of detection (LOD) was 3.0174 μmol L-1. Due to its good biocompatibility, G-CDs can be successfully applied to zebrafish imaging as well as cell imaging, and the results show that G-CDs is more suitable for the zebrafish embryo imaging. Our results suggested that the obtained G-CDs can be used as multifunctional probes, highlighting their potential in different biological studies.
Collapse
Affiliation(s)
- Zishan Sun
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Yuping Zhou
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Weiying Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jiabao Luo
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Ruiyuan Liu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Xinguo Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
36
|
Yang L, Zhu Y, Zhong S, Zheng G. Astilbin lowers the effective caffeine dose for decreasing lipid accumulation via activating AMPK in high-fat diet-induced obese mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:573-581. [PMID: 32673411 DOI: 10.1002/jsfa.10669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Caffeine has an anti-obesity effect, although chronic excessive caffeine consumption also causes caffeinism, which is marked by increased anxiety or depression, amongst other symptoms. The present study aimed to investigate whether the addition of flavonoids such as astilbin can reduce the caffeine dose needed to inhibit obesity. RESULTS ICR mice (n = 80) were fed with normal diet, high-fat diet (HFD), HFD supplemented with astilbin, caffeine, or astilbin + caffeine for 12 weeks. When diets supplemented with astilbin, 0.3 g kg-1 diet caffeine had the same effect as 0.6 g kg-1 diet caffeine alone, and 0.6 g kg-1 diet caffeine combined with astilbin most effectively inhibited HFD-induced obesity. Astilbin improved the anti-obesity effects of caffeine on lipid accumulation via the activation of AMP-activated protein kinase α (AMPKα). (i) Activated AMPKα decreased lipid biosynthesis by suppressing the activity or mRNA expression of 3-hydroxy-3-methylglutaryl-CoA reductase, sterol regulatory element binding protein 1c and its target gene fatty acid synthase. (ii) Activated AMPKα also up-regulated lipolysis by enhancing the expression of adipose triglyceride lipase and increasing the phosphorylation of hormone-sensitive lipase. (iii) Finally, activated AMPKα increased carnitine acyltransferase and acyl-CoA oxidase activities, which further promoted fatty acid β-oxidation. CONCLUSION The results obtained in the present study indicate that astilbin may decrease the effective dose of caffeine needed for an anti-obesity effect and also suggest that it suppresses fat accumulation via the activation of AMPK. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Licong Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yanping Zhu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shusheng Zhong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
37
|
Arroyave-Ospina JC, Wu Z, Geng Y, Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants (Basel) 2021; 10:antiox10020174. [PMID: 33530432 PMCID: PMC7911109 DOI: 10.3390/antiox10020174] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress (OxS) is considered a major factor in the pathophysiology of inflammatory chronic liver diseases, including non-alcoholic liver disease (NAFLD). Chronic impairment of lipid metabolism is closely related to alterations of the oxidant/antioxidant balance, which affect metabolism-related organelles, leading to cellular lipotoxicity, lipid peroxidation, chronic endoplasmic reticulum (ER) stress, and mitochondrial dysfunction. Increased OxS also triggers hepatocytes stress pathways, leading to inflammation and fibrogenesis, contributing to the progression of non-alcoholic steatohepatitis (NASH). The antioxidant response, regulated by the Nrf2/ARE pathway, is a key component in this process and counteracts oxidative stress-induced damage, contributing to the restoration of normal lipid metabolism. Therefore, modulation of the antioxidant response emerges as an interesting target to prevent NAFLD development and progression. This review highlights the link between disturbed lipid metabolism and oxidative stress in the context of NAFLD. In addition, emerging potential therapies based on antioxidant effects and their likely molecular targets are discussed.
Collapse
|
38
|
Katoch S, Patial V. Zebrafish: An emerging model system to study liver diseases and related drug discovery. J Appl Toxicol 2021; 41:33-51. [PMID: 32656821 DOI: 10.1002/jat.4031] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The zebrafish has emerged as a powerful vertebrate model for studying liver-associated disorders. Liver damage is a crucial problem in the process of drug development and zebrafish have proven to be an important tool for the high-throughput screening of drugs for hepatotoxicity. Although the structure of the zebrafish liver differs to that of mammals, the fundamental physiologic processes, genetic mutations and manifestations of pathogenic responses to environmental insults exhibit much similarity. The larval transparency of the zebrafish is a great advantage for real-time imaging in hepatic studies. The zebrafish has a broad spectrum of cytochrome P450 enzymes, which enable the biotransformation of drugs via similar pathways as mammals, including oxidation, reduction and hydrolysis reactions. In the present review, we appraise the various drugs, chemicals and toxins used to study liver toxicity in zebrafish and their similarities to the rodent models for liver-related studies. Interestingly, the zebrafish has also been effectively used to study the pathophysiology of nonalcoholic and alcoholic fatty liver disease. The genetic models of liver disorders and their easy manipulation provide great opportunity in the area of drug development. The zebrafish has proven to be an influential model for the hepatic system due to its invertebrate-like advantages coupled with its vertebrate biology. The present review highlights the pivotal role of zebrafish in bridging the gap between cell-based and mammalian models.
Collapse
Affiliation(s)
- Swati Katoch
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
39
|
Dungubat E, Watabe S, Togashi-Kumagai A, Watanabe M, Kobayashi Y, Harada N, Yamaji R, Fukusato T, Lodon G, Sevjid B, Takahashi Y. Effects of Caffeine and Chlorogenic Acid on Nonalcoholic Steatohepatitis in Mice Induced by Choline-Deficient, L-Amino Acid-Defined, High-Fat Diet. Nutrients 2020; 12:nu12123886. [PMID: 33353230 PMCID: PMC7767129 DOI: 10.3390/nu12123886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Several recent experimental studies have investigated the effects of caffeine and chlorogenic acid (CGA), representative ingredients of coffee, on nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). However, the results are conflicting, and their effects are yet to be clarified. In the present study, we examined the effects of caffeine and CGA on choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD)-fed mice, relatively new model mice of NASH. Seven-week-old male C57BL/6J mice were divided into the following groups: Control diet (control), CDAHFD (CDAHFD), CDAHFD supplemented with 0.05% (w/w) caffeine (caffeine), and CDAHFD supplemented with 0.1% (w/w) CGA (CGA). After seven weeks, the mice were killed and serum biochemical, histopathological, and molecular analyses were performed. Serum alanine aminotransferase (ALT) levels were significantly higher in the caffeine and CGA groups than in the CDAHFD group. On image analysis, the prevalence of Oil red O-positive areas (reflecting steatosis) was significantly higher in the caffeine group than in the CDAHFD group, and that of CD45R-positive areas (reflecting lymphocytic infiltration) in the hepatic lobule was significantly higher in the caffeine and CGA groups than in the CDAHFD group. Hepatic expression of interleukin (IL)-6 mRNA was higher in the caffeine and CGA groups than in the CDAHFD group, and the difference was statistically significant for the caffeine group. In conclusion, in the present study, caffeine and CGA significantly worsened the markers of liver cell injury, inflammation, and/or steatosis in NASH lesions in mice.
Collapse
Affiliation(s)
- Erdenetsogt Dungubat
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan;
- Department of Pathology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Shiori Watabe
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (S.W.); (A.T.-K.); (M.W.)
| | - Arisa Togashi-Kumagai
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (S.W.); (A.T.-K.); (M.W.)
| | - Masato Watanabe
- Department of Pathology, Teikyo University School of Medicine, Tokyo 173-8605, Japan; (S.W.); (A.T.-K.); (M.W.)
| | - Yasuyuki Kobayashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (Y.K.); (N.H.); (R.Y.)
| | - Naoki Harada
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (Y.K.); (N.H.); (R.Y.)
| | - Ryoichi Yamaji
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan; (Y.K.); (N.H.); (R.Y.)
| | - Toshio Fukusato
- General Medical Education and Research Center, Teikyo University, Tokyo 173-8605, Japan;
| | - Galtsog Lodon
- Department of Pathology, School of Medicine, Ach Medical University, Ulaanbaatar 18080, Mongolia;
| | - Badamjav Sevjid
- Department of Gastroenterology, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia;
| | - Yoshihisa Takahashi
- Department of Pathology, School of Medicine, International University of Health and Welfare, Narita, Chiba 286-8686, Japan;
- Correspondence: ; Tel.: +81-(476)-20-7701
| |
Collapse
|
40
|
Liu YS, Yuan MH, Zhang CY, Liu HM, Liu JR, Wei AL, Ye Q, Zeng B, Li MF, Guo YP, Guo L. Puerariae Lobatae radix flavonoids and puerarin alleviate alcoholic liver injury in zebrafish by regulating alcohol and lipid metabolism. Biomed Pharmacother 2020; 134:111121. [PMID: 33341668 DOI: 10.1016/j.biopha.2020.111121] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/27/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023] Open
Abstract
Exessive drinking is commonly associated with a wide spectrum of liver injuries. The term alcoholic liver disease (ALD) is generally used to refer to this spectrum of hepatic abnormalities, and the term hepatic steatosis denotes early lesions. Puerariae Lobatae Radix (PLR) is a common traditional Chinese medicine and has been widely used as an efficient treatment for alcohol-induced damage. Flavonoids are the principal components of PLR that could potentially be responsible for the activation of alcohol metabolism and lipid-lowering effects. However, little is known about the mechanisms underlying their activity against alcoholic injury. In this study, PLR flavonoids (PLF) were obtained by microwave extraction. A 2% ethanol solution was used to establish a model of alcoholic fatty liver disease by exposure of zebrafish larvae for 32 h, and then the zebrafish were administered PLF and puerarin. The results showed that PLF and puerarin significantly decreased lipid accumulation and the levels of total cholesterol and triglycerides in zebrafish larvae. Moreover, PLF and puerarin downregulated the expression of genes related to alcohol and lipid metabolism (CYP2y3, CYP3a65, ADH8a, ADH8b, HMGCRB, and FASN), endoplasmic reticulum stress, and DNA damage (CHOP, EDEM1, GADD45αa, and ATF6) and reduced levels of inflammatory factors (IL-1β, TNF-α) in zebrafish larvae. PLF and puerarin increased the phosphorylation of AMP-activated protein kinase-α (AMPKα) and decreased the total protein level of ACC1. The findings suggested that PLF and puerarin alleviated alcohol-induced hepatic steatosis in zebrafish larvae by regulating alcohol and lipid metabolism, which was closely related to the regulation of the AMPKα-ACC signaling pathway. In conclusion, the study provided a possible therapeutic drug for ALD treatment.
Collapse
Affiliation(s)
- Yu-Shi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming-Hao Yuan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cun-Yan Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong-Mei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Juan-Ru Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ai-Ling Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bin Zeng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mei-Feng Li
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi-Ping Guo
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California, Merced, CA, 95343, USA.
| | - Li Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
41
|
Effects of Phosphoethanolamine Supplementation on Mitochondrial Activity and Lipogenesis in a Caffeine Ingestion Caenorhabditis elegans Model. Nutrients 2020; 12:nu12113348. [PMID: 33143181 PMCID: PMC7694071 DOI: 10.3390/nu12113348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Caffeine intake is strongly linked to lipid metabolism. We previously reported the age-dependent physiological effects of caffeine intake in a Caenorhabditis elegans model. Since nutritional status can actively influence metabolism and overall health, in this study, we evaluated the effect of caffeine intake on lipid metabolism in adult-stage C. elegans. We found that, in C. elegans, fat storage and the level of phosphoethanolamine (PE) were significantly reduced with caffeine intake. In addition, mitochondrial activity decreased and mitochondrial morphology was disrupted, and the expression of oxidative stress response genes, hsp-6, gst-4, and daf-16, was induced by caffeine intake. Furthermore, the level of an energy metabolism sensor, phospho-AMP-activated protein kinase, was increased, whereas the expression of the sterol regulatory element binding protein gene and its target stearoyl-CoA desaturase genes, fat-5, -6, and -7, was decreased with caffeine intake. These findings suggest that caffeine intake causes mitochondrial dysfunction and reduces lipogenesis. Interestingly, these changes induced by caffeine intake were partially alleviated by PE supplementation, suggesting that the reduction in mitochondrial activity and lipogenesis is in part because of the low PE level, and proper dietary supplementation can improve organelle integrity.
Collapse
|
42
|
Wu W, He S, Shen Y, Zhang J, Wan Y, Tang X, Liu S, Yao X. Natural Product Luteolin Rescues THAP-Induced Pancreatic β-Cell Dysfunction through HNF4α Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1435-1454. [PMID: 32907363 DOI: 10.1142/s0192415x20500706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endoplasmic reticulum stress (ER stress) plays a main role in pancreatic [Formula: see text]-cell dysfunction and death because of intracellular Ca[Formula: see text] turbulence and inflammation activation. Although several drugs are targeting pancreatic [Formula: see text]-cell to improve [Formula: see text]-cell function, there still lacks agents to alleviate [Formula: see text]-cell ER stress conditions. Therefore we used thapsigargin (THAP) or high glucose (HG) to induce ER stress in [Formula: see text]-cell and aimed to screen natural molecules against ER stress-induced [Formula: see text]-cell dysfunction. Through screening the Traditional Chinese drug library ([Formula: see text] molecules), luteolin was finally discovered to improve [Formula: see text]-cell function. Cellular viability results indicated luteolin reduced the THAP or HG-induced [Formula: see text]-cell death and apoptosis through MTT and flow cytometry assay. Moreover, luteolin improved [Formula: see text]-cell insulin secretion ability under ER stress conditions. Also ER stress-induced intracellular Ca[Formula: see text] turbulence and inflammation activation were inhibited by luteolin treatment. Mechanically, luteolin inhibited HNF4[Formula: see text] signaling, which was induced by ER stress. Moreover, luteolin reduced the transcriptional level of HNF4[Formula: see text] downstream gene, such as Asnk4b and HNF1[Formula: see text]. Conversely HNF4[Formula: see text] knockdown abolished the effect of luteolin on [Formula: see text]-cell using siRNA. These results suggested the protective effect of luteolin on [Formula: see text]-cell was through HNF4[Formula: see text]/Asnk4b pathway. In conclusion, our study discovered that luteolin improved [Formula: see text]-cell function and disclosed the underlying mechanism of luteolin on [Formula: see text]-cell, suggesting luteolin is a promising agent against pancreatic dysfunction.
Collapse
Affiliation(s)
- Wenyu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Shijun He
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Yuli Shen
- Nephrology Department, Longgang District People's Hospital of Shenzhen, Shenzhen 518172, P. R. China
| | - Jiawen Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Yihong Wan
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Xiaodong Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China.,Center of Pharmacy, Nanhai Hospital, Southern Medical University, Foshan 510080, P. R. China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern, Medical University, Guangzhou 510515, P. R. China.,Center of Clinical Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, P. R. China
| |
Collapse
|
43
|
Biological Activity of Porcine Gastric Mucin on Stress Resistance and Immunomodulation. Molecules 2020; 25:molecules25132981. [PMID: 32610600 PMCID: PMC7411864 DOI: 10.3390/molecules25132981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Purified porcine gastric mucin (PGM) is an alternative biomaterial to native mucin which displays multifunctional properties for exploring a wide range of biomedical applications. The present study evaluated the in vitro (RAW 264.7 macrophage cells) and in vivo (zebrafish embryos and larvae) bioactivities of PGM. The median lethal concentration (LC50) of PGM was 197.9 µg/mL for embryos, while it was non-toxic to RAW 264.7 cells, even at 500 µg/mL. Following PGM exposure (100 µg/mL), a higher embryo hatching rate (59.9%) was observed at 48 h post fertilization, compared to the control (30.6%). Protective effects of PGM from pathogenic Aeromonas hydrophila were demonstrated by high larvae survival rates of 85.0% and 94.0% at 50 and 100 μg/mL of PGM exposure, respectively. Heat tolerance effect of PGM (50 and 100 µg/mL) on larvae (40 °C for 48 h) was confirmed by 75% and 100% of survival rates, respectively. Additionally, PGM reduced the A. hydrophila–induced reactive oxygen species (ROS) generation in larvae. The qRT-PCR results in PGM exposed larvae exhibited induction of immune-related genes (tlr5a and tlr5b, myd88, c-rel, il1β, tnf-α, il6, il10, cxcl18b, ccl34a.4, defbl1, hamp, ctsd, muc2.1, muc5.1, muc5.2, and muc5.3), stress response (hsp70, hsp90aa1.1, and hsp90ab1), and antioxidant genes (cat and sod1). Moreover, our results revealed that PGM involved in the regulation of transcriptional gene induction increases Hsp90 protein in the zebrafish larvae. Furthermore, upregulation of Il6, Il10, Tnfα, Ccl3, Defa-rs2, Defa21 and Camp and antioxidant genes (Sod2 and Cat) were observed in PGM-exposed RAW 264.7 cells. Overall findings confirmed the activation of immune responses, disease resistance against pathogenic bacteria, heat tolerance, and ROS-scavenging properties by PGM, which may provide insights into new applications for PGM as a multifunctional immunomodulator.
Collapse
|
44
|
Chen G, Jia Z, Wang L, Hu T. Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio). ENVIRONMENTAL RESEARCH 2020; 185:109432. [PMID: 32247151 DOI: 10.1016/j.envres.2020.109432] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
As a type of cyanobacterial toxins, saxitoxin (STX) is receiving great interest due to its increasing presence in waterbodies. However, the underlying mechanism of STX-induced adverse effect is poorly understood. Here, we examined the developmental toxicity and molecular mechanism induced by STX using zebrafish embryos as an animal model. The embryonic toxicity induced by STX was demonstrated by inhibition of embryo hatching, increase in mortality rate, abnormal heart rate, abnormalities in embryo morphology as well as defects in angiogenesis and common cardinal vein remodeling. STX induced embryonic DNA damage and cell apoptosis, which would be alleviated by antioxidant N-acetyl-L-cysteine. Additionally, STX significantly increased reactive oxygen species level, catalase activity and malondialdehyde content and decreased the activity of superoxide dismutase and glutathione content. STX also promoted the expression of vascular development-related genes DLL4 and VEGFC, and inhibited VEGFA expression. Furthermore, STX altered the transcriptional regulation of apoptosis-related genes (BAX, BCL-2, P53 and CASPASE 3). Taken together, STX induced adverse effect on development of zebrafish embryos, which might be associated with oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Zimu Jia
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
45
|
Min H, Youn E, Shim YH. Maternal Caffeine Intake Disrupts Eggshell Integrity and Retards Larval Development by Reducing Yolk Production in a Caenorhabditis elegans Model. Nutrients 2020; 12:nu12051334. [PMID: 32392893 PMCID: PMC7284833 DOI: 10.3390/nu12051334] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
During pregnancy, most women are exposed to caffeine, which is a widely consumed psychoactive substance. However, the consequences of maternal caffeine intake on the child remain largely unknown. Here, we investigated the intergenerational effects of maternal caffeine intake on offspring in a Caenorhabditis elegans model. We treated a young mother (P0) with 10 mM of caffeine equivalent to 2–5 cans of commercial energy drinks and examined its reproduction and growth rate from P0 to F2 generation. The fertility decreased and embryonic lethality increased by defective oocytes and eggshell integrity in caffeine-ingested mothers, and F1 larval development severely retarded. These results were due to decreased production of vitellogenin protein (yolk) in caffeine-ingested mothers. Furthermore, effects of RNA interference of vitellogenin (vit) genes, vit-1 to vit-6, in P0 mothers can mimic those by caffeine-ingested mothers. In addition, RNA interference (RNAi) depletion of unc-62 (human Meis homeobox), a transcriptional activator for vit genes, also showed similar effects induced by caffeine intake. Taken together, maternal caffeine intake reduced yolk production mediated by the UNC-62 transcription factor, thereby disrupting oocyte and eggshell integrity and retarding larval development. Our study suggests the clinical significance of caffeine intake for prospective mothers.
Collapse
Affiliation(s)
| | | | - Yhong-Hee Shim
- Correspondence: ; Tel.: +82-2-450-4059; Fax: +82-2-455-9956
| |
Collapse
|
46
|
Zhao C, Wang M, Jia Z, Li E, Zhao X, Li F, Lin R. Similar hepatotoxicity response induced by Rhizoma Paridis in zebrafish larvae, cell and rat. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112440. [PMID: 31786445 DOI: 10.1016/j.jep.2019.112440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 11/10/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Rhizoma Paridis, as a Traditional Chinese Medicine (TCM), has been used in clinic for thousands of years. Recently, the hepatic toxicity was reported in some published articles while its hepatotoxicity mechanisms have not been well established. Therefore, the present study was performed to determine the effect of Rhizoma Paridis treatment on the lipid deposition and metabolism, oxidative stress and mitochondrial dysfunction, and explore the underlying molecular mechanism through L02 cell, rat and zebrafish larvae. Rhizoma Paridis could diminish cell activity and cell proliferation, brought on cell apoptosis and elevated the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with the control group, as evaluated in cell cultures. Rhizoma Paridis could result in the change of the liver structure and the liver function in the rat model and zebrafish larvae. Our results showed that Rhizoma Paridis could increase hepatic lipid accumulation, which was similar to the previous study and probably exerted toxic effect through intensive fatty acid lipogenesis, inhibition of fat degradation. Meanwhile, this experiment highlighted the importance of the oxidative stress, mitochondrial dysfunction, ER function, and the inflammation response in Rhizoma Paridis-induced disorder of hepatic lipid metabolism, which proposed a novel mechanism for interpretation of Rhizoma Paridis exposure inducing the disorder of lipid metabolism in vertebrates. Furthermore, the result of this experiment suggested that the toxicity response of zebrafish larvae was similar to the conventional model with a significant advantage.
Collapse
Affiliation(s)
- Chongjun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Mingshuang Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhe Jia
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Erwen Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xia Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Farong Li
- Key Laboratory of Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China.
| |
Collapse
|
47
|
Williams MB, Watts SA. Current basis and future directions of zebrafish nutrigenomics. GENES AND NUTRITION 2019; 14:34. [PMID: 31890052 PMCID: PMC6935144 DOI: 10.1186/s12263-019-0658-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
This review investigates the current state of nutrigenomics in the zebrafish animal models. The zebrafish animal model has been used extensively in the study of disease onset and progression and associated molecular changes. In this review, we provide a synopsis of nutrigenomics using the zebrafish animal model. Obesity and dyslipidemia studies describe the genomics of dietary-induced obesity in relation to high-fat/high-calorie diets. Inflammation and cardiovascular studies describe dietary effects on the expression of acute inflammatory markers and resulting chronic inflammatory issues including atherosclerosis. We also evaluated the genomic response to bioactive dietary compounds associated with metabolic disorders. Carbohydrate metabolism and β-cell function studies describe the impacts of high-carbohydrate dietary challenges on nutritional programming. We also report tumorigenesis in relation to dietary carcinogen exposure studies that can result in permanent genomic changes. Vitamin and mineral deficiency studies demonstrate transgenerational genomic impacts of micronutrients in the diet and temporal expression changes. Circadian rhythm studies describe the relation between metabolism and natural temporal cycles of gene expression that impacts health. Bone formation studies describe the role of dietary composition that influences bone reabsorption regulation. Finally, this review provides future directions in the use of the zebrafish model for nutrigenomic and nutrigenetic research.
Collapse
Affiliation(s)
- Michael B Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Stephen A Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
48
|
Baldissera MD, Freitas Souza CD, Dias JB, Da Silva AS, Baldisserotto B. Caffeine supplementation in diet mitigates Aeromonas hydrophila-induced impairment of the gill phosphotransfer network in grass carp Ctenopharyngodon idella. Microb Pathog 2019; 136:103710. [PMID: 31493503 DOI: 10.1016/j.micpath.2019.103710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/20/2023]
Abstract
Some evidence suggests the involvement of phosphotransfer network in the pathogenesis of fish bacterial diseases, catalyzed by creatine kinase (CK), pyruvate kinase (PK) and adenylate kinase (AK); nevertheless, the effects on fish affected by Aeromonas hydrophila remain unknown. Recent evidence suggested a potent protective effect of caffeine on the branchial phosphotransfer network of fish subjected to challenge conditions. Therefore, the aim of this study was to evaluate whether A. hydrophila infection impaired branchial bioenergetics. We also determined whether dietary supplementation with caffeine protected against A. hydrophila-induced gill bioenergetic imbalance. We found that branchial cytosolic CK and AK activities were significant lower in fish experimentally infected with A. hydrophila than in uninfected fish, while mitochondrial CK activity was significant higher. Branchial lactate dehydrogenase (LDH) activity and lactate levels were significant higher in fish experimentally infected by A. hydrophila than in uninfected fish, while sodium-potassium ion pump (Na+, K+-ATPase) activity and adenosine triphosphate (ATP) levels were significant lower. No significant difference was observed between groups with respect to branchial PK activity. The dietary supplementation with 8% caffeine improved the branchial CK (cytosolic and mitochondrial), AK, and LDH activities, as well as ATP levels, but did not prevent increases in branchial lactate levels or the inhibition of Na+, K+-ATPase activity elicited by aeromonosis. Based on this evidence, we believe that reduction of CK (cytosolic) and AK activities contributes to impairment of bioenergetic homeostasis, while augmentation of mitochondrial CK activity can be considered an attempt to prevent or reduce the energetic imbalance during aeromonosis caused by A. hydrophila. The use of 8% caffeine dietary supplementation improved the energetic metabolism via protective effects on CK and AK activities, avoiding the necessity of using anaerobic metabolism. In summary, 8% dietary caffeine can be used to improve branchial energetic homeostasis during aeromonosis caused by A. hydrophila.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine de Freitas Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Juliane B Dias
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade Do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
49
|
Mechanisms of action of coffee bioactive components on lipid metabolism. Food Sci Biotechnol 2019; 28:1287-1296. [PMID: 31695927 DOI: 10.1007/s10068-019-00662-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/17/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Coffee consumption is associated with reduced risk of metabolic syndrome, obesity and diabetes, which may be related to the effects of coffee and its bioactive components on lipid metabolism. Coffee contains caffeine, a known neuromodulator that acts as an adenosine receptor antagonist, as well as other components, such as chlorogenic acids, trigonelline, cafestol and kahweol. Thus, this review discusses the up-to-date knowledge of mechanisms of action of coffee and its bioactive compounds on lipid metabolism. Although there is evidence that coffee and/or its bioactive compounds regulate transcription factors (e.g. peroxisome proliferator-activated receptors and sterol regulatory element binding proteins) and enzymes (e.g. AMP-activated protein kinase) involved in lipogenesis, lipid uptake, transport, fatty acid β-oxidation and/or lipolysis, needs for the understanding of coffee and its effects on lipid metabolism in humans remain to be answered.
Collapse
|
50
|
Baldissera MD, Souza CF, Descovi SN, Petrolli TG, da Silva AS, Baldisserotto B. A caffeine-supplemented diet modulates oxidative stress markers and prevents oxidative damage in the livers of Nile tilapia (Oreochromis niloticus) exposed to hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1041-1049. [PMID: 30747312 DOI: 10.1007/s10695-019-00616-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Recent evidence has revealed the involvement of oxidative stress and oxidative damage with health impairment and mortality in fish exposed to hypoxia. Thus, natural compounds with antioxidant and free-radical-scavenging properties, such as caffeine, might help to prevent or reduce hepatic damage elicited by hypoxia. Thus, the aim of this study was to evaluate whether dietary supplementation with caffeine could prevent or reduce oxidative damage in the livers of Nile tilapia (Oreochromis niloticus) exposed to hypoxia. Hepatic reactive oxygen species, lipid peroxidation levels, and xanthine oxidase (XO) activity were higher in fish exposed to hypoxia compared with normoxia. Hepatic catalase, glutathione peroxidase, and glutathione S-transferase activities, as well as the antioxidant capacity against peroxyl radical levels, were lower in fish exposed to hypoxia compared with normoxia. No significant difference between groups was observed regarding hepatic superoxide dismutase activity. Dietary supplementation with 8% caffeine prevented all alterations elicited by hypoxia. Based on this evidence, the use of dietary supplementation with 8% caffeine can be an interesting approach to preventing hepatic lipid damage and impairment of the antioxidant defense system elicited by hypoxia, and this effect can be mediated by protective effects on XO activity.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine N Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tiago G Petrolli
- Postgraduate Program in Veterinary Medicine, Universidade do Oeste de Santa Catarina, Xanxerê, SC, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|